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ABSTRACT
This 1s the first of two papers in which the low-temperature
5 are to be calculated in the:thermodynamically

'consistent_"T-matrix" approximation. The set of coupled integral

"equations which are to be solved is exhibited in Part A of thls paper.

Part B of this paper is devoted to & preliminary, zero-temperature

calculation which employs the additional approximations of using

separable potentials and a noninteracting spectral, function to define
the interactlon of two partiecles in the medium: the (T}O gpproximation.

In this approximation we obtain a spectral function for the quasi

particles which we expect to display general features in common with

those of the actual spectral function. Using this spectral function,
we calculate the thermodynamic properties of the system and find that

they compare favorebly to those obtained in other calculations.



- .system. However, it is impossible in practice to solve! this set of

© UCRL-16524

I. INTRODUCTION

.- The application of field-theoretic techniqpes to many~body

" problems has resulted in formalisms which--in principlé-eallow theA

calculation bf the equilibrium thermodynamic,propertiesvof.a'system
of particles in terms of the interaction between two free particles.

One variant of these formalisms is that of Martin and Schwinger,2 whose -

’many-body Green's function approach we use in this work. The Green's

function formalism ylelds an infinite sef of coupled 1n£egral equations

"~ which must be solved self-consistently to obtain the properties of the ;

LS

equations exactly, and approximations must be made to obtain a solution§

-Our choice of approximations is governed by the nature of the interaction

between the particles in the system,-and by the requirement that we
obtain thermodynamically consistent results.

This paper is devoted to calculat;ng the properties of a "norm;i“
system of interacting fermions, namely liquid helium of isdtopic mass
three at zero temperatﬁres; we are aware of a number of calculations ‘
of the properties of this system which start from fhevtwo—body system.l’Bth’5
The earliest,énd only published calculation was by Brueckner and Gammel,3
who employed a two-body interaction potential of the Yntema-Schneider6
form. The Lennard-Jones 6-12 potential7 has also been used extensively
to describe the interaction of helium atoms; we have taken this potential
to describe the two-body interaction. The nature of these potentials‘is

a relatively short-range attraction combined with strong repﬁlsibn at

closer distances. The most successful approximation for treating this
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type of system has been the "Tematrix" apprOXimaﬁioﬁ,E’B’g thch--in

' -generélAterms—-is an approximation thatlincludesvonly effects arising
from the expliclit correlation of two particles.lo Ba_ym].“1 has derived é
criterion which any apprdximation must satisfy 1f 1t is to givé éelf-
consistent thermodynamics; he has shown that the "T-matrix"‘apprdximation
satisfies.the criterion.

This 1s the first of two papers concerning the éolution of the
coupled integrel equations of the thermodynamically consistent T-maﬁrix
(TCTM) approximation. In the second paper of thi$ serie; our program
v:of obtaining the low-temperature properties of liquid He3 within the
framework of this approximation 1s accomplished.

Part A of this paper is devoted to exhibiting the coupléd—integral
| equations of the TCIM approximation; hére a brief discussion of the
temperature~dependent Green's function formalism 1is also given. In
Parth of this paper we.make further aéproximations requisiﬁe for the
preliminary calculation, which forms the main body of the paper. The
coupled Integral equations, defined in ?art A, are simplified and
decoupled by repiacing the gpeétral functions in the T matrix by non-
interacting spectral functions. ?he resulting TO matrix»ietaiq; the
- esgential interaction features exhibited by a zero»temperatufe éyétem
of interacting fermions; howevef, because of this decoupling ouf'
approximafion is not thermddynamically consistent. - This undesirable
feature 1s a property shared by most other calculations to date (see

Section VI.l)ﬁ hovever, this approximation has the interesﬁing property
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(not shared by the other approximations) of yieldiﬁg a spectral function

‘with a width.

An additional approximation we make to obtain a manageable set

of equations 1s that we use a finite sum of separable potentials to

3

represent the interaction between two He” atoms. This approximation

does not affect the thermodynamic consistency, but 1t may be a poor

fepresentation of the actual two-body interaction..
Section IV is devoted to developing the two-body interactibn'
for particles in the medium;‘the TO matrix. In Section V we calculate

the spectral function using this interaction and, since the modification

-of the fwo-body interaction due to statistics of the médium is well

represented, we expect that our spectral_function displays general
features 1n common with that of the actual spectral functioh.w

Because of the approximations for the interaction we would.not
expect the properfies of liquid He3 to:be predicted with great accuracy.
Nevertheless, in Section VI we calculate the.ground-state properties
and compare them both with experiment and with other calculations.
The results of thils comparison are summarized in Table I; the quanti-
tative agreement with'experiﬁent is not impressive,lo but as good as
that of other approximatioﬁs, and we may expect improvement in this

comparison from the complete calculation.

N
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Part A. T-Matrix (Two-Body Correlation) Approximation

II. CREEN'S FUNCTION FORMALISM - -
In this sectionlit 4s shown that.the thermodynamic propertiéé
of a system of interacting fermions may be evaluated in terms of the
average energy, E, and number, N . The formalism of Martin and
Schwinger2’9 is summarized so as to clearly definé the ﬁotation, and
the formulee for E and N are presented in terms of calculable
micfoscopic quantities. |

1. Definition of the Problem; Thermodynamics v .

One assumes that the Iinteraction in this system can be described

by an instantaneous two-body Hamiltonian,12

H(t) = “a}n‘ jvv\ﬂ’(g,t)v ¥(x,t)dr

.+% ]\VT(E:'L) ‘!’T(}E';t) V('I\: - E') W(E’,‘t)'\}l(}:,t)dg dﬁ' ,
' (1)
vhere ¥T(r,t) and V(z,t) are the particle creation and annihilation

operators in the second-quantization Heisenberg representation; in this

and subsequent expressions the coordinate r contains the internal

spin variables. In the same representation, the number operator is -

Nt) = | T, vz tar . (2

The creation and annihilation operators satisfy the anticommutation

relations
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UM, Wz ) = 0,
| " | (3)

n

CWze), vHz,e) )

g - x') .

] ’ ‘ )
’ Puff9 employs a modified Heilsenberg representation where the time

development of an operator X(t) 1s given by

() = el

x(0) ¥, A ()

o )

i}

and where u 1s the chemical potential,
In order to describe the macroscopic behavior of the system,
one evaluates the expectation value of operators over the grand-canonical

13

ensemble. Thus for an operator X , MS defines

P s gt ey o (6)

vhere tr denotes the trace of the matrix 1s to be téken, and 2 1is

~ the grand-canonical partition function,

Z = tr[e-aﬁ]:. _ , I (7)

The thermodynamic state of the system is defined by Q and B,

‘the inverse temperature measured in energy units; i.e., B = 1/k T,

1k

where 'x 1is Boltzman's constant. It is well known that all the  °

equilibrium thefmodynamic properties can be obtained from the grand

partition function.

m”f”N“)’ D Jz_@)" )
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For a given p and B -dne can compﬁte this functionl5 if he
:knoﬁs , . o .
g = (my"P ()

. and

=
]

(P D (9)

as can be seen by the following argument: At zero témpérature.the

pressure P 1is, aécording to its definition,

C T <§E§>W(E) a<%)<> e

where 2/ is the volume of the system. For a normal system of fermions

at zero temperature the Hugenholtz-Van Hove theoreml6 states

5 - B

vhich has the consequence, for a large system, that

The grand-canonical partitibn function is related to the pressure bylu

gtB eBP7y . _ (13)

Differentiating the logarithm of 2 with respect to p at fixed B
15

and 3/ , one obtains a relation between OP/dp and (N/Z/)“’a_, and;
similarly, differentiating the logarithm with respect to £ at fixed
p and 2/, one obtains a relation between P/}  and (H/Z/f“

These relations can be integrated to give Pu’B

, and hence one can
compute all the properties of the system, if he has E and N'

(Egs. 8 and 9).
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2. Microscopic Theory

. Equations (8) and (9) may be evaluated from a microscopic theory

'by using Green's functions. The one-particle.Gréen's functions 1is
o(11r) = -1 (o(w(1) vi(a))P ) (14)

i and the two-particle function 1s given by

-

"_G2(12}1'2') (-0)%( 2(¥(1) w(2) vi(2r) vh(a)))P ;;l;

in these functions T 1s the Wick time-ordering operatpr}b ' E ~

Using (4) to define G for complex values of its>time arguments,

;vin the interval
0 L1t £ B,
V.and defining the time‘ordering in this interval by

(y(1) ¥T(1r)) w(1) vT(ar) for it

1]

LI
1>ty

l)'@

n o

T W) for 1 £l <1t

one can use the cyclic property of the trace to obtain thé boundary

condition

a(11r) | = -é(ll’)
- lg=0

. o (15)
1 : | o

1718
The Hamiltonian, Eq. (1), is transletionally invariant in space and time

(we assume an infinite sjstem so there are no boundary effécts); and

consequently -

i
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8- . - .
6(11') = G(z,t) , )
where - r = Iy = Iy t = tl - tls .

Introducing & "spectral function," A(Q}w), for G , and
performing Fourier integral transforms with respect to the spaée
components of G , and a Fourier serles analysis with respect to the

time component, MS obtain

A(P)w)
o - 2

where 7z, = nv/(-18) . Define the analytic function

| . A(p,w) | . :
gy - [ K . o (16)

Z -0

for all nonreal =z , by analytically continuing from the'points Z. .

v
The unique continuation has been shown by Baym and Merminla,to‘be that

vhich has no essential singularity at lz[ = a. Thus G(p,z) is a

function which is analytic in the whole complex z plane with the

exception of the real axis, while A(p,w) --a real positive function--

is given by the discontinuity of G across the real axis,
A(g,m) = i[G(g,w + 1€) - G(p,w - 1e)] . (a7

Using the anticommtation relation, (3), one can easily obtain

the sum rule:

.A(g,w)_ = 1, ., R - (18)

-0 i : ' .

g

ENY



. PR RS
LT e T -

UCRL-16524

0w

. For a given approximation the anticommutation relation may not exist or

' ‘may not be in a convenient form to obtain this sum rule for A(p,®) .

In this case we need to know the properties that must be satisfied by G
to ensure the sum rule. The Herglotz theorem19 (of the theory of analytic

functions) gives the necessary and sufficient conditions on G(p,2):

I G(p,z) 1s analytic in the upper half plane, Im z > 0 , and if in

this half plane Im G £ 0 - and 1lim 2z G(z) = 1 , then the sum rule, (18),
z |00
holds. | ‘ N

In Section IX.1l it was shown that one needs the two quantities

E and N, (Egs. 8 and 9), in order to obtain the equilibrium thermo-

.dynamic properties of the'system. These quantities can be expressed

in terms of the spectral function A(gﬂn). The number density opefator

for the system is , (2),

n('x‘:,t) = WT(,{:t) \‘J(Elt) )

so that, from (15) and (16),

aw [ 9B
Cal) ) - [e JTETP' ) (o) ,
where g

f(w) = [eﬂw + l]":L

is the usual fermion statistical factor. Since the system is 1adtropic,
(n(r,t)) 1s independent of r and t and it follows that |

N

aw [ | » |
[ [Zsrpmees o)

sz

wWome
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for our system N and 8o to infinity in a manner such that the

by

& -

_ratio (N/?/) remains finite. Similarly, the energy density is given

o By
[e [Z Z3 TE ek . (@

The equation of motion for G is

d v,°

1
s *m

and the equation

+ 1) 6(11') + 1fd£2 v(£l~ ;;2)02(12;;'2“')‘ - o=8(1 - 1Y), |

. h
(21).

trwhere (2%) = ({2, t, + 0%). One sees that this éqpation involves G,,

of motion for Gn would involve Gn-l and Gn+l .

Therefore, one has to solve an infinite set of coupled differential-

~vintegral equations in order to obtain G .

It is useful to introduce«—following MS--the "gelf-energy"

operator, %, which is defined so that

2

(1a Vl . |
v 3%-;-!-?2;- +|J,)G(ll)-.

ig
a1 z(17) o(11') = 8(1-1") .
0 ' '
(22)

One can ahow15 that 2 satisfies the same boundary conditions as G .

One defines a "spectral function" for I ,

P(g)w) =

-and consequéntly

il z(g, o + i€) - z(g, ® - 1e)].':, (23)

A S

.

AE
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Z(E,z) = - %%
o0

I(p,w)
Z W

+. Zo(p) )

where Zo(p) is a real valued function of p only. Here allowance is

made for the possibility?’ that

- lim 2(z) = Ty -
Iz -0

Cam

When & Fourier integral transform is performed on the coordinate
C |
variables and a Fourier series analysis of the time variable, (22)
becomes

2

(- B +u-s(palpe = 1, ()

which, combined with (17) and (23), yields
-1
2
P(B:‘”) ’
' . (25)

k-

: 2
A(g,z) = I‘(g,w) [(w - % +u - Re )'_:(’g,a)))2 +

o

s
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IIT. THE THERMODYNAMICALLY CONSISTENT T-MATRIX APPROXIMATION

1. Motivation and Specification of the Approximation

In Section II we discussed the infinite set of coupled integro-

'differential equations [the first of which is given by (21)], which need

to be solved to obtain G . One cannot hope to solve this set of coupled

equations exactly; some approximations must be made.

¢

For short-range forces with strong repulsion a useful approxima-

tion which has been widely employed is the T-matrix approximation.3’8’9

This is an approximation for G3 which neglects the correlation of a

.8ingle particle with a highly correlated pair. Formally, one take39

651235 1'2'3") = 6(13") 6,(23; 1'2") + G(11') G (23; 2'3")
- 6(12') 6,(23; 1'3') ,
which gives

G (12; 1'2")y = [6(11") o(22') - c(12") c(alf)] .
-18

+ % al 42 (6°(2T) &(22) - 6(1T) ¢°(2%)]

xWI-QGéTZl@U, ~ (26)
where G° 1s the solution of (21) without the interaction term, and

V(1-2) = V(El - 52) a(t1 - te) .
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R . _ An important further consideration in making approximations is

ad Lo

, thermodynaﬁic consistency. If the approximations do not satisfy certain
'cohsistency requirements, one has no guarantee that the thermodynamie

"3"'f:‘1 : | quantities obtained are consistent.. At zero temperature 1f the results

:{ iﬂgi . ave such that the Hugenholtz-Van Hove theorem, {11), is not satisfied

o then one does not know how to determine the pressure uniquely. The

- situation 1s just as serious at a temperature because the pressure,

* ' " B : PP'B

2

obtained by two different integration paths--using the relations
A between /3 and (N/YHMP, and P/ and (H/z/)*,"B --discussed -

fffij:‘:: "~ . at the end of Section II.l--may not be unique, Still a third result

"Q;ﬁff' | -'for the pressure might be found by integrating the expectation value
) of the pétential energy with respect‘to the coupling constant.l5
As might be expected, the demand that an approximation lead to
‘1, a single-particle Green's function such that the thermodynamic results
- are consistent places strong restrictions on the possible class of
appréximations. Baymll has used functional derivative techniques fb
derive a criterioh for approximating the single-pafticle Green's
function and has proven that approximations which satisfy this criterion
produce a consistent picture., His criterion is that there must exist
. ' a "elosed" functional ‘ﬁ' of G eand the potential, V, such that
R sy - 28 | : (27)
A & c(11')
E.'“w ' ‘ where the self-energy, £, is to be considered as a functional of G

and V .,  Here a "closed" functional means one in which all intermal

- N - .
e . H . \

g5

&
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variables are 1ntegxa£ed, or, in terms of diagrams, no particle lines.
" enter or leave tﬁe diagram. In terms of diagréms, the differentiation
of Eq. (27), means plucking out one of the particle lines, as is detailed
in Fig. 1,
The approximation (26) does not satisfy Baym's criterion; however,

Baymll has shown that the approximation

G2(12; 1'2") . fa(11') 6(22') - 6(12') a{2r')]
-18 _
+ 1 [ al a2 6(11) 6(22) V(T - %) G‘e(’i 2; 12)

0 N N

" does satisfy his criterion.

2. Formal Development of the TCTM Approximation -

We take Eq. (28) as the basic equation of our thermodynamically

. consistent T-matrix (TCTM) approximation. If we define the T matrix

- :by the integral equation

(12712 = V(l-e)ﬁ(i«-.l')b(Q-E') ‘

..15 : .
+ 1 aTaz (12| |I2)c(M!') a(Z2') v(2' -2"),
| | ° ()
" the approximation, (28), becomes
-18
V(1 - 2) 6,(12; 1'2") = aidd (12 |7]|1T2)
§; x [6(T1') e(22') - o(B1') o(T2")), ‘.(30).

—

21
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and from (21) and (22) we have.:
v [~1p ‘
(') = -1 a2 d3 [ (12 |r] 1'3)
- (12 v B )] 6Bt .
(31

Exemining the structure of (|T]) , one sees that it satisfies

the same boundary condition as G(tl - tl,)G(tl - tl,):
T(tl - tl,) = T(tl - tl,) | .

ti=0 _ tl=wi§

One can express T(tl - ti,) as a Fourier serles with coefficients
T(zv) , where z, = nv/(~-18) and v runs over all even integers.

Analytically continuing to all z , and performing Fourier integral

‘ ' transformations with respect to the center of mass and relative

. coordinates (see Chapter 13 of Kadanoff and Baymls), one obtains

{plne,2)p') = v(p-p) .
dp - o
+ | == (p Inr,2)| B IAE,E,2)v(E - ") ,
(32)
where
(2 ) (g )

y Alg + p,w) Als - pyo! '

MBpz) = | 52 8- A5 2. % . t(e) - fe)]

Z -~ -0

- (33)



~and furthermore X(p,z) does not depend on the orientation of p .
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and- P 1s the center-of-mass momentum.
T(z) 1s analytic in the upper and lower halves of'thé complex
2 plane, and | | S o
* *,

Watson>" has shown that 1if v(r) 4is finite everywhere, T(z) is bounded
by a-constant as 2z - 00. After performing the time integrations in

(31)-~by means of the B functions-~and transforming with respect to

the coordinate veriables, one can use the analytic properties of C(z) .

and T(z) to determine the Fourier coefficients of the self-energy,

E(Zv) o Analytically continuing theée coefficients, one ha55’9

ap' [ o
sme) = | g [ 2 falpe) tlo)
(2x)” j 200~
<2,13 e BRI
—— Inp+p' o +2)| FH=)- alp - 2)2 (o)
/e - D! : p-p'
"<"' ~ |™(p + p',0 + 1) - Np + p',0-1€)] = ~>J
2 ~ ~ ~ ~ 2
o - [exchange terms] , (34)
vhere _ |
| Bw. .ot
f (@) = (7 - 1]

is the boson statisticel factor. For a homogeneous, isotropic, unbounded

system A(p,») depends only on the magnitude of the momentum, p = |p| ,. T



';avpartial—wave expansion off T , hence we perform a Brueckner-Gammeli’
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-17-
Equations (25), (32), and (34) are, explicitly, the set of coupled
integral equations which must be solved in the TCTM approximation.

The theory could have been developed for a nonlocal potential -
9

'by using a potential” of the form (gl'- £efv|£3 - Eh)’ corresponding

to the local potential 5([£l - 52] - l£5 - £h|) v([gl - 52!) . If

one had carried out the development for this potential, the  v(p - E’)

: .in T would be replaced by (plv!p') ; we assume that the potential in

(32) has this form.

Because of the complexity of this set of eqpat%ons we must make g

' “a further approximation to facilitate their solution. We wish to make “;7

5 B

;_type of éveraging rather than actually performing the angular integrations

in (32). This means we set

P . . 52 1/2 |
122 p| =5 = [Pep ) (35).
2 | Y3 o . |

"in A(P,p,z), vhich decouples the partial waves. This'approximation

can cause our solution to violate Baym's criterion, bgt we hope this

violation 1is minor enough so that it does not affect the thermodynaﬁic

results. (A point to be confirmed at the completion of the calculation.)l
A partial-wave expansion of T and v is made; and the partiel-

vave components, Tz , of T are given by

(s

=)
3
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(plT (P,Z)Ip) = (plv lp) + (a«)5 ‘: ::' - .

x <p|'r (P,2) |5 ) A" )1 -+ (o) - (o) Glv ey .
z-o-ol, (36) |

. For liquid Hej ve need to consider a system of parficlés with
spin % , interacting via a spin-independent interaction. The only
complication introduced by spin is that the momentum and coordinate

part of X is multiplied by 2 as & result of this summation, and,

since we have no épin»flip mechanism in our interaction, the exchange

part 1s unaffected. Making the partial-wave expansion and using the
summation relation for the spherical harmonies, we have, for the direct

and exchange contributions to I ,

2plne,2) o) - (plT(p,2)] -p")

@ : i -
Z %ﬁ [2 - (»-1)"](1:!?&'(?,2) Ipt) .
=0 . g ' .

The spin sum contributes a factor of 2 to the expression for
_ N A ‘
('%7) and (»57) [Eqs. (19) and (20)]. One can perform the angular

integrations in the expressions for these gquantities to obtain, finally,

& - L

Rl

® 2d : ' 4
E2R Alp,0) #(w) (37) . |
0 % .
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Part B. ' The"ﬁg)G*ﬁApproximation with a Separable Potential (Zero v
Temperature) - :
The remainder of this paper is devoted to a zero-temperature i ";

calculation of the properties of ligquid He5 in an approximation to the
TCTM approximation of Part A. This approximation, which we call the
'(T)o approximﬁtion, retains the essential features of the TCTM
approximation and should be considered as a first step toward the
~complete calculation, |

We have also chosen to use a separable potenﬁia& to deséribei
the interaction 6f-two free helium atoms. This results in a closed
expression for the interaction of two atoms in.the medium, with - T
consequent simplification of the calculation. |

The calculationrwaé performed on the lawrence Radiation
Laboratory's IBM 7094 computer and the ﬁniversity of CAlifornia at

San Diego’s CDC 3600 computer.
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IV. TWO-BODY INTERACTION IN THE MEDIUM
We. obtain the {T)O approximatiqn by rep}acing the.spectral

function in the equation for (T) , (33), by

2 .2
P P

Ay(p,0) = 2 8(w -
2m

Our epproximation now is no longer thermodynamically-consistent.v The
o integrations in the equation for (T) are trivial, and we have the

equation for (T) in the (T)O approximation

(g I72,2)] ")y = .(g vl ')

“ [ @ (p Iz,n)| B, SFFGE Il )
-+

o 3 2 2 2 4
RN RN
(39) .
. where |
- p+2 . 2 -2 .
s(p*p”) = 1 - Ly- 1o £y.
. 2m 2m

- In the zero-témperature limit,

/
-1 for p’,p” < p, (hole-hole),

S(P+;P-) = < 0 for p < Pp < p+ (particle-hole),

1 for p+,p' > p, (particle-particle).

(ko)
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- This épproximation for (T) retains the essential features of
the fermion system (if involves no approximatiohs with regards to
. statistics) in contrast with the approximations whigh have been used to

5 calculation neglects the hole-hole term;

the calculations of M11185 and Puff~Martin9 are formulated s0 that they

date. The Brueckner-Gammel

have none of the features present in (40) (this 1s discussed in more
detail in Section'VI); Sungbr makes a correction for the statistics, but
his correction is a very poor approximation to the result obtaingd by

solving with the statistical factors included. b
22

It 5 well known ~ that -v can always be expressed in a separable _@

L

v N . (D . . . . '.
(0 lv,l ") = 2 y kz(i) v&(i)(p) v&(i)(p').-
- ‘ . i-:l )

We assume that we cén represent v, by only a few terms of thé series.

A
For ¢ =.0; 1, 2, 3 we retain two terms of the series, for ¢ =_4; 5,v6
only ﬁhe Pirst term; Tz(P,z) is negligible for larger &_. fThis
.parﬁiculaf approximation does not affect Baym's criterion for thermo-

~ dynamic consistency, but the (Tz) we obtainvmay not represent the
liquid He3 system accurately. We have of course lost sélf-consistency
by our first approximation--as incorporated in (39). |

(1)
:

We choose a form for the v

3

's and solve the scattering

matrix for two free He” atoms. The coupling constants and parameters .

in our potentials are ad justed to match the phase shift calculated
. 5 .

. % .
from potentials in coordinate space for He”. The coordinate space

N

s
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3.
fv-potentials areilocallpotentiais whosé parametefsvafé adjusted by means
of thé virial expansion to fit the experimental data for gaseous'Hea. 67
- The forms we choose fbr our separable potehtial gnd the detefmination of
.. the parameters are discussed in Appendix A. |

The separable potential allows us to write (T&)O- in closed

form:

{» Iz,(2,2)| p1), =

. v&(l)(p) v, Men) N
- L%.‘].L o e [ et n(r ™,
i v&(a)(p) - vb(a)(p') ‘ | ,
| ) ()
where
o g, - 1,72(p,2) B 'Izl"’(P;z)
M(P,z) = I
o 1,%(p, 2) gt

22

and

2 2 - ot
p P2 E

; , - p
o L o - mmen o e— .
- | et "

Lo T ; ._ o -(ha)

: 1 i"(? z) = j‘” p? ap 'vfi)(p;)r ;r&(di(l;)- 5(e",3")
S | 2 - m .
0

=)
]
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We need (Tz(z))o',only for z = + i€ and define the integrals (42)

A : ' ) R 4 :
§y introducing a physical cut from O = I3 " to +o00 .
If p, is defined by )
2 2
P 2 p S
0 _ P £
—-1;]— = @ ~- E—Iﬁ + o : . (h‘j)
2

and the Iz(w + 1€)'s examined for Po

<0, ve see that the I,'s

are real, and consequently (T)0 is real. We have in this case

o (1) (J) |
1,0+ 1e) = v® ap vf ép> Ve 2 (p)
® v Oy v, Dy
) | p2 dpv T !2p ~ 2 : PRI (’4»1!)

where 'pl .and p, are solutions of

+ .

-and

it

If we had a potential which consisted of a single'repulgive term,

then (41) would become

AR AR, y
m 1 11, s (5)
' {éz - I, (P!éijj

(p 'TL(P:ZH P') =
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where g&l 1s positive; for I, given'by (44) 1t would be possible
~ for the denominator of (45) to be zero, and hence we would get a pole

in '(T>O . For the potentials we employ and when ¢ = 0 , we get this

type of pole in (T)o when P < Pe and when po2 18 negative and

very small (e.g., Figs. 2 ahd 3, where the Small imaginary parf at the

‘pole in Fig. 3 is due to the anguler integration which has been performed).

..We know that I'(p,w) should not be zero in this region, and 1f it is

nonzero the imaginary part of (T) will not be zero in this region, and
hence we would not have a pole. The integration of thel real part of

(7). through the pole will behave like a principal-value integral,
Y .

_and consequently we have simply removed the singularity‘by smoothing

- the real part of (T)OA, as depicted by the dotted lines for negative

w in Fig. 2.

For p02 >>'0 the form of our potentials is such that if we

neglect g& we obtain

(p Ir,(p, o + 16)| p) ~ -[v, M(p)) poltan(pyr, f%(f +1)) + 1],

vwhich clearly has the propefty that the real part of (T)O is highiy

singular for large pb . »0ur numerical procedures do not adequately
handle these singularities and we have had to smooth V(T)b for large
values of Py - The procedure we employ is motivated by the following

reasoning: The anguler 1ntegrations
1 ’i, ) .!
d(cose )(l IIT (|~ |,a>+1e)l

,-,'-, -
Vo

Yy

-1
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must be performed, or, considering only‘vthe real part,

UC_RL-16521+

. : . : \,2 .
5 o o (1) (12 -2k
- d(cqs ep,) r, B, tan(?o r, - 5(% +_15)‘ v, 5 R
~ where 4
1 .
2 o Pa . P'2 ;,pp cos Qp' . o
Po = ®-7% z - o
:Changing variables--and ignoring constants--we obtaih tFrms like N
M, = -2 | as s° tan(s - i—g—; %] ,

[ - i

where s = p;r, . For ¢ odd ve integrate from . nx -nf2 to nx+anf2,

and for ¢ even from nx to (n + 1)x . Consequently

L}

M int?(0.693]  for todd ,

)
M&‘

i

~(n + -;-)n2 [0.693] for ¢ even,
or ' ‘
CMy(nx) = 4ne®(0.693) ;

hence we make the replacement

r b, tan [porc - %(t + 1)) j* 1.286

when Py is large. The effect of this smoothing is disgussed, élong

with the nimerical results, in Section IV.

3

=]
=3
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The separable potentials, fitted to the de Boer ! phase-shift

déta (see Appendix A), are numerically 1htegrated by using a Gaussian

A
integration in (34) 1s independent of both G and A ,‘so we find 1t

. quadrature formulae,3 to obtain the I 1 integrals. The angular

useful to evaluate

1 6 -
R(p,p', ® + 1€) = 2n d(cos ep,_) }: (2 - (~1))f' :
- 1 4=0
| , !
(et 1), (B-R ( NNy BRtR
B (a1, |gfg-1,w+_1e)|_l—;—- 1) 5
(146) |

which is symmetric in p and p' . R is the complex two-body interaction,
" defined 8o that

R(b:P‘J w + 15)' = Re R(P:P': m) -1 Im R(P; P':‘D)

‘which is used to compute ZX(p,w) . In Figs. 2 and 3 we have plotted the

real and imaginary parts of R, respectively, for a typical value of -

Pp and several values of p .

g, e s -
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V. THE SPECTRAL FUNCTION (SELF-ENERGY)

Inserting this complex two-body interaction.(MG), into (34%) and

writing )
| 6(p, ® + 1€) = 3 [B(p,a) - 1 A(p,0)]
and '
Z(p, ® + 1€) = Re I(p,0) - % M(p,0) ,
‘we obtain ‘
Re IZ(pw) = | - P—'—(—l-%' [ £ (a(p',0') Re R(p,p', o o)
' .70 (2x) © %00 S ' - ,
-+ B(P': w' - w) Im R(p,p',(l)')]
- (472)
and .
9 1 1]
F(P:‘”) = 2 P_d_%_ Q! A(P'aw') Im R(p:'P') o' + o) ’
. -0 .
(47v)

" where the zero-temperature forms of f(w') and fb(w') have been used

to define the limits for the wo* integrations, These equations, and

(24),

o(p, o + 16) = [0~ e(pw) + EN(pw)]™ (18)

where .

| 2 o , &
e(P;w)\_ﬁ_.:' g'm’ - B+ Re Z(P:w) P . . (h9)

g



. the integrations outside this interval are performed by Gaussian
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 form the set of equations whicthe need to solve’sel?-consistently.

The spectral function A(p,»), Eq. (25), is sharply peaked at

. the single-particle energy, which we define as the'solution of

~&(p) - elp, €lp)) = 0 S (50)

the o integrations involving. A(p,®) in the interval

a = lep) - Jo.0m5e(p) |, e(p) + !0-075e(§)|-]

'arg performed by replacing A(p,») by e 8 function,

| o } -,v
P Alp,) = w(p) 5(& - 'E(P>) ’ |

in this interval, A(p,w) is well behaved outside the'intefval 4 ,'and

quadrature. .The sum rule, (18), can be employed to determine w(p):

. a
_ r re(P)" 35 | o a _
W(p) = 1 - { . L | Z e
® _ o

e(p)+ 3
(51)
The integration of B(p,0) over the interval d is obtained
by letting _ B
o(p)w - e(p)]

[ - (p)12 + [7(p)]2

B(p0) = 2

Vand expanding the imaginary part of R in a Taylor's series about

® = €(p) . Retaining only the first two terms in this expansion, ve

have
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' lidw' B(p',»') Im R(p,p', ® + ')

- 4p(p') gir? R(p,p',0') |
o'=w + ¢(p')

- % ,[0.075 |€(pq)] _.7(1,.) tafn-l O..075!e(p')[] .

7(p")
. o ‘The Fermi momentum, Pp > is defined as'the_éolution of -
. g - W + BRe Z(pf,O) = £(pf,0)j= 0.
v . : | b (53)

However,: fhé behavior of the s’cativstical fﬁctors ‘and the form,of the
interaction make it easier to carry out the calculation for a fixed
P, and use (53) to determine u . | |

" The calculation thus proceeds as follows: for a giveﬁ pfb

ve caloulate R(p,p', ® + 1€), (46); we then choose a trial solution

Gt(p, ® + 1¢) for (48) and use this trial solution in (47) to generate

a new trial solution. This process is repeated until the trial solution .

reproduces itself; when the sélution has converged we use the resulting
spectral function, (25), in (37) and (38) to calculate (N/ ‘V) and
/Y

The convergence of this procedure is rapid, as may be seen in

Fig., 4, whére e(p) 1is plotted for a number of iterations in which .

fo
<

i



. 'pear zero and P is in the neighborhood of Pp » there is a sharp

PN

-31-’e

. the iﬁitiel choice of a spectral function was

"AO(P:U’) =_v2“8(‘” - e—— )v"

For p >> P, the convergence is even more rapid, since the sihgle-particle

- energy 1s dominated by the kinetic term.

In Fig, 5 we have plotted e(p,0), (49), for a typical value
of Py and some values of p near Pp - We have also drawn fhe line
€ = ® whose intersection with E(pﬂb) gives e(p), (50) In Fig. 6
we have plotted the values of e(p) versus .p for the same value of
ﬁf . One sees that because of the behavior of e&(p,w), when ® ;s
break in €(p) near Pp » Since there 1s only a single intersection

of the line € = with e(p,») , there is no gap in €(p) and ve

have a "normal" fermion system.

The peculiar behavior of €(p,w) near the Fermi surface comes

about owing to the presence of the secend integral on the right-hand .

side of Eq. (47a). This integral involves Im R{w) for w <0 ,
which is predisely the region where we have the least confidence in
our interaction because of the presence of the pole~-which is treatedv
only approximately. Also, there is essentially a principal-value

integral which has to be evaluated when p is near Pp » with

consequent difficulty in obtaining reliable results from the numerical

evaluationsﬁ This integral vas evaluated in & number of ways to deter-

mine if thie behavior was due. to the numerical methods used; we found
t

g
1:03‘}'"

UCRL-16524
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that the behavior was real and not a result of the‘numerical 1nteération,
The approximationsviﬁv01ved in obtaining the interéction preclude any
prediction that tﬁis behavior is a characteriétic»of the real physical
system, and possibly it will not be present in the TCTM:approximation
discussed in Part A of this paper. Indeed, we see 1n'Fig. T, where we
havé plotted €(p,o) for a larger range qf w and ‘P, values--and not
B amplified the region ne;r w = Ol--that e(p,0) 1s a reasonably well-

behaved function of w and p .
»

If one examines the behavior of - (T) . near the pole (see Fig. 2), .

it has the form o -

( Mo + 1€) >O o] 5—:f55~:—zz + tlo) ,

where w, and s are negative and t(w) 18 a smooth function.
Consequently, . inclusion of the pole would give an additional negative
contribution to Im R(w) for @ <0 . However, most of the coﬁtribution
to e(p,») from ImR is proéortional to. O Im R/an , (52), and this

| analysis gives no information concerning the resulting effect on. €(p,w).

1 the intersection of the line

For p, less than 0.80 A”
€ = w with . e(p,0) occurs in a region where ¢(p,») has a positive
slope (e.g., Fig. 4) for momentum points near Pp « When this happens
the iteration procedure becomes unstable and we are not able to obtain

N

a solution to the equations.

mE o BET



© ' density distribution function,
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In Fig. 8 we plot I'(p,w) for the s_émé vaiue '.Of,' p, @s employed
~1in thé aBove méntioned grai)hs. iuttingereo has proven that to arbifx'afy '

~ order in perturbation theory, at zero temperature,

—9’00&2,
w0

Mo)

“ where c isva positive constanf. It can .be seéri that the _solution
| satisfies this criterion. The behavior of TI(p,w) for w >0 is
" determined by the behavior of Im (T(w) )07 for >0, ‘For small
relative momentum, and ® > 0 , Im (T(w)) o 18 dominatéd by the nard
| shell.. Consequently, for p < Pp , énd wv> 0 this aspect of the
B two-body potential dominates the behavior of I‘(p,a)) “ |

This effect of the hard shell is clearly seen in the momentum-

0

Rlg

n(p) = Mp) , (W)
«00 ' ‘v
i which is plotted in Fig. 9. Foi' an ideal Fér-mi‘ gae the. momentum
: density is unity for p < P and zero for p > pf ; for this calculation |
| n(p) <1 for p<p,, since I‘(p,w) >0 for w>0.,

In Section IV it was asserted that a pole in {T) would not be
present if a more reasonable A(p,») were employed than the one used
'to obtain (T)O « In Fig 8a one can see that I(p,w) has é value
comparable 'to e¢(p) for small values of P and o < 0 ,_and from the

analysis abg‘?%ve and Eq. (47b) one sees that the inclusion of the pole

in the intéd#action would make I'(p,w) larger for o <iO . Astep A

P . . . BACNN

-
e

WRE)
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toward obtaining the TCTM approximation would be tdvuse'the output
spectral function in (T)v to_obtain a nev interactidn, aﬁd in that

approximation .{T) would be a smooth function for <0. A larger

“ I(p,w) would tend to further smooth (T) ; hence the approximation of

eliminating the pole is reasonable. .

Thé erfor that results from the smoothing of Re(T)O for large
values of p, , (48), reflects in the behavior of e(p,w) for valués
of w > e(p) . Since A(p,») is sharfly peakea near e(p)., an errorv'
in this region should not affect i1ts shape, but such aﬁ.error can

clearly alter the value of w(p) , (51). -Because A(p,») is such a

- peaked function it is not very instructive to plot it; we have thus

plotted w(p) , which is a measure of the amount of A(p,») contained

in the peak in Fig. 10.




ment and with other calculations. . |

Hartree~Fock approximation
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VI, 'I‘HERMODYﬁAMIC QUANTTTIES AND CQMPARISON
| . WITH OTHER THEORIES -

The spectral functions calculated 1nvthe (T)o' approximation

and the two-body interaction cannot be expected to give accurate

_‘qudntitative agreement with the experimentally determined fhermodynamic

propertlies of liquid He5. However, the spectral functions have a

- reasonable form, and so we are stimulated to go ahead and evaluate

the thermodynamic properties, which we then compére both with experi-

The experimental curves in the figures are obtained by extra-:

polating the P-V-T data of Sherman and,Edeskutyeu to zero degrees

| and integrating to obtain (E/N) . We determine p by substituting

(10) into (12).
The ground-state properties, for- various calculations now to

be discussed, are coﬁpared with the experimental values in Table I.

A\

1., Mills Approximation

Mills5 has used separable potentials very similar to those in

_Appendix A,.fitted to the de Boer data, and a simple extension of the

15 which consists of replacing'the;potentiél

by the two-body scattering matrix,'
dp (p Is(a)] p)Xp Iv] p*)

(ls@ |p) = (Ivlp)+ o - . ;.

vhere Q =.(P2/h) + p2 - 2p , and he has used the stationary boundary

condition ﬁ? obtain a réal S . For the self-energy, he has -

k&

NP
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=(p, '%‘ - u) = ] (_2"%)—5'[% A(p'_,m)l. flw) | . -

[] ]

p=-p 2, .2 p-p'y . D ~D }
~ ~s P +p S ~ ~ > - N ~

vith |
Alp,0) = 2x 8(w -~ €(p))
and S | . o B ”: -;. | :_;_1 :,-   .
- .e(p) = Pﬁ - p + Xp, %"- )

Baymll has shown that the Hartree-Fock approximation 13 8 thermodynamically

consistent approximation (see Fig. 1) and Mills'SJresulté satisfy the
Hugenholtz-Van Hove theorem, (1l), However, Mills has described a

physically unrealizable system with negative‘pressure.

2. Sung's Approximation

Another calculation of ground-state properties, étarfing from
a two-body interaction, was performed by Sung.h He calculated the
phasé shift from Schrddinger's equation for tﬁe Ynﬁema»Schneider and
6-12 potentials with an effective mass, m#, and replaced (T)' in &

by the real part of the free-particle scattering matrix,

% r

2 ' 2 18
{p IS&( L ie)] p) = - L%ﬁl_ sin Bt(p) e U 2 : ,
C 2m mp _ S

.less a term to partially account for the statistical factoré; also A
' i3 ' ' .

1s taken t& be | - - s
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“pf

_ ) ) . |
Alp,0). = 21 8w -~ ———p ) .
om

The effective mass is adjusted until the output value

o
i%- = . lim ,-~£§l»
m p-p, o(p°)

.

: : ' * o ‘ -
- 18 the same as the input value, and this value of m is used to calculate

o v
the ground-state energy. He performed calculations only for pfj/in N

- egual to the experimentél density, and made no attempt to find the

- minimam in the energy-versus-density curve,

3. Puff-Martin Approximation

Figure 11 shows (E/N) and p versus density, for liquid He3 5

calculsted using the Puff-Martin approximgtion,Q This calcylation was

' performedl with the potentials in Appendix A. It involves using -

2

GO(PJZ) = [z« %‘n" + l-‘]“l

with p <0 in the T matrix, (32). The resulting

(g e, )| g, = (p IvlpY)

A (p Im(B,2) | Ry (B VIR
3 pa—- o
(2x) 2 - = - E oy ooy

~ Tm

is'real for ‘z +»w + e , where ® <0 . From Egs. (47) one sees that

¢ “v
-
£y
wk

o



only e€(p) is needed for p <- Pp hence one need only solve
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£(p,»0) is real for o <0, and, examining (50),and'(55), one sees that

for p <p, and @ <0 the spectral function, (25), is.

A(p,0) = 2x p(p) 8lw - €(p)) ,
where
».]-l :

w=¢e(p)

o(p) = [1 - %%.(_EL_“Q

sting this spectral function in (37) and (38), one sees clearly that

2 ‘
e(p) = & - u + Re Z(p,e(p))_
and .
P, a
Re £(p,0) = 3 o(p')
' o (2n) -

g k‘p ; 4 20 + e(p') + 16)] X ; £'> ','v | gl; g>}

and the expression for p(p) self-consistently for e(p) <0 . In the

. nuclear-matter calculation, Puff9 determined the ground-state Fermi

momentum, Pp » by the-criterién that the Hugenholtz-Van Hove theorem,
(ll); vas sétisfiéd. Falk and Wilet®’ pointed out that Puff's ground- '
state solution did not have zero pressure as determined by Eq. (10);
they used this last criterion to determine the ground-state solution.’
The curve for this approximation in Fig. 11 was obtained by
using the potential fitted to the de Boer data. The potentials with

these par&%éters Just managed to produce a solution which satisfies
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___.._a(%) §) = 0, S -~ (59)

-but vas not able to produce a solution that satisfies (11) with the

constraint 1 <0 . The calculation was also performed with the

. potential parameters adjusted to reproduce the phase shift from the

~ ¥ntema-Schneider potential; no solution was found In this case.

4, Brueckner-Gammel Approximation

' 7
The Bfueckner-Gammel) calculation was not formulated by .use of

thermodynamic Green's functions; it is dlfficult to describe in these -

terms. The essential features are included 1f we take

A(P:‘“)

il

2r 8(w - e(p)) = for P<pp,

and

i

Alpw) = 20 8(w - e(p,R))  for P> P,

in (T), (32), and =, (34). Here 2 is to be determined from a

. supplementary condition. Brueclner and Gammel argue that the "hole-hole"

term cen be neglected and hence the integration in (T) fof the
momentum is restricted to p+ and p > Pp Alsc the interaction
matrig ig real for all e(p,2), since they calculate (i) off the
“energy eheil“ for these values., Their results26 do not satisfj the

Hugenholtz-Van Hove theorem, as was pointed out in the original paper.ls
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5, <T)O’ Approximation

The spectral functions, which are calculated for different -

. Dp's, vhen used in Eq, (37) and (38) allow us to calculate (N/Z/)“’a).

 Substituting (5%) into (37) ylelds, for the density,

. H,00 vm'ad
n - <-IEV> | ] E®up); (56)
R 0o 1

using (5) and (%8) ylelds, for the average energy per partigle,

®
]
L
=t

i, 00 | .. oo o ‘
): - ..]:.[ p dE }. 
. n 2 _
0 T

. 0 ' . . . .
‘ o ) 2 3e ks walpe)
Bl o (5T)

! _ . In Fig. 12 we display e and u- versus n, The»results for . p
are not as accurate as those f&r e, since u is obtaiﬁed using
Eq. (53), which, as we éee in Fig. 4, involves the intersection of two
curves with comparable slope, while e 1is obtained by integration of
Eq. (5T). In Fig. 13 we plot n versus Pe » and for comparison we
also plot pfe/ﬁﬂe, which is the density of an ideal Fermi ges
corresponding to the momentum Pp o From Figs, 12 and 13 we sé€e that
the deneity at which (55) is satisfied corresponds to a Fermi momentum
less than 0.80 A™Y . As was explained in Section V, the iteration

procedure becomes unstable for values of Pe below this value.

>
[
2
Gt

¢
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However, the minimum appears to be close tO'_pfv= 0.80 A l,.and we have

. extrapolated the caleculated values to determine the minimum,

One can see, in Fig. 12, that the Hugenholtz-Van Hove theoren,

Eq. (11), is not satisfied for this approximation (as we would expect,

since this 1s not a thermodynamically consistent approXimation), but

the discrepancy is smaller in this calculation than in the other

theoretical studiesaS.(except that of Mills). In Fig. l& P is’plotted'

_versus n , from the experimental data and also from Eqs. (10) and (12).

These two expressions give different values for the'pressure because
' ]

- our approximation is not thermodynamically consistent.

In view of the behavior of the single-pgrticle enérgy,'for p
near p, , we cannot obtain g meaniﬁgful value of m% from the (T)O
calculation. | _

The use of the single-particle energy in (T) 1s an important
feature of the Brueckner-Gammel calculation and presumably would be a

desirable improvement in the calculation reported here. We have not

- performed this improved calculation (which would involve extensive

computational time), but have moved directly to the more extensive

computation reported in paper II of this series (where only the approxima-

tions described in Part A are made).
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APPENDIX A: A SEPARABLE POTENTIAL FOR He”

In Chapter IV we introduced separable potenfials which were
employed to evalugte the TO ‘matrix; this appendix ié devoted to |
explaining our choice of potentials, and the method émployéd ﬁo deter-
mine the potential parameters so that these potenﬁials can be considered
3 two-body interaction.

The cholce of functional form for the potentials is_rather

arbitrary. The primary criterion is convénience; namely, a form

which allows & maximum amount of analytic computation. The parameters

- are adjusted so that the phase shift resulting from the potentials

approximates the phase shifts computéd using the Lennard-Jones 6-12
and the Y¥ntema-Schneider potentials. .

The Lennard-Jones potéhtial is .
’ L 6
w - ol - ],

with o '
(eo/n) = 40.88 K, ¢ = 2.56‘3 ;

r is in angstroms, and «k 1is Boltzman's constant; This potential was

- fitted by de Boer et al.7 to the low-temperature virial coefficients,

The Yntems~Schneider potential6 is

-r/0.212 Al
~ 1.24 1.89
v(ir) = < {1200 e - & - 5 } ,

with (e /x) 7250 K, 1t was fitted by these authors to the viriel

coefficien%a up to 1000° K. The phase shifts were computed by_de Boer . .

N
:8.. J
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et él.7 for the LennardQJones‘potential and by Sung »L for the Yntema; ‘ .

Schneider potentiai.

. Puff has developed the expression for the phase shift in terms

~ of the two-body scattering matrix for a separable potential; we quote

~ the relevant formulae here. The scattering matfix is given by '

& (pls@DE IVl p)

(p Is(a)] p') = (p Iv] p*) + 3 — )
~ ~L (2n)” a - B
| (A1)

and 1s related to the scattering amplitude by
2 oo
f(p) = - & (pls( % + 1e)] p)

g - Ef--v m . lI\).D ¢

Using the well-known relationjo connecting the scattering amplitude

and the phase shift yields'

2
(p IsfE "+ 1¢)] p)

m |
ten 6, = - g;‘z o 5 ,  (a.2)
2 - 'é'n—2<P 'S&( %—+i€)'| P)

where (S) has been expanded in partial waves. Choosing the potential,

(v), in (A.1) to be a sum of separable potentials,
. 2 g
1 i i i
A N R O RARI W
: 1=1 . .

one obtains a closed form for (Sz)' identical to Eq. (41) with P = O,

&ij replaced by

v

p?
t

S S

%T".



UCRL-1652k

“45-

| o Wy oDy
_ J&i"(ﬂ) .= f p? ap 2 @) :" .(.p)} . (A.3)
A Jo 2 - p°" |

»

One needs to evaluate (A.2) for Q =(p2/m )+ ie ; this value

of 9 allows one to write (A.3), when the symbolic identity

1
w*ie

S T
= P> 1 In &(w)

is employed, in the form

, ® | |
JiJ( 3;-?. + ie) = ,}/’( 2 dp" V(il(P') ;(J)(P') |
0 p -p '

-1%0p W4 (p) V(J‘)(p) o
| | (A
2 . o
I N S R P O R SAOR

. Substituting for (S) in (A.2), we have the explicit formula

vz(l)(P) 2, V&(l)(p’) W |
R NN LYE Y SR [
V&(e)(p) . : vt(e.)(p,) '
' v L ) ' ._] (Anﬁ)
where - 2 o0 2 - 12 2 ]
5 g, -3, (%) T
M ( E. ) = ’ . ’
v =12, p° 1 =11 p°
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and

The Lennard-Jones 6-12 and the Yntema-Schneider potentials are

both strongly repulsive for small interparticle separations. To

 replicate this we choose a two-term potential for ¢ =0, 1, 2, 3, with
“one term giving the short-range repulsion and the other term giving

_the long-range attraction. For ¢ = k4, 5, 6 we use only an attractive

term, since the "angular momentum barrier" shields' the ghort-range

~ repulsion.

The repulsiveypart of the potential is taken to be a "hard

shell," \

8(r - rc) 5(rt - rc)

. 2
by » 2 2 .

N A I A O R AR
4 ) -3 ) ki
. . © bt r
. c c
vhich jields, after a spherical Hankel transform has been perfoi'med,31
| (1) -
v, p) = 3,00,

where o = PT, and the j&'s are spherical Bessel functions.29 For

1 =0, 1], 2 .we use

9(-1') |
Vz(a)(r) = - ——f;———g— ic_h&(l)(iar) ,

L
nrc

-~

where e(g)f is the Heaviside unit function (defined es zero for

negative éﬁéument and unity for positive argument), and- hz(l) is a J -
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"spherical Hankel function of the first‘kind.jo Trénsforming_this

potential, one obtains

v,(Fp) - i 18 a(0) n{1)(1p) - on,P18) 5, 4(0) 1,

where B = arc and rcf are two parameters yet to be deterﬁined. For
L =3 we use : o . :
. ‘ L+1 : , : L
v (2)(r) = o(r - rc) iS ' , ' ) - .
¢ | ) : .

e v >

c

whose transform is

” 3, +(p)
vz(z)(p) =.--—-—-—-f"l

The attractive potentials employed for & = L, 5, 6 have no simple
coordinate space representation; in momentum space they. are ‘

(2) ¢ |
e =.,[ozp+52](“l_)/2 '

Evaeluating the integrals J&,.one obtains tan 8& , and then
edjusts the various parameters to reproduce the phase shifts computed
frpm the 6-12 and Yntema-Schneider potentials, 'The_parameters which
give the best fit to the phdase-shift data are tabulated in Table II.
The phase éhift for the 6-12 potgntial7 was available fof 20 equally
spaced momentum values between 0.086 and 1.564 At aﬁd for the Yntema-

21,1 for 25 momentum values between 0.86 and 1.954 A l;}f"

W
Jeian [,



- UCRL-16524
-l|.8—
The .geparahle potentials were fitted to these valués, and the deviation

quoted in Table II was computed by using:

' N v o o 11/2
(Dev)z - [ % ' [(2:, + 1)(5&deB or Y-S(n)‘_ 8&Sep(n)‘) ] } o,

n=1
(A.6)
where N = 20 or 25 . The coupling constants for the repulsive core

are taken as large, but finite, numbers,

xz(l) ~ (10" - 105)%(2) .

vErg
e
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the other constants of motion needed'to specify thg étate are

+ . denoted by § . However, Martin and Schwingerelhave shown that

lh.

15.

16.
17.

18.

19.

20.
21.

22.

23,

this average is approximately equal to the canonical average (Eq. 6).

L. D. Landau and E. M. Lifshitz, Statistical Physics (Pergamon Press

Ltd., London-Paris, 1958).

L. P. Kadanoff and G. Baym, Quantum Statistical Mechanics (W. A.

Benjemin, New York, 1962).
N. M. Hugenholtz and L. Van Hove, Physica 2k, 363 (1958). N

We make use of the standard abbreviation

(1) = (g.t), () = (g',t"), ete.
G. Baym and N. D. Mermin, J. Math. Phys. 2, 232 (1961).

J. A. Shohat and J. D. Tamarkin, The Problem of Moments (American

Mathematical Society, New York, 1943). This theorem is Lemma 2.2 °

. on page 24, (The authors wish to thank Dr. R. L. Omnes for a

discussion concerning this theorem and for bringing this proof to
their attention.)
J. M. Luttinger, Phys. Rev. 121, 942 (1961).

K. M. Watson, Phys. Rev., 103, 489 (1956).

F. Riesz and B. Sz-Nagy, Functional Analysis (Frederick Ungar,
New York, 1955); see Section 69.

Z. Kopal, Numerical Analysis (John Wiley and Sons, Inc., New York,

1961).

&
-
\I}



2k,

23,

26.

- 27.
28;.

3.

UCRL-16524

55

R. H. Sherman and F. J. Edeskuty, Ann, Phys. (N. Y.) 9, 522 (1960).

D. S. Falk and L. Wilets, Phys. Rev. 124, 1887 (1961).

Brueckner and Goldman (K. A. Brueckner and D. T. Goldman, Phys. Rev.

1117, 207 (1960)] discuss the modification of the single-particle

energy necessary to maintain the Hugenholtz-Van Hove theorem in

this calculation. Brueckner, Gammel, and Kubis [K. A. Brueckner,

J. L. Ganmel, and J. T. Kubis, Phys. Rev., 118, 1438 (1960)] have

- redone the nuclear matter calculation of Brueckner and Gammel,

using a modified single~particie energy, and they find that the

Hugenholtz-Van Hove theorem is almost saf;sfied in this_éalculationé

Masterson and Sawada [K. S. Masterson, Jr., and K. Sawada, Phys. Rg&.‘ A

133, Al234 (1964)] state that the Hugenholtz-Van Hove theorem is nét

applicable to-reaction métrix calculations.

E. C. Kerr, Phys. Rev. 96, 551 (1954).

V. J. Emery, Amn. Phys. (N. Y.) 28, 1 (1964).

C. C. Sung (Lawrence Radiation Laboratory), private communication, 156k,

L. I. Schiff, Quantum Mechanics (McGraw-Hill Book Co., Inc., New York,

1955) .

The spherical Hankel transform of g{r) 1is given by
' o}
o .
g(p) = b ‘f r ar J,(pr) g(r) .
o) .



AV

Primary quantities, present calculation, other calculations, experiment (T = 0).. The

Table T.
calculated values of the chemical potential are the solution of Eé. (53). ~The common
temper;ture units with k = 1 for_engrgy are used; the conversion factor for the units
used in the figures is 1 a2 =’i6.56 degrees. |
Source (and Average energy Chemical ) In?grparticle Effective
reference | per_particle,' potential, iséparation, : mass,
number) (E/N) (oK)' u (k) o To (3)7 | ' m%/m
Experimental _ l_a.55 a ~2.53 ® ‘ 2.43 ° | 2.15 ¢
Mills, 5 0.0 o 0.0 - | 5.60 |
Sung, 4 -2.8 . . | ~ 2.7
Putf-Martin | | L | ‘ o
approximation, 1 -0.0h3‘ _ -Oﬂﬁll . _3.?5. B S N
Brueckner and | - ' b ' o f_v‘ : .
Gammel, 3 | -0.96 =3.61 7 2.60 __ o 1.8k
(1), Calculation 21,16 3% ey |
a. Ref. 24
b. Ref., 26
c. Ref. 27

d. Ref. 28

7269T~TH0N
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Table II. Parameters and deviationé;‘Eq.i(A;6)itfor’separable potentials

fitted to the iennard-Joneq and YhtemaaSchneider potentials.

- — — —
Potential ) r,. .f B . 4 s¢(2) : | (Dev), o
0 1.872 . r°i,5o5 : ;'-0266805 ~ o.019
1 1.908 :1,635'  -0.00818 0.030

o 27 187 1.421 : -0.97;3 | 0.042
,g 3 .73 f; 0.0  -04T5 . 0.103

, e o
g L 1.0 0.8285 =1.347 0.057
.§ 5 1.0 0:9573 v'ei,q3§:ﬁf- 0.0
6 _' 1.0 - 0.897 . -1.686 0.034
O 2,088  1.023  -0.000947 0.014
1 2,050 ©0.9T7  -0.00218 - 0.031
§ 2 2.085  0.855 -0.0161_' | 0.039
:‘5 3 1.997 ‘o.>o‘ a -0.0518 3 0.221
2 ¥ 10 o kT 0.790
8 5 1.0 oL -2.25 0.185
- 6 1.0 ~  1.014 ~1.29 h 0.033
a. gt(l) =~ .-10"2‘t g&(2) . | | . -

epis, ™ Ta
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, FIGURE CAPTIONS
Diagrams for -¢ and I . The solid 1ines‘repreéent' G éhd the
dotted'linés V. | » B
(a) jf— in the Hartree;Fock approximation;
(b) Z 1in the Harfree-Fock approxiﬁation;_»
(c) 'a’term in'J?' for the TCTM appréximation;
(d) the term in = coyresbonding to the term 11lustrated in (e).
The real part of R (Eq. ‘46) for representgtive values of momeﬁtum
((T)0 approximation). Dashed lines are at poles 1n3-(T)O and - v_ .
détted iines are smooth values of R used in calculation. :
The imaginary part of R (Eq. 46) for representative values of
momentum ((T)o approximation). » |

Tterations of the single-particle energy (Eq. 50) for (T)O

minus p,°/2m , and the dotted line is the ninth iteration.

e(p,w) (Eq. hé) for a representgtive ﬁalue of p, and p near. Py -
The dotted line 1s € = w, whose’intersection with e(p,0) gives
e(p) (Eq. 50).

The single-particle energy, e(p).. Thé solid line is the -<T)0
approximation and the dotted line is €(p) = (p2 -,pfg)/bm .

e(p,w) (Eq. 49) for representative values of momentum.

MNp,0) (Eq. 47b), the imaginary part of the self-energy for
representative values of momentum. (&) o near zero [I'(p,») - o

as o - -00}], (b) ©>0.

Lag
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~ Momentum density distribution function (Eq,’f5h);_ (a) p< Pe

(v) p > P, - (Notg change in scales.)

The width function (Eq. 51) (the curve apprbachés‘uﬁity for large

_momentum). .

'Average energy per particle and chemical potential versus density

for the Puff-Martin approximation (Ref. 1).

Average energy per particle (Eq. 57) and chemiéal‘potentialv(Eq.-'55)

" versus density (Eq. '56). Here e, and Hp are obtained from

T

0 0

the (T) approximation, and and from the experimental v
o ® - B Mg S } .

.values cobtained by extrapolating the data of Ref. 24 to 'zero degrees,

Density versus Fermi momentum; solid line is the (T)O approximation
and dotted line the ideal Fermi gas density.

Presure. versus density ((T)O'approximation). Curve 1 is obtained
by using Eq. (10),.and curve 2 by using Eq. (12), The experimental

curve (dotted) is an extrapolation of the data of Ref. 2.
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This report was prepared as an account of Government
sponsored work. Neither the United States, nor the Com-
mission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or
implied, with respect to the accuracy, completeness,
or usefulness of the information contained in this
report, or that the use of any information, appa-
ratus, method, or process disclosed in this report
may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of,
or for damages resulting from the use of any infor-
mation, apparatus, method, or process disclosed in
this report.

As used in the above, "person acting on behalf of the
Commission” includes any employee or contractor of the Com-
mission, or employee of such contractor, to the extent that
such employee or contractor of the Commission, or employee
of such contractor prepares, disseminates, or provides access
to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.








