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Light-driven C–H activation mediated by 2D
transition metal dichalcogenides

Jingang Li 1,2, Di Zhang3, Zhongyuan Guo 3, Zhihan Chen1, Xi Jiang4,
Jonathan M. Larson 5, Haoyue Zhu6, Tianyi Zhang6, Yuqian Gu7,
Brian W. Blankenship 2, Min Chen8, Zilong Wu1, Suichu Huang1,
Robert Kostecki 9, Andrew M. Minor 8,10, Costas P. Grigoropoulos 2,
Deji Akinwande 7,Mauricio Terrones6,11,12, JoanM. Redwing 6,13, Hao Li 3 &
Yuebing Zheng 1

C–H bond activation enables the facile synthesis of new chemicals. While
C–H activation in short-chain alkanes has been widely investigated, it
remains largely unexplored for long-chain organic molecules. Here, we
report light-driven C–H activation in complex organic materials mediated by
2D transition metal dichalcogenides (TMDCs) and the resultant solid-state
synthesis of luminescent carbon dots in a spatially-resolved fashion. We
unravel the efficient H adsorption and a lowered energy barrier of C–C
couplingmediated by 2DTMDCs to promoteC–Hactivation and carbon dots
synthesis. Our results shed light on 2Dmaterials forC–Hactivation in organic
compounds for applications in organic chemistry, environmental remedia-
tion, and photonic materials.

The emergence of C–H bond activation has provided revolutionary
opportunities in organic chemistry, materials science, and biomedical
engineering1. Specifically, the activation and functionalization of the
ubiquitous C–H bonds enable new synthetic routes for functional
molecules in a more straightforward and atom-economical way2–5.
Since C–H bonds are thermodynamically strong and kinetically inert6,
many catalysts have been developed for C–H activation, including
transition metals (e.g., palladium7, cobalt8, and gold9,10), zeolites11,12,
and metal-organic frameworks13,14.

While intensive research efforts have been focused on C–H
bonds in short-chain alkanes (e.g., methane and ethane)15,16 and
aromatic compounds17, C–H activation in long-chain organic

molecules is rarely reported. Yet, the derivation of C–H bonds in
these complex molecules has significant potential in synthesizing
functional organic complexes and transforming environmental
pollutants (e.g., fossil-resource-derived hydrocarbons) into more
valuable chemicals18,19.

Herein, we report the light-driven C–H activation in long-chain
molecules mediated by two-dimensional (2D) transition metal dichal-
cogenides (TMDCs). This TMDC-mediated C–H activation in organic
molecules enables optical synthesis and patterning of luminescent
carbon dots (CDs) on solid substrates. As a first example, we achieve
the light-driven transformation of cetyltrimethylammonium chloride
(CTAC, C19H42ClN), a long-chain quaternary ammonium surfactant20,
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into luminescent CDs on WSe2 monolayers. By coupling experiments
with density functional theory (DFT) calculations, we unravel the role
of Se vacancies and oxidized states of WSe2 in promoting H adsorp-
tion. We further show that 2D TMDCs can facilitate the C–C coupling
with a lowered energy barrier to catalyze C–H activation in complex
organic molecules. This type of light-driven reaction mediated by 2D
materials can be generalized to other long-chain organic compounds
for the broader impacts on organic synthesis, chemical degradation,
and photonics.

Results
A typical experimental configuration is presented in Fig. 1a. A thin layer
of solidCTAC is coated on amonolayerWSe2 grownby chemical vapor

deposition (CVD). The monolayer feature of WSe2 is confirmed by the
strong photoluminescence (PL) peak at ~750nm (Fig. 2b, blue curve).
Under the irradiation of a low-power continuous-wave laser
(~0.2–5mW), CTAC molecules undergo WSe2-mediated C–H bond
activation and the subsequent C=C bond formation (Fig. 1b). CTAC
contains long carbon chains andquaternary ammoniumcations, which
has been commonly used as surfactants for chemical synthesis and
fabric softeners21. Here, we choose CTAC as a first example due to its
clean carbon-chain structure, solid form under ambient conditions,
and wide existence in nanomaterials systems. This light-driven reac-
tion can also be applied to other organic compounds.

The laser irradiation on hybrid CTAC/Wse2 thin films leads to the
emergence of bright luminescence fromCDs (Fig. 2a). The evidence of
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W
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Fig. 1 | General concept of light-driven C–H activation in long-chain molecules
mediatedby2Dmaterials. aSchematic showing the light-driven transformationof
CTAC on an atomic layer of WSe2 into luminescent CDs. b Schematic showing the

photochemical reaction process involving the activation of C–H bonds and the
formation of C=C bonds.
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Fig. 2 | Optical characterizations of 2D-mediated C–H activation and CD
synthesis. aOptical images showing the CTAC on theWSe2 sample under a 532 nm
laser irradiation at t =0 s and t = 10 s. The laser power is 2.5mW. The yellowish PL
emission comes from the optically synthesized CDs. b The PL spectra of WSe2 and
WSe2 +CDs hybrids. c Time-resolved PL intensity of CDs at 600nm from the CTAC

on WSe2 sample under a 532 nm laser irradiation with different optical power.
d, e The PL spectra of d WS2 and WS2 +CDs hybrids and e MoS2 and MoS2 + CDs
hybrids under the excitation of a 532 nm laser. Inset in (d) optical image showing
the PL emission from the WS2 + CDs sample. f The PL spectra of WSe2/WS2 + CDs
samples excited by a 660nm laser. “a.u.” in (b–f) stands for arbitrary units.
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CDs formation and materials characterizations are presented in Fig. 3.
The optically generated CDs show pronounced broadband PL emis-
sion centered at ~ 600nm under the excitation of a 532 nm laser
(Fig. 2b, red curve). Additionally, the PL peak from WSe2 exhibits a
clear redshift from ~750 nm to ~780 nm, resulting from the charge
transfer between the CDs and WSe2

22,23. Due to the minimal light
absorption of CTAC and monolayer WSe2 at the laser wavelength and
negligible laser-induced temperature rise (Supplementary Fig. 1), we
preclude the contribution of photothermal effects. Instead, this light-
driven reaction is ascribed to the WSe2-catalyzed C–H activation,
which will be discussed later.

The photochemical reaction rate for the synthesis of CDs can be
tuned by two orders of magnitude by controlling the laser power
(Fig. 2c and Supplementary Movie 1). We also demonstrated the CD
synthesis with a larger laser spot (Supplementary Fig. 2). Under low-
power laser irradiation, the emission of synthesized CDs remains
stable for more than 20min (Supplementary Fig. 3). Besides WSe2, we
also demonstrate the light-driven C–H activation and generation of
CDs from CTAC on CVD-grownWS2 and MoS2 monolayers (Fig. 2d, e).
Similar orangish PL emission from CDs can be directly visualized in
optical imaging (Inset in Fig. 2d). The PL spectra of MoS2/WS2 +CDs
hybrids also showed similar features, including a broadband emission
from CDs centered at ~600nm and a redshifted peak fromMoS2/WS2.
In addition, under the 660nm laser excitation, the PL spectra from the
WSe2/WS2 +CDs hybrids are distinct from those under the 532nm
excitation (Fig. 2f). This excitation wavelength-dependent PL emission
is a characteristic feature of CDs24,25.

The light-driven, 2D TMDC-mediated synthesis of CDs is con-
firmed by multiple characterization techniques. The Raman spectrum
shows a D band at ~1380 cm−1 and a G band at ~1600 cm−1 (Fig. 3a),
which are signatures of CDs26. The scanning electron microscope
(SEM) images also reveal the existence of CD nanoparticles in the laser-
irradiated areas (Fig. 3b, c). The as-synthesized CDs have a size dis-
tribution of 5–15 nm, as shown in the transmission electron

microscope (TEM) images (Fig. 3e, f). Such large size distribution is
consistentwith the broad PL emission bands (Fig. 2b),whichmaymask
the size-dependent PL properties from the carbon core27,28. The
selected-area electron diffraction pattern exhibits bright diffraction
spots and amorphous rings (inset in Fig. 3f), indicating a semi-
crystalline structure of CDs. The chemical composition of CDs is fur-
ther examined by a near-field nanoscale Fourier transform infrared
spectroscopy (nano-FTIR). Compared to the pristine CTAC film, the
nano-FTIR spectrum of CDs presents a prominent absorption band at
~1660 cm−1 (Fig. 3d), which is assigned to the vibrations of C=C bonds
in CDs29.

Next, we discuss the underlying mechanisms of the light-driven
C–Hbond activationmedicated by 2DTMDCs. C–Hactivation requires
a sufficiently negative hydrogen adsorption-free energy30; however,
pristine 2DTMDCs usually cannotmeet this prerequisite since they are
known to be facile hydrogen evolution materials31. To identify the
potential active sites in our study that drive the C–H bond activation,
we firstmeasured the X-ray photoelectron spectroscopy spectra of the
monolayer WSe2. The results indicate the existence of prevalent Se
vacancies and O adsorption on the CVD-grown WSe2 surfaces (Sup-
plementary Fig. 4)32,33. To analyze the role of Se vacancies and O sub-
stitution onWSe2, we calculated the projecteddensity of states (PDOS)
of local W-sites using DFT calculations (Fig. 4a and Supplementary
Fig. 5). With the increasing number of Se vacancies, there is an obvious
shift of the peak toward the Fermi level (Fig. 4b). The calculated
average energies of the d-electrons (i.e., the d-band center) of the sites
with Se vacancies are also closer to the Fermi level compared to a
pristine WSe2. According to the d-band center theory34, a surface site
with a d-band center closer to the Fermi level corresponds to a sig-
nificantly stronger H adsorption capacity35, which facilitates the C–H
bond activation due to the stronger driving force to “pull” an H down
to the surface36. Similar conclusions can be found on a WSe2 surface
with oxygen substitution at Se sites (Fig. 4c). Meanwhile, the existence
of adsorbed oxygen and the subsequently formed hydroxyl can act as
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Fig. 3 |Material characterizations of optically synthesized CDs. aRaman spectra
of WSe2 and WSe2 + CDs hybrids. b, c SEM images of the synthesized CDs. d Near-
field nano-FTIR spectra of the CDs and pristine CTAC films. The light blue shading

indicates the C=C bond spectrum regime. e, f High-resolution TEM images of the
synthesized CDs. Inset in f shows the selected area electron diffraction (SAED)
pattern of the CDs. “a.u.” in (a, d) stands for arbitrary units.
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the promoters to expedite C–H activation due to a facile O/HO-pro-
moted mechanism37–40. To verify the theoretical hypothesis, we con-
ducted control experiments on mechanically exfoliated WSe2 flakes
with fewer surface defects41, and the results show that a much higher
optical power is required for this reaction to occur (Supplementary
Fig. 6). We also performed control experiments on graphene without
Se vacancies, where the reaction did not occur even under high optical
power (Supplementary Fig. 7). These theoretical analyses and experi-
ments indicate that the Se vacancy andOsubstitution inWSe2 canboth
lead to a more facile C–H activation capacity due to either higher
reactivity of a defected surface or an O-promotion effect.

For long carbon chains, the C–H activation is followed by the
formation of C=C bonds42. We further investigate the capability of 2D
TMDCs to drive the C=C formation. We analyze the C–C coupling on
material surfaces (Fig. 4d), where two carbon atoms are bonded
together. We compare the calculated kinetic energy barriers of this
process for WSe2 and other common catalyst surfaces for C–H acti-
vation (Supplementary Fig. 8), including gold (Au) and palladium (Pd).
The energy barrier of C–C coupling on WSe2 surfaces is calculated to
be 0.29 eV (Fig. 4e), which is significantly lower than that on Au
(0.57 eV) and Pd (1.29 eV). These results indicate that while metal cat-
alysts (e.g., Pd and Au) are suitable for C–H activation in short-chain
molecules, they cannot be generalized to long carbon chains due to
the high activation energy of C–C coupling to form C=C bonds. This
energy barrier is further reduced to 0.23 eV on WSe2 surfaces with Se
vacancies (Fig. 4e and Supplementary Fig. 9). Our results demonstrate
the potential of 2D TMDCs as promising catalysts to drive the C–H
activation of long-chain molecules and facilitate the subsequent C=C
formation.

Discussion
In summary, we discover the 2D-TMDC-mediated C–H activation
in long-chain organic molecules under light illumination. Our

experimental characterizations coupled with theoretical calculations
reveal the role of defects and oxidized states on TMDCs in the pro-
motion of H adsorption and C–H activation reactions. Moreover, we
find that the energy barrier of C–C couplingmediated by 2D TMDCs is
much lower than the commonly used metal catalysts for C–H activa-
tion of short-chain alkanes, highlighting its promising performance of
C–H activation for complex molecules.

This light-controlled site-specific C–Hactivation also enables the
optical printing of luminescent CDs on solid substrates and provides
an approach toward data encryption and information technology43.
By controlling the thickness of CTAC layer, laser power, and irra-
diation time, we can write CDs by laser scanning without changing
the morphology of the film (Supplementary Fig. 10). Thus, the
embedded patterns remain hidden under white light illumination
and can be read out by fluorescence, Raman, or PL imaging (Sup-
plementary Fig. 11). In addition, we can easily erase the synthesized
CDsby rinsing the samplewithwater and coating the 2DTMDCwith a
new CTAC layer for optical rewriting of CDs (Supplementary Fig. 12).
Another promising application of such light-driven synthesis of
luminescent CDs is solid-state light-emitting device44. Besides CTAC,
the 2D-TMDC-mediated light-driven C–H activation is applicable to
other long-chain molecules, including polyethylene (Supplementary
Fig. 13), octyltrimethylammonium chloride, and polyvinyl alcohol
(Supplementary Fig. 14). We anticipate that the 2D-TMDC-mediated
light-driven C–H activation in complex organic molecules will
open up new possibilities for applications in chemical synthesis,
photonics, the degradation of organic pollutants, and plastic
recycling.

Methods
Chemicals and materials
CTACwas purchased fromChem-Impex. Other chemicals, including
octyltrimethylammonium chloride, polyethylene, and polyvinyl
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alcohol, were purchased from Sigma-Aldrich. All the materials were
used without further purification. Monolayer WSe2 was synthesized
using tungsten hexacarbonyl (W(CO)6) and hydrogen selenide
(H2Se) in a cold-wall vertical reactor with an inductively heated SiC-
coated graphite susceptor. Ultrahigh purity hydrogen was used as
the carrier gas, and c-plane (001) double-side polished sapphire was
used as substrates45. Monolayer WS2 was prepared by the atmo-
spheric pressure CVDmethod using a tube furnace with argon as the
carrier gas. Two cleaned SiO2/Si wafers sandwiched with ∼10mg
WO3 powders were placed in a 2 cm diameter quartz tube, which
was heated up to 700 °C and held for 15 min in the furnace. Simul-
taneously, sulfur powders were separately heated up to 250 °C with
a heating belt46. MonolayerMoS2 was grown by CVD using a Thermo
Scientific Lindberg/BlueM Tube Furnace. MoO3 powder (15 mg) and
sulfur powder (1 g) were loaded in a quartz tube and heated inde-
pendently. After four purging cycles, the tube was filled with
ultrahigh purity N2 to 760 Torr. The furnace was heated to 850 °C at
a rate of 50 °Cmin−1 for 5-min growth and then cooled down to room
temperature47. CVD-grown monolayer graphene was purchased
from SixCarbon.

Optical setup
The light-driven C–H activation and laser writing of CDs were per-
formed in a Nikon inverted microscope (Nikon TiE) equipped with a
×100 oil objective (Nikon, NA 0.5–1.3), a halogen white light source
(12 V, 100W), a bright-field or dark-field condenser (NA 1.20–1.43), and
a color charge-coupled device camera (Nikon). A continuous-wave
532nm laser (Coherent, Genesis MX STM-1 W) or a continuous-wave
660 nm laser (LaserQuantum)was expandedwith a 5× beamexpander
(Thorlabs, GBE05-A) and directed to the microscope.

Characterizations
The Raman spectra and mapping were measured on a Renishaw sys-
tem using a 532 nm wavelength laser source. The absorption spectra
and PL spectra were recorded with a spectrograph (Andor) and an
EMCCD (Andor) integrated into an inverted optical microscope. The
scanning electron microscopy (SEM) images were taken with a FEI
Quanta 650 SEM. TEM images and diffraction patterns were obtained
with a JEOL 1400 (120 kV) with Gatan Inc. One view camera and a
specialized TEM holder (Laser Prismatics). Near-field nano-FTIR mea-
surements were performed with a commercial Neaspec system
equipped with a broadband laser source48. The XPS spectra were col-
lected on a Kratos AXIS Ultra XPS spectrometer.

DFT calculations
All DFT calculations were performed using the VASP code with the
valence electrons treated by expanding the Kohn-Sham wave func-
tions in a plane-wave basis set49. The method of generalized gradient
approximation using the revised Perdew–Burke–Ernzerhof func-
tional was employed to describe the electronic exchange and
correlations50. The core electrons were treated by the projector
augmented wave method51. Van der Waals corrections were included
within Grimme’s framework (DFT +D3)52. Convergence was defined
when the forces of each atom fell below 0.05 eV per Å. The energy
cutoff was set to 400 eV. A (3 × 3 × 1) k point mesh was employed to
sample the Brillouin zone based on the method of Monkhorst and
Pack53. The kinetic barriers were calculated based on the climbing-
image nudged elastic band method54. To ensure sufficient spacing,
we placed a vacuum spacing of at least 12 Å perpendicular to the
surface.

Data availability
All data that support thefindings of this study are included in thepaper
and/or Supplementary Information.
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