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ABSTRACT 

. I 

This is the first of two papers in which.the low-temperature 

properties of liqu~d He3 are to be calculated in the thermodynrunically 

consistent 11 T-matrix" approximation. The set of coupled integral 

·equations which are to be solved is exhibited in Part A of this paper. 

Part B of this paper is devoted to a prelimi~~, zero-temperature 

calculation which employs the additional approximations of using 

separable potentials and a noninteracting spectral.~1nction to define 

the interaction of two particles in the medium: the {T)
0 

approximation. 

In this approximation we obtain a spectral function for the quasi 

particles which we expect to display general features in common with 

those of the actual spectral function. Using this spectral function, 

we calculate the thermodynamic properties of the system and find that 

they compare favorably to those obtained in other calculations. 
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I. INTRODUCTION 

The application of field-theoretic techniques to many-body 

problems has resulted in formalisms which--in principle-~allow the 

calculation of the equilibrium thermodynamic properties of a system 

of particles in terms of the interaction between two free particles. 

2 One variant of these formalisms is that of Martin and Schwinger, whose 

many-body Green's function approach we use in this work. The Green's 

function formalism yields an infinite set of coupled integral equations 

· which must be solved self-consistently to obtain the properties of the 

.system. However, it is impossible in practice to solve! this set of 

equations exactly, and approximations must be made to obtain a solution~· 
i 

Our choice of approximations is governed by the nature of the interactidh 

between the particles in the system, and by the requirement that we 

obtain thermodynamically consistent results. 
;:: . 

This paper is devoted to calculating the properties of a "norlll!l1" 

system of interacting fermions, namely liquid helium of isotopic mass 

three at zero temperatures; we are aware of a number of calculations 

of the properties of this system which start from the two-body system.l,3, 4,5 

The earliest ,and only published calculation wa~ by Brueckner and Gammel,3 
. . 6 

who employed a two-body interaction potential of the Yntema-Schneider 

form. The Lennard-Jones 6-12 potential7 has also been used extensively 

to describe the interaction of helium atoms; we have taken this potential 

to describe the two-body interaction. The nature of these potentials is 

a relatively short-range attraction combined with strong repulsion at 

closer distances. The most successful approximation for treating this 
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8 . 
type of system has been the "T-matrix" approximation, 3' ' 9 which--in 

general terms--is an approximation that includes only effects arising 

10 11 
from the explicit correlation of two particles. Baym has derived a 

criterion which any approximation must satisfy if it is to give self-

consistent thermodynamics; he has shown that the "T-matrix" .approximation 

satisfies the criterion. 

This is the first of two papers concerning the solution of the 

coupled integral e~uations of the thermodynamically consistent T-1natrix 

(TCTM) approximation. In the second paper of this series our program 

of obtaining the low-temperature properties of li~uid He3 within the 

framework of this approximation is accomplished. 

Part A of this paper is devoted to exhibiting the coupled-integral 

equations of the TCTM approximation; here a brief discussion of the 

temperature-depe11dent Green's function formalism is also given. In 

Part B of this paper we make further approximations requisite for the 

preliminary calculation, which forms the main body of the paper. The 

coupled integral equations, defined in Part A, are simplified and 

decoupled by replacing the spectral functions in the T matrix by non• 

interacting spectral functions. The resulting T
0 

matrix r·etain!3 the 

essential interaction features exhibited by a zero-temperature system 

of interacting fermions; however, because of this decoupling our 

approximation is not thermodynarnically consistent. This undesirable 

feature is a property shared by most other calculations to date (see 

Section VI.l)j however, this approximation has the interesting property 

,. 
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(not shared by the other approximations) of yielding a spectral function 

with a width. 

An additional approximation -...re make to obtain a manageable set 

of equations is that we use a fi;nite sum of separable potentials to 

represent the interaction between two He3 atoms. This approximation 

does not affect the thermodynamic consistency, but it may be a poor 

representation of the actual two-body interaction. 

Section IV is devoted to developing the two-body interaction 

for particles in the medium; the T0 matrix. In Sectiod V we calculate 

the spectral function using this interaction and, since the modification 

· of the two-body interaction due to statistics of the medium is well 

represented, we expect that our spectral function displays general 

features in common with that of the actual spectral function •. 

Because of the approximations for the interaction we would not 

expect the propertles of liquid He3 to be predicted with great accuracy. 

Nevertheless, in Section VI we calculate the ground-state properties 

and compare them both with experiment and with other calculations. 

The results of this comparison are summarized in Table I; the quanti-

10 tative agreement with experiment is not impressive, but as good as 

that of other approximations, and we may expect improvement in this 

comparison from the complete calculation. 

·, 
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Part A. T-Matrix (Two-Body Correlation) Approximation 

II. GREEN'S .li'tJNCTION FORMALISM 

UCRL-16524 

In this section it is shown that the thermodynamic properties 

of a system of interacting fermions may be evaluated in terms of the 

average energy, E, and number, N • The formalism of Martin and 

Schwinger2'9 is summarized so as to clearly define the notation, and 

the formulae for E and N are presented in terms of calculable 

microscopic quantities. 

1. Definition of the Problem~ Thermodynamics 

One assumes that the interaction in this system can be described 

12 by an instantaneous tv.ro-body Hamiltonian, 

H(t) 

+ ~ J 1\lt(£,t) wf(£',t) v(£- £') 1V(£',t) w(_t,t)d£ d£', 

( 1) 

where v"t(r,t) and w(r,t) are the particle creation and annihilation ,..,. "' 

operators in the second-quantization Heisenberg representation; in this 

and subsequent expressions the coordinate r contains the internal 
IV 

spin variables~ . In the same representation, the number operator is 

N(t) ( 2) 

The creation and annihilation operators satisfy the an·ucommutation 

relations 

·. 

.• 

•• 
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{ w(t,t), w<t',t) J = o, 
( 3) 

5(r- r') • 
"J -

· Puri9 employs a modffied Heisenberg representation where the time 

development of an operator X(t) is given by 

X(t) ei:l:!t X(O) e -iJ:lt = (4) 

with 

J:l( t) = H(t) - !l N(t) , ( 5) ,, 

and where !l is the chemical potential. 

In order to describe the macroscopic behavior of the system, 

one evaluates the expectation value of operators over the grand-canonical 

ensemble.1 3 Thus for an operator X , MS defines 

(X)!l,f3 = z-l tr (e- t)}! X] • (6) 

where tr denotes the tr~ce of the matrix is to be taken, and Z is 

the grand-canonical partition function, 

(7) 

The thermodynamic state of the system is defined by !l and f3 1 · 

the inverse temperature measured in energy units; i.e., f3 = 1/r. T , 

where ·r. is Boltzman's constant. It is well known14 that all the 

equilibrium thermodynamic properties can be obtained from the grand 

partition function. 
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For a given ~ and ~ one can compute this function15 if he 

knows 

E = (H)~'~ (8) 

. and 

N = (N)~'~ , (9) 

as can be seen by the following argument: At zero temperature. the 

pressure P is, according to its definition, 

p = (10) 

where {;/is the volume of the system. For a normal system of fermions 
. . 16 

at· zero temperature the Hugenholtz-Van Hove theorem states 

( 11) 

which has the consequence, for a large system, that 

E N a E . . ~ ~\ 
(12) 

The 

. ~ = ii + ( 'f/j () @) N) ' 
grand-canonical partition function is 14 related to the pressure by 

e ~P(/ (13) 

Differentiating the logarithm of Z with respect to ~ at fixed ~ 

qj ~ 15 . 
and 1/ , one obtains a relation bet'\oreen oP/0~ and (N/i/}~' , and, 

similarly, differentiating the .logarithm with respect to ~. at fixed 

~ and (/, one obtains a relation between oP/"Ci;3 . and (H/(/}~'~ . 
' 

These relations can be integrated to give P~'~ , and hence one can 

compute all the properties of the system, if he has E! .and N 

{Eqs. 8 and 9). 

•, 
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~. Microscopic Theory 

Equations (8) and (9) may be evaluated from a microscopic theory 
. 17 

by using Green's fUnctions. The one-particle Green's functions is 

( 14) 

and the t"m-particle function is given by 

in these functions T is the Wick time-ordering operatpr. 

Using {4) to define G for complex values of its time arguments, 

in the interval 

0 ~ 1 t ~ 13 , 

and defining the time ordering in this interval by 

T(v(l) vt(l')) = for t . 
1 tl > 1 t 1 , 

one can use the cyclic property of the trace to obtain the boundary · 

condition 

G(ll')lt --O· = -G(l1')1 , 
tl= .. if3 . 1 

(15) 

. The Hamiltonian, Eq. ( 1), is translationally invariant in space and time 

(we assume an infinite system so there are no boundary effects), and 

consequent~ 
I~- • 

. ' 
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G( 11' ) = G( r, t) , 
"' 

where ~ = ~1 - ~1 t ' t = t1 - tl' • 

Introducing a "spectral function," A(~w) 1 for G , and 

performing Fourier integral transforms with respect to the space 

components of G , and a Fourier series analysis with respect to the 

time component, MS obtain 

= J~ A(£1w) 
21f z -w . - v ' 

where zv = ~v/(-i~) • Define the analytic function 

J do A(£,w) 
G( £1 z) = 2l1 z _ w (16) 

for all nonreal z , by analytically continuing from the points zv • 
. 18 . 

The unique continuation has been shown by Baym and Mermin . to _be that 

which has no essential singularity at lzl = a». Thus G(p,z) is a ...., 

function which is analytic in the whole complex z plane with the 

exception of the real axis, while A(p,w) --a real positive function---
is given by the discontinuity of G across the real axis, 

A(p,w) = i[G(p,w + i€) - G(p,w - i€)] • 
,.., ' "" "' 

(17) 

Using the anticonnnutation relation, (;), one can easily obtain 

the sum rule: 

(18) 

·. 

.,_ 

'If. 

• 

; 
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For a given approximation the anticommutation relation may not exist or 

.may not be in a convenient form to obtain this sum rule for A(p;ro) • ... 
In this case we need to know the properties that must be satisfied by G 

to ensure the sum rule. The Herglotz theorem19 (of the theory of analytic 

functions) gives the necessary and sufficient conditions on G(p,z): 
"" 

If G(p,z)· is analytic in the upper half plane, Im z > 0 , and if in -
this half plane Im G ~ 0 · and lim z G(z) = 1 1 then the sum rule, (18), 

I z l-.oo 
holds. 

In Section II.l it was shown that one needs the two quantities 

E and N ,· (Eqs. 8 and 9), in order to obtain the equilibrium thermo-

.dynamic properties of the system. These quantities can be expressed 

in terms of the spectral function A(p,m). The number density operator 
"" 

for the system is , (2), 

so that, from (15) and (16), 

f. ~ J d.£ 
3

. A(p,c.u) f(m) , 
.:;n (21t') ..., . . . 

{ n( r, t) ) = .... 
where 

f(ro) = [e~ + 1]-l 

is the usual fermion statistical factor. Since the system is isotropic, 

(n(r, t)) is independent of r and. t and. 1·t f'oliovs that - "" . 

f &o21t' 1 dp "" 
3 

A(p,ro) f(ro) j 

·(21t') -
(19) 
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for-~,;; system N and V go to infinity in a manner such that the 

.ratio (N/G/) remains finite. Similarly, the energy density is given 

by 

(20) 
2 

The equation of motion for G j_s 

d 
( i 'd't:' 

l 

'V2 
l 

+ ~ + ~) G(ll 1
) + i[d£~ v(£1 - £2)a2(12;1'2+) .\ 

• t =t 
2 1 

= 8( 1 .. 1 1 ), 

(21) 

where (2+) = (r2, t 2 + o+). One sees that this equatio~ involves a2, 

and the equation of motion for G would involve G 1 and G 1 • n n- n+ 

Therefore, one has to solve an infinite set of coupled differential-

integral equations in order to obtain G • 

It is useful to introduce--following MS--the "self-energy" 

operator, E, which is defined so that 

-(1 ~l + ~
2 

+ !1)G(11') -[
1

~ dl l:(li) G(li') ; 8(1 ~ 1') 

(22) 

15 . 
One can show that E satisfies the same boundary conditions as G • 

One defines a "spectral function" for E , 

r(p,m) = i ( Z(p, ID + i€) - Z(p, ID- 1€)] 
~ IV , ~ 

J (23) 

and consequ~nt1Y 
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r(p,m) 
'V 

z-m 

where ~0(£) .is a real valued function of £ only. Here allowance is 
. 20 

made for the possibility that 

. 11m >:( z) _ >:
0 lzl-.oo 

t' ,. .... ( 

When a Fourier integral transform is pe;r~ormed on the coordinate 

1 '· variables and a Fourier series analysis·of the time variable, (22) 

becomes 

2 
[ 'z- ~ + J.1- E(£1 z)]G(£1 z) = 1, 

which, combined with (17) and (23), yields 

2 r(p,m) ... r. 
(24) 

(25) 

. .. '"' 
~-= 
~r;'/' . ' 
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III. THE THERMODYNAMICALLY CONSISTENT T-MATRIX APPROXIMATION 

1~ Motivation and Specification of the Approximation 

In Section II we discussed the infinite set of coupled integra­

differential equations (the first of which is given by (21)], which need 

to be solved to obtain G • One cannot hope to solve this set of coupled 

equations exactly; some approximations must be made. 

For short-range forces with strong repulsion a useful approxima-
. . . 8 
tion which has been widely emp~oyed is the T-matrix approximat1on.3' ,9 ... 

This is an approximation for a
3 

which neglects .the correlation of a 

single particle with a highly correlated pair. Formally, one takes9 

_ a
3
(123; 1'2'3') = G(l3') G2(23; 1'2') + G(ll') G2(23; 2'3') 

- G(l2') G2(23; 1'3') , 

which gives 

G2(12; 1 12 1
) = [G(ll 1

) G(22 1
)- G(l2 1

) G(21 1
)] 

+ ~ L-i~ d1 d2 [ G0
( 11} G( 22) - G( 11) G0

( 22) ] 

where G0 is the solution of (21) without the interaction term, and 

: t 

•. 
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An important fUrther consideration in making approximations· is 

thermodynamic consistency. If the approximations do not satisfy certain 

·consistency requirements, one has no guarantee that the thermodynamic 

quantities obtained are consistent. At zero temperature if the results 

are such that the Hugenholtz-Van Hove theorem, (11), is not satisfied 

then one does not know how to determine the pressure uniquely. The 

' situation is just as serious at a temperature because the pressure, 

P~~ obtained by two different integration paths--using the relations 

between oP/O}J. and (N/7/)JJ.f!>, and ~P/~ and (H/V)~'~ --discussed 

at the end of Section II.l--may not be unique. Still a th~rd result 

for the pressure might be found by integrating,the expectation value 

of the potential energy with respect.to the coupling constant. 15 

As might be expected, the demand that an approximation lead to 

a single-particle Green's function such that the thermodynamic results 

· are consistent places strong restrictions on the possible class of 

11 approximations. Bay.m has used functional derivative techniques to 

derive a criterion for approximating the single-particle Green's 

fUnction and has proven that approximations which satisfy this criterion 

produce a consistent picture. His criterion is 'that there must exist 

a "closed" functional J of G and the potential, V, such that 

( ') 'Of I: 11 = -
e o( 11') ' (27) 

where the self-ene~gy, ·z, is to be considered as a functional of G 

and V • :Here a ''closed" functional means one in which all internal 
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variables are integrated, or, in terms of diagrams, no particle lines 

· enter or leave the diagram. In terms of diagrams, the differentiation 

of Eq. (27), means plucking out one of the particle lines, as is detailed 

in Fig. 1. 

The approximation (26) does not satisfy Baym's criterion; however, 

11 Baym has shown that the approximation 

G2(12; 1121
) = (G(ll 1

) G(22 1
) - G(l2 1

) G(21')] 

+ i 1
-if) 

dl d2 G(li) G(22) V(l - 2) G2(I 2; 12) 
0 

I ., 
(28) 

does satisfy his criterion. 

2. Formal Development o.f the TC'l'M Approximation 

We take Eq. (28) as the basic equation of our thermodynamically 

consistent T-matrix (TCTM) approximation. · If we define the T matrix 

by the integral equation 

< 12 I T I 1 12 1 
) = V(l - 2) 5(1- 1') 5(2- 2 1

) 

1
-1~ 

+ i 0 dl d2 { 12 I T I I 2 ) G(ll') G(22') V(l 1 
- 2J) , 

(29) 

the approximation, (28); becomes 

V(l- 2) G2(12; 1'2') ~ J[-i~ di d2 ( 12 I T I I 2 ) 

X [G(Il') G(22') - G(21 I) G(l2 1)] I (30). 

·. 

.. 

: 
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and from ( 21) and ( 22) we have 

(31) 

Exa.min,ing the structure of ( ITI) , one sees that it satisfies 

the same boundary condition as G(t1 - t 1 ,)G(t1 - t 1 ,): 

One can express T(t1 - t 1 ,) as a Fourier series Vith coefficients 

T( zv) , where zv = 1tV / ( -1f3) and v runs over all even integers. 

Analytically continuing to all z 1 and performing Fourier integral 

transformations with respect to the center of mass and relative 

coordinates (see Chapter 13 of Ka.danoff and Baym
15), one obtains 

( p IT(P,z)! p' } = v(p- p') 
I'V "-~ ,.., l'tJ A6 

+ J d£ { P !T(P,z)l p )h{P,p,z)v(p- p') , 
(211:)3 "' N N .... - ""' "" 

( 32) 

where 
p p 

A(:: ·1- p,w) A(~ - p,w') 
2 ,.. 2 "' [ 1 .. f(ro) - f'(ro')] 

z - w - w' 
{33) 
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and. f is the center-of-mass mom~ntum. 

T(.z) is analytic in the upper and lower halves of. the complex 

z plane, and 

.21 
Watson has shown that if v(r) is finite everywhere, T(z) is bounded 

by a constant as z ~ oo. After performing the time integrations in 

(31)--by means of the 8 functions--and transforming with respect to 

the coordinate vs.riables, one can use the analytic prop~rties of G( z) 

and T(z) to determine the Fourier coefficients of the self-energy, 

I:( zv) • Analytically continuing the,se coefficients, one has5,9 

I:(p,z) = J d_e') r fu, rA(p,w')f((l)) 
(21c) ) 2:rt r .... 

<
p- p' 

.X "' ,.,. 

2 

[exchange terms) 1 

where 

(34) 

is the boson statistice.l factor. For a homogeneous., isotropic., unbounded 

system A(p1 (J.)) depends only on the magnitude of the momentum, p = JPI 1 
- N 
'· ;.~ 

and furthermore E(p,z) does not depend on the orientation of p • - -

'• 

1. 

' . ...,., 
\~ 
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Equations (25), (32), and (34) are, explicitly, the set of coupled 

integral equations which must be solved in the TC'.l'M approximation. 

The theory could have been developed for a nonlocal potential 

by using a potential9 of the form (£1 - £2 1vh:
3 

- r1~), corresponding 

to the local potential o( lr1 - £21 !r3 - r4 1) v( lr1 - ~I) . If 

one had carried out the development for this potential, the· v(£- ~') 

in T would be replaced by (plvlp') ; we assume that the potential in 

{32) has this form. 

Because of the complex! ty of this se·t of equat~ons we must make ..., 

·.a fUrther approximation to facilitate their solution. We wish to make 

. a partial-wave expansion of· T , hence we perform a Brueckner-Gammel3,5 

type of averaging rather than actually performing the angular integrations 

in (32). This means we set 

p 
"' ± p 
2 .... 

( 35-) I -. 

in A(P,p,z), which decouples the partial waves. This approximation 
,... -

can cause our.solution to violate Baym 1s criterion, but we hope this 

violation is minor enough so that it does not affect the thermodynamic 

results. (A point to be confirmed at the completion of the calculation.) 

A partial-wave expansion of T and v is made, and the partial-

'rave components, T .e , of T are given by 

·,-:")'" 
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.. 

x {pITt (P' z) IP" ) A(p ,w)A(p -,w' )[ ~ - f(w) 
z-w-w 

dm' . 

f(w•)] (pJvtlp') 

(36) 

For liquid He~ we need to consider a systetn of particles with 

1 spin 2 , interacting via a spin-independent interaction. The only 

complication introduced by spin is that the momentum and coordinate 

integrations contain an implicit sum over spin states. The direct 
! ' 

part of E is multiplied by 2 as a result of this summation, and, 

since we have.no spin-flip mechanism in our interaction, the exchange 

part is unaffected. Making the partial-wave expansion and using the 

summation relation for the spherical hannonics, we have, for the direct 

and exchange contributions to E , 

2{ p IT( p, z) I p I ) - - - (pjT(P,z)! ·P 1 ) - - -

The spin sum contributes a factor of 2 to the expression for 

and 
;w { 7J} [Eqs. (19) and (20)]. One can perform the angular 

integrations in the expressions for these quantities to obtain, finally, 

(~7) 

.. 

_. 
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Part B. · The· (T)o--Approximation vith a Separable Potential (Zero 

Temperature) . 

The remainder of this paper is devoted to a zero-temperature 

calculation of the properties of liquid He3 in an approximation to the 

TCTM approximation of Part A. This approximation, vhich ve call the 

\T)0 approximation, retains the essential features.of the TCTM 

approximation and should be considered as a first step toward the 

. complete calculation. 
I '· 

We have also chosen to use a separable potential to describe'. 

the interaction of tvo free helium atoms. This results in a closed 

expression for the interaction of tvo atoms in the medium, vith 

consequent simplification of the calculation. 

The calculation vas performed on the Lawrence Radiation 

i: Laboratory's IBM 7094 computer and the University of Californla at · 

San Diego'~ CDC 3600 computer. 

t • 

.•. . 

: 
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IV. 'IWO-BODY INTERACTION IN THE MEDIUM 

We obtain the (T)0 approximation by replacing the spectral 

~Jnction in the equation for (T) , (33), by 

2 . 2 
P - Pf 

A0(p,ro) = ~ 8(ro - ) • 
2m 

Our approximation now is no longer thermodynamically consistent. The 

ro integrations in the equation for (T) are trivial, and we have the 

equation for (T) in the (T)
0 

approximation 

(p lvl P'). 

where 

1 - f'( 

In the zero-temperature limit, 

. 
'" 

-1 

0 

1 

~ ~ 

' 

(39) . 

+2 2 -2 
P - Pf ) - r( P - Pr ) • 

·2m 2m 

for + -p ,p < pf (hole-hole), 

for - + P < Pf < P (particle-bole)·, 

for + -!' ,p > Pf (particle-particle). 

(4o) 

/ 
I 

. '\}.' 



·c 

·'. 

UCRL-16524 

-22 .. 

This approximation for (T) retains the essential features of 

the fermion system (it involves no approximations with regards to 

statistics) in contrast with the approximations which have been used to 

date.; The Brueckner-Gammel3 calculation neglects the hole-hole term; 

the calculations of Mills5 and Puff-Martin9 are formulated so that they 

have none of the features present in (40) {this is discussed in more 
.. 4 

detail in Section VI); Sung makes a correction for the statistics, but 

his correction is a very poor approximation to the result obtained by 

solving with the statistical factors included. 

ItEwell known22 that vt can always be expressed in a separable 

. form: 

(]) 

(p lvtl p') = ! I A (1) v {i)(p) v (i){p') 
t t t 

1=1 

We assume that we can represent vt by only a few terms of the series. 

For ~ = .01 11 2, 3 we retain two terms of the series, for t = 4, 5, 6 

only ~he first term; Tt(P,z) is negligible for larger t , This 

particular approximation does not affect Baym's criterion for thermo­

dynamic consistency, but the (Tt) we obtain may not represent the 

liquid He3 system accurately. We have of course lost self-consistency 

by our first approximation--as incorporated in (39). 

We choose a form for the vt(i) 1 s and solve the sc~ttering 
matrix for two free He3 atoms. The coupling constants and parameters 

in our potentials are adjusted to match the phase shift calculated 

from poteJ~ials in coordinate space for He3. The coordinate space 

•. 

• 

. -- . 
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· potentials are local potentials whose parameters are adjusted by means 
. . . 3 6 7 

of the virial expansion to fit the experimental data for gaseous He • ' 

The forms we choose for our separable potential and the determination of 
I 

the parameters are discussed in Appendix A. 

The separable potential allows us to write (Tt)o in closed 

form: 

(p ITt(P,z)l p•)0 = 

m 

where 

and 

ij 
It (P,z) 

( 1) 
vt {p) 

v {2){p) 
t 

p2 dp 

v (l)(p') 
t . 

v (2){p') 
t 

.(41) 

, 

• 

{42) 
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We need {Tt(z))0 . only for z = m + i€ and def~ne the integrals (42) 
P2 .. Pf . 

by introducing a physical cut from m0 = 4m :- m to +.ex> • 

If p
0 

is defined by 

2 
Po 
- = ID-m 

(4;) 

. 2 
and the It(m + iE)'s examined for p0 < 0 , we see that the It's 

are real, 8.nd c~nsequently {T)0 is real. We have in this case 

[
1 2 

p dp 

. 0 

where p1 and p2 are solutions of 

-and 

I 12 2 
!Po + P 

vt(i)(p) vt(j)(p) 

1Pol2 + P2 
(44) 

,· 

If·we had a. potential which consisted of a single repul~ive term,. 

then { 41) would become 

{45) 
~ 1 11' J J (t - It . (P,z) 

•. 

.. ~ , . .. ·. 

.. -
~ ... 

'il• 
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1 where gt is positive; for It given by (44) it would be possible 

for the denominator of (45) to be zero, and hence we would get a pole 

·in . (T)0 • ·For the potentials we employ and when t = 0 , we get this 

2 type of pole in (T)0 w~en P < pf and when p0 is negative and 

very small {e.g., Figs. 2 and 3, where the small imaginary part at the 

·pole in Fig. 3 is due to the angular ~ntegration which has been performed). 

We know that r(p,oo) should not be zero in this region, and if it is 

nonzero the imaginary part of (T) will not be zero in this region, and 

hence we would not have a pole. The integration of thelreal part of 

(T)0 through the pole will beru;_ve like a principal-value integral, 

and consequently we have simply removed the singularity by smoothing 

the real part of (T)0. 1_ as depicted by the dotted lines for negative 

ro in Fig. 2. 

2 For Po >> 0 the form of our potentials is such that. if we 

1 neglect gt we obtain 

which clearly has the property that the real part of (T) is highly 
0 

singular for large Po • Our numerical procedures do not adequately 

handle these singularities and we have had to smooth (T)~ for large 

values of Po • The procedure we employ is motivated by the following 

reasoning: The angular .integrations 

p - p' 
"" "' I > 

.... · 
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must be performed, or1 considering only the real part, 

where 
2 2 . p. + p' 

=· (1) - 4 -
.PP' cos ep, 

2 . 

UCRL-16524 

. Changing variables--and ignoring constants--we obtain terms like 
. I 

·J 2 . Mt = -2 ds s tan(s t + 1 ] 
2 1( I 

.. 
where s = p

0
r • For t odd we integrate from DJC - 1C/2 . to rut + 1t/2 1 c . 

and for t even from Il1C to (n + 1)1C • Consequently 

for todd 1 

Mt . = 4(n + ~)1C2 [0.693) for t even, 

·or 

hence we make the replacement 

when Po is large. The effect of this smoothing is discussed, along . 

with the nnnerical results 1 in Sectio:n IV. 

•. 

·­r:; 

~: '[) . ' 
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The separable potentials, fitted to the de Boer7 phase-shift 

data (see Appendix A), are numerically integrated by using a Gaussian 

quadrature formuJ.a23 to obtain the It iJ integrals. The angular 

integration in (34) is independent of.both G and A , so we find it 

useful to evaluate 

R(p1 p 1 
1 co + iE) ( 2 - ( -1))~ 

'•. 

~ ( 2t + l) ( I !! - £' I IT, (fp + P' Leo+ ie.) I I £ - K I ) 1 

41t 2 11 
"" .... 2 0 

( !~6) 

which is symmetric in p and p' • R is the complex two-body interaction, 

· defined so that . 

R(p,p', co + ie) = Re R(p,p', co) - i Im R(p, p', co) 

·which is used to compute E(p,co) • In Figs. 2 and 3 we have plotted the 

real and imaginary parts of R, respectively, for a typical value of 

pf and several values of p • 

' : ~. 
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V. THE SPECTRAL FUNCTION (SELF-ENERGY) 

Inserting this complex two-body interaction (46), into (34) and 

writing 

G(p, ro + i€) 
1 = 2 [B(p,ro) - i A(p,ro)] 

and 

.E( p, (I) + i €) i = Re .E(p,ro) - 2 r(p,ro) 

we obtain 

Re I:(p,"') = {' 
2 Lo . p' dp' diD 

- - -oo 27! [A(.p' ,ro') Re R(p 1p 1
, ro' + ro) 

(27!)3. 

and 

r(p,ro) 
2' 

p' dp' 
(27!)3 

+ B(p', ro' - ro) Im R(p,p' ,ro')] 

(47a) 

diD' - A(p' ,ro•) Im R(p,p', ro' + ro) 1 27! 

(47b) 

where the zero-temperature forms of f(ro') and fb(ro') have been used 

to define the limits for the m' integrations, These equations, and 

( 24): 

G(p, ro + 1€) 
1 -1 = (m - e(p,ro) + 2 r(p,ro) 1 (48) 

where 

2 
€(p,ro) · :::o. fu ... ~ + Re E(p,ro) , (49) 

·. 
. ;;;.· 

: 
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form the set of equations '\<Thich we need to solve self-consistently. 

The spectral function A(p,m) 1 Eq. (25), is sharply peaked at 

the single-particle energy, which we define as the solution of 

e{p) - e(p, e(p)) = 0 ; (50) 

the m integrations involving A(p,m) in the interval 

d = [ e(p) - .10.075e(p)!, e(p) + !0.075e(p) I ] 

are perfQrmed by replacing A(p,m) by a 5 function, 

A(p,m) = w(p) 5(m - e(p)) , 

in this interval. A(p,m) is well behaved outside the interval d 1 and 

the integrations outside this interval are performed by Gaussian 

quadrature •. The sum rule, (18), can be employed to determine w(p): 
d 

r re(p)- - Leo ] 
w(p) = 1 - l J 2 +. d ::· A(p,"') • 

oo · e(p)+-2 (51) 

The integration of B(p,m) over the inter.val d is obtained 

by letting 

p( p )(m - e( p) ] 

and expanding the imaginary part of R in a Taylor's series about 

(l) ::; €(p) • Retaining only the first two terms in this expansion, we 

have 
., 
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B(p' ,ro') Im.R(p,p', ro + w') 

= 4p(p') ~ Im R(p,p' ,ro') 
d ro' 

ro':::(J) + e(p') 

· x (0.075 fe(p•) I _ 'Y(p') tan-1 0.075Ie(p•)!] 
1(P') 

The Fermi momen-tum, pt' , is _de_t'ined as the solution of 

2 
Pr 
2m - ~ + -Re E(pf,o) = £(pf,o) = o • 

(53) 

However, the behavior of the statistical factors and the form.of the 

li interaction make it easier to carry out the calculation for a fixed 
' 

.Pf and use (53) to determine ~ • 

i'· The calculation thus proceeds as follows: for a given pf 

we calculate R(p,p', ro + ie), (46); we then choose a trial solution 

Gt(p, ro + iet}' for { 48) and use tM,s trial solution in ( 47) to generate. 

a new trial solution. .This process is repeated until the trial solution 

reproduces itself; when the solution has converged we use the resulting 

spectral function, (25), in (37) and (38) to calculate (N/ty) and 

<}fJV>· . 
The convergence of this procedure is rapid, as may be seen in 

Fig. 4, wb~re e(p) is plotted for a number of iterations in which 

j• 

,. 
,,·. 

•. 

··~ 

' 1G. < 
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. the initial choice.of a spectral function was 

) . 

For p >> pf the convergence is even more rapid, since the single-particle 

energy is dominated by the kinetic term. 

In Fig, 5 we have plotted €(p,m),· (49), for a typical value 

of pf and some values of p near pf • We have also drawn the line 

€ ~ m whose intersection with €(p,m) gives e(p), (50). In Fig. 6 
I 

we have plotted the values of €(p) versus p for the same value of 

pf • One sees that because of the behavior of €(p,m), when m is 

near zero and p is in the neighborhood of pf , there is a sharp 

break in e(p) near Since there is only a single intersection 

of the line E = m with €(p,m) , there.is no gap in €(p) and ve 

! , have a "normal" fermion system. 

The peculiar behavior of e(p,m) near the Fermi surface comes 

about owing to the presence of the second integral.on the right-hand 

side of Eq. C47a). This integral involves Im R{m) for m < 0 1 

which is precisely the region where we have the least confidence in 

our interaction because of the presence of the pole--which ·is treated 

only approximately. Also, there is essentially a principal-value 

integral which has to be evaluated when p is near pf , with 

consequent difficulty in obtaining reliable results from the numerical 

evaluations~ This integral was evaluated in a number of ways to deter-., 

mine if thij behavior was due to the numerical methods used; we found 

' 
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that the behavior was real and not a result of the numerical integration. 

The approximations involved in obtaining the interaction preclude any 

prediction that this behavior is a characteristic-of the real physical 

system, and possibly it will not be present in the TCTM approximation 

discussed in Part A of this paper. Indeed, we see in Fig. 7, where we 

have plotted e(p,m) for a larger range of m and p values--and not 
,-
) 

amplified the region near m = 0 --that e(p,m) is a reasonably well-

behaved function of m and p • 
I 

If one examines the behavior of· (T}0 near the pole (see Fig. 2), 

it has the form 

{ T(m + ie) } ==== 
8 

+ iE + t(m) , 0 (.1) + (.1)0 

where m0 and s are negative and t(cn) is a smooth function. 

Consequently, inclusion of the pole would give an additional negative 

contribution to Im R(m) for m < 0 • However, most of the contribution 
\ 

to e(p,m) from Im R is proportional to o Im Rjan ~ (52), and t~is 

analysis gives no information concerning the resulting effect on e{p,m). 

8 
o_l . 

For pf less than 0. 0 A the intersection of the line 

E = m With . e(p,m) occurs in a region where e(p,w) has a positive 

slope (e.g., Fig. 4) for momentum points near pf • When this happens 

the iter~tion procedure becomes unstable and we are not able to obtain 

a solution to the equations. 

. . 

·-

.. 
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In Fig. 8 we plot r(p,w) for the same value of pf as employed 
20 .. 

in the above mentioned graphs. Luttinger has proven that to arbitrary 

order in perturbation theory, at zero temperature, 

r(w) 2 
---~cw, 

w-+0 

where c is a positive constant. It can be seen that the .solution 

satisfies this criterion. The behavior of r(p,w) for w > 0 is 

determined by the behavior of Im (T(w))0 for w > 0 • For small 

relative momentum, and w > 0 , Im (T(w))
0 

is dominated by the hard 

shell. Consequently, for p < Pr , and w > 0 , this aspect of the 

two-body potential dominates the behavior of r(p,w) •• 

This effect of the hard shell is clearly seen in the momentum-

density distribution function, 

n(p)= J: &o 
2lt A(p,w) , (54) 

which is plotted in Fig. 9. For an ideal Fermi gas the momentum 

density is un~ty for p < pf and zero for p > pf i for this calculation 

n(p) < 1 for p < Pr , since r(p,w) > 0 for w > 0 • 

In Section IV it was asserted that a pole in (T) would not be 

present if a more reasonable A(p,w) were employed tl~ the one used 

to obtain (T)0 • In Fig. 8a one can see that r(p,w) has a value 

eomparable to ~(p) for small values of p and w < 0 1 and from the 

analysis abalV'e and Eq. (47b) one sees that the inclusion of the pole 
: ~f . 

' .-i ... · •. in the int~f~ction would make r( p ,w) larger for w < 0 • A step 
I . ' .. ~·~ · .. . 

. ;,:,t, ~- ..• ' 
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toward obtaining the TCTM approximation would be to use the output 

spectral function in (T) to obtain a new interaction, and in that 

approximation . (T) would be a smooth function f'or c.o < 0 • A larger 

r(p,c.o) would tend to further smooth (T) ; hence the approximation of' 

eliminating the pole is reasonable. 

The error that results from the smoothing of' Re(T}0 f'or large 

values of' p0 1 {48), reflects in the behavior of' €(p,c.o) f'or values 

of' c.o >> €(p) • Since A(p,c.o) is sharply peruced near €(p) , an error 

1 
in this region should not affect its shape, but such an error can 

clearly alter the value of' 'w(p) , (51). ·Because A(p,c.o) is such a 

· peaked function it is not very instructive to plot it; we 'have thus 
' 

plotted w(p) , which is a measure of' the amount of' A{p,c.o) contained 

in the peak in Fig. 10. 

•. 

' 
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VI. . THERMODYNAMIC QUANTITIES AND COMPARISON 

WITH OTHER THEORIES 

The spectral functions calculated in the (T)0 approximation 

and the two-body interaction cannot be expected to give accurate 

quantitative agreement with the experimentally determined thermodynamic 

properties of liquid He3• However, the spectral functions have a 

reasonable form, and. so we are stimulated to go ahead and evaluate 

the thermodynamic properties, which we then compare both with experi­

ment and with other calculations. 

The experimental cur:ves in the figures are obtained by extra-

24 polating the P-V-T data of Sherman and Edeskuty to zero degrees 

and integrating to obtain (E/N) • We determine ~ by substituting 

(10) into (12). 

The ground-state properties, for various calculations now to 

be discussed, are compared with the experimental values in Table I. 

1. Mills Approximation 

Mills5 has used separable potentials very similar to those in 

Appendix A, fitted to the de Boer data, and a simple extension of the 

Hartree-Fock approx1mation15 which consists of replacing the potential 

by the two-body scattering matrix, 

(;e I s(n) I£') = {p lvl p') + .... .... 

where n = . ( P2 /4) + p 2 - 2~ , and he has used the stationary boundary 
' 

condition io obtain a real S • For the self-energy, he has 
H~ 

'?: 

1 



.• ' 

'· t 

\ : 

• l 

with· 

and 

2 
E(p, t .. ~) 

-;6-

[< 
p .. p' 2 2 

>< - 2 "' Is( ;e ; P' -

A(p' 1m). f(m) 

A(p,m) = 21C 8(m - e(p)) 

e(p) = Jl.. 
2m - 11· + 

. 2 

E(p, ~ - ~) • 
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I 

·I ... 

Baym11 has shown that the Hartree-Fock approximation is a thermodynamically 

consistent approximation (see Fig. 1) and Mills's.results satisfy the 

Hugenholtz-Van Hove theorem, (11). However, Mills has described a 

physically unrealizable system with negat.ive.I>ressure. 

2. Sung's Approximation 

Another calculation of ground-state properties, starting from 

4 a two-body interaction, was performed by Sung. He calculated the 

phase shift from Schrodinger's equation for the Yntema-Schneider and 

* 6-12 potentials with an effective mass, m , and replaced (T) in E 

by the real part of the free-particle scattering matrix; 

. less a term to partially account for the statistical factors; also A 
. ~ J 

is taken t8:be 

•. 

. ~ -. 
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A( p ,m) = 21r 8(m 

' ' 

The effective mass is adjusted until the output value 

1 * = m 
lim 

p -+ p 
f 

* 
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is the ~~e as .the input value, and this value of m is used to calculate 

the ground-state energy. He performed calculat:!.ons onl~ for pf3 /?;rc2 -., 

equal to the experimental density, and made no attempt to find the 

minimum in the energy-ve~sus-density curve. 

3. Puff-Martin ApproximatioE, 

Figure 11 shows (E/N) and Jl versus densi·ty, for liquid He3 
1 

calculated using the Puff-Martin approximation.9 This calc~lation was 
' ' 

1 performed with the potentials !.n Appendix A. It invoj.ves using·· 

2 1 
[z .. fu + 1.1.f 

with Jl < 0 in the T matrix, (32). The resulting 

· (p IT(P,z)f p') = (E fvl n') 
"" "" ' AI PM -- ft.. 

is real to:r: :; z-+ m + ie:, where m < 0 • From Eqs. (47) one sees that 
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I:(p,m) is real for ID < o, and, examining (50) and ·(53), one sees that 

for p < pf and ID < 0 the spectral function, (25), is 

A(p1ro) = 2Jt p(p) 8(ID - c::{p)) 1 

where . 

p(p) = r 
Using this spectral function in {37) and (38), one sees clearly that 

only e(p) is needed for p <-pf ; hence one need on.J.iy solve 

2 
E(p) = ~ - ~ + Re ~{p,e(p)) 

and 

Re I:(p,ro) 

and the expression for p(p) self' ... consistently for c::(p) < 0 • In the 

. nuclear-matter calculation, Puf'f'9 determined the ground-state Fermi 

momentum, pf , by the criterion that the Hugeru1oltz-Van Hove theorem, 

{11), was satisfied. Falk and Wilet25 pointed out that Puff's ground-

state solution did not have zero pressure as determined by Eq. (10); 

they used this last criterion to detel;mine the ground-state solution. 

The curve for this approximation in Fig. 11 was obtained by 
{. 

using the pbtential fitted to the de Boer data. 
: ?iJ 

The potentials with 
I , ~-

theSe par~~ters just managed to produce a solution which satisfies 

·-

'. 

•· 
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( E ) 
N = 0 ' (55) 

. but wa.s no·t able to produce a oolution that; satisfies ( ll} with the 

constraint ~ ~ 0 • The calculation was also performed with the 

potential parameters adjusted to reproduce the phase shift from the 

Yntema-Schneider potential; no solution was found in this case. 

4. Brueckn~C!_~el Approximation 

The Brueckner-Gammel3 calculation was not formulated by .use of·. 

thennodynandc Green's functionsj it is difficult to describe in these 

terms. The essential features are included if we take 

A(p,w) = ~ B(w - e(p)) for P. < Pr J. 

and 

.A(p,w) = 2Jt B(ru .. €(p,n)) for P > Pr , 

in (T), ( 32) 1 and I: , ( 3!~) 0 Here n · :l.a to be determined from a. 

supplementary condi t:ton. Brueckner and Gammel argue that the "hole-hole" 

term can be neglected and hence the integration in (T) for the 

momentum is restricted to p+ and p- > pf • Al~o the interaction 

matrix is real for all e(p,n}, since they calculate (T) off the 

26 "energy ehell11 for these values. Their results do not sat:f.s:fy the 

. 16 Hugenholtz-Van Hove theorem, as was pointed out in the original paper. 

i. 
' 
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5· ,(T)0 Approximation. 

The spectral fUnctions, which are calculated for different 

Pr's, when used in Eq. (37) and (;8) allow us to calculate (N/V)'tl'
00

• 

Substituting (54) 'i.nt9 ( 37) yields, for the density, 

n = 
N 'tJ,,OO 

< v> (56) 

using (5) and (38) yields, for the average energy per particle, 

xf 
-co 

2 . 
p dp 

2 
1( 

d!.u 1 . 2 . 
2;( ~m + ~ + 'tl)A(p,m) • 

(57) 

In Fig. 12 we display. e and 'tl. versus n. The results for 'tl 

are not as accurate as those for e , since 'tl is obtained using 

Eq. {53), which, as we see in Fig. 4, involves the intersection of two 

curves with comparable slope, while e is obtained by integration of 

Eq. (57). In Fig. 13 we plot n versus Pr 1 and for comparison we 

2/ 2 .·· also plot Pr · ~ , which is the density of an ideal Fermi gas 

corresponding to the momentum pf • From Figs. 12 and 13 we se'e that 

the density at which (55) is satisfied corresponds to a Fermi momentum 
0-l 

less than 0.80 A · • As was explained :1.n Section v, the iteration 

procedure becomes unstable for values of Pr below this value. 

•. 

., 

-·----.. \ 'il• 
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0 1 
However, the minimum appears to be close to Pr = 0.80 A- , and we have 

extrapolated the calculated values to determine the minimum • 

One can see, in Fig. 12, that the Htigenholtz-Van Hove theorem, 

Eq. (11), is not satisfied for this approximation (as ~e would expect, 

since this is not a thermodynamically consistent approximation), but 

the discrepancy is smaller in this calculation than in the other 

theoretical studies26 (except that of Mills). In Fig. 14 P is plotted 

versus n, from the experimental data and also from Eqs. (10) and (12). 

These two expressions give different values for the ·pressure because 
I 

our approximation is not thermodynamically consistent. 

In view of the behavior of the single-particle energy, for p 

* near pf , we cannot obtain a meaningful value of m from the (T)0 

calculation. 

The use of the single-particle energy in (T) is an important 

· 1\ feature of the Brueckner-Gammel calculation and presumably would be a 

desirable improvement in the calculation reported here. We have not 

performed thi:s improved calculation (which would involve extensive 

computational time), but have moved directly to the more extensive 

computation reported in paper II of this series (where only the approxima­

tions described in Part A are made). 
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APPENDIX A: A SEPARABLE POTENTIAL FOR He3 

In Chapter IV we introduced separable potentials which were 
' 

employed to evaluate the T0 matrix; this appendix is devoted to 

explaining our choice of potentials, and the method employed to deter-

mine the potential parameters so that these potentials can be considered 

to approximate the He3 two-body interaction. 

The choice of functional form for the potentials is rather 

arbitrary. The primary criterion is convenience; namely, a form 

which allows a maximum amount of analytic computation. The parameters 

are adjusted so that the phase shift resulting from the potentials 

approximates the phase shifts computed using the Lennard~ones 6-12 

and the Yntema-Schneider potentials. 

The Lennard-Jones potential is 

v(r) = <o rc~J2 (~)6] 
' 

with 
0 0 

( e0/tt) = 40.88 K, a = 2.56 A . ' 

r is in angstroms, and t'i. is Boltzman•s constant. This potential was 

fitted by de Boer et a1.7 to the low-temperature virial coefficients. 

The Yntems-Schneider potential6 is 

[ 

-r/0~212 
v(r) = e0 1200 e 

' 

• 
with (e0/~~ = 7250 K; it was fitted,by these authors to the virial 

\~~i 0 

coefficien~s up to 1000 K. The phase shifts were computed by de Boer 
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et al.7 for the Lennard-Jones .potential and by Sung29,l for ~he Yntema~ 

Schneider potential • 

. Puff has developed the expre~sion for the pha~e shift in terms 

of the two-body scattering matrix for a separable potential; we quote 

the relevant formulae here. The scattering matrix is give~ by 

(p !s(n)l p') = (p lvl p') 
,.,. IV "'-' I'W 

and is related to the scattering amplitude by 

2 . - . 
m Po· 

f(£) = - ~ (£ ts( -m- +_ ie)l Eo) 

<£1s(n) l~)<i lv I £') 

• 

-2 
n - E... 

(A.l) 

Using the well-known relation30 connecting the scattering amplitude 

and the phase shift yields 

2 
(p I sj~ . + i€) I p) 

(A.2) J 

J 

where {S) has been expanded in partial waves. Choosing the potential, 

(v), in (A.l) to be a sum of separable potentials, 

2 

(p lvtr p') = ~ I )..t(i) vt(i)(p) vt(i)<Pn, 

1=1 

one obtains a closed form for (St) identical to Eq. (41) with P = o, 

and the integrals 

. \ 

I ij 
t 

replaced'by 

<. 

' 
i 

-· I 

~-J 
~w 
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' 2 ' 
One needs to evaluate (A.2) for n =(P /m) + i€ ; this value 

of n allows one to write (A.3), when the symbolic ident:f.ty 

1 . 1 
(J) ± 1€ = p- + 

(J) 
11t 6(w) 

is employed, in the form 

CD 

= f 
0 

Substituting for {S) in (A.2), we have tl1e explicit formula 

where 

2 
M(P....) = 

t m 

= -· .E! 2 

v (l)(p)) ' 
t 2 
. M ( p_ ) 

t m 
( 2) (· .. ) . 

vt p 

2 
2 - J 22( E._ ) 

gt t m 

(A.4) 

, 
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and 

The Lennard-Jones 6-12 and the Yntema-Schneider potentials are 

both strongly repulsive· for small interparticle separations. To 

replicate this we choose a two-term potential for t = 0, 1, 2 1 31 with 

one term giving the short-range repulsion and the other term giving 

the long-range attraction. For t = 4, 5, 6 we use only an attractive 

I 
term, since the 11 angular momentum barrier" shields·the short-range 

repulsion. 

The repulsive part of the potential is taken to be a 11hard 

shell," 

6{r .. r ) c 6(r' - r ) c 

41t r 2 
c 

, 

h 
. . , ~ 

w ich yields, after a spherical Hankel transform has been performed, 

v (1) (p) 
t = 

where p =pre and the jt's are spherical Bessel tunctions.29 For 

t = o, 1, 2 .we use 

= 
e(r .. r ) 

c 

41C r 3 
c 

where e(r)·' is the Heaviside unit function (defined as zero for 
{ ·.! 

negative ~kument and unity for positive argument), and·. h (l) 
t . ' 

is a 

;o 

; 
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. spherical Hankel fUnction of the first kind.30 Transforming this 

potential, one obtains 

= 

where 13 = ar c 

t = 3 we use 

t 
i 

2 2 
p + 13 

and r c are two parameters yet to 

v ( 2)(r) 
e(r - r ) c (rrcfl 

t = 
41C r 3 

c 

whose transform is 

be determined. 

The attractive potentials employed for t = 4, 5, 6 have no simple 

coordinate space representation; in momentum space they are 

For 

Evaluating the integrals Jt' one obtains tan 8t , and then 

adjusts the various parameters 'to reproduce the phase shifts computed 

from the 6-12 and Yntema-Schneider potentials. The parameters which 

give the best fit to the phase-shift data are tabulated in Table II. 

The phase shift for the 6-12 potential7 was available for 20 equally 

spaced momentum values between O.o86 and· 1.564 A-l and for the Yntema-

21,1 . 86 4 o..,l : Schneider potential for 25 momentum values between 0. and 1.95 A , 
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The-8~:parable pot~ntiala were fitted to these values, and the deviation 

quoted in Table II was computed by using 

[ N
l ~ 

(Dev) t = L 
n=l 

(A.6) 

where N = 20 or 25 • The coupling constants for the repulsive core 

are taken as large, but finite, numbers, .. 

: 
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Table I. Primary quantities, present calculation, other calculations, experiment (T = 0) •. The 

calculated values of the chemical potential are the solution of Eq. (53). The common 

'!-!"•" ..... 

temperature units with K = 1 for energy are used; the conversion factor for the units 
0 2 . ~ ~ ·-

used in the figures is 1 A- = 16.36 degrees. 

Source (and Average energy 

reference per particle, 

number) (E/N) 
0 

( K) 

Experimental 

Mills, 5 

Sung, 4 

Puff-Martin 
approximation, 1 

Brueckner and 
Gammel, 3 

( T) 
0 

Ca-lculation 

a. Ref. 24 
b. Ref. 26 
c. Ref. 27 
d. Ref. 28 

-2.53 a 

o.o 

-2.8 

-0.043 

-0.96 

-1.16. 

Chemical 

potential, 

~ (K) 

-2.53 a 

0.0 

-0.811 

-3.61 b 

-1.39 

· Interparticle Effective 

separation, mas~, 

0 * ro (A) m/m 

2.43 c 2.15 d 

5.6o 

~ 2.7 

3.25 1.0 

2.6o 1.84 

2.47 

'r ·, . ,•·· "' 

• ..;._ - .,. •• : ;. 1~ : 

I 
V1 
~ 

I 

~ 
~ 
~ 
0\ 
V1 
1\) 
~ 
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Parameters and deviations, Eq. {A.6), Table II. for separable potentials 

fitted to the Lennard-Jone~ and Yntetna•Schneider potentials. 

Potential t r 
C. 

f3 gt 
(2) a 

(Dev)t 

0 1.872 1.505 -0~00805 0.019 

1 1.9o8 1.635 -0.'00818 0.030 

2 .1.857 
tl) 

1.421 -0.0713 0.042 
Q) 
~ 3 1.73 o.o -0.475 . 0.103 0 

t-;, 
I 

rcj 4 1.0 0.8285 -1.347 . ·0.057 
~ . 5 1.0 . 0.;9573 . -1.0)8 0.058 .3 

6 1.0 0.897 '-1.~6. 0.034 

' 0 2.048 1.023 -0~000947 0.014 
• II 

I 1 2.050 0.977 -0.00218 0.031 
J.i 2 2.085 0.855 -0.0161 0.039 Q) 

rcj 
"rf 
Q) 

3 1.997 o.o . -0.0518 0.221 .§ 
0 
t:l) 4 1.0 0.621 -4.76 0.790 I 

~ 
Q) 

5 1.0 0.781 -2.25 0.185 1l 
>-c 

6 1.0 1.014 -1.29 0.033 

a. ( 1) ~ -10-4 g (2) gt . t 

~~ . 
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FIGURE CAPTIONS 

1. Diagrams for rj and. .E • The solid lines represent G and the 

dotted lines V. 

(a) .f in the Hartree-Fock approximation; 

(b) E in the Hartree-Fock approximation; 

(c) a term in .f for the TCTM approximation; 

(d) the term in .E corresponding to the term illustrated in (c). 

2. The real part of R (Eq. / 4.6) for representative values of momentum 

((T)0 approximation). Dasped lines are at poles in! (T)0 and· 

dotted lines are smooth values of R used in calculation. 

3· The imaginary part of R (Eq. '4.6) for representative values of 

momentum ((T)0 approximation). 

4. Iterations of the single-particle energy {Eq. ·50) for (T)0 
. approximation. The zeroth approximation is the kinetic energy 

minus pf2/2m, and the dotted line is the ninth iteration. 

5. €(p,ru) (Eq. 49) for a representative value of pf and p near. pf·. 

6. 

The dotted line is € = ru, whose intersection with €(p,ru) gives 

€(p) (Eq. 50). 

The single:particle energy, €(p). 

approximation and the dotted line is 

The solid line is the (T)0 
2 2 

€(p) = (p -.Pf )/2m 

7. €(p,ru) (Eq. 49) for representative values of momentum. 

8. r(p,ru) (Eq. 47b), the imaginary part of the self-energy for 

repres~ntative values of momentum. (a) ru near zero [r(p,ru) ~ oo 

as ru -+ -oo ] , (b) ru > 0 • 

y,· ,_;; 
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9. Momentum density distribution function (Eq. /54); (a) p < pf 1 

{b) p > pf • (Note change in scales.) 

10. The width function (Eq. ··51) (the curve approaches unity for large 

momentum). · 

11 •. Average energy per particle and chemical potential versus density 

for the Puff-Martin approximation (Ref. 1). 

· 12. Average energy per particle (Eq. 57) and chemical.potential (Eq.· ·53) 

·versus density (Eq. "56). Here eT and ~T are obtained from 
0 0 

13. 

14. 

the (T)0 approximation, and ~ and ~ from the expe~imental 

.values obtained by extrapolating the data of Ref. 24 to ·zero degrees • 

Density versus Fermi momentum; solid line is the (T)0 approximation 

and dotted line the ideal Fermi gas density. 

Presure versus density ((T)0 approximation). Curve 1 is obtained 

by using Eq. ( 10) 1 and curve 2 by using Eq. ( 12) • The experimental 

curve (dotted) is an extrapolation of the data of Ref. 24. 
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This report was prepared a~ an account of Government 
sponsored work. Neither the United States, nor the Com­
m1ss1on, nor any person acting on behalf of the Commission: 

A. Makes any warranty or representation, expressed or 
implied, with respect to the accuracy, completeness, 
or usefulness of the information contained in this 
report, or that the use of any information, appa­
ratus, method, or process disclosed in this report 
may not infringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, 
or for damages resulting from the use of any infor­
mation, apparatus, method, or process disclosed in 
this report. 

As used in the above, "person acting on behalf of the 
Commission" includes any employee or contractor of the Com­
mission, or employee of such contractor, to the extent that 
such employee or contractor of the Commission, or employee 

of such contractor prepares, disseminates, or provides access 
to, any information pursuant to his employment or contract 
with the Commission, or his employment with such contractor. 
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