Lawrence Berkeley National Laboratory

LBL Publications

Title

PREPARATION OF TERTIARY PHOSPHINE COMPLEXES OF TETRAVALENT AND TRIVALENT URANIUM METHYLTRIHYDROBORATES; THE CRYSTAL STRUCTURES OF TETRAKIS(METHYLTRIIIYDROBORATO) URANIUM (IV) 1,2-DIMETHYLPHOSPHINOETHANE AND TRIS (METHYL-TRIHYDROBORATO)URANIUM (III) B...

Permalink

https://escholarship.org/uc/item/42m789nf

Author

Brennan, J.

Publication Date

1984-05-01

Materials & Molecular Research Division

RECEIVED LAWRENCE BERKELEY LABORATORY

JUL 24 1984

Submitted to Inorganic Chemistry

LIBRARY AND DOCUMENTS SECTION

PREPARATION OF TERTIARY PHOSPHINE COMPLEXES OF TETRAVALENT AND TRIVALENT URANIUM METHYLTRIHYDROBORATES; THE CRYSTAL STRUCTURES OF TETRAKIS(METHYLTRIHYDROBORATO)URANIUM(IV) 1,2-DIMETHYLPHOSPHINOETHANE AND TRIS(METHYLTRIHYDROBORATO)URANIUM(III) BIS(1,2-DIMETHYLPHOSPHINOETHANE)

J. Brennan, R. Shinomoto, A. Zalkin, and N. Edelstein

May 1984

For Reference

Not to be taken from this room

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California. Preparation of Tertiary Phosphine Complexes of Tetravalent and Trivalent Uranium Methyltrihydroborates; the Crystal Structures of Tetrakis(methyltrihydroborato)uranium(IV) 1,2-dimethylphosphinoethane and tris(methyltrihydroborato) uranium(III)bis(1,2-dimethylphosphinoethane)

John Brennan, Ron Shinomoto, Allan Zalkin,* and Norman Edelstein*

Materials and Molecular Research Division Lawrence Berkeley Laboratory and Department of Chemistry University of California Berkeley, California 94720

Abstract

 $(CH_{3}BH_{3})_{4}U[(CH_{3})_{2}PCH_{2}CH_{2}P(CH_{3})_{2}]$ and $(CH_{3}BH_{3})_{3}U[(CH_{3})_{2}PCH_{2}CH_{2}P(CH_{3})_{2}]_{2}$ have been synthesized and their molecular structures determined by singlecrystal x-ray diffraction. The space groups, unit cell parameters and R factors are as follows: $(CH_{3}BH_{3})_{4}U[(CH_{3})_{2}PCH_{2}CH_{2}P(CH_{3})_{2}]$, monoclinic, $P2_{1}/c$, $\underline{a} = 9.439(3)$ Å, $\underline{b} = 14.023(4)$ Å, $\underline{c} = 16.596(2)$ Å, B = 97.48(4)Å, Z = 4, $d_{x} = 1.536$ g/cm³, R = 0.024 ($F^{2} > 3\sigma(F^{2})$); $(CH_{3}BH_{3})_{3}U[(CH_{3})_{2}PCH_{2}CH_{2}P(CH_{3})_{2}]_{2}$, tetragonal, $P4_{3}2_{1}2$, a = 11.297(4), c = 23.03(2), Z = 4, $d_{x} = 1.412$ g/cm³, R = 0.024 ($F^{2} > 3\sigma(F^{2})$). Both complexes are unimolecular in the crystalline state. The uranium(IV) atom is coordinated to four $BH_{3}CH_{3}$ groups through tridentate hydrogen bridges, and to two P atoms of the $(CH_{3})_{2}PCH_{2}CH_{2}P(CH_{3})_{2}$ ligand. The uranium (III) complex is coordinated to three $BH_{3}CH_{3}$ groups through tridentate hydrogen bridges, and to four P atoms from the $(CH_{3})_{2}PCH_{2}CH_{2}P(CH_{3})_{2}$ ligands. The U-B distance for the U(IV) and U(III) complexes average 2.57 ± 0.01Å and-2:63-± 0.02Å, 1

respectively; the U-P distances for the U(IV) and U(III) complexes average 3.02 ± 0.01 Å and 3.13 ± 0.06 Å, respectively.

Introduction

Four Lewis base etherate adducts of $U(BH_{4})_{4}$ have been structurally characterized and display a variety of structural types.¹ $U(BH_4)_4$ also forms adducts with other Lewis bases, but these compounds have not been isolated.² A number of U(III)tetrahydroborate complexes have recently been reported. Marguet-Ellis et al. have thermally decomposed $U(BH_A)_A$ in toluene solution, and reacted the $U(BH_4)_3$ formed by this process with crown ethers to form soluble compounds.³ Wasserman et al. have isolated and structurally characterized $U(BH_4)_3(DMPE)_2$ (DMPE = 1,2-dimethylphosphinoethane) and $U(BH_{4})_{3}(Ph_{2}Ppy)_{2}$ (Ph₂Ppy = 2-(diphenylphosphino)pyridine) from the reactions of $U(BH_4)_3 THF_x$ (THF = tetrahydrofuran) with the appropriate ligands.⁴ An unusual feature of the $U(BH_4)_3(DMPE)_2$ complex is that two of the BH_A^- ligands are bonded to the U atom by tridentate hydrogen bridges while the third BH_4^- group is linked to the U atom by a bidentate hydrogen bridge.

We recently reported the syntheses and crystal structures of $M(BH_3CH_3)_4$, M = Zr, Th, U, and Np.⁵ Following the first structural characterization of an actinide phosphine compound by Andersen,⁶ we have been exploring the coordination chemistry of the $M(BH_3CH_3)_4$ compounds, M = Th, U, with phosphine ligands. We

report in this paper the synthesis and structure of $U(BH_3CH_3)_4DMPE$, and its thermal decomposition product (in toluene with excess DMPE), $U(BH_3CH_3)_3(DMPE)_2$. Experimental Section

All preparations were carried out under an argon atmosphere. Hexane was dried over CaH_2 and distilled under argon. Pentane was distilled from sodium benzophenone ketyl. Toluene was dried over Na and distilled under argon before use; 1,2-dimethylphosphinoethane was prepared as reported.⁷ U(BH₃CH₃)₄ was prepared as described previously.⁵

Infrared spectra were recorded on a Perkin-Elmer IR-283 spectrophotometer and calibrated with polystyrene film. Nujol and fluorolube mulls were prepared in an argon-filled dry box with dry, degassed Nujol and fluorolube. Nuclear magnetic spectra were recorded on a JEOL FX 90Q 90 MHz FT spectrometer and referenced to tetramethylsilane. Samples were prepared in toluene- d^8 in an argon-filled dry box and sealed under vacuum or capped with serum stoppers. Melting points were determined in sealed, argon-filled capillaries. IR data are given in Table I and pmr data in Table II. Elemental analyses were conducted by the analytical laboratories of the University of California, Berkeley.

Preparation of $U(BH_3CH_3)_4DMPE$. To 0.24g (0.68 mmole) $U(BH_3CH_3)_4$ dissolved in 20 ml pentane, 0.11 ml (0.66 mmoles) of DMPE was added with stirring, giving a green ppt. The solution was stirred for 5 minutes and then pumped to dryness. The green residue

-3-

was dissolved in 10 ml toluene, filtered, concentrated to 3 ml, and the solution was cooled at -20°C. After 3 hours green crystals had formed. The supernate was removed and the green crystals washed with 2 ml ether and pumped to dryness. A yield of 0.16 g (48 percent yield) U(BH₃CH₃)₄DMPE was recovered. Mp = 131-2°C (dec). Calculated for C₁₀H₄₀B₄P₂U: C, 23.85; H, 8.01. Found: C, 23.42; H, 8.25.

Preparation of $U(BH_{3}CH_{3})_{3}(DMPE)_{2}$. To 0.12 g (0.24 mmole) $U(BH_{3}CH_{3})_{4}DMPE$ dissolved in 10 ml. toluene, 0.40 ml (2.4 mmoles) of DMPE was added with stirring. The solution was heated to ~80°C for several hours, during which it turned deep brown. After cooling to room temperature, the toluene was pumped off and a solution of the dark brown residue in 15 ml. hexane was filtered and cooled slowly to -20°C overnight. Fine brown-black needles were isolated and washed twice with cold (-78°C) hexane. A yield of 0.06 g (10 percent yield) of $U(BH_{3}CH_{3})_{3}(DMPE)_{2}$ was recovered. M.p. = 130-2°C. Calculated for $C_{15}H_{50}B_{3}P_{4}U$: C, 28.83; H, 8.07. Found: C, 29.01; H, 8.25.

X-Ray Crystallography. Because of their extreme sensitivity to air, the crystals were sealed inside 0.3 mm quartz capillaries, and then mounted on a modified Picker automatic FACS-I diffractometer equipped with a Mo x-ray tube ($\lambda K\alpha_1 = 0.70930$ Å) and a graphite monochromator. The theta-two theta scan data were collected and corrected for crystal decay, absorption (analytical method)⁸ and Lorentz and polarization effects. Details of the data collection and

-4-

results are shown in Table III.

The U atoms were located with the use of 3-dimensional Patterson maps, and subsequent least-squares and electron density maps revealed the locations of all of the non-hydrogen atoms. The structures were refined by full-matrix least-squares using anisotropic thermal parameters on all of the non-hydrogen atoms. The positions of the hydrogen atoms on the DMPE ligand were estimated from its known geometry. Some of the hydrogen atom positions of the methyltrihydroborate groups were located in the difference electron density maps, and with these positions the remaining hydrogen atom positions could be estimated. All of the hydrogen atoms were included in the least-squares refinements with isotropic thermal parameters. Because the hydrogen atoms are not well resolved in the electron density maps, their positional parameters do not refine well in the least-squares procedure; therefore, restraints on the distances involving the hydrogen atoms were introduced into the least-squares refinements using a procedure suggested by Waser⁹ and described elsewhere.¹⁰ A sufficient number of distances to the hydrogen atoms were included to enforce tetrahedral geometry about the boron and carbon atoms. Neutral scattering factors for U, P, B, C^{11} and H^{12} were used in these calculations with the corrections for anomalous scattering applied.

In the tetragonal U(BH₃CH₃)₃(DMPE)₂ structure, the Friedel pairs were not averaged but were treated as individual reflections. At an earlier stage of the least-squares refinement with

-5-

all atoms anisotropic, and no hydrogen atoms included, the structure refined to an R factor of 0.050 in space group $P4_{1}2_{1}2_{1}$, and 0.034 in space group $P4_{3}2_{1}2_{1}$. This result established the absolute configuration of the data crystal in the latter space group.

Results of the least-squares refinements are given in Table III. Positional parameters are given in Table IV, and distances and angles are given in Tables V and VI. Tables of thermal parameters, hydrogen positions, least-squares plane, and observed structure factors are given as supplementary material. Discussion

In $U(BH_3CH_3)_4$ DMPE the uranium (IV) atom is at the center of a distorted octahedron of B and P atoms, see fig. 1; P(1), P(2), B(1)and B(2) are on the equatorial plane and B(3) and B(4) are above and below the plane. The methyltrihydroborate groups coordinate to uranium through tridentate hydrogen bridges. This type of tridentate bridging is found in the $M(CH_3CH_3)_4$ complexes,⁵ M = Zr, Th, U, Np, and is characterized by M-B-C angles close to 180° and short M-Bdistances; ca. 2.5Å for U(IV). Additional evidence for this kind of bridging is the absence of terminal B-H stretching in the IR spectrum. The uranium atom is coordinated to 12 hydrogen and 2 phosphorous atoms for a total of 14 atoms. The average U-B distance, 2.57(1)Å, is longer than the average of 2.48Å found in the 12-coordinate (four tridentate methyltrihydroborates) $U(BH_3CH_3)_4$;⁵ the larger U-B distance is attributed to the larger coordination number. The U-P distance average of 3.02(1)Å is comparable to the U_P distances of 3.10Å and 3.02Å found in $U(OC_{6}H_{5})_{4}(DMPE)_{2}^{6a}$ and $U(CH_{2}Ph)_{3}Me(DMPE)_{3}^{6b}$ respectively.

In $U(BH_3CH_3)_3(DMPE)_2$, the U(III) atom is at the center of a distorted pentagonal bipyramid of B and P atoms, see fig. 2. In the equatorial plane, consisting of 2P(1), 2P(2), B(1), and U, no atom is more than 0.003Å from the least-squares plane, and the B(2) atoms are 2.58Å above and below the pentagonal plane. The borons are connected to the uranium atoms through tridentate hydrogen bridges (with U-B-C angles of $\sim 180^{\circ}$; the coordination about the U(III) atom is 9 hydrogen and 4 phosphorous atoms for a total of 13.

The M-B bond length can be correlated with the bonding mode of the hydrogen bridges, i.e., to distinguish between bidentate and tridentate hydrogen bridges.¹³ The average U-B distance of 2.64(2)Å in U(BH₃CH₃)₃(DMPE)₂ is comparable to the average value of 2.68(4)Å for the axial tridentate U-B bond distance in $U(BH_4)_3(DMPE)_2$; however in the latter compound the equatorial U-B distance is 2.84(3)Å and has been assigned to a bidentate hydrogen bridge bond.^{4a} It is rather surprising that these two similar compounds exhibit different bonding modes for one of the BH₃R (R=H,CH₃) ligands. In U(BH₃CH₃)₃(DMPE)₂ the axial U-B(1) distance (2.66(1)Å) is marginally longer than the equatorial U-B(2)

In $U(BH_{3}CH_{3})_{3}(DMPE)_{2}$, the U-P(2) distance of 3.085(3)Å is 0.09Å shorter than the U-P(1) distance of 3.174(3)Å, and can be explained as a steric effect by comparing inter-ligand contact distances. At the P(2) site, methyl carbons C(7) and C(8) are more than 4Å away from B(1), B(2), and C(1); at the P(1) site, the inter-ligand C(3)-C(4') distance is 3.80Å. Given a van der Waals radius for the methyl group of 2.0Å,¹⁴ it seems reasonable that methyl-methyl repulsive forces are the reason for the longer U-P(1) bond. The individual U-P bond lengths in U(BH₃CH₃)₃(DMPE)₂ are each 0.03Å longer than the comparable bond lengths in $U(BH_{4})_{3}(DMPE)_{2}^{4a}$.

-8-

The U-B distance is greater by ~0.07Å for $U(BH_3CH_3)_3(DMPE)_2$ than for $U(BH_3CH_3)_4DMPE$, due to the larger ionic radius of U(III). The average U-H distances in $U(BH_3CH_3)_4DMPE$ and $U(BH_3CH_3)_3(DMPE)_2$ are 2.39 ± 0.1 and 2.50 ± 0.1Å, respectively, and the average U-P distances are 3.02 ± 0.01 and 3.13 ± 0.06Å, respectively.

Considering $U(BH_3CH_3)_4DMPE$ and $U(BH_3CH_3)_3(DMPE)_2$ to be pseudo-six and seven coordinate, respectively, their solution behavior then parallels that of the d block metals. Octahedral d transition metal complexes are usually rigid on the NMR time scale, while seven coordinate complexes are usually fluxional.¹⁵ The same type of behavior is observed with these uranium complexes. Table I shows the observed chemical shifts for the BH₃CH₃ groups. At low temperatures two resonances can be observed due to the $\mathrm{BH}_3\mathrm{CH}_3$ groups cis and trans to the P atoms of DMPE for the U(IV) compound. As the temperature of the sample is raised, the inequivalent BH_3CH_3 groups exchange rapidly, leading to an observed coalescence at +10 C. The chemical shift difference between the cis and trans BH_3 protons is ~ 400 ppm at -20 C. By comparison, the seven coordinate U(III) compound is fluxional on the NMR time scale, and no inequivalent sites could be observed for either the methyltrihydroborate or phosphine ligands down to -95 C. The U(IV) BH₃CH₃ exchange mechanism will be discussed in detail in a subsequent paper.

-9-

Acknowledgements

This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

<u>Supplementary Material Available</u>: Listings of thermal parameters, hydrogen positions, distance restraints, uranium-hydrogen distances, least-squares plane, and observed structure factors. Ordering information is given on any current masthead page. References

- a) Rietz, R.R.; Zalkin, A.; Templeton, D.H.; Edelstein, N.M.; and Templeton, L.K. <u>Inorg. Chem.</u>, 1978, <u>17</u>, 653.
 b) Rietz, R.R.; Edelstein, N.M.; Ruben, H.W.; Templeton, D.H.; and Zalkin, A. <u>Inorg. Chem.</u>, 1978, <u>17</u>, 658.
 c) Zalkin, A.; Rietz, R.R.; Templeton, D.H.; and Edelstein, N.M. <u>Inorg. Chem.</u>, 1978, <u>17</u>, 661.
- 2. Rietz, R.R. unpublished results.
- Dejean-Meyer, A.; Folcher, G.; and Marquet-Ellis, H. J. de Chim. Phys., 1983, 80, 579.
- a) Wasserman, H.J.; Moody, D.C.; and Ryan, R.R. <u>J. Chem. Soc.</u>, <u>Chem. Commun.</u>, 1984, 532.
 b) Wasserman, H.J.; Moody, D.C.; Paine, R.T.; Ryan, R.R.; and Salazar, K.V. J. Chem. Soc., Chem. Commun., 1984, 533.
- 5. Shinomoto, R.; Gamp, E.; Edelstein, N.M.; Templeton, D.H.; and Zalkin, A. Inorg. Chem., 1983, 22, 2351.
- 6. a) Edwards, P.G.; Andersen, R.A.; and Zalkin, A. J. Amer. Chem. Soc., 1981, <u>103</u>, 7792.
 b) Edwards, P.G.; Andersen, R.A.; and Zalkin, A. <u>Organometallics</u>, 1984, <u>3</u>, 293.
- Burt, R.J.; Chatt, J.; Hussain, W.; and Leigh, A.J. <u>J.</u> Organomet. Chem., 1979, 182, 203.
- Templeton, L.K.; Templeton, D.H. "Abstract, American Crystallographic Association Proceedings," Storrs, Conn., 1973, Series 2, Vol. 1, p. 143.

- 9. Waser, J. J. Acta. Crystallogr., 1963, 16, 1091.
- Zalkin, A.; Templeton, D.H.; Luke, W.D.; and Streitwieser, A.
 Jr., Organometallics, 1982, 1, 618.
- "International Tables for X-ray Crystallography," Kynoch Press, Birmingham, England, 1974; vol. IV.
- Stewart, R.F.; Davidson, E.R.; and Simpson, W.T. <u>J. Chem. Phys.</u>, 1965, 42, 3175.
- 13. a) Edelstein, N. <u>Inorg. Chem.</u>, 1981, <u>20</u>, 297.
 b) Teller, R.G.; and Bau, R. <u>Struct. Bonding (Berlin)</u>, 1981, <u>44</u>,
 1.
- Pauling, L.; "The Nature of the Chemical Bond," Cornell University Press, Ithaca, N.Y., 1960; p. 261.
- 15. Muetterties, E.L., Accts. Chem. Res., 1970, 3, 266.

Τa	b]	eΙ
----	------------	----

Compound				
U(BH ₃ CH ₃)4DMPE	2950m 1285m 925s 795m	2100s 1220s 890m 735m	1415w 1075s 865m 705m	1300m 940s 830m 645m
J(BH3CH3)3(DMPE)2	2950m 1290m 1075w 825w 690m	2310w 1260w 940m 730m 640m	2165m 1215m(br) 930m 720m	1420w 1140w 890m 700m

Infrared Spectroscopic Data (cm-1)

T	ab	le	I	I
---	----	----	---	---

Proton Magnetic Resonances Data^a,^b

Compound	T(°C)	-BH3-	-CH3-	DMPE
U(BH ₃ CH ₃) ₄ DMPE	-66	-32.97(6H,s)	-16.20(6H,s)	-15.64(4H,s)
		+450.14(6H,s)	+60.27(6H,s)	-8.14(12H,s)
	-20	-25.16(6H,s)	-13.29(6H,s)	-12.59(4H,s)
	: :	+373.80(6H,s)	+49.85(6H,s)	-6.71(12H,s)
	+25 ^c			-10.30(4H,s)
				-5.56(12H,s)
	+74 ^d		+13.67(12H,s)	-8.67(4H,s)
				-4.69(12H,s)
U(BH ₃ CH ₃) ₃ (DMPE) ₂	-68	+144.61(9H,s)	+12.44(9H,s)	-0.57(24H,s)
				-5.31(8H,s)
	-22	+125.95(9H,s)	+10.23(9H,s)	-0.08(24H,s)
				-2 .9 4(8H,s)
	+25	+115.24(9H,s)	+8.92(9H,s)	-0.07(24H,s)
				-1.09(8H,s)
	+70	+112.99(9H,s)	+8.39(9H,s)	+0.13(24H,s)
				-0.24(8H,s)

^a All samples prepared in toluene $-d^8$.

b Shifts in ppm from Me₄Si. Positive sign indicates a downfield shift.

^C Methyltrihydroborate protons broadened into the baseline due to rapid exchange of BH₃CH₃ sites.

d Single averaged methyl peak found. No averaged BH3 peak found.

Table III.

Crystallographic Summary and Data Processing

	U(BH ₃ CH ₃) ₄ DMPE ^(a)	U(BH ₃ CH ₃) ₃ (DMPE) ₂ (a)
a, Å	9.439(3)	11.297(4)
b, Å	14.023(4)	11.297(4)
c,Å	16.596(2)	23.030(20)
β, deg	97.48(4)	
v, Å ³	2178.0	2939.1
d(calcd),g/cm ⁻³	1.536	1.412
Z	4	4
mol. formula	$C_{10}H_{A0}B_{A}P_{2}U$	$C_{15}H_{50}B_{3}P_{4}U$
fw	503.65	624.92
cryst. syst	monoclinic	tetragonal
systematic absences	h01, 1=2n	001, l=4n
· · · · · · · · · · · · · · · · · · ·	0k0, k=2n	h00, h=2n
space group	P2 ₁ /c	P4 ₃ 2 ₁ 2
data crystal dimens., mm	0.15X0.17X0.29	0.12X0.14X0.66
abs coeff, cm^{-1}	71.9	`54.5
abs correction range	1.46-4.88	1.81-2.11
crystal decay corr	1.00-1.02	1.00-1.08
20 range, deg.	4–50	4_45
hkl range	0 <h<11< td=""><td>-12<h<12< td=""></h<12<></td></h<11<>	-12 <h<12< td=""></h<12<>
	0 <k<16< td=""><td>0<k<12< td=""></k<12<></td></k<16<>	0 <k<12< td=""></k<12<>
	-19<1<19	0<1<24
2ə scan width (deg)	1.10+.693 tane	1.50+.693 tane
no. of standards	3	3
no. reflections between stds	100	250
no. scan data	8091	4296
no. unique reflections	3976	1960
no. non-zero weighted data	2220 (F ² >3σ)	1395 (F ² >3σ)

Table III continued

	U(BH ₃ CH ₃) ₄ DMPE ^(a)	U(BH ₃ CH ₃) ₃ (DMPE) ₂ ^(a)
pb	0.030	0.035
extinction k ^C	1.08×10^{-7}	1.32×10^{-7}
R (non-zero wtd data) ^d	0.024	0.024
Rw ^e	0.025	0.026
σf 1	1.03	1.00
	ана — А на — А	

- ^a Unit cell parameters were derived by a least-squares fit to the setting angles of the unresolved MoK $_{\alpha}$ components of 47 reflections (20<2e<35) and 31 reflections (20<2e<30), respectively.
- ^b In the least-squares, the assigned weights to the data are $w[\sigma(F)]^{-2}$ were derived from $\sigma(F^2) = [S^2+pF^2]^{1/2}$, where S^2 is the variance due to counting statistics and p is assigned a value that adjusts the weights of the stronger reflections to be more in line with the rest of the data.
- ^C Simple extinction correction has the form $(F_0)_{corr} = (1+KI)F_0$, where I is the uncorrected intensity and F_0 is the observed scattering amplitude.

$$R = \Sigma \|F_0| - |F_c| / \Sigma |F_0|$$

e Rw = $\Sigma [w(|F_0| - |F_c|)^2 / \Sigma w |F_0|^2]^{1/2}$

f σ_1 = error in observation of unit weight = $[\Sigma w(|F_0| - |F_c|)^2 / (n_0 - n_v)]^{1/2}$, where n_0 is the number of observations and n_v is the number of variables.

Table IV. Positional Parameters

U(BH3CH3)4DMPE

ATOM	X	Y	Ζ
U P(1) P(2) B(1) B(2) B(3) B(4) C(1) C(2) C(3) C(4) C(2) C(3) C(4) C(5) C(4) C(5) C(6) C(7) C(8) C(9) C(10)	.23288(3) .33030(21) .145898(21) .1279(9) .3571(10) .4504(9) 0082(8) .0678(9) .4330(10) .5883(8) 1511(8) .2904(9) .5195(8) .2426(9) .2430(9) .1819(9) 0399(8)	.12147(2) 04850(14) 06610(14) .2399(6) .2125(7) .0885(6) .0925(6) .3103(6) .2663(6) .0650(7) .0664(6) 0438(7) 0790(6) 1585(5) 1647(5) 0842(6) 1036(6)	.23278(2) .33826(13) .15196(13) .1220(5) .3560(6) .1593(5) .2861(6) .0499(5) .4356(5) .1156(5) .3237(5) .4435(5) .3495(5) .2968(5) .2068(5) .0482(5) .1477(5)
	U(BH3CH3)3(DMPE)2	
АТОМ	X	Υ	Z
U P(1) P(2) B(1) B(2) C(1) C(2) C(3) C(3) C(4) C(5) C(6) C(7) C(8)	.05158(3) 22217(25) 09975(26) .2180(7) 0217(9) .3205(7) 0772(9) 2717(12) 3085(9) 3062(10) 2539(13) 0539(13) .1193(12)	.0516 .00515(26) .26816(25) .2180 .0720(9) .3205 .0803(11) 0611(13) 0717(13) .1428(13) .2382(12) .3608(10) .3717(9)	0.0 .02115(15) .03391(13) 0.0 1073(3) 0.0 1728(3) .0876(5) 0313(5) .0218(7) .0536(6) .0930(5) 0241(4)

U(BH ₃ CH ₃) ₄ DMPE U(BH		U(BH ₃ CH ₃) ₃ (D	I(BH ₃ CH ₃) ₃ (DMPE) ₂	
U-B(1) -B(2) -B(3)	2.58(1) 2.56(1) 2.56(1)		U-B(1) U-2B(2)	2.66(1) 2.62(1)
-B(4) U-P(1) -P(2) P(1)-C(5)	2.58(1) 3.029(2) 3.017(2) 1.84(1)		U-2P(1) -2P(2) P(1)-C(3)	3.174(3) 3.085(3) 1.79(1)
-C(6) -C(7) P(2)-C(8) -C(9)	1.82(1) 1.84(1) 1.83(1) 1.82(1)		C(4) C(5) P(2)C(6) C(7)	1.78(1) 1.82(2) 1.83(2) 1.79(1)
-C(10) B(1)-C(1) B(2)-C(2) B(3)-C(3)	1.82(1) 1.60(1) 1.61(1) 1.60(1)		-C(8) B(1)-C(1) B(2)-C(2)	1.79(1) 1.64(1) 1.64(1)
B(4)-C(4) C(7)-C(8)	1.60(1) 1.50(1)		C(5)-C(6)	1.43(2)

4. S.

Table V. Distances (Å)

À.

Table VI. Selected Angles

U((BH ₃ C	н ₃)	4	DMP	E
----	--------------------	------------------	---	-----	---

 $U(BH_3CH_3)_3(DMPE)_2$

P(2)-U-B(4) = 03. $P(2)-U-B(1) = 100.$ $P(2)-U-B(2) = 149.$ $P(2)-U-B(3) = 79.$ $P(2)-U-B(4) = 79.$ $B(1)-U-B(2) = 110.$ $B(1)-U-B(3) = 92.$ $B(1)-U-B(4) = 94.$ $B(2)-U-B(4) = 97.$ $B(2)-U-B(4) = 97.$ $B(3)-U-B(4) = 158.$ $U-B(1)-C(1) = 176.$ $U-B(2)-C(2) = 177.$	2(2) 6(2) 3(2) 0(3) 1(3) 1(3) 9(3) 8(3) 8(6) 7(7) 0(6)	P(2)-U-B(2) P(2)-U-B(2)' B(1)-U-B(2) B(2)-U-B(2)' U-B(1)-C(1) U-B(2)-C(2)	89.7(3) 93.5(3) 99.3(2) 161.4(5) 180.0 175.5(7)
U-B(2)-C(2) 177. U-B(3)-C(3) 178. U-B(4)-C(4) 174.	7(7) 0(6) 8(6)		

^aAtoms at y,x,-z.

v

÷

 φ_{i}

Figure Captions Figure 1. ORTEP drawing of U(BH₃CH₃)4DMPE Figure 2. ORTEP drawing of U(BH₃CH₃)3(DMPE)₂

Figure 1

с,

XBL 841-8

Figure 2

Supplementary Material

Preparation of Tertiary Phosphine Complexes of Tetravalent and Trivalent Uranium Methyltrihydroborates; the Crystal Structures of Tetrakis(methyltrihydroborato)uranium(IV) 1,2-dimethylphosphinoethane and tris(methyltrihydroborato) uranium(III)bis(1,2-dimethylphosphinoethane)

John Brennan, Ron Shinomoto, Allan Zalkin,* and Norman Edelstein*

Materials and Molecular Research Division Lawrence Berkeley Laboratory and Department of Chemistry University of California Berkeley, California 94720

Table of Hydrogen Positions $\frac{a}{2}$

U(BH₃CH₃)₄ DMPE

H(1)	-110(4)	1617(7)	.1043(15)
H(2)	•074(4)	.2515(25)	+1787(11)
H(3)	.2472(16)	.2491(25)	.1410(21)
H(4)	.113(5)	.300(3)	.0003(14)
H(5)	.084(6)	.3782(7)	.0650(18)
H(6)	0363(17)	.303(3)	•0338(27)
H(7)	.317(4)	.2643(15)	.3056(12)
H(8)	.252(3)	.1687(27)	.3700(14)
H(9)	.4341(26)	.1616(26)	•3306(1 <u>5</u>)
H(10)	.47 8(6)	.2207(14)	.4769(17)
H(11)	.3647(25)	.304(4)	•4623(23)
H(12)	.509(5)	.310(4)	•4230(14)
H(13)	.437(3)	.0 351(22)	.2094(20)
H(14)	.457(3)	.1621(16)	.1882(25)
H(15)	.3478(13)	.036(3)	.1149(13)
H(1E)	.6780(12)	.034(4)	.1499(18)
H(17)	.597(4)	.039(3)	.0636(18)
H(18)	.596(4)	0037(11)	.104(3)
H(19)	•034(3)	.1661(15)	.3053(24)
H(20)	0240(25)	.031(3)	•2170(7)
H(21)	.0516(19)	.0397(21)	•3068(23)
H(22)	2322(21)	.108(3)	.303(3)
H(23)	182(4)	0002(17)	.311(3)
H(24)	-,1386(29)	.072(4)	•3836(8)
H(25)	•342(4)	.0099(23)	•4664(12)
H(2E)	• 32 3 (5)	1634(18)	•4652(12)
H(27)	-1891(14)	036(4)	•4382(9)
H(28)	•5283(18)	1339(23)	.3838(27)
H(29)	.5572(13)	0241(18)	• 37 39(29)
H(3U)	.5400(19)	031(4)	•2957(10)
H(31)	-1480(15)	1535(14)	.3133(10)
H(32)	.2967(24)	2381(7)	•3273(8)
H(33)	.3378(14)	1501(15)	•1900(9)
H(34)	•1948(24)	2208(6)	.1823(9)
H(35)	.152(5)	1478(15)	.0347(13)
H(3E)	.2325(16)	-,075(4)	.0496(11)
H(37)	.126(4)	0368(25)	.0168(A)
H(38)	0539(21)	115(4)	.2026(9)
H(39)	0472(21)	1598(22)	.1147(27)
H(40)	0945(12)	0514(18)	.1231(29)

-24-

Table of Hydrogen Positions (continued)

	U(BH ₃ C	H ₃) ₃ DMPE ₂	
H(1)	•129(5)	.259(8)	.014(15)
H(2)	.244(15)	.144(15)	.032(13)
H(3)	.209(23)	.178(24)	0460(27)
H(4)	075(4)	.005(4)	0801(10)
H(5)	.0755(19)	•0+2(6)	1097(9)
H(6)	026(5)	.1633(18)	0852(12)
H(7)	•381(17)		-029(13)
H(8)	.284(8)	.397(7)	.010(16)
H(9)		.325(24)	039(4)
H(10)	118(4)	.1561(24)	1769(11)
H(11)	133(+)	.015(3)	1783(11)
H(12)	-,0129(16)	.075(5)	2010(5)
H(13)	241(5)	1418(23)	.0893(15)
H(14)	3581(13)	052(5)	.0876(14)
H(15)	-,241(5)	014(4)	.1199(4)
H(16)	280(4)	052(5)	0702(4)
H(17)	3914(14)	048(5)	0272(22)
H(18)	301(5)	1568(12)	0246(20)
H(19)	3886(13)	.1202(17)	.014(4)
H(20)	276(5)	.193(4)	0109(26)
H(21)	-,2898(23)	.3161(14)	.060(3)
H(22)	2496(16)	.195(6)	.0906(19)
H(23)	.016(4)	.435(5)	.0809(13)
H(24)	036(6)	.3102(17)	.12 63(11)
H(25)	1183(26)	.415(4)	.1022(21)
H(2E)	0417(16)	.40 3(4)	0348(19)
H(27)	-,171(4)	.436(3)	0106(12)
H(28)	155(5)	.3305(20)	0 569(1 1)

 $\frac{a}{a}$ These positions are the result of distance-restrained least-squares refinements, and the quoted estimated standard deviations in parentheses are not significant.

Tables of Anisotropic Thermal Parameters <u>a</u>

U(BH3CH3)4 DMPE

ATOM	311	E22	333	81.2	e 13	B23
U	3.145(11)	3.009(10)	3.953(12)	195(14)	984(8)	037(14)
F(1)	3.83(9)	4.57(10)	4.30(11)	05(8)	.66(8)	-75 (A)
P(2)	4.33(9)	3.39(9)	4.45(11)	30(8)	.92(9)	48 (8)
8(1)	4.3(4)	4.0(4)	5.4(6)	.5(4)	1.1(4)	- 0(4)
8(2)	5.4(5)	4.5 (5)	6.1(6)	-1.4(4)	1.2(5)	-1.1(4)
B(3)	4.7(4)	4,5(4)	5.0(5)	.0(4)	1.4(4)	.8(4)
8(4)	4.4(4)	4.2(+)	6.2(6)	.1(3)	1-3(4)	- 4(4)
C(1)	7+4(5)	5.9(5)	6.1(5)	1.2(4)	1.1 (4)	1.0(4)
C(2)	8.2(5)	7.7(6)	6.3(6)	-2.0(5)	.1 (5)	-1.6(5)
C(3)	4.6(4)	8.7 (6)	6.5(6)	.9(4)	2.1 (4)	2(5)
C(4)	4.8(4)	6.0(5)	8.0(6)	•0(4)	2.9(4)	.9(4)
C(5)	6.1(5)	8.3(6)	4.9(5)	7(4)	1.0(4)	1.3(4)
C(6)	4.7(4)	7.5(5)	6.3(6)	.7(4)	1-2(4)	2.1(4)
C(7)	6.3(5)	4.8(4)	5.3(5)	.2(4)	-3(4)	2, 2(3)
C(8)	7.2(5)	3.5(3)	5.3(5)	6(4)	7(5)	8(3)
C(9)	6.8(5)	7.0(5)	6.3(6)	.0(4)	1.7(4)	-1.1(k)
C(10)	5.6(4)	5.7(5)	6.9(5)	-1.5(4)	•7 (4)	9(4)

 $U(BH_3CH_3)_3$ DMPE₂

ATOM	311	E22	B33	812	613	B23
ն	4.304 (13)	4.3042	3.486(16)	495(22)	045(16)	. 08 5
P(1)	5.07(13)	7.16(15)	10.54(25)	-1.03(12)	1.71(14)	-1.65(14)
P(2)	7.51(17)	5.09(14)	6.99(15)	.42(11)	2((13)	81 (13)
B(1)	8.6(7)	8.5644	5.5(8)	-2.8(9)	.7 (8)	-,7399
B(2)	6.1(5)	7.7(7)	4.7(4)	4(5)	.0(4)	.6(5)
C(1)	13,9(10)	13,9274	9.8(10)	-5.4(12)	-2-9(11)	2.8824
C(2)	9.3(5)	12.9(11)	5.5(4)	1(6)	-1.8(5)	.5(6)
C(3)	10.2(3)	11.2(9)	15.6(12)	-1.3(8)	6.3(9)	5(10)
C(4)	5,2(6)	17.5(14)	15.8(12)	= 3, 2(8)	.5(7)	-4.9(11)
C(5)	4.7(6)	9.3(9)	22.0(19)	•6(6)	2.0(8)	-1.3(11)
C(6)	8.0(9)	6.7 (8)	16.3(11)	1,2(5)	3.0(8)	-3.0(8)
C(7)	14.1(3)	7.3(6)	9.2(7)	1.6(8)	=2.0(8)	-2.3(£)
(8) 0	14.8(11)	5.4(6)	10.2(9)	2.1(7)	8(8)	•5(6)

^a Anisotropic temperature factor has the form $exp[-0.25(B_{11}h^2a^{*2} + 2B_{12}hka^{*b^{*}} + ...)].$

Tables of Isotropic Thermal Parameters \underline{a}

	د		
H (1)	5,5(5)	H (21)	5.5162
H(2)	5.5162	H (22)	9.9572
H (3)	6.5162	H (23)	9.9572
H (4)	10.0(8)	H (24)	9.9572
H (5)	9.9572	H (25)	7.6(7)
H (6)	9.9572	H (26)	7.5887
H (7)	5.5162	H(27)	7.5887
H (8)	6.5162	H (28)	7,5887
H (9)	6.5162	H (29)	7.5387
H(10)	9.9572	H(30)	7 .5387
H (11)	9.9572	H(31)	5,7(11)
H(12)	9.9572	H(32)	6.6782
H (13)	5.5162	H(33)	6.6782
H (14)	5.5162	H(34)	6.6782
H(15)	5.5162	H(35)	7.5887
H (16)	3,9572	H(36)	7.5887
H (17)	9.9572	H(37)	7,5887
H(18)	9.9572	H (38)	7.5887
H (19)	5,5162	H (39)	7.5887
H (20)	5.5162	H(40)	7.5387

U(BH3CH3)3 DMPE2

H (1)	10.000	H (15)	10.000
H (2)	10.000	H(16)	10,000
H (3)	10.000	H (17)	10.000
H (4)	10.000	H (18)	10.000
H (5)	10.000	H (19)	18,000
H (6)	10.000	H (20)	10.000
H (7)	10,000	H(21)	10.000
H (8)	10.000	H (22)	10,000
H (9)	10.000	H (23)	10,000
H(10)	10.000	H (24)	10.000
H (11)	10.000	H (25)	10,000
H (12)	10.000	H (26)	10.000
H (13)	10.000	H (27)	10.000
H (14)	18.008	H (28)	10.000

 $\frac{a}{2}$ The form of the isotropic temperature factor is $exp(-Bsin^2\theta/\lambda^2)$.

 $U(BH_3CH_3)_4$ DMPE

Distance Restraints

$(BH_3CH_3)_4$			DMPE
В	-	HB	1.14(1)
С	-	н _с	0.98(1)
H _B	-	H _R	1.83(1)
H _C	-	н _с	1.59(1)
H _C	-	B	2.18(1)
HB	-	С	2.28(1)
Н _С	-	Ρ	2.26(1)

U(BH ₃ CH ₃) DMPE ₂			
В	- H _R	1.150(5)	
С	- H _C	0.980(5)	
H _R	- H _B	1.88(1)	
H _C	- H _C	1.60(1)	
H _C	- B	2.16(1)	
H _R	- C	2.30(1)	
H	- P	2.29(1)	
Н _В	- н _с	2.35(1)	

U - H Distances (Å)

U(BH ₃	CH ₃) ₄ DMPE	U(BH3CH3 DMPE2
U - H(1)	2.36	U - 2 H(1) 2.52
U - H(2)	2.46	U - 2 H(2) 2.52
U - H(3)	2.37	U - 2 H(3) 2.52
U – H(7)	2.42	U - 2 H(4) 2.39
U - H(8)	2.35	U - 2 H(5) 2.54
U - H(9)	2.40	U - 2 H(6) 2.49
U - H(13)	2.35	
U - H(14)	2.40	Average = 2.50^{+} 0.05
U – H(15)	2.41	
U - H(19)	2,44	
U - H(20)	2.44	
U - H(21)	2.31	· · · · ·

Average = $2.39 \div 0.04$

U

3

Least Squares Plane in $U(BH_3CH_3)$ DMPE₂

Equation of Plane

2.056 a - 2.056 b + 22.254 c = 0

Distances to the Plane (A)

Atoms in the plane

U	0.000
P(1)	0.003
P(1)'	-0.003
P(2)	-0.002
P(2)'	0.002
B(1)	0.000

Atoms not in the plane

B(2)	-2.580
C(1)	0.000

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

56

TECHNICAL INFORMATION DEPARTMENT LAWRENCE BERKELEY LABORATORY UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

200 1 Lan

•