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Joint Correction of Attenuation and Scatter in Image Space 
Using Deep Convolutional Neural Networks for Dedicated Brain 
18F-FDG PET

Jaewon Yang1, Dookun Park2, Grant T. Gullberg1, and Youngho Seo1

1Physics Research Laboratory, Department of Radiology and Biomedical Imaging, University of 
California San Francisco, CA, USA

2Microsoft, Bellevue, WA, USA

Abstract

Dedicated brain positron emission tomography (PET) devices can provide higher-resolution 

images with much lower dose, compared to conventional whole-body PET systems, which is 

important to support PET neuroimaging particularly useful for the diagnosis of neurodegenerative 

diseases. However, when a dedicated brain PET scanner does not come with a combined CT or 

transmission source, there is no direct solution for accurate attenuation and scatter correction, both 

of which are critical for quantitative PET. To address this problem, we propose joint attenuation 

and scatter correction (ASC) in image space for non-corrected PET (PETNC) using deep 

convolutional neural networks (DCNN). This approach is a one-step process, distinct from 

conventional methods that rely on generating attenuation maps first that are then applied to 

iterative scatter simulation in sinogram space. For training and validation, time-of-flight PET/MR 

scans and additional Helical CTs were performed for 35 subjects (25/10 split for training and test 

dataset). A DCNN model was proposed and trained to convert PETNC to DCNN-based ASC PET 

(PETDCNN) directly in image space. For quantitative evaluation, uptake differences between 

PETDCNN and reference CT-based ASC PET (PETCT-ASC) were computed for 116 automated 

anatomical labels (AAL) across 10 test subjects (1160 regions in total). MR-based ASC PET 

(PETMR-ASC), a current clinical protocol in PET/MR imaging, was another reference for 

comparison. Statistical significance was assessed using a paired t test. The performance of 

PETDCNN was comparable to that of PETMR-ASC, in comparison to reference PETCT-ASC. The 

mean SUV differences (mean ± SD) from PETCT-ASC were 4.0 ± 15.4 % (P < 0.001) and −4.2 

± 4.3 % (P < 0.001) for PETDCNN and PETMR-ASC, respectively. The overall larger variation of 

PETDCNN (15.4%) was prone to the subject with the highest mean difference (48.5 ± 10.4 %). The 

mean difference of PETDCNN except the subject was substantially improved to −0.8 ± 5.2% (P < 

0.001) that was lower than that of PETMR-ASC (−5.07 ± 3.60%, P < 0.001). In conclusion, we 

demonstrated the feasibility of directly producing PET images corrected for attenuation and scatter 

using a DCNN (PETDCNN) from PETNC in image space without requiring conventional 
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attenuation map generation and time-consuming scatter correction. Additionally, our DCNN-based 

method provides a possible alternative to MR-ASC for simultaneous PET/MRI.

Keywords

brain PET; attenuation correction; scatter correction; deep learning; convolutional neural networks

1. Introduction

Positron Emission Tomography (PET) enables an understanding of biochemical changes in 

the brain at early stages of disease prior to structural changes or clinical symptoms. PET 

neuroimaging is particularly useful in the diagnosis of neurodegenerative diseases (e.g. 

Alzheimer’s disease, frontotemporal dementia, dementia with Lewy bodies, Parkinson’s 

disease, and Huntington’s disease) such as diseases associated with significant changes in 

brain metabolism (Silverman and Alavi, 2005). The most commonly-used tracer in clinical 

brain PET imaging is 18F-fluorodeoxyglucose (FDG) but the development of other 

radiotracers such as dopaminergic, amyloid plaque and tau imaging agents is still an active 

development area (Brown et al., 2014).

To keep pace with the expanding demand of PET neuroimaging, dedicated high-resolution 

brain PET systems such as High-Resolution Research Tomograph (HRRT) (Wienhard et al., 

2002), CerePET™ (Brain Biosciences) and CareMiBrain (Oncovision) have been introduced 

in the market for human brain imaging, supporting significantly improved high-resolution 

images typically with lower dose, compared to a conventional whole-body PET system. 

Additionally, wearable PET scanners such as ambulatory micro-dose PET (AM-PET) 

(Melroy et al., 2017) and helmet-PET (Tashima and Yamaya, 2016) have been developed 

and are being evaluated for functional brain research. However, these dedicated or wearable 

PET systems do not provide direct solutions for attenuation and scatter correction. These 

systems are not combined with computed tomography (CT) or magnetic resonance imaging 

(MRI) that can provide attenuation maps used for attenuation and scatter correction. Thus, a 

challenge for dedicated brain PET systems is to develop a practical and robust method for 

accurate attenuation and scatter correction without an additional imaging modality, such as 

CT or MRI.

Attenuation and scatter correction (ASC) is critical for quantitative accuracy as well as 

image quality in PET (Meikle and Badawi, 2005). Attenuated and scattered events occur due 

to photoelectric effects and Compton scattering induced by the presence of dense material 

along lines of response (LORs). Without attenuation correction, regions near the skin appear 

darker (emitting more photons) and regions surrounding brain tissues appear brighter 

(emitting less photons). Scatter fraction can reach 50% to 60% of LORs recorded in whole-

body 3D PET and, without scatter correction, LORs recorded outside an object boundary 

due to scatter contribute noise in image reconstruction. Therefore, it is important to 

compensate for attenuation and scatter for quantitative PET. In a hybrid PET/CT or PET/MR 

imaging, the current implementation for attenuation correction is to transform CT (Lonn et 

al., 2003) or MR-derived pseudo CT images into attenuation maps (Wollenweber et al., 
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2013; Yang et al., 2017b; Berker and Li, 2016); while, the current implementation for scatter 

correction is to estimate scatter iteratively by a 3D model-based simulation using down-

sampled attenuation and emission images (Iatrou et al., 2006; Watson et al., 2004; Zaidi and 

Montandon, 2007). Both attenuation and scatter correction are separately performed due to 

the difference of photoelectric effects and Compton scattering (Meikle and Badawi, 2005) in 

sinogram space where LORs are conventionally recorded as counts according to their 

locations and orientations and then reconstructed to PET images by an ordered subset 

expectation maximization (OSEM) algorithm (Defrise et al., 2005).

Recently, deep convolutional neural networks (DCNN) have been widely applied to medical 

imaging based on the success of deep learning to computer vision tasks (Ronneberger et al., 

2015). DCNN demonstrated the direct conversion to pseudoCT from T1-weighted MR (Liu 

et al., 2018a), Dixon and Zero-TE MR (Gong et al., 2018) or non-attenuation-corrected PET 

(Liu et al., 2018b) for attenuation correction in PET neuroimaging. Also, DCNN 

demonstrated to improve the quality of noisy attenuation maps generated by simultaneous 

maximum-likelihood reconstruction of activity and attenuation by time-of-flight (TOF) 

information (Hwang et al., 2018).

In this paper, we propose a new approach for joint ASC in image space using only non-

corrected PET images without depending on another imaging modality and performing a 

scatter simulation. Since brain tissues and their boundaries (e.g., white and gray matters, 

skin, bone, etc) are perceptible in non-corrected PET, DCNN can extract important patterns 

successfully for joint ASC in PET neuroimaging. The proposed joint ASC is a one-step 

process, distinct from conventional methods that rely on generating attenuation maps first 

that are then applied to iterative scatter simulation in sinogram space.

2. Methods

2.1. Patient information

The patient study was approved by the Institutional Review Board, and all patients signed an 

informed consent form before the examinations. 35 patients (16 male and 19 female) 

underwent whole-body 18F-FDG PET/MRI and helical CT scans. The average patient age 

was 57.7 ± 11.5 y (range, 29–76y), the average weight was 73.7 ± 17.4 kg (range, 39.5–

109.8 kg), and the average administered dose of 18F-FDG was 308.5 ± 74.6 MBq (range, 

170.2–468.1 MBq). The average scan duration of the whole brain was 227.2 ± 137.5 s 

(range, 135–900 s), and the average time difference between injection and scan was 150.8 

± 24.5 min (range, 111.0–190.1 min). A tumor was observed in the head for only one subject 

who was included in the test set (Figure 1).

2.2. PET/MRI and CT data acquisition

TOF PET/MRI examinations were performed on a SIGNA PET/MR scanner (GE 

Healthcare). PET had a 600-mm transaxial field of view (FOV) and 250-mm axial FOV, with 

a TOF timing resolution of approximately 400 ps and average measured sensitivity of 22.65 

cps/kBq. While PET data were acquired, Dixon MR (FOV, 500 × 500 × 312 mm; resolution, 

1.95 × 1.95 mm; slice thickness, 5.2 mm; slice spacing, 2.6 mm; scan time, 18 s) sequences 
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were acquired for MR-based attenuation and scatter correction (MR-ASC), using the head 

and neck coil array. Helical CT images of the patients were acquired on a Discovery 

PET/CT (GE Healthcare) or Biograph HiRez 16 (Siemens Healthcare) scanner with variable 

parameter settings (120 kVp; 105–599 mA; rotation time, 0.5 s; pitch, 0.98 and 0.75; 

rotation, 39.37 and 34.45 mm; axial FOV, 700 and 500 mm; slice thickness, 3.75 and 5.00 

mm; matrix size, 512 × 512; and voxel sizes, 2.73 × 2.73 × 3.75 and 1.95 × 1.95 × 5.00 mm3 

for GE and Siemens systems, respectively) for CT-based attenuation and scatter correction 

(CTASC). The methodology described in our previous work (Yang et al., 2017a; Yang et al., 

2017b) was used for CT image preprocessing and coregistration to MR images: MR and CT 

image pairs were coregistered using the vendor-developed registration toolkit or Advanced 

Normalization Tools (Avants BB, 2009) based on the Insight Segmentation and Registration 

Toolkit (Kitware, Clifton Park, NY).

2.3. PET image reconstruction

As depicted in Figure 1, non-corrected PET (PETNC) and CT-based attenuation/scatter-

corrected PET (PETCT-ASC) images were reconstructed by a TOF OSEM algorithm (4 

iterations; 28 subsets; axial FOV, 350 mm; matrix size, 256 × 256 × 89; voxel size, 1.37 × 

1.37 × 2.78 mm3; 4.0 mm in-plane Gaussian filter followed by axial 3-slice 1:4:1 filtering) 

in the offline PET/MR toolbox (REL_1_28, GE Healthcare). Also, MR-based attenuation/

scatter-corrected PET (PETMR-ASC) images were reconstructed as a silver standard for 

evaluation, providing the bottom line of a clinically-acceptable performance limit. 

Corrections including normalization, dead time, decay, point-spread function, and randoms 

were applied during the reconstruction.

2.4. Deep convolutional neural networks (DCNN)

The aim of this work is to develop a DCNN model that can transform PETNC to PETCT-ASC 

directly in image space (PETDCNN), without generating attenuation maps and performing an 

iterative scatter simulation.

2.4.1. DCNN Architecture.—The proposed DCNN consists of five encoder-decoder 

stages with symmetrically concatenated with skip connections (Figure 2) based on the U-Net 

(Ronneberger et al., 2015). In each stage, convolution (Conv) with 3×3 kernels, batch 

normalization (BN) (Ioffe and Szegedy, 2015), and rectified linear unit (ReLU) is 

sequentially performed twice. Between stages, the downsampling and upsampling are done 

by 2×2 max pooling and bilinear interpolation (Xu et al., 2017), respectively. In order to 

preserve local information and resolution of the image, skip connections transfer the 2nd 

convolution layer of the encoder, performed prior to the BN and ReLU activation, to the 

decoder after upsampling at the same level of stage (Liu et al., 2018b).

2.4.2. Preprocessing.—PETNC and PETCT-ASC images were utilized as paired input 

and output for training/testing our proposed DCNN architecture. For each training dataset, 

PET raw values (Bq/ml) were scaled down to (kBq/ml) to reduce the dynamic range of 

input/output values and PET slices above the top of the head and below the cerebellum were 

removed to focus on the brain. Also, activities out of the head were considered as a noise 

and removed by binary masking.
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2.4.3. Model Training.—The DCNN model was trained with three-slice input to provide 

volumetric information due to attenuation and scatter in the axial direction. Training multi-

slice inputs can provide higher efficiency with fewer parameters than training with depth-

wise operation of 3D convolution (Xu et al., 2017). Before being fed into the model, the 

input was randomly rotated (−10 ~ 10 degree), flipped horizontally, and translated 

horizontally (< 50 pixels in FOV) for data augmentation to simulate a larger dataset and to 

avoid overfitting. Model training was performed with the mean squared error (or L2 loss) 

and RMSprop optimizer (Hinton et al.) with a learning rate initialized by 0.001 which 

halved automatically if the loss did not decrease in 10 epochs. Weights for convolution were 

initialized with truncated Gaussian distributions with zero mean and standard deviation of 

0.02. All biases were initialized with zero. A mini-batch of 32 input/output patches (1375 

patches in total) was used for training and the loss was converged in 140 epochs.

2.4.4. Computation.—Training and testing our proposed DCNN were performed on a 

Ubuntu server with a single Tesla P100 (NVIDIA) graphics processing unit. The proposed 

model was implemented using Tensorflow (version 1.9.0) and Keras libraries (version 2.2.0). 

Model training takes approximately 160 minutes to reach stability, which occurred at 

approximately 5,880 iterations (140 epochs × 42 iterations per epoch). At that point, the 

training was stopped. After training the model, it took only 0.4 s on average to generate 

PETDCNN volumetric images (89 slices) with the single Tesla P100.

2.5. Evaluation metrics

2.5.1. Quantitative analysis—All PET images were spatially registered to a brain 

template with 116 automated anatomical labels (AAL) for a generalized regional analysis. 

Dixon MRAC T1 images simultaneously acquired with PET were registered to the T1 brain 

template provided by the Montreal Neurological Institute (MNI) (Tzourio-Mazoyer et al., 

2002) using Advanced Normalization Tools (Avants BB, 2009). The derived registration 

parameters were applied to deform PET images to the template. Absolute and relative (%) 

differences (mean ± SD) of standardized uptake values (SUV = image-derived uptake [MBq/

mL] ⁄ injection dose [MBq] × patient’s weight [g]) between PETDCNN and reference 

PETCT-ASC were computed for 116 AAL regions across 10 test subjects (1160 regions in 

total) as follows:

Difference (SUV) = mean(voxels of PETDCNN in AAL # )
−  mean(voxels of PETCT‐ASC in AAL#)

Difference (%) = [mean(voxels of PETDCNN in AAL#)
−  mean(voxels of PETCT‐ASC in AAL#)]
/ mean(voxels of PETCT‐ASC in AAL#)  × 100

The distributions of the differences were presented in Bland–Altman plots. A difference 

between PETMR-ASC and PETCT-ASC was also calculated as a reference for comparison. 

Statistical significance was assessed using a paired t test and a P value < 0.05 was deemed 

statistically significant.
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Additionally, to evaluate a performance variation of DCNN between subjects, subject-

specific SUV differences across 116 AAL regions were computed separately. Also, to assess 

a performance variation of DCNN in the brain regions, SUV differences were calculated in 8 

merged regions: cerebellum, temporal lobes, occipital lobes, parietal lobes, frontal lobes, 

thalamus, putamen, and caudate nucleus.

2.5.2. Qualitative analysis—PETCT-ASC, PETDCNN and their difference images were 

illustrated for representative three test subjects: subject 1 with the longest scan duration (900 

s) selected for presenting the effect of a scan time variation (mean scan duration: 227.2 

± 137.5 s); subject 2 with a tumor in the head chosen for presenting the effect of a 

pathological variation; and subject 3 with outliers selected for presenting the visual effect of 

a large difference.

2.5.3. Voxelwise analysis—A joint histrogram was used to show the distribution of 

voxel-based PET uptake correlation between PETDCNN and reference PETCT-ASC within the 

SUV range of 0.5–20.0 (g/mL). Also, an error histogram was used to show the distribution 

of voxel-based PET uptake differences within the same SUV range.

All the processing and analyses above were performed in MATLAB (MathWorks).

3. Results

The average difference of PETDCNN from PETCT-ASC was 0.20 ± 0.92 (3.98 ± 15.42 %, P < 

0.001) and the average difference of PETMR-ASC from PETCT-ASC was −0.31 ± 0.31 (−4.24 

± 4.29 %, P < 0.001) (Table 1). PETDCNN was slightly overestimated (4.0%; range, −13.4 ~ 

+63.1%) with a larger variation (15.4%); while, PETMR-ASC was slightly underestimated 

(−4.2%; range, −28.8 ~ +9.3%) with a smaller variation (4.3%). In the Bland–Altman plot 

(Fig. 3), most of the differences (circles) with DCNN were positioned within ±10%; 

whereas, most of the differences (triangles) with MR-ASC were prone to negative areas 

within ±10%. Box plots of 116 AAL regions across test subjects are available in 

Supplementary Figure 1.

Because the overall larger variation of DCNN (15.4%) was mostly due to the outliers 

between 40–60% differences in the Bland–Altman plot (Figure 3), we calculated subject-

specific differences across 116 regions to evaluate a performance variation of DCNN across 

subjects. Figure 4a demonstrated that subject 3 with the highest mean difference contributed 

the outliers to the Bland-Atlman plot of DCNN. In order to derive a more generalized result 

without the outliers, the average differences of PETDCNN and PETMR-ASC from PETCT-ASC 

were recalculated after excluding subject 3 and the updated results were summarized in 

Table 2. The average difference of DCNN was substantially reduced from 4.0% to −0.8% 

without the outliers, that was much smaller than the average difference of MR-ASC 

(−5.1%); while, the SD of DCNN (±5.2%) was still slightly higher than the SD of MR-ASC 

(± 3.6%).

Also, the average differences were calculated in 8 merged regions to assess a regional 

performance variation of DCNN. Figure 4b–c compared the generalized regional differences 
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with and without subject 3 (outliers), which was also consistent with the overall result 

above. For example, the average difference of DCNN was substantially reduced from 6.2% 

to 0.4% for cerebellum after excluding subject-3. The reduced difference of DCNN (0.4%) 

was much smaller than the recalculated difference of MR-ASC (−7.1 %); while, the SD of 

DCNN (± 11.3%) was still higher than the SD of MR-ASC (± 7.1%).

Next, Figure 5 illustrates qualitative differences of PETDCNN and PETMR-ASC from 

reference PETCT-ASC with examples of representative three subjects (subject 1, 2, and 3). 

The examples show the overall similarity between PET images with different ASC methods 

(reference CT-ASC, DCNN, and MR-ASC) and the voxel-based difference patterns of 

DCNN and MR-ASC from CT-ASC. In Figure 5a (subject 1), the major difference between 

DCNN and MR-ASC is that DCNN differences are randomly distributed with the mixture of 

over- and underestimated patterns; while, MR-ASC differences depict overall slight 

underestimation across the brain but a strong underestimation near the skull. In Figure 5b 

(subject 2), the SUVmax of the tumor with DCNN was underestimated by −13.5%; while, the 

SUVmax of the tumor with MR-ASC was underestimated by −6.7%, compared to the 

SUVmax with CT-ASC. In Figure 5c (subject 3), both PETDCNN (structural similarity index 

(SSIM) (Wang et al., 2004) = 0.9670) and PETMR-ASC (SSIM = 0.9968) are qualitatively 

similar to PETCT-ASC, though PETDCNN was substantially overestimated across the brain in 

the result of Figure 4a (48.5 ± 10.4% vs. 4.0 ± 4.1%).

Further voxelwise evaluation was performed by the joint histogram (Figure 6) and error 

histogram (Figure 7). The analysis shows the voxel-wise similarity between PETDCNN and 

reference PETCT-ASC with the slope of 1.01 and R2 of 0.98 (Figure 6a). PETDCNN achieved 

higher accuracy for lower uptake voxels with smaller variation but lower accuracy for larger 

uptake voxels with larger variation; whereas, PETMR-ASC achieved smaller variation with a 

trend of underestimation with the slope of 0.97 and R2 of 0.99 (Fig. 6b), which was 

consistent with the result of the error histograms of PETDCNN and PETMR-ASC (Figure 7).

4. Discussion

Our results demonstrated that DCNN can achieve joint ASC, that converts PETNC to 

PETASC directly in image space without depending on a conventional approach that 

performs attenuation and scatter correction separately in sinogram space. To our knowledge, 

this is the first work to investigate the feasibility of performing ASC simultaneously in 

image space through DCNN. In this study, DCNN demonstrated comparable quantitative 

(−0.83 ± 5.20% difference without outliers) and qualitative results, compared to 

conventional CT-ASC or MR-ASC performed in sinogram space using CT or MR-derived 

attenuation maps and time-consuming iterative scatter correction.

Encouragingly, the results demonstrated the great potential of DCNN-based joint ASC to 

promote the clinical feasibility for a dedicated brain PET system such as a small-FOV PET 

or a wearable PET (Tashima and Yamaya, 2016; Oncovision; Brain Biosciences; Melroy et 

al., 2017). Since it is technically difficult and not practical to combine such small PET 

systems with an additional CT or MR system, it is important to devise a practical and robust 

way for ASC without requiring additional anatomical imaging. Additionally, it is 
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encouraging to provide a possible alternative to MR-based attenuation correction (MRAC) 

in simultaneous PET/MRI. Although the solutions for MRAC of simultaneous brain 

PET/MRI have been improved (Ladefoged et al., 2017), these solutions are still not regarded 

as on the same level as CT-based attenuation correction. The comparison of PETDCNN and 

PETMR-ASC (−0.83% versus −5.07% difference without subject 3) demonstrated that DCNN 

could be a potential alternative for MRAC, which was the motivation of using PET/MR data 

instead of PET/CT data in this study.

The DCNN-based ASC approach is fully automated and fully data-driven: PETNC is directly 

converted to PETASC in image space almost in real time (0.4 s on average for 89 volumetric 

images) without requiring additional anatomical information or time-consuming scatter 

correction. In the offline toolbox, scatter simulation took approximately 150 seconds and 

TOF-PET reconstruction with ASC took 147.8 minutes that was 2.2 times longer than the 

processing time without ASC (67.8 minutes) in our workstation (Intel i7 CPU with 3.40GHz 

× 8 cores and 31.4 GB memory). Scatter correction increased overall processing time 

substantially in the course of image reconstruction, but we can overcome this issue by 

applying our DCNN to reconstructed images without ASC. In general, DCNN applications 

for PET are more challenging than those for MR and CT due to the low resolution and noise 

characteristics of PET. Nevertheless, the success of low-dose FDG PET reconstruction 

demonstrated the capability of DCNN to deal with noisy FDG PET data (Xu et al., 2017); 

and the feasibility study of DCNN-based conversion from FDG PETNC to pseudo CT 

demonstrated the perceptibility of brain tissues and their boundaries in FDG PETNC (Liu et 

al., 2018b). Therefore, it is not surprising to expect the successful result of our proposed 

DCNN-based joint ASC for FDG PET. In our study, the pattern differences were derived 

from how attenuation and scatter correction changes uncorrected image patterns 

simultaneously, which enabled our proposed DCNN to predict attenuation/scatter-correction 

patterns for corrected images.

For the model training, we did not consider the information about a table couch and external 

head coils that should be always included in attenuation maps derived from CT or MR for 

accurate attenuation correction and scatter simulation. Surprisingly, however, the omitted 

information was not problematic since the attenuation information caused by the external 

materials could be imbedded in training images themselves. For this reason, it is important 

not to perform vertical flipping for data augmentation because the back of the head was 

always positioned near the couch in the field of view and brain tissues near the couch were 

more attenuated in this setting.

The proposed DCNN achieved the high accuracy (−0.83% difference) on average except for 

one test subject (subject 3) who seemed to be not represented in the training cohort. To 

clarify, since the average skull density is 685.6 ± 61.1 HU (min: 569.6 HU, max: 805.1 HU) 

in our data set (34 subjects except subject 3), such a low skull density (e.g., subject-3: 475.1 

HU) is not common. The low bone density of subject 3 was qualitatively and quantitatively 

presented in additional supplementary figures 2–3. Although the quantitative difference 

(48.5% difference) of this subject was clinically not acceptable, we expect that this overall 

overestimation problem might not be problematic for diagnostic purposes because the 

relative contrast was consistent for both DCNN and standard approaches for subject 3 
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(Figure 5). Therefore, it may be acceptable to use our DCNN for quantifying pre and follow-

up scans if DCNN is consistently used for an outlier such as subject 3, since the values 

would be consistently overestimated with an acceptable contrast.

Despite the promising results, our study has several limitations. First, the amount of training 

and test data (25/10 data split) may not be enough to derive a fully-generalized optimal 

DCNN model. Since the generalization power of DCNN is largely dependent on the amount 

of data set, we did data augmentation to simulate a larger dataset and to avoid overfitting. 

Nevertheless, as shown in the result of subject 3, the model substantially overestimated 

PETDCNN compared to reference PETCT-ASC (Figure 4a), though the qualitative similarity 

between them was still high (Figure 5c). Additionally, the training set did not include 

pathological subjects, which resulted in the relatively larger difference (−13.5%) of DCNN 

than the difference of MR-ASC (−6.7%) for the tumor uptake in subject 2. Therefore, in 

order to deal with any pathological pattern in our DCNN model, it is very important to 

include the variety of pathological patterns that may include a similar pattern for a target 

pathology in our extended training set. With the addition of an increased number of subjects 

with various pathologies in the training dataset, we expect that our model could be robust to 

a potential source of bias or variation. Second, the model has not been tested for other 

radiotracers with different mean/maximum positron ranges (18F, 0.66/2.63 mm; 11C, 

1.27/4.46 mm; 13N, 1.73/5.57 mm; 15O, 2.97/9.13 mm; 68Ga, 3.56/10.27 mm; 82Rb, 

7.49/18.6 mm in water (Champion and Le Loirec, 2007; Le Loirec and Champion, 2007)) or 

biological distributions that can change image resolution and visually-recognized brain 

patterns. Radiotracer-specific model training is likely necessary to evaluate the radiotracer-

specific performance variation of our DCNN. Third, we have not investigated the 

performance of our DCNN for dynamic scans. Neuroreceptor studies potentially done with a 

dedicated brain PET system may be performed as dynamic scans, and the image patterns of 

such a study change continuously from the perfusion phase to the final image of 

neuroreceptor binding. Basically, since the theory of attenuation and scatter correction is 

consistent for static and dynamic PET, the DCNN model could derive dynamic-imaging-

specific ASC patterns if enough dynamic brain PET data were used to train the model. As 

discussed above, the flexibility of our DCNN model is substantially dependent on the 

amount of pattern information in training data as well as the network architecture, we may 

need to tailor our model architecture and to retrain the model, considering data diversity 

such as inter-patient variation (pathological and anatomical difference) and inter-radiotracer 

variation (positron-range and biological distribution). Finally, there were large variations 

between PET protocols for the brain (e.g., scan duration, post-injection scan time, etc) since 

the brain PET scan was taken from a whole-body scan. However, DCNN-based joint ASC 

performed considerably well in spite of the variation, considering the result of subject 1 with 

the longest scan duration (900 seconds for subject 1, 227.2 ± 137.5 seconds for the others).

In future work, substantially increasing training data is our most important task to derive a 

fully-generalized model that can interpret inter-patient and inter-radiotracer variations. Since 

many clinical and research PET/CT and PET/MR scans are on-going in our department, we 

will access archived data and prospectively acquired data to increase our training/validation 

data set. We can increase training/validation data set using PET/CT and PET/MR data 

simultaneously; however, it may be necessary to train the model according to PET/CT and 
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PET/MR data separately and to compare their results, since PET system resolution and 

reconstruction details are different between PET/CT and PET/MR systems. For future 

validation, it will be worth to use cross validation to perform a more generalized evaluation 

in a large cohort study. Second, although subjects with a very low bone density such as 

subject 3 are generally not likely, it is still important to control this potential problem to 

avoid an unexpectedly large quantitative error. To address this problem, it is probably 

feasible to develop a peripheral DCNN that might be able to derive a mean skull density for 

preventing unacceptable over/under estimation by training bone-specific voxel pairs of 

noncorrected PET and corrected PET, which is not a voxel-by-voxel conversion but a 

regression that might be resolved by DCNN. Third, we may increase the confidential level of 

our DCNN using conditional Generative adversarial networks (c-GANs). The c-GANs 

include a generator network and a discriminator network which are trained simultaneously in 

order to guarantee the predicted output to be close to the ground truth (Wang et al., 2018). 

Finally, we plan to investigate a trade off between image-based (our DCNN) and sinogram-

based (Liu et al., 2018b) approaches using only PET data in terms of robustness and practice 

in a large cohort study.

5. Conclusion

We demonstrated the feasibility of directly producing PET images corrected for attenuation 

and scatter using DCNN (PETDCNN) from noncorrected PET (PETNC) in image space 
without requiring additional anatomical imaging and time-consuming scatter correction. 

This approach is a one-step process, distinct from conventional methods that rely on 

generating attenuation maps first that are then applied to iterative scatter simulation in 

sinogram space. In particular, DCNN-based joint ASC has great potential to promote the 

clinical feasibility for a dedicated brain PET system that needs a practical and robust way for 

ASC without requiring anatomical imaging. Additionally, our DCNN-based method 

provides a possible alternative to MR-ASC for simultaneous PET/MRI.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Schematic of conventional attenuation and scatter correction (ASC) performed in sinogram 
space during PET image reconstruction (left) compared with proposed deep convolutional 

neural networks (DCNN)-based ASC performed in image space (NC: non-corrected). A 

lesion is observed at the border of the brain. Note that the RF brain coil and the couch were 

included in the attenuation sinogram and that the scanner geometry effects (gaps between 

detector panels) were added to the scatter simulation, so that the scatter sinogram contains 

the same effects that are found in the emission sinogram.
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Figure 2. 
Deep Convolution Neural Networks (DCNN) architecture (Conv: convolution; BN: batch 

normalization; ReLU: rectified linear unit).

Yang et al. Page 14

Phys Med Biol. Author manuscript; available in PMC 2020 April 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Bland–Altman plots of (a) PETDCNN and (b) PETMR-ASC for uptake differences (%) from 

reference PETCT-ASC across 116 regions × 10 test subjects (1160 regions in total). In (a), the 

isolated cloud of circles is in the range of 40–60% belongs to subject 3.
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Figure 4. 
Box plots of PET uptake differences (%) of DCNN and MR-ASC from CT-ASC: (a) 10 test 

subjects across 116 AAL regions, (b) 8 merged regions across 10 test subjects, (c) 8 merged 

regions across 9 subjects without subject 3. Subject-3 has the highest mean ± SD difference 

(48.52 ± 10.36%) for DCNN.
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Figure 5. 
PET examples of representative subjects for CT-ASC, DCNN, and MR-ASC: (a) subject 1 

with the longest scan duration (900 s), (b) subject 2 with a tumor in the head, and (c) subject 

3 with the highest mean difference.
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Figure 6. 
Joint histogram of PET voxels within SUV range of 0.5–20.0 (g/mL): (a) PETDCNN versus 

PETCT-ASC and (b) PETMR-ASC versus PETCT-ASC. Note that the counts were log-scaled 

(i.e., log10(counts)) to visualize small counts.
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Figure 7. 
Error histogram of PET voxels (PETDCNN – PETCT-ASC and PETMR-ASC – PETCT-ASC) 

within SUV range of 0.5–20.0 (g/mL).
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Table 1.

Uptake differences (SUV and %) of PETDCNN and PETMR-ASC from reference PETCT-ASC across 116 regions 

× 10 test subjects (1160 regions in total).

Difference

SUV % P

PETDCNN 0.20 ± 0.92 3.98 ± 15.42 <0.001

PETMR-ASC −0.31 ± 0.31 −4.24 ± 4.29 <0.001

Differences are mean ± SD. A paired t test was performed for the pair of PETCT-ASC and PETDCNN.
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Table 2.

PET uptake differences (SUV and %) of DCNN and MR-ASC from reference PETCT-ASC across 116 regions 

× 9 subjects (excluding subject 3).

Difference

SUV % P

PETDCNN −0.08 ± 0.33 −0.83 ± 5.20 <0.001

PETMR-ASC −0.36 ± 0.27 −5.07 ± 3.60 <0.001

Differences are mean ± SD. A paired t test was performed for the pair of PETCT-ASC and PETDCNN.
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