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County-level assessment of behind-the-meter solar and storage to mitigate 
long duration power interruptions for residential customers 

Will Gorman a,*, Galen Barbose a, Juan Pablo Carvallo a, Sunhee Baik a, Cesca Ann Miller a, 
Philip White b, Marlena Praprost b 

a Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS 90-4000, Berkeley, CA 94720, USA 
b National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA   

H I G H L I G H T S  

• Backup capability of solar and storage differs by region in the U.S. 
• Small batteries can meet a limited set of critical loads in most counties. 
• Electric cooling and heating loads are typically hardest loads to backup. 
• Household building attributes like efficiency can impact results up to 20% 
• Resiliency value needs to be high to motivate adoption of solar-plus-storage.  
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A B S T R A C T   

Customer concerns over electric system resilience could drive early adoption of behind-the-meter solar-plus- 
storage (BTM PVESS), especially as wildfire, hurricane, and other climate-driven risks to electric grids become 
more pronounced. However, the resilience benefits of BTM PVESS are poorly understood, especially for resi
dential customers, owing to lack of data and methodological challenges, making it difficult to forecast adoption 
trends. In this paper, we develop a methodology to model the performance of BTM PVESS in providing backup 
power across a wide range of customer types, geography / climate conditions, and long duration power inter
ruption scenarios, considering both whole-building backup and backup of specific critical loads. We combine 
novel, disaggregated end-use load profiles across the continental United States with temporally and geospatially 
aligned solar generation estimates. We then implement a PVESS dispatch algorithm to calculate the amount of 
load served during interruptions. We find that PVESS with 10 kWh of storage can meet a limited set of critical 
loads in most United States counties during any month of the year, though this capability drops to meeting only 
86% of critical load, averaged across all counties and months, when heating and cooling are considered critical. 
Backup performance is lowest in winter months where electric heat is common (southeast and northwest U.S.) 
and in summer months in places with large cooling loads (southwest and southeast U.S.). Winter backup per
formance varies by roughly 20% depending on infiltration rates, while summer performance varies by close to 
15% depending on the efficiency of the central air-conditioning system. Differences in temperature set-points in 
Harris County correspond to a 40% range in winter backup performance and a 20% range in summer perfor
mance. Economic calculations show that a customer’s resilience value of PVESS must be high to motivate 
adoption of these systems.   

1. Introduction 

The rapid cost declines of solar technologies over the last decade led 

to significant growth of both utility-scale solar power plants connected 
to the bulk transmission system as well as smaller “behind-the-meter” 
(BTM) systems sited at an individual electricity customer [1–3]. Similar 

Abbreviations: BTM, Behind-the-meter; PVESS, Photovoltaic energy storage system. 
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cost declines have occurred for Lithium-ion battery technologies [4], 
where there is high interest in utility-scale development, with a signif
icant fraction of proposed battery projects co-located with a renewable 
power plant [5,6]. Paired BTM PVESS, however, is still a minority 
application in most regions, representing 10% of all U.S. BTM residential 
solar systems installed in 2021 [7].1 

Industry observers note that early adoption of BTM solar-plus- 
storage (PVESS for remainder of the chapter) has been driven, to a sig
nificant degree, by customer concerns over electric system reliability 
and resilience [8].2 As wildfire, hurricane, and other climate-driven 
risks to electric grids become more pronounced, those concerns are ex
pected to grow [10]. In such scenarios, the vulnerability of transmission 
and distribution networks could increase and/or become more costly to 
maintain due to expensive adaptation activities like undergrounding 
transmission and distribution infrastructure [11]. Customer-sited 
backup power applications, therefore, could provide a key foothold for 
the BTM solar and storage industry and drive customer-adoption. But, 
the technical resilience benefits of BTM PVESS are poorly understood, 
owing to lack of data and methodological challenges.3 Therefore, these 
benefits are often ignored or estimated in a simplified manner when 
building customer adoption models [12,13]. Some customer adoption 
studies assume PVESS can provide full backup during power in
terruptions, and do not consider heterogeneity across geographies, 
customer-types, interruption durations, and PVESS system sizes [14]. 

At the same time, there is active debate on the relative merits of 
promoting BTM over utility-scale technologies as the electric industry 
works towards decarbonization [15,16]. Past research has argued that 
given the relative expense of BTM compared to utility-scale applications, 
utility-scale technologies should be promoted to achieve rapid decar
bonization of the electric grid in a cost effective manner [17,18]. 
Counterarguments emphasize that BTM technologies could defer and 
reduce fixed network costs of the electricity system [19]. Though the 
network benefits of BTM solar and storage are notoriously challenging to 
estimate [20,21], they should be considered in a cost-optimal plan [22]. 
As opposed to utility-scale technologies, the reliability and resilience 
benefits of BTM technologies for households are rarely quantified, in 
part due to the lack of data and methodological challenges mentioned 
above. Quantifying these benefits may affect the optimal balance be
tween utility-scale and BTM resources and influence the ongoing debate 
of the relative merits of these technologies for decarbonization, afford
ability, and reliability/resilience. 

In this paper, we model the performance of BTM PVESS in providing 
backup power across a wide range of residential customer types (e.g. 
single-family, mobile, and multifamily), geography / climate conditions 
(across the continental United States), and power interruption scenarios 
(e.g. long-duration interruptions of varying frequency, timing, and 
seasonality), considering both whole-building backup and backup of 
specific critical loads. Our approach provides an assessment of the 
technical potential of PVESS to enhance customer resilience. We do so 
by combining novel, disaggregated, and publicly available end-use load 
profiles across the continental United States with temporally and geo
spatially aligned solar generation estimates. We then implement a 
PVESS dispatch algorithm to calculate the amount of load served during 
differing long duration power interruptions. 

Such analysis fills a literature gap by providing new information 
about the conditions PVESS technologies can be relied on to serve load 
during long-duration power interruptions. We find that PVESS with 10 
kWh of storage can meet a limited set of critical loads in most United 
States counties during any month of the year, though this capability 
drops to meeting only 86% of critical load, averaged across all counties 
and months, when heating and cooling are considered critical. Backup 
performance is lowest in winter months where electric heat is common 
(southeast and northwest U.S.) and in summer months in places with 
large cooling loads (southwest and southeast U.S.). Furthermore, this 
paper contributes a unique dataset of county-level mitigation potential 
for PVESS that researchers in the resilience literature can use to assess 
the economic benefits of these systems to customers. The breadth of the 
results also enables public decision-makers at the state and federal level 
to design, target, and deploy policies that internalize the resilience 
benefits of PVESS. Finally, the information produced in this paper is 
useful to both researchers and industry practitioners forecasting future 
adoption of BTM PVESS systems as well as those evaluating the relative 
merits of utility-scale and BTM PVESS applications. We show that a 
customer’s resilience value of PVESS must be high to motivate adoption 
of these systems. 

2. Literature review 

Past research on the resilience impacts of BTM technologies gener
ally focused either on: (1) development of new optimization and oper
ation methods of PVESS systems, assessing their viability within 
individual case studies or (2) resilience impacts of PVESS within the 
distribution system from the perspective of a utility or distribution 
system operator. Neither of these two approaches lend themselves to 
significant geographic and building-type heterogeneity, limiting a 
comprehensive understanding of the scale of applications for BTM 
PVESS to mitigate power interruptions and correspondingly assess 
future customer adoption trends. 

The first area of literature uses case study analyses of particular 
buildings and locations in order to demonstrate novel methods for 
optimal PVESS system sizing and/or to show how including reliability/ 
resilience value impacts PVESS cost-effectiveness. For instance, Laws et 
al explore the economic and resiliency benefits associated with a hybrid 
system comprising solar PV and energy storage for commercial buildings 
and critical infrastructure sites [23]. Anderson et al estimate resiliency 
value of PVESS plus diesel systems for businesses in New York City, 
suggesting the potential to reduce $2.5 billion in business losses [23] 
while other studies have focused on households during extreme and rare 
weather events [24]. These studies are often extended to achieve addi
tional goals, such as determining the storage size to meet a reliability 
targets [25], to maximize utility bill savings and resiliency benefits [26], 
to minimize the lifecycle cost of energy [27], to explore the tradeoffs 
between interruption probability and storage capacity [28], to consider 
fuel source vulnerability [29], or to incorporate social equity values 
[30]. Work exploring the benefits of introducing load control technol
ogies or controlled electric vehicle charging that increase the value of PV 
has also been performed [31,32]. In general, these studies often rely on 
stylized scenario analysis [23,33] or statistical models and simulations 
[24,27,34], but such approaches are tied to the characteristics of 
reference events and input parameters, which are location-specific. 

These studies have improved our understanding of the potential for 
PVESS-based backup, but their focus makes it challenging to describe 
variation across regions, interruption conditions, customer-types, 
building stock, and specific end-uses of electricity. Cole et al is 
perhaps the most geographically expansive analysis, studying PVESS 
capabilities across 18 different hurricane events in the southeast, but 
focus on the supply of a constant, flat load [36]. Furthermore, only a 
small number of studies in this literature evaluate critical load scenarios. 
Some of these studies do not specify how they develop a “critical” de
mand scenario [33,35] or solely rely on a flat percentage of total load 

1 Hawaii is the only region in the United States that has seen significant 
pairing of BTM storage with solar, where upwards of 90% of new solar systems 
were paired with a battery in 2021.  

2 In the remainder of this paper, we will mostly use the term ‘resilience’ given 
our focus on long-duration interruptions. Prior work has defined mitigation of 
interruptions greater than24 h as resilience benefits, and we rely on the same 
definition in this paper [9].  

3 While backup benefits encompass both technical mitigation potential and 
corresponding economic valuation of the mitigated interruptions, we focus on 
technical mitigation potential in this paper. 
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[37–39]. Manz et al identify refrigeration and lighting as critical loads, 
but instead of explicitly modeling heating and cooling loads, create a 
generic ‘baseline’ heating/cooling power consumption [40]. More 
recent work has been done to understand how end-customers might 
prioritize various end-uses [41,42], but it has remained challenging to 
implement such sensitivities in PVESS analysis due to the need to have 
sufficiently disaggregated demand profiles. 

A subset of this literature has also evaluated PVESS capability to 
serve end-consumers with a wider geographic coverage, though the lens 
of grid defection [43–45]. Hittinger et al find that grid defection is cost 
prohibitive for the customer when relying on BTM PVESS, results that 
are corroborated by Gorman et al and Hanser et al under a variety of 
scenarios. A few studies find that adding BTM fossil-fuel based systems 
could make grid defection more likely [46]. All these studies find that 
the PVESS system sizes required for grid defection are often quite large 
due to the constraint to provide year-round electricity service. Given 
these large sizes, it is difficult to apply results from these studies to 
understand PVESS capabilities to provide backup during power in
terruptions with smaller system sizes that are currently more commonly 
adopted [47]. 

Compared to the case-study approaches discussed above, the distri
bution system literature that evaluates the system reliability/resiliency 
impacts of BTM PVESS adoption focuses on the electric utility, rather 
than individual end-consumer, perspective. A wide literature has eval
uated the distribution impact of high PV penetrations on distribution 
feeders, focused on issues of hosting capacity, voltage support, protec
tion coordination, voltage flicker, and short circuiting [21,48]. Seguin 
et al. catalogs major findings from these studies [49]. More recent 
studies have begun evaluating more expansive DER technologies such as 
electric vehicles and battery storage and their corresponding impacts on 
the distribution system [50–52]. Carvallo et al models the capability of 
BTM PVESS form both the distribution utility and customer perspective. 
However, their results are focused effects on system-aggregated metrics 
such as system average interruption duration index (SAIDI), system 
average interruption frequency index (SAIFI), and customer average 
interruption duration index (CAIDI). They find reductions in the SAIDI 
from 2 to 12%, depending on PVESS penetration levels but focus on a 
specific set of locations in Indiana, making it hard to generalize there 
results across diverse geographic conditions [9,53]. 

Given that BTM solar-plus-storage adoption is often driven by end- 
customer procurement decisions [54], it is difficult to take the results 
from this system-oriented resiliency literature and apply them to 
customer adoption models. Much of the literature studying the adoption 
of distributed energy resources focuses on cost, demographic, and 
community/network effects [55–57]. While these studies are predomi
nantly focused on distributed PV adoption, new methods are being 
developed to forecast BTM storage adoption [14,58]. Sigrin et al apply 
historical co-adoption of PVESS to forecast adoption in the future, citing 
limited research on distributed storage adoption while Prasanna et al 
apply an economic model that takes into account the value for backup 
power based on regionally distributed SAIDI and SAIFI metrics, 
assuming that a PVESS system could avoid all potential interruptions 
[14]. 

3. Methods 

This section is broken up into three subsections which describe our 
data collection efforts, the implementation of the PVESS dispatch algo
rithm, and the parameters that we include in our scenario analysis. 

3.1. Data collection 

Our research approach requires three hourly timeseries data: (1) 
disaggregated end-use load profiles, (2) solar production profiles, and 
(3) power interruption profiles. Critically, we ensure that these data sets 
are temporally and geospatially aligned at an hourly interval given the 

correlation of weather events with likelihood of power outage [59]. To 
do so, we rely on a consistent set of typical meteorological year (TMY3) 
and actual meteorological year (AMY) weather data that are used to 
simulate both end-use load profiles and solar production profiles. Fig. 1 
provides a schematic summarizing how these key data sources flow into 
our corresponding PVESS evaluation methodology. 

For load profiles, we use a foundational dataset of more than 500,000 
residential building models generated by the National Renewable En
ergy Laboratory’s (NREL) ResStock simulation tool [60]. These building 
models use a wide range of empirical data to inform statistical repre
sentations of the United States building stock, covering a variety of 
residential building types, end-uses, and characteristics [61]. These 
statistical representations are created with Census, Residential energy 
consumption survey (RECS), and actual electricity consumption data
sets. Overall, ResStock reports annual energy uncertainty of its aggre
gated models within the 3–6% range and peak demand uncertainty 
within the 3–9% range [60]. We focus on detached single-family homes 
for our base case analysis but also assess the capability of PVESS systems 
to serve mobile homes and multifamily dwellings. Multifamily dwellings 
are modeled as individual units within ResStock. To create an aggregate 
building profile, we sum 10 individual unit load profiles within a 
particular region that have the same HVAC technologies. 

The ResStock model generates the full collection of building models 
using probabilistic distributions of more than 100 building stock char
acteristics (e.g. building insulation, HVAC technology type, square 
footage, heating fuel). For computational tractability, we select a single 
building model per county that is closest to the statistical median in 
terms of annual electricity consumption while ensuring that the selected 
building has the same end-use characteristics that are most common 
within that county (e.g. electric heating, air conditioning presence).4 For 
counties with fewer than 10 building samples for a given building type, 
we aggregate the building models into their associated Public Use 
Microdata Areas (PUMA) region and apply the same selection process as 
above. In the case of single-family detached homes, this applies pri
marily to a number of sparsely populated rural counties; for other 
building types, this aggregation occurs more frequently. In the results 

Fig. 1. Schematic summarizing key data sources and corresponding use in 
PVESS evaluation methodology. 

4 To do so, we characterize key end-use characteristics for each region by 
calculating the percentage of buildings with A/C and percent of buildings with 
electric space heating. 
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section, we often present population weighted averages that are not 
significantly impacted by this aggregation. Geospatial results, however, 
are coarser in rural areas as a result of the aggregation. 

While we focus on the ‘typical’ consumption for building models 
across the U.S., for a select number of high-population counties, we 
present a distribution of results across the entire building stock within 
that county. Such analysis allows us to estimate the range of capabilities 
of BTM PVESS within a single geographic territory. These focus locations 
and corresponding climate zones5 are shared in Figure 11-2 in the 
Supplemental Information section. 

To produce solar generation profiles, we apply the same weather 
data that are used in the underlying ResStock building simulations in 
order to ensure geospatial and temporal alignment. In total, 889 weather 
locations were used, and the corresponding weather data combines both 
ground based measurement data and solar radiation data from NREL’s 
National Solar Radiation Data Base (NSRDB) [62]. Then, we use NREL’s 
System Advisor Model (SAM), which outputs AC solar production pro
files. For these simulations, we use default system losses of 14% and an 
inverter efficiency of 96% and assume a 1.2 inverter loading ratio, 180 
azimuth, fixed-roof system with tilt equal to the latitude of the weather 
station location. 

Finally, we develop two distinct approaches to simulating power 
interruption profiles: (1) synthetic profiles and (2) historical profiles. 
Our synthetic profiles are simulated as interruption events that occur in 
every month at a pre-determined start date and start time. These syn
thetic profiles allow us to assess the capability of PVESS systems to 
provide power across different seasons and are used solely in tandem 
with TMY weather conditions. To determine the start day of a synthetic 
interruption within a given month, we calculate the daily net load for 
each building model and develop scenarios where we choose a specific 
percentile of net load for the interruption window (e.g. 50th percentile 
or 90th percentile). We default to starting the interruption at midnight, 
though explore a sensitivity where we adjust the start time to different 
times throughout the day (e.g. hours 6, 12, 18). 

While the synthetic approach allows us to compare our geographies 
and building models in a consistent way, they are limited in their ability 
to assess the provision of backup power of BTM PVESS systems during 
extreme weather events. To complement the synthetic profiles, we 
identify 10 historical, wide-spread, weather-driven power outages and 
develop historical interruption profiles that align with the empirical 
experience of outages during those events. We focus on 4 event types: (1) 
Hurricanes (Harvey (2017), Irma (2017), Florence (2018), Michael 
(2018), and Isaias (2020)); (2) wildfires (California (2019)); (3) winter 
storms (Washington state (2019) and Oklahoma (2020)); and (4) 
thunderstorm (Iowa (2020) and Texas (2020)). For each of these events, 
we select four representative counties that ensure diversity of experience 
during the interruption event, focusing on the most populous, most 
vulnerable (based on the U.S. Federal Emergency Management Agency’s 
social vulnerability index [63]), most impacted rural (using U.S. 
Department of Housing and Urban Development designations), and 
longest duration interruption counties. We also limit the selections to 
counties experiencing a minimum interruption duration of 48 h. The set 
of counties selected through this process are listed in the Supplementary 
Material section (Table 11-1). 

To determine the start and end-times for each county-event, we use 
data from Poweroutage.us, which collects utility outage management 
system reporting that tracks the total number of customers who lost 
power during these extreme weather events by county [64]. Start and 
end-times for each event are based on a threshold of 10% of customers 
experiencing an interruption within a specific county. For our analysis of 
historical extreme weather events, we simulate new building load pro
files for a subset of counties and years using the AMY weather data. 

3.2. PVESS dispatch and evaluation 

Since we aim to understand the technical capability of a PVESS to 
provide backup, we limit the operation of the system to solely provide 
backup during interruption events.6 Fig. 2 shows the decision tree that is 
used to determine the dispatch of the PVESS system. We assume a 92% 
one-way battery efficiency and a 2 h duration battery. We apply con
straints on the discharge and charge rates of the battery such that they 
do not exceed the kW capacity of the battery within the hour, which is 
determined by dividing the kWh energy limit of the battery by the 2 h 
duration. We assume an AC coupled system such that the maximum 
power of the PVESS is the PV’s AC capacity plus the battery power 
constraints mentioned above.7 The energy limit of the battery is a 
parameter we adjust, discussed below in the scenario analysis subsection 
below. An illustrative time-series figure for a single-site which repre
sents our dispatch approach is provided in Fig 11-5 in the Supplemental 
Information. 

In order to describe and compare the performance of the PVESS 
system across all modeled scenarios, we focus on a simple customer 
centric metric: percent load met (adjusting for load scenario of interest). 
This metric is defined by the below equation and is based entirely on 
dispatch data calculated for our interruption events. Importantly, the 
load demanded and load served vary by our specific load scenario (i.e. 
full load, critical load, limited critical load) of focus, described in greater 
detail below.8 

P =
Es

Eo
(1) 

Where, 
P = percent load met (%). 
Es = load served during interruption (kWh). 
Eo = load demanded during interruption (kWh). 

3.3. Scenario analysis 

Table 1 summarizes the adjustable parameters in our analysis. Our 
baseline scenario involves the single family detached building model, a 
3-day synthetic interruption event that starts at 12am on the 50 
percentile net-load day, a solar system sized to meet 100% of annual 
load, and 10 kWh (5 kW) battery size with a 100% beginning battery 
state of charge. Importantly, we do not perform detailed sensitivities of 
potential battery degradation (e.g. during cold-weather conditions) or 
the potential physical destruction of the PVESS during extreme weather 
events. Our battery sizing assumptions, therefore, refer to the amount of 
usable/available capacity at the time of the interruption, which may be 
less than the nameplate capacity of the battery given degradation. 

Though we present results with both full load and critical load as
sumptions, the majority of our results focus on PVESS capabilities to 
meet critical loads. In our comparison of different residential building 
types, we update our default PV system sizing assumption to being based 

5 Climate zones are shaded to represent high-level climatic differences across 
regions in the United States. 

6 We do present a scenario analysis which adjusts the beginning state of 
charge of the battery to explore potential impacts of using the PVESS system for 
other use cases besides backup power.  

7 We are limited in our capability to model more granular power constraints 
at the minute-to-minute level given the time scale of the NREL load profiles. We 
performed a sensitivity analysis using 15-minute data on a subset of our results 
and found limited implications on the power constraints. We do still observe 
power constraints (rather than just solely energy constraints) binding in our 
results, especially for electric heating end-use scenarios.  

8 The realism of such load scenarios would require that these end-uses can be 
disconnected independently and/or controlled in a disaggregated manner 
within a house-level circuit. 
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on a roof constraint rather than PV sizing based on annual load.9 This 
decision relates to the fact that multi-family buildings will be con
strained by the space limitations to site PV. Roof area is provided by 
meta-data within the ResStock dataset. 

Our critical load assumptions are informed by a set prior literature 
that focused on the Value of Lost Load (VoLL). In particular, Baik et al. 
survey customers in the northeast asking about load prioritization 

during interruption time periods.10 The top 7 categories selected by 
respondents in rough order of prioritization were lighting, refrigeration, 
chargers, computers, TV, heaters, and air conditioning [41,42]. 
Informed by this literature, we designate 6 out of 15 disaggregated end- 
use types in the ResStock building simulations as critical: refrigeration, 
interior lighting11, a limited set of plug loads12, well pumps, space 
heating, and space cooling. End-uses that we deem non-critical are fans 
(bath, ceiling, range), clothes dryer/washers, pool equipment, cooking 
ranges, dish washers, water heating, exterior lighting, extra refriger
ator/freezer, and full plug loads (other ancillary equipment like televi
sions, microwaves, humidifiers are unfortunately not disaggregated 
beyond a generic ‘plug load’ category in ResStock). We also consider a 
critical load case without heating and cooling demand. Fig. 11-2 within 
the supplemental information shows the percentage of total annual load 
represented by these two critical load cases. 

4. Results 

Our results section is split between three main levels: (1) The median 
consumption ResStock household for each county across the entire U.S., 
(2) All ResStock households within a subset of 6 counties in the U.S., and 
(3) 10 historical wide-spread power outage events. The first two sections 
rely on the Synthetic power interruption methodology while the last 

Fig. 2. Decision tree to control state of charge (SOC) of the battery.  

Table 1 
Summary of parameters and scenarios considered for synthetic interruption 
events.  

Scenario Assumption 

Building types Single family detached; Mobile home; 
Multifamily 

Interruption length (days)* 1; 3; 7 
Load scenario Critical load (no heating/cooling); Critical load 

(w/ heating/cooling); Full load 
Beginning SOC 

(% of total kWh of battery) 
0%; 50%; 100% 

Interruption start time 12am; 6am; 12pm; 6pm 
Interruption start day 

(based on net load percentile 
within month) 

Worst; median; best 

Solar sizing Solar generation is 50%; 100% of annual load; 
Roof area constraint 

Battery sizing 10 kWh; 30kWh  

* Only applies to synthetic events. 

9 Roof constraint calculated as follows: Take square feet of building model 
and divide by the number of stories of the building model to get roof area. We 
assume a 160 W/m^2 (0.01486 kW/ft^2) PV panel density and a ground- 
coverage ratio of 98% for single-family and mobile homes (slanted roofs) and 
70% for multi-family (flat roofs). The ultimate PV size is the lessor of PV sized 
based on roof area or PV sized based on meeting 100% annual load. 

10 In both studies, the authors asked the respondents to select electric appli
ances they would like to use within a 20 Amp limitation, which was determined 
after testing several combinations of electric appliances that cover bare ne
cessities (i.e., critical demands).  
11 Critical lighting load is defined as interior light usage from 5pm to 12am.  
12 The ResStock model does not provide detailed plug load disaggregation. 

Therefore, we define our critical plug load as a constant 70 W demand, ac
counting for the typical usage of low demand computer, internet, and phone 
charger end-uses. 
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section focuses on actual power interruptions experienced between 
2017 and 2021. 

4.1. Median-building analysis 

In the vast majority of counties, the PVESS with 10 kWh of storage 
can provide full power for our minimum set of critical loads that ignore 
heating/cooling demand (i.e. include refrigeration, limited interior 
lighting, computer / internet, and well-pumps). With our largest PV 
sizing assumption, the entire set of limited critical loads are met in 93% 
of counties. However, Fig. 3 shows that the base PVESS configuration 
cannot provide power for the majority of U.S. counties once including 
heating and cooling loads are included (maps on the left of Fig. 3). In this 
scenario, a PVESS with 10 kWh of battery could supply 100% of annual 
power demand to just 6% of counties. In our whole-home backup sce
nario (maps on the right of Fig. 3), this drops to 0% of counties. There 
are clear seasonal and regional trends, where performance in summer 
months is lowest in regions with high cooling loads (i.e. southwest and 
southeast) while performance in winter months is lowest in regions with 
electric heating (southeast and northwest, especially in rural counties). 

In order to understand the sensitivity in choice of critical loads, we 
focus on a set of locations with representative climate/end-use combi
nations and simulate how our base PVESS configuration can fully 
backup incremental additions to the critical load profile. Fig. 4 shows 
that the base PVESS configuration can fully backup incremental addi
tions of refrigeration, lighting, computer / internet, and well-pump 
loads for these locations. We also report the key heating and cooling 
technology used in the representative building model studied. Heating 
and cooling loads go partially unserved in areas with relatively hot or 
cold weather. Los Angeles is the only location within this set where all 
critical load is served. Locations with electric heat have particularly high 
levels of unserved energy, a result which aligns with the geographic 
result in Fig. 3. Unserved heating load can even occur for buildings with 
fossil-based systems due to the usage of energy by the furnace fan, 
though these unserved loads are relatively small. 

Fig. 5 shares the impact of increasing battery sizes and interruption 
event duration on the capability of the PVESS to meet critical load year- 
round. Fig. 3 and Fig. 4assumed a 10 kWh battery, based on current 
installation sizes [47]. Systems with larger batteries can naturally better 
maintain critical loads. Tripling the size from 10 to 30 kWh leads to a 
10% increase in the critical load served year-round (86% to 96%). A 
PVESS system with a 100 kWh battery, which might be more repre
sentative of a household with an electric vehicle backup system, could 
serve 99.5% of critical load across all counties. However, backup per
formance is limited by PV production, which is shown by the decreasing 
marginal returns to increased battery sizes in Fig. 5. Furthermore, we 
show that as interruption duration increases, backup performance de
clines. The longer duration of the interruption, the higher the proba
bility of an especially low solar or high load day. In these cases, the 
initial stored energy is depleted in the battery and the ability to meet 
critical load becomes more limited by daily PV generation. These effects 
are especially pronounced for counties in the lower end of the 
distribution. 

Given the relatively low ability for a 10-kWh battery system to serve 
critical load with heating and cooling, we present the remainder of the 
results with a PVESS incorporating a 30-kWh battery. Fig. 6 compares 
results between single-family, mobile, and multi-family homes by 
climate zone. Load served is generally similar between the three build
ing types. More information about variation in annual consumption and 
PV system sizes between these building types and geographic results can 
be found in the Supplemental Information (see Fig. 11-3, 11-4, 11-10, 
11-11). 

4.2. Distributions within the building stock of select High-population 
counties 

For a subset of high-population counties, we simulate our results for 
all single-family detached ResStock building models. Fig. 7 shows that 
PVESS capability to provide year-round backup of critical load varies 
significantly across the building stock distribution in Houston and 
Phoenix. Alternatively, we find that the median in Seattle, Chicago, LA, 
and Boston is centered at a truncated distribution of 100% of load 
served. Our use of medians in Section 4.1 likely understates the vari
ability across and within counties, given that some counties have longer 
lower tails while others have much narrower distributions clustered at 
100%. However, as we show in Fig. 7, the median result for some 
counties contains the majority of the distribution. This result happens in 
locations with limited electricity-driven HVAC loads (e.g. low air con
ditioning need and/or fossil-fuel based heating technologies). 

Fig. 8 shows two counties with higher variability in backup perfor
mance (Phoenix and Houston). In these two counties, backup perfor
mance declines the greater the amount of critical load to serve, given 
fixed battery sizing. Scatter around those trends reflects differences in 
customer load profile shapes. Differences in critical load levels reflect a 
number of fundamental drivers: (1) Building size, (2) Heating and 
cooling equipment type (especially electric vs. gas heating), (3) Effi
ciency levels, and (4) Occupant/behavioral factors (e.g., set points). For 
example, among homes with electric resistance heating in Houston, a 
median of 77% of winter critical load is served, compared to 96% for 
those with heat pumps and 100% for those with fossil heating. Winter 
backup performance also varies by roughly 20% depending on infiltra
tion rates (the “leakiness” of the home), while summer performance 
varies by close to 15% depending on the efficiency of the central air- 
conditioning system. More information about variation in performance 
is shared in the discussion section (see Fig. 11) and the Supplemental 
Information (see Figs. 11-8 and 11-9). 

Fig. 3. Average percent of total load served during the 3-day interruptions 
simulated in each month, aggregated to the average of winter and summer 
seasons for the county-median home. Critical-Load scenario includes heating 
and cooling. Assumes PV sized to 100% of annual load, 100% beginning SOC, 
10 kWh battery. 
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4.3. Historical event case study 

For historical results, we simulate 500 single-family building models 
for each county within the sample. Fig. 9 reports the distribution of 
results for each event. Each dot represents a distinct county, and the 
dot’s shape corresponds to the criteria by which that county was iden
tified amongst the sample of counties impacted by each historical event. 
We find that the default system would have supplied full backup for the 
majority of building models in the Thunderstorm (TX), PSPS (CA), 

Derecho (IA), and Hurricane Michael events. The worst distributions of 
load served occur for the two winter storm events and Hurricane Flor
ence. The large range of experience in Oklahoma is driven by the large 
portion of electric heating represented in that state (25% of single-family 
building models), which drives the low end of performance of PVESS 
during the winter event. 

The relatively poor performance represented by Hurricane Florence 
is driven by the lack of solar production in the first three days of the ~ 8- 
day outage event as shown in Fig. 10. The lack of solar production 

Fig. 4. Served and unserved load over all 12 3-day monthly interruptions, as end-uses are incrementally added to the set of critical loads. Assumes PV sized to 100% 
of annual load, 100% beginning SOC, 10 kWh battery. 

Fig. 5. Annual average critical load served under varying battery size and event durations. Assumes PV sized to 100% of annual load, 100% beginning SoC.  
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results in quick depletion of the 30 kWh beginning state of charge of the 
battery in order to meet cooling demands. In comparison, Hurricane 
Harvey also had three days of limited solar insolation; however, it was a 
much longer duration outage, and therefore the average backup per
formance over the event as a whole was higher than for Florence. 
Hurricane Irma had a similar duration as Florence, but just a single day 
of reduced solar insolation, leading to the higher levels of backup 
performance. 

5. Discussion 

The above results establish a baseline understanding of the capa
bilities of PVESS to provide backup power across a range of geographies 
and building stock conditions and have important implications for re
searchers, analysts, and/or electric system planners trying to forecast 
the adoption of PVESS for backup. First, assuming that PVESS can fully 
backup a customer experiencing long-duration interruptions is incorrect 
and varies geographically. Second, we show that the specific electric 
end-use requirements demanded of a PVESS backup power system will 
drive the resiliency capability of the system. Across all of our scenarios, 
PVESS could provide power to refrigeration, nighttime lighting, internet 

Fig. 6. Comparison of residential building types. Assumes PV sized based on 
the roof constraint, 100% beginning SOC, 30 kWh battery per unit. 

Fig. 7. Distribution in percent of critical load served across all modeled single- 
family homes in ResStock with dashed indicating median building result pre
sented in section 4.1. Assumes PV sized to 100% of annual load, 100% begin
ning SOC, 30 kWh battery. 

Fig. 8. Percentage of critical load served based on amount of critical load.  

Fig. 9. Backup power performance across all counties and historical extreme 
power interruption events, assuming 30 kWh battery and critical load scenario. 
Assumes PV sized to 100% of annual load, 100% beginning SOC, 30 
kWh battery. 
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/ computer loads, and well-pumps without any shed load. However, 
heating and cooling demand are much more difficult to backup with a 
PVESS system and oftentimes cannot be fully served during interruption 
conditions under typical operating conditions. Last, we find that PVESS 
could mitigate interruptions for a significant fraction of the building 
stock during prominent wide-spread interruption events over the last 5 
years, but customers who adopt PVESS do take on weather risk if the sun 
is not available during the event, as shown in Hurricane Florence. 

We only considered typical operating conditions without load flexi
bility. In the case of an interruption event, though, households will be 
able to adjust their thermostat set points to limit the energy demanded. 
Though deriving the amount of possible flexibility was out of scope for 
this analysis, we could analyze the relationship between our load served 
metric and heating and cooling temperature setpoints in the select lo
cations where we simulated all building models in ResStock. Fig. 11 
presents this relationship for Houston and Phoenix13 building models 
and shows that load served is positively correlated with cooling setpoint 
and negatively correlated with heating set point. Each observation in 
this figure is an individual building model, and we include the entire 

distribution of homes modeled in the Houston and Phoenix areas. Dif
ferences in temperature set-points between these homes correspond to a 
40% range in winter backup performance and a 20% range in summer 
performance in Houston (~10% range in Phoenix for both winter and 
summer performance). 

Understanding the capability of PVESS to serve heating and cooling 
is important because there are situations when our prioritized critical 
loads (i.e., refrigeration, lighting, internet / computer, well pumps) 
might vary depending on the context of the power interruption event. 
For instance, during the Winter Storm Uri, many homes that rely on 
electricity to heat their homes might have re-prioritized end-uses to
wards electric heating given health risks posed by deadly low temper
atures [65]. 

Notably, we found that load served is not just limited by energy but 
also power constraints. Though we were unable to model sub-minute 
electric demand, we still identified times when the AC power limit of 
the PVESS reduced the capability to serve load. This limitation is 
particularly acute for electric heating, which depending on the tech
nology type can draw up to 20 kW or more demand (e.g. electric base
board). This constraint was binding even though we only had access to 
hourly load data; it is likely that we would find it even more challenging 
to serve the power component of heating demand, especially in regions 
where the default heating technology is electric baseboard heat. Future 
technology solutions that offer modulation of high-power loads might be 
required if households want to use PVESS to backup electric heating. 

In this paper, we focused on the technical capabilities of PVESS 
rather than the economic value of such resiliency enhancements to a 
household. The future adoption of PVESS, however, will be driven by 
how customers value reliable electric service as well as their expecta
tions of future interruption conditions. To provide insight into these 
values, we converted our load served metric into a cost of served energy 
metric using Equation (2) below. The cost of served energy metric is an 
economic indicator which represents the levelized cost of providing 
energy via PVESS during an interruption and is calculated by taking an 
annualized cost of the PVESS system14 net of any bill savings15 and 
dividing it by the load served by the PVESS over all interruption events 
for a household in a year. It is important to note that the load served 
provided in this analysis is based on the portion of total load, rather than 
critical load, that can be served by the PVESS system. 

CoSE =
A − B

Es + (SAIDI*L)
(2) 

Where, 

CoSE = cost of served energy ($/kWh). 

A = annualized capital cost of PVESS system ($/yr). 

B = annual bill savings ($/yr). 

Es = load served by PVESS during annual interruption events for a 
household, considering total load case (kWh/yr). 

SAIDI = 2020 System Average Interruption duration index (hrs). 

L = average consumption (kwh / hr). 

Fig. 10. Time series results for Hurricanes Florence, Harvey, and Irma with 
median home. Assumes critical load with cooling, PV sized to 100% of annual 
load, 100% beginning SOC, 30 kWh battery. 

Fig. 11. Relationship between heating (top) and cooling (bottom) set-point and 
percent load met by PVESS. Assumes PV sized to 100% of annual load, 100% 
beginning SOC, 30 kWh battery. Cooling analysis based on summer months; 
heating analysis based on winter months. Only consider building types with 
electric heating or electric cooling. 

13 Other cities were ignored because as Fig. 7 shows, these cities had limited 
deviations from full load served in our default PVESS scenario. 

14 Annual cost calculated assuming a 5% discount rate, 20-year lifetime, 
battery cost of $1,000/kWh and solar cost of $3,000/kW. We assume a 30 kWh 
battery and set the PV system size equal to the size assumed in our various 
historical event case studies (PV sized to meet 100% annual energy consump
tion). We ignore any upfront capital-cost subsidies in these calculations.  
15 Given that the majority of locations in the United States offer limited time- 

of-use arbitrage rates, we assume a use case where all of the energy generated 
by the PV system can be used to offset the local utility’s retail electric price. 
Such a price would incorporate distribution, transmission, and generation 
deferral value but might ignore emissions avoided. 
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This metric can be compared to research measures and industrial 
applications of the value of lost load (VoLL) assuming that the load 
served during the annual interruption events represents a household’s 
expectation for future annual interruption events. For our historical case 
studies, this assumption is reasonable if these historic events represent 
the majority of lost energy due to annual interruptions for a particular 
household. Such a simplifying assumption is poor for the synthetic 
interruption event analysis; therefore, we do not analyze this metric 
using those analyses.16 We slightly augment the load served numbers by 
applying System Average Interruption Duration Index metrics, 
excluding major event days, provided via EIA 860.17 

Table 2 calculates the median cost of served energy for the 10 his
torical events we modeled in our analysis. Each row varies the expec
tation for how frequent such a wide-spread outage event might occur 
over the course of the assumed 20-year lifetime of the PVESS system. 
Details of the calculation, including system cost, assumed retail rate, bill 
savings, SAIDI metrics, and load served are shared in Table 11-2 in the 
Supplemental Information. 

The above numbers can be compared to average VoLL estimates 
provided by researchers studying resiliency events, which tend to be 
between $1–5/kWh for the residential customer class [41,66,67]. While 
most of these events are outside of the VoLL range from the literature, 
others are closer. Overall, the economic results suggest that the resil
ience value of PVESS must be high for a sizable fraction of customers to 
adopt these systems. 

Of course, estimating the likely number of major outage events in the 
future is challenging, making it difficult to determine which row in 
Table 2 should be used. Serious events like Hurricanes are less likely 
than the PSPS events in California, for instance, but future researchers 
could focus on estimating such probabilities regionally to refine the 
above calculations. Moreover, the risk aversion of PVESS adopters will 
induce them to pay a premium in case frequencies of events are higher 
than researchers may estimate. Similarly, these customers may have 
personal VoLLs that are higher than the average VoLL ranges determined 
by researchers and cited above. 

6. Conclusions and open research questions 

In this paper, we analyzed the performance of BTM PVESS in 
providing backup power across a wide range of customer types, geog
raphy / climate conditions, and power interruption scenarios, consid
ering both whole-building backup and backup of a specific set of critical 
loads. Our approach provides an assessment of the technical potential of 
PVESS to enhance customer resilience. The synthetic interruption 
analysis showed that that PVESS can meet a limited set of critical loads 
that includes refrigeration, nighttime lighting, well-pumps, and internet 

/ computer load for a majority of U.S counties if a customer was exposed 
to a 3-day interruption in each month, and had a 10 kWh battery 
installed with a PV system is sized to meet 100% of annual load. How
ever, we find that providing heating and cooling demand is much more 
difficult, with only 86% of critical load met, on average, in this larger 
demand scenario. Backup performance for PVESS with a fixed quantity 
of storage is generally lower for higher-usage homes. Differences in 
consumption levels, in turn, reflect a variety of underlying building 
conditions. For instance, backup performance is lowest in winter months 
where electric heat is common (southeast and northwest U.S.) and in 
summer months in places with large cooling loads (southwest and 
southeast U.S.). Winter backup performance varies by roughly 20% 
depending on infiltration rates, while summer performance varies by 
close to 15% depending on the efficiency of the central air-conditioning 
system. 

Our results relied on load profiles which are statistically represen
tative of the current United States building stock. However, deep 
decarbonization policy goals suggest that the building stock will elec
trify beyond levels observed in our study. Though we did find signs of 
how electrification might pose difficulties for PVESS in providing reli
able services to end-customers, future research should more precisely 
consider load profiles which incorporate more electrification. Such 
electrification might certainly pose challenges to home back-up via 
increasing electricity demand; however, other electrification trends 
could support customer resiliency. For instance, our battery size sce
nario of 100 kWh, which might loosely represent electric vehicle 
backup, increased the number of counties that can meet critical load to 
94%. 

Future research would need to consider how electric vehicle trans
port demands would compete with the household backup power use 
case in the event of a long duration interruption. Future research should 
also evaluate load flexibility with more detail, especially as it pertains to 
heating and cooling demand. Finally, our paper was focused exclusively 
on long-duration interruption events, which can be highly costly, but are 
the least common form of interruption experience by customers in the 
United States. Future work should consider how stochastic, short-term 
interruptions may be met by PVESS backup, especially considering 
economic operations that PVESS might be performing up to a power 
interruption event. Such work could incorporate estimates of the VoLL 
to provide estimates of the resiliency value of PVESS across short- and 
long-duration interruption events. 
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Table 2 
Breakdown of the cost of served energy ($/kWh) between the historical events with variation depending on assumption of the expected number of events per year.  

Expected Number of 
events over PVESS 
lifetime 

2020 
Thunderstorm 
(TX) 

2019 
PSPS (CA) 

2020 
Derecho 
(IA) 

2018 
Florence 
(NC) 

2017 
Harvey 
(TX) 

2017 
Irma (FL) 

2020 
Isaias 
(NY) 

2018 
Michael 
(FL) 

2020 
Winter Stm 
(OK) 

2019 Winter 
Stm (WA) 

2 
(1-in-10 years)  

$260.18  $134.63  $115.70  $126.47  $41.08  $62.38  $153.49  $153.75  $152.16  $726.96 

20 
(Every year)  

$54.13  $17.46  $12.26  $14.94  $4.45  $6.47  $16.69  $16.53  $18.28  $98.38 

40 
(2 times a year)  

$28.79  $8.87  $6.15  $7.55  $2.24  $3.24  $8.39  $8.30  $9.25  $50.18  

16 A customer’s expectation for annual outages is likely not tied to a 3-day 
outage event occurring every month of the year.  
17 These have a limited impact on the overall results as given SAIDI metrics 

only represents between 1 and 4 h of additional outages compared to major 
event outages between 25 and 380 h. However, the relative impact of SAIDI 
increases when assuming a lower number of expected major events. 
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[66] Schröder T, Kuckshinrichs W. Value of lost load: an efficient economic indicator for 
power supply security? A literature review. Front Energy Res 2015;3. https://doi. 
org/10.3389/fenrg.2015.00055. 

[67] Gorman W. The quest to quantify the value of lost load: A critical review of the 
economics of power outages. Electr J 2022;35:107187. https://doi.org/10.1016/j. 
tej.2022.107187. 

W. Gorman et al.                                                                                                                                                                                                                               

https://doi.org/10.1016/j.jup.2017.03.004
https://doi.org/10.1016/j.jup.2016.11.003
https://doi.org/10.1016/j.renene.2019.12.039
https://doi.org/10.2172/1235905
https://doi.org/10.2172/1235905
https://doi.org/10.1016/j.apenergy.2019.113468
https://doi.org/10.1016/j.apenergy.2019.113468
http://refhub.elsevier.com/S0306-2619(23)00530-5/h0255
http://refhub.elsevier.com/S0306-2619(23)00530-5/h0255
http://refhub.elsevier.com/S0306-2619(23)00530-5/h0255
https://doi.org/10.1016/j.apenergy.2020.115548
https://doi.org/10.1016/j.apenergy.2021.117160
https://doi.org/10.1016/j.apenergy.2021.117160
https://doi.org/10.1016/j.isci.2022.104381
https://doi.org/10.1016/j.isci.2022.104381
https://doi.org/10.1016/j.renene.2015.11.080
https://doi.org/10.1016/j.renene.2015.11.080
https://doi.org/10.1038/s41893-018-0204-z
https://doi.org/10.1016/j.ress.2018.03.015
https://doi.org/10.2172/1854582
https://doi.org/10.2172/1854582
https://doi.org/10.1016/j.apenergy.2021.117113
https://doi.org/10.1016/j.rser.2018.03.003
https://doi.org/10.1016/j.rser.2018.03.003
https://doi.org/10.1016/j.erss.2021.102106
https://doi.org/10.3389/fenrg.2015.00055
https://doi.org/10.3389/fenrg.2015.00055
https://doi.org/10.1016/j.tej.2022.107187
https://doi.org/10.1016/j.tej.2022.107187

	County-level assessment of behind-the-meter solar and storage to mitigate long duration power interruptions for residential ...
	1 Introduction
	2 Literature review
	3 Methods
	3.1 Data collection
	3.2 PVESS dispatch and evaluation
	3.3 scenario analysis

	4 Results
	4.1 Median-building analysis
	4.2 Distributions within the building stock of select High-population counties
	4.3 Historical event case study

	5 Discussion
	6 Conclusions and open research questions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgements
	Appendix A Supplementary material
	References




