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Abstract

Universal Approximation for Neural Nets on Sets

by

Christian Bueno

Point clouds and sets are ubiquitous, unusual and unstructured data-types which

present unique problems to machine learning when used as inputs. Since sets are in-

herently unaffected by permutations, the input space for these problems naturally forms

a non-Euclidean space which is oftentimes not even a manifold. Moreover, similar in-

puts can have wildly varying cardinalities and so the input space is in general infinite-

dimensional. Despite these mathematical difficulties, PointNet [40] and Deep Sets [62]

form two foundational contributions for deep learning in this area. In this thesis we

study the expressive power of such networks. To that end, we prove theorems about their

Lipschitz properties, extend them to well-studied infinite-dimensional spaces, and prove

new cardinality-agnostic universality results for point clouds. These results completely

characterize the approximable functions and so can be used to compare the represen-

tational strength of the underlying model classes. In particular, a normalized version

of the DeepSets architecture cannot uniformly approximate the diameter function but

can uniformly approximate the center-of-mass function whereas PointNet can uniformly

approximate the former but not the latter. Additionally, even when limited to a fixed

input cardinality, PointNet cannot uniformly approximate the average value of a contin-

uous function over sets of more than two points. We additionally obtain explicit error

lower-bounds for this error of approximation and a present a simple geometric method

to produce arbitrarily many examples of this failure-mode. Along the way, we also prove

various general purpose universal approximation theorems, one of which is for generalized

neural networks whose input space is a set of unknown or nonexistent topology.
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Chapter 1

Overview

The architectures introduced in PointNet [40] and Deep Sets [62] are foundational con-

tributions to the direct analysis of point clouds and sets via deep learning. These works

provided two of the earliest such methods and continue to be of theoretical interest since

both provide architectures which are inherently permutation-invariant. In addition to

this, a single invariant model of either approach can handle sets of differing sizes and

can theoretically scale to any cardinality with enough computational resources. These

methods achieve this through careful application of pooling and weight sharing with their

only difference being their choice of pooling function.

In either case the procedure to process a point cloud A in Rn is simply as follows: (1)

apply a network ϕ to each element of A, (2) apply a permutation-invariant pooling oper-

ation to aggregate these point-features into a global feature for A (e.g. max-pooling for

PointNet, sum-pooling for DeepSets), and lastly (3) pass this global feature to the second

network ρ to obtain the final output. For general PointNet and DeepSets permutation-

invariant models, this can be concisely expressed mathematically as

ψPointNet(A) = ρ

(
max
a∈A

ϕ(a)

)
, ψDeepSets(A) = ρ

(∑
a∈A

ϕ(a)

)
,

respectively. Depending on the output layer of ρ this can be used for either set-regression
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or set-classification. Note that arbitrarily large point clouds can be passed through

and that the permutation-invariance of the max/sum-pooling operations ensure that

rearrangement of the elements of A do not alter the output.

Importantly, each of these prior works provide their own universal approximation

theorems (UATs) to support the empirical success of their methods. In this thesis we

will prove substantial extensions of these results motivated by the following points:

Unified Approach and Minimal Universality: The pre-existing universality re-

sults use very different approaches. Additionally, these results do not explore the mini-

mum architecture requirements needed for universality. In this thesis we present a proof

method that applies to more than one model and provides universal “shallow” examples.

Cardinality Limitations: The universality results in [40, 62] both assume that

the cardinality of the inputs are fixed to some size n and thus do not make use of the

cardinality-agnostic nature of these models. This gap is of worthy of investigation because

(1) real-world point cloud datasets can have heterogeneous cloud sizes and (2) it may

happen that the deployed model encounters point clouds with cardinalities that did not

exist in the training data (e.g. if better sensors become available). It is not immediately

clear whether one should expect these model classes to have enough power to universally

approximate the functions of interest when allowing for such changes in set size.

Infinite Input-Width Limits: One approach for learning with mesh inputs is to

sample the mesh and feed the resulting point cloud into a suitable neural network [40,

41, 20]. Although PointNet and DeepSets can readily accept samples of any size and

via any sampling method, the computation graph at the input layers necessarily widens

as the point clouds get larger. Understanding the expressiveness and consistency as

sampling cardinality (and hence input layer size) grows to infinity may provide theoretical

insight on this approach to learning from meshes. Models such as Neural ODEs [10] and

Neural Tangent Kernels [28] have benefited from similar considerations (infinite depth

and infinite hidden-layer width limits respectively).
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DeepSets Extension Conjecture: It was conjectured in the supplementary ma-

terials of [62] (below the proof Theorem 9) that the DeepSets invariant model should

be extendable to input sets of countably infinite or even unaccountably infinite size and

retain universality in that setting. However, they note that there are fundamental topo-

logical obstructions to answering this question. We provide partial resolutions to this

conjecture by showing that a change in the pooling function allows for inputs beyond

finite sets (Section 7.3).

Comparison of Representational Power: In this work we slightly modify the

permutation-invariant DeepSets model by use of average-pooling instead of sum-pooling.

The only change is re-scaling by the set size before applying ρ so we call this version

normalized-DeepSets. We find that:

• PointNet (normalized-DeepSets) can uniformly approximate only the functions

which are uniformly continuous with respect to the Hausdorff (Wasserstein) metric

(Theorem 7.2).

• Only the constant functions can be simultaneously uniformly approximated by both

PointNet and normalized-DeepSets when input sets are allowed to be arbitrarily

large (Theorem 7.4).

• Even when cardinality is fixed to size k there is a substantial difference in approx-

imation power. In particular, PointNet cannot uniformly approximate averages

over sets such as the center-of-mass. We prove an explicit error lower bound for

these tasks for PointNet and provide simple method for generating examples of this

failure-mode (Theorem 7.5).

Along the way we also prove generalizations of the classical UAT for compact Haus-

dorff spaces, metric spaces, and in the most general setting, plain sets. To do this we

expand our concept of what a neural network is so as to adapt to the non-Euclidean and

even non-topological setting. These results then help us prove the point cloud related

results and also helps us understand why we could not obtain similar results for the

3



un-normalized version of DeepSets.

Related Work. Besides the base invariant Pointnet model introduced in [40], the

authors also include a variant for point cloud segmentation, a subnetwork to learn align-

ment, and later introduce a hierarchical variant of PointNet in [41]. The authors of [62]

also introduce a distinct permutation-equivariant model where permutation of the inputs

results in a corresponding permutation of the output. Though such equivariant networks

are also commonly referred to as DeepSets networks, they are fundamentally different

and are generally not permutation-invariant. We will always refer to the invariant mod-

els in the context of this thesis and thus we do not consider the equivariant case here.

Besides these models see [20] for a comprehensive survey of deep learning methods for

point clouds.

There has also been much activity regarding the representational power of permutation-

invariant models. Whether permutation-invariant functions can be exactly represented by

sum-decomposition – i.e. as ρ(
∑

a∈A ϕ(a)) – has been addressed by [62, 54, 60] with posi-

tive and negative results depending on whether the point clouds come from a countable or

uncountable universe. In particular, [62] proves that sum-decomposition is possible when

the universe is countable and [54] shows that there are continuous permutation-invariant

functions on R that are not sum-decomposable when the latent space is too small. Ad-

ditionally, [60] considers similar questions but in the context of graph neural networks

and also assesses the relative ability of max-pooling, average-pooling, and sum-pooling to

distinguish multisets. Regarding approximation of permutation-invariant functions [61]

also proves a universal approximation result for fixed cardinality and also establishes a

universality results for general G-invariant functions by appealing to Stone-Weierstrass

and Hilbert’s finiteness theorems from classical invariant theory.

Much of the work in this thesis is an evolution and expansion of the work commu-

nicated in a workshop paper [8] and oral presentation for the NeurIPS 2019 Sets &

Partitions workshop. A later version of this work also appears on OpenReview as a
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submission for ICLR 2020 [7] which was ultimately not accepted. Some of the ideas

and results which do no appear in those earlier manuscripts include the various UATs

for metric spaces and the general UAT for sets in Chapter 5. The Lipschitz properties

proven in Theorem 6.4 are also new. Additionally, the error lower bound in Theorem 7.5

of those earlier manuscripts was substantially generalized beyond just the center-of-mass

and now extends to an error lower bound for averages of continuous functions.

Structure of Thesis. Chapter 2 focuses on neural networks and contains a brief

history of neural networks, introduces fundamental concepts in deep learning, illustrates

the importance of the universal approximation theorem, and sets the context for the rest

of the thesis. The concepts therein should be accessible to a wide audience and does not

assume mathematics beyond linear algebra and multivariate calculus.

In Chapter 3 we quickly review higher level mathematics such as point-set topology,

metric spaces, functional analysis, and measure theory. The definitions, conventions, and

notations introduced in that chapter will be heavily used throughout the remainder of

the thesis but is fairly standard graduate level mathematics.

In Chapter 4 we introduce various ways to topologize and metrize the set of finite sub-

sets on a topological/metric space. In particular, there we introduce the Hausdorff metric

dH and Wasserstein metric dW as well as the metric spaces (K(Ω), dH) and (P(Ω), dW )

and many of their most important properties.

In Chapter 5 we introduce notation to generalize neural networks to novel settings

and notation to compactly describe the families of functions which they form. These

notations will be used in later chapters but we also immediately use those concepts to

prove a variety of novel generalizations of the classical UAT culminating in a UAT for

input spaces without a prescribed topology (Theorem 5.6). This and the remaining

chapters all contain novel contributions.

In Chapter 6 we finally begin to look closely at the neural network models of the

type introduced in PointNet and Deep Sets which we call set pooling networks. After
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spending some pages setting up the necessary mathematical groundwork, we then prove

a variety of results on the mathematical properties of these models as well as properties

for continuous extension of those models.

Finally, in Chapter 7 we prove results on what kinds of functions these set pooling

networks can express, with special attention to what kinds of functions they can uniformly

approximate. There we will heavily draw upon the preceding chapters to prove the

UATs that lie therein. In there we also directly compare the approximation capabilities

of PointNet and normalized-DeepSet and present an impossibility theorem for PointNet

which is encapsulated quantitatively in error lower bound theorem Theorem 7.5. Lastly,

we reinforce this latter result via a direct numerical experiment, empirically validating

the theory.
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Chapter 2

Neural Network Preliminaries

Over the past decades, the range of applications for neural networks has exploded, and

along with this success has come an explosion of diversity in neural network architectures.

Though the trend has generally been towards greater complexity, many of the great

advances have come from careful consideration of how the network and its neurons are

organized.

In support of better understanding the neural networks of interest in this thesis, this

chapter will review some of the foundations of deep learning and its history. We will only

assume linear algebra, multivariable calculus, and elementary probability in this portion.

2.1 Perceptrons and XOR

In the middle of the 20th century, efforts to mathematically model biological neurons

birthed the ancestors of modern-day artificial neural networks. The first notable fruit of

this effort to formalize the computational capabilities of the biological neuron came in

1943 with the Boolean logic based McCulloch-Pitts model [33]. This was later general-

ized by Frank Rosenblatt in 1957 to allow for continuous inputs and introduced tunable

weights in what he called the perceptron [44]. This line of research ultimately culminated
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in what we now call an artificial neuron, which as a function can be simply expressed as

f(x) = σ(w · x+ b),

where w · x =
∑n

i=1wixi and σ : R → R is a univariate (nonlinear) function called the

activation function or just simply the activation.1 The vector w ∈ Rn we call the weight

vector or weights and the scalar b ∈ R we call the bias. Though somewhat confusing, it

is common in machine learning to refer to bias as one of the weights as well.2

Today, artificial neurons are recognized to be inaccurate models of their biological

counterparts for various reasons, but the name has nevertheless stuck. In fact, when the

context is clear, the adjective “artificial” is often even dropped in the machine learning

literature. Likewise, we will also frequently refer to artificial neurons as simply neu-

rons and instead use the adjective “biological” if we need to refer the neuroscientific

counterpart.

From this modern perspective, Rosenblatt’s perceptron is a special case of the artificial

neuron. Its main use-case was to perform binary classification of Euclidean data3 by

outputting a “0” for examples belonging to one class and a “1” for examples belonging

to the alternate class. Mathematically, an n-input perceptron can be expressed as

f(x) = σH

(
w · x− b

)
,

where the activation function σH is the Heaviside step function

σH(x) =


1 if x > 0,

0 if x ≤ 0.

1Other names which are sometimes used include threshold function, and transfer function.
2This language can be made consistent by letting f(x) = σ(w̃ · x̃) where x̃ = (x1, . . . , xn, 1) and

w̃ = (w1, . . . , wn, b).
3By Euclidean data, we mean data that can be encoded as equidimensional vectors of real numbers,

i.e. data that can be interpreted as elements of Rn for some n.
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Unlike the earlier McCulloch-Pitts model, Rosenblatt’s perceptron could be automat-

ically tuned through an interactive learning process called training which improves the

model by changing the weights. The first training algorithm for the perceptron was in-

spired by the biological theory of Hebbian learning [23] and was introduced by Rosenblatt

himself, but there have since been other approaches that were developed later on [57, 16].

In the time of its introduction, there was a lot of excitement and optimism regarding

Rosenblatt’s perceptron. Pretty quickly a physical incarnation of the perceptron was

realized and this was written in the New York Times [37]:

The Navy revealed the embryo of an electronic computer today that it expects

will be able to walk, talk, see, write, reproduce itself and be conscious of its

existence. Later Perceptrons will be able to recognize people and call out

their names and instantly translate speech in one language to speech and

writing in another language, it was predicted.

This level of optimism soon came to be seen as overzealous. In 1969, Marvin Minsky

and Seymour Papert published a book titled Perceptrons: An Introduction to Computa-

tional Geometry in which they demonstrated various limitations of the perceptron model.

A key point within Perceptrons was that Rosenblatt’s perceptrons could only learn to cor-

rectly classify linearly separable data (i.e. data for which the two classes can be separated

by a hyperplane). To see why, we can rewrite the perceptron like so,

f(x) =


1 if w · x > b,

0 if w · x ≤ b.

From here we can easily see that regardless of the values of weights, the set of points classi-

fied as “1” lie in the open half-plane given byw·x > b and those classified as “0” lie in the

closed half-plane given by w ·x ≤ b. Thus, it is a prerequisite for perceptron-learnability

that the dataset’s two classes be possible to separate via a hyperplane, otherwise, mis-

takes must be tolerated.

9



Figure 2.1: The “True” and “False” values of XOR cannot be linearly separated.

In particular, this observation meant that even a simple logical operation such as

XOR (exclusive-or) could not be simulated by a perceptron. For such an important and

basic logical operation to pose a problem was certainly bad news. The impossibility of

this task can be easily seen geometrically by representing XOR’s inputs as ordered pairs

in the plane given by (0,0), (1,1), (1,0), and (0,1) as in Fig. 2.1. From this plot, it is

visually clear that there is no line which separates the 0-class C0 = {(0, 0), (1, 1)} from

the 1-class C1 = {(1, 0), (0, 1)}. More formally, if there was such a separating line, then

the line segment L0 formed by C0 and the line segment L1 formed by C1 would lie in

opposite half-planes. However, this is impossible since these two line segments intersect

at a common point (1
2
, 1

2
). So we must conclude no such separating line exists, and hence

no perceptron can simulate the XOR function.

x1 x2 x1 XOR x2

0 0 0
0 1 1
1 0 1
1 1 0

Table 2.1: Truth table for the XOR operation.
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It is worth noting that if we replace the step function in Rosenblatt’s perceptron with

a different function, it then becomes possible to resolve the XOR problem. For example,

if we use a modified activation function σM(x) = σH(x)− σH(x− 1) so that

σM(x) =


1 if 0 < x ≤ 1,

0 otherwise,

then it is possible to solve the XOR problem using weights w = (1, 1) and bias b = 0.

x1 x2 f(x) = σM(x1 + x2)
0 0 0
0 1 1
1 0 1
1 1 0

Table 2.2: Modified perceptron easily solves the XOR problem.

It is not too surprising that by allowing for a broader family of activation functions,

the capabilities of the perceptron also broadens. Naturally then, one would wonder if

this is enough additional flexibility to allow us to represent any function we wish, even

if just approximately. Unfortunately, regardless of what activation function σ we use,

the function represented by the neuron f(x) = σ(w · x + b) will always be constant on

the hyperplanes w · x+ b = c. So even generalizing Rosenblatt’s perceptrons to general

artificial neurons will not allow us to represent even a simple rotationally symmetric

bivariate function such as f(x) = x2
1 + x2

2.

The observations in Perceptrons were a serious blow which, by some accounts, directly

led to a period of reduced research activity in AI known as the “AI Winter.” It would

take some time for research activity to pick up again and for the neural network approach

to regain favor. We will keep in mind this important piece of AI history as we explore

the properties of more complex neural network models.
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2.2 Feed-Forward Neural Networks and Universality

Using artificial neurons as a building blocks, we can create a dizzying diversity of more

complex models which are collectively known as neural networks. This is done by having

the outputs of an individual neuron used as an input for other neurons. If the flow of data

in such a network of neurons never forms a cycle4 then we can think of the information

as strictly flowing forward from start of the network (inputs) to the end of the network

(outputs). Such a network is aptly named a feed-forward neural network.

A special and important case of such networks involves arranging the neurons into

groups of neurons known as layers in such a way that the outputs of the i-th layer di-

rectly feed into the (i+1)-th layer and so on.5 Such networks are often called multi-layer

perceptrons (MLPs), though this is a bit of a misnomer as they are generally comprised

of neurons with continuous activations and not perceptrons (which have Heaviside acti-

vation).

The layers of an MLP come in three flavors: input, hidden, and output layers. The

input layer is comprised of just the unaltered input values, the output layer spits out the

outputs, and the hidden layers are all the layers in between. Every layer can be thought

of as the composition of an affine function and followed by an activation function6 (see

Fig. 2.2). We say a layer is fully-connected if every neuron in that layer is connected to

every neuron in the preceding layer. If all the (non-input) layers of an MLP are fully-

connected, we say it is a fully-connected MLP, or just simply a fully-connected network.

More formally, an MLP with h hidden-layers is a function f : Rdin → Rdout which

can be expressed as an alternating composition of affine transformations and (nonlinear)

4Formally we mean that the neural network’s computation graph forms a directed acyclic graph
(DAG). In particular, no neuron can feed into itself if the computation graph is a DAG.

5Networks such as ResNet [22] which connect non-consecutive layers with so-called “skip-connections”
are also considered feed-forward neural networks, but we will not consider them to be MLPs.

6The input layer can be thought of as the identify function followed by the identity activation
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Figure 2.2: A fully-connected MLP with two hidden layers using activation functions σ
and linear output layer.

activation functions:

y0 = x, x ∈ Rdin ,

yi+1 = σi(Wiyi + bi), yi ∈ Rdi ,

f(x) = yh+1, yh+1 ∈ Rdout ,

where Wi ∈ Rdi+1×di are matrices, bi ∈ Rdi are the bias vectors, and the vector activation

σi just applies the univariate activation σi : R → R to each component. Oftentimes

when discussing approximation theory a linear output layer is used, i.e. final activation

is the identity σh(x) = x.

Despite the additional complexity and expressiveness that MLPs afford, XOR’s spec-

tre provokes a doubt – are MLPs sufficiently general to express all the functions we care

about?

Fortunately, in the late 1980’s and early 1990’s, various authors approached this

questions and provided affirmative answers which are now collectively called the universal

approximation theorem (UAT). The focus of many of these investigations was on whether

or not continuous functions could be uniformly approximated with single hidden-layer
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MLPs, more specifically via linear combinations of neurons such as

f(x) =
d∑
i=1

aiσ(wi · x+ bi).

Notably, in the year 1989, four papers came out on this topic [9, 11, 15, 26] which proved

UATs under different assumptions on the properties of the activation function σ. In the

ensuing years more work was done to further clarify the picture. The interested reader

can find a comprehensive overview of the work done in this period in [39]. Ultimately,

the answer as to which kinds of continuous activation functions lead to universal approx-

imation was quite simple: any non-polynomial continuous activation function will work.

This was proven in [32] by Leshno et. al. in 1993, and in fact, they even addressed

the possibilities for discontinuous activation functions as well. We state a version of the

continuous case of their UAT here.

Theorem 2.1 (Leshno et al.). Let Ω ⊆ Rd be compact and σ : R→ R continuous. Then

for any continuous function F : Rd → R and any ε > 0, there exists an integer n ≥ 1,

weights ai, bi ∈ R and wi ∈ Rd so that∣∣∣∣∣F (x)−
n∑
i=1

aiσ(wi · x+ bi)

∣∣∣∣∣ < ε

for all x ∈ Ω if and only if σ is not a polynomial.

Caution: With the UAT we can at least feel assured that an extremely broad class

of functions can be approximately represented by neural networks. That said, it is

important to note that the UAT has many limitations and is often misinterpreted. First

of all, universality is a property of the function class formed by these neural networks,

but any particular neural network will not be universal.7 Another problem with the

above statement of the UAT is that it is non-constructive in nature. It does not tell us

7For any fixed architecture, the set of all possible functions that can be formed is parametrized by
finitely many degrees of freedom (the weights) whereas the space of all continuous functions is infinite-
dimensional.
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how to find the architecture (i.e. number of hidden neurons) which will allow for the

ε-approximation. Some interpret the UAT as saying that you need to take the number

of neurons to infinity to get universality, though making this limit rigorous is nontrivial

(see [28] for one way to study infinite-width limits). Moreover, even if an oracle told us

how many hidden neurons were needed, we would still be left with the highly non-trivial

task of finding the weights that would yield a tolerable error. Lastly, the result may be

a bit misleading to a practitioner as it turns out the deeper networks tend to be better

in real world applications than the shallow MLPs used in the UAT.

Today this result is taken as a given and is often seen as being of little practical

value. However, it is worth stressing that before the UAT was established it was not

clear whether we would one day be surprised by a simple function akin to XOR that

would defy description (approximate or exact) via MLPs. If it had turned out that there

were indeed important blind spots, then that would have been very important to know.

Thus, the UAT gives us one less thing to worry about in an already complicated field.

2.3 Loss Functions and Training

As mentioned in the previous section, even if we choose an appropriate neural architecture

with which to learn our intended target function, the universal approximation theorem

will not tell us how to obtain good weights. Moreover, usually we do not even know

which function we are trying to learn. Instead, we only see a silhouette of its true form

through the lens of our data.

In this context, we need a judge of some sort to tell us how well our model is per-

forming. Ideally, this judge should be a single real number which aids us in our quest to

improve our model for the given task. Such a judge is called a loss function because by

minimizing the “loss” we shall optimize our model.

Though loss functions come in a large variety of flavors, they generally all take the
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form of a non-negative real-valued function l(ŷ, y) which gets smaller as the prediction

ŷ becomes more similar to the true outcome y. Ideally, we would want our model to

minimize the average loss that would occur after encountering all possible data at their

naturally occurring real-world frequencies. However, since we only have a finite amount

of data, we in practice only hope to minimize the average loss across the dataset. That

is, for a dataset D = {(xi,yi)}ni=1 we would like our parametrized model fθ : Rm → Rk

to minimize the so-called empirical risk which is given by

L(fθ;D) =
1

|D|
∑

(x,y)∈D

l(fθ(x),y) =
1

k

n∑
i=1

l(fθ(xi),yi)

One of the main flavors of loss functions for regression tasks are the `p loss functions

given by l(ŷ,y) = ‖ŷ − y‖p where

‖v‖p =


(∑k

j=1 |vj|
p
) 1
p

1 ≤ p <∞,

max{|v1| , . . . , |vk|} p =∞.

The most commonly used value is p = 2 as it is a smooth function, but p = 1 is also

quite common.

For classification tasks, neural networks are usually designed so that the output vector

f(x) is a probability vector i.e.
∑k

j=1 f(x)j = 1 and 0 ≤ f(x)j ≤ 1 for all j = 1, . . . , k.

The predicted class of the input x is then chosen to be the class corresponding to the

index with the largest probability.8 In this setting, a commonly used loss function is the

cross-entropy loss [19].

Notably, even if we know exactly what function f we are trying to learn with our

neural network F , we do not attempt to minimize the uniform error over a compact

8These generally cannot be treated as “honest” probabilities which come from a probabilistic model,
but it can be useful to think of the entries as probabilities nonetheless.
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region Ω as in the UAT. That is, we do not try to minimize

max
x∈Ω
|F (x)− f(x)| .

The reason for this is that outside of extremely special circumstances, it is intractable to

ensure that the neural network F approximately matches the desired function f every-

where.

Once an appropriate loss function is chosen, the next step is to find weights that

minimize the empirical risk. Ideally, we would do this via a technique that is ensured

to minimize the empirical risk, but this is in general intractable. So instead, we seek

an approximate solution which produces a satisfactory model. Since many of the loss

functions and activation functions used in practice are differentiable, this means that

L(fθ;D) is differentiable with respect to the parameters w ∈ θ. And even when the

loss and activation functions are not differentiable, they are usually differentiable almost

everywhere.

These properties allow us to try various techniques from optimization theory to iter-

atively minimize L(fθ;D) with respect to θ. One popular method is Gradient Descent

(GD)9 which iteratively updates the weights by the scheme

θnew = θcurrent − γ∇θL(fθ;D)
∣∣
θ=θcurrent

,

for sufficiently small γ > 0. This continues until some level of convergence is reached or

until some predetermined number of iterations occur. If there are multiple local minima,

this may not converge to a globally minimizing solution and instead may get stuck at a

local minimum.

On a more computational note, this scheme has to take the derivative of the entire

empirical risk function and so must process the entire dataset before the update step

9Also known as Batch Gradient Descent.

17



can occur. This may require holding the whole dataset in memory which can become a

problem if the dataset is extremely large. This is one of the reasons Stochastic Gradient

Descent (SGD) is usually preferred to full GD. In SGD, the iterative scheme only considers

the gradient one observation at a time and is given by

θnew = θcurrent − γ∇θl(fθ(xi),yi)
∣∣
θ=θcurrent

where i ranges from i = 1, . . . , n, after which the process can be repeated. Usually the

observation points (xi,yi) are randomly shuffled as well. One pass through all the data

is called an epoch and SGD is stopped once some sort of convergence is reached or after

a predetermined number of epochs.

The reason this is known as stochastic gradient descent (besides the random shuffling)

is because ∇θl(fθ(xi),yi) can be seen as a noisy estimate of the gradient of the empirical

risk ∇θL(fθ;D) = 1
n

∑n
i=1∇θl(fθ(xi),yi). This noisiness can be helpful in escaping local

minima. However, SGD can sometimes be too noisy and lead to erratic updates. A

compromise to between SGD and GD is provided by Mini-Batch Gradient Descent for

which the update rule is given by

θnew = θcurrent −
γ

|B|
∑

(x,y)∈B

∇θl(fθ(x),y)
∣∣
θ=θcurrent

where B ⊆ D is a subset of data points called a mini-batch of batch size |B|. As

with SGD, the order of the data is randomized before partitioning. If the batch size

b = |B| evenly divides the size of the data set n = |D| then we will have n
b

updates

per epoch, and each update step will see b elements of the data. Intuitively, the term

1
|B|
∑

(x,y)∈B∇θl(fθ(x),y) is a noisy estimate of the full empirical risk gradient, but one

that is less noisy than the gradient term in SGD. This desirable behavior is why Mini-

Batch Gradient Descent is one of the most popular optimization methods.10

10Note that Mini-Batch Gradient Descent with b = 1 and b = n is just SGD and GD respectively.
Moreover, adding to the terminological confusion, Mini-Batch Gradient Descent is commonly just re-
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There are many more gradient-based optimizations schemes such as Momentum [42],

AdaGrad [12], RMSprop [25], Adam [30], and more. However, we will not delve further

into their details here.

Throughout all this, there has been one big issue that has been unaddressed: How do

we compute the gradient of our complicated multi-layer neural network? This seems like

a trivial multivariate calculus exercise, after all, we can just use the multivariate chain

rule the usual way and be done with it. However, taking the gradient of the loss with

respect to each weight individually would lead to expressions that would rapidly become

unwieldy for large and complex neural network models with multiple layers and many

weights. Fortunately, there is a lot of redundancy in these expressions, and with clever

organization via dynamic programming one can make the gradient computation about

as simple as evaluating the function itself. The tool to do this is called backpropagation.

Though the general idea has been discovered multiple times in multiple settings, within

the world of neural networks it is usually attributed to David E. Rumelhart, Geoffrey

E. Hinton and Ronald J. Williams [47]. By computing the error between the predicted

output and the truth, then propagating this error backwards through the network from

the last layer to the first via the chain rule, backpropagation provides an efficient way of

computing the gradient.

With all these pieces in place (loss functions, optimization scheme, and backpropa-

gation) we can iteratively go from an initial neural network model with random weights

to improved models by progressively minimizing empirical risk. This process is called

training the neural network. When things go well, trained models generalize and per-

form well on new unseen examples. However, things can go awry for multiple reasons.

It could be that the network’s capacity to model the needed function is too limited and

so we may need a more complex model. It can also be the case that the model has

ferred to as SGD with batch size b.
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overfit to the data and memorized it, leading to poor predictions when presented with

unseen examples. The latter case can sometimes be remedied with more data, better

architecture choice, or regularization. Regardless of outcome, training is a crucial part

of creating useful neural network models for real data.

2.4 Novel Input Types and Inductive Bias

So far we have been looking at neural networks as functions/algorithms which take generic

fixed-dimensional Euclidean vector inputs and produce fixed-dimensional Euclidean vec-

tor output (or produce class labels in the case of classification). However, there are many

data types for which this is an overly simplistic perspective (e.g. time-series, images,

video) or for which this perspective does not directly apply (e.g. sets, graphs, meshes).

As the field progressed, the neural network approach was adapted to many such inputs

in various ways. One of the most important methods is via incorporating inductive bias

into the network architecture, i.e. building into the network our assumptions about how

the network should behave.

The first notable case of this was that of images. A fixed resolution (e.g. 32x32

pixels) grey scale image can be seen as fixed dimensional vector (e.g. 1024 dimensional)

and so can be readily fed into a fully-connected feed-forward neural network (with 1024

dimensional input layer). However, this completely ignores the grid structure of an im-

age in which neighboring pixels should be more closely related than distant pixels. This

also does not account for certain obvious human phenomenon such as our perceptual

insensitivity to simple transformations such as translations. To address these problems,

convolutional neural networks (CNN) were developed by LeCun et al. [31], taking in-

spiration from its biologically inspired predecessor, Fukushima’s Neocognitron [14]. The

most important feature in a CNN is the convolutional layer from which it gets its name
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in which a small filter (e.g. 5x5) get convolved11 with the image. Mathematically, the

convolutional operation is just a special linear operation in which some of the weights

are set to be equal to each other (a.k.a. “shared”) and many of the weights are set to

zero (so that hidden neurons have localized receptive fields). Hence, a CNN is really

just a special case of feed-forward neural network. Though the UAT may have led us

to choose a simple single hidden-layer MLP for image processing, this would be a sub-

optimal choice as CNNs routinely and dramatically outperform fully-connected models.

This example demonstrates the value of inductive biases such as translation invariance

into architecture choice.

To apply neural networks to arbitrary length sequences, new neural network models

needed to be considered, namely recurrent neural networks (RNNs). These models allow

for loops to exist in the neural network computation graph, i.e. it allows neurons to feed

into themselves. By “unrolling” such networks, it is possible to process arbitrary length

sequence inputs, as well as train them through backpropagation.

The principles of incorporating inductive bias and being more flexible with network

structure makes it possible to deal very diverse data types. As a result, there are now

neural networks for sets [20, 40, 41, 62, 1, 55, 51], graphs (GNNs) [59, 63, 60], meshes [21,

49, 35, 64, 27], and more. Much of these techniques often get placed under the umbrella of

Geometric Deep Learning [6] because they often time incorporate geometric/topological

inductive bias of some sort.

With the growth of such a diverse class of neural network types, it once again becomes

important to understand exactly what sorts of functions they can or can’t represent.

Generally, such theoretical questions must be addressed case-by-case. In Chapter 7 we

analyze PointNet [40] and DeepSets [62] invariant models on the space of point clouds

then set-up and prove universality results in that context (Theorem 7.2). We do this by

11Strictly speaking, the operation we are doing is cross-correlation not convolution, but the name has
stuck.
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proving various properties about those networks and by using the results of Chapter 5.

It is in Chapter 5 where we attempt to provide general purpose tools for neural network

universal approximation for non-Euclidean data, with Theorem 5.6 being the broadest

generalization of the classical UAT that the author has seen and which can hopefully be

a useful guide when creating neural networks for novel input data-types.
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Chapter 3

Mathematical Preliminaries

As much of this thesis is centered on proving theorems, we will be making use of standard

mathematical notations from logic such as ⇒,⇔,∀,∃, etc. and we will use “iff” as

shorthand for “if and only if.” We will also be frequently working with sets and using

standard notation such as ∅,∈,⊆,(,∪,∩, etc. We include 0 in the naturals N. We will

use the convention of denoting set difference by A \ B := {a ∈ A | a /∈ b}. Cartesian

products of sets are denoted by A × B = {(a, b) | a ∈ A, b ∈ B}. For a (potentially

infinite) family of set {Ai}i∈I we denote Cartesian products by Πi∈IAi. When A is a set,

we will use |A| to denote the cardinality of A, otherwise |·| should be interpreted as the

absolute value.

For a set X, let 2X denote its power set (i.e. the set of all subsets of X) and let

F(X) ⊆ 2X denote the set of all finite nonempty subsets of X. We will also use F≤k(X)

to denote the set of nonempty subsets of size ≤ k, and Fk(X) to denote the set of k-point

subsets. Note that if |X| = k then F≤k(X) = F(X) = 2X \ {∅}.

Our main motivation for this chapter will be to develop the mathematical background

necessary to study R-valued function on F(X) and the associated approximation theory

via neural networks. As a result, we will need to introduce notions of closeness both for

the functions on F(X) and for F(X) itself.
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The most general notion of closeness we will encounter is that of a topology on a set.

This makes the set into a topological space and many of the most important properties

of functions and the spaces they live on can be captured with this structure. However,

this notion is sometimes too broad and unwieldy and so we will oftentimes work with the

more rigid and numerical notion of a metric also known as a distance function. Every

metric space is a topological space but not necessarily the other way around. Moreover,

two nonequivalent metrics can produce the same underlying topology. Sitting halfway

between these two concepts is the less common notion of a uniform space. Every metric

space induces a uniform structure, and every uniform structure induces a topology. Once

again, two distinct metrics can produce identical uniform structures and two distinct

uniform structures can produce identical topologies. Though it is good to be aware of

the existence of uniform spaces, we will only explicitly focus on topological spaces and

metric spaces.

3.1 Topological Spaces

We shall quickly review some fundamental definitions and results in elementary topology.

Virtually all that will be described in this section can be found in standard textbooks on

topology such as [36, 58, 29].

In the Euclidean space Rn, the set of all open sets exhibits some notable properties:

(i) ∅ and Rn are open sets, (ii) the union of arbitrarily many open sets is open, and (iii)

the intersection of finitely many open sets is open. These collections of open sets of Rn

is known as the Euclidean topology. Abstracting these three simple properties leads to

the abstract notion of a topology for a set X. Specifically, given a set X, a topology

on X is a collection of subsets τ ⊆ 2X such that:

(i) Both ∅ and X are members of τ .

(ii) Any union of elements of τ , is itself an element of τ .
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(iii) Any intersection of finitely many elements of τ , is itself an element of τ .

The pair (X, τ) is called a topological space. When the topology τ is understood from

context, we often refer to simply X as the topological space. Surprisingly, a great deal

of useful concepts can be built from these three humble axioms.

Given two topologies τ1 and τ2 on X such that τ1 ⊆ τ2, we say that τ1 is coarser

than τ2, and conversely, we say that τ2 is finer than τ1. The finest possible topology on a

set X is the power set 2X and the coarsest possible topology is {∅, X}. These are called

the discrete topology and indiscrete topology respectively.

For a given topology τ on X, we refer to the elements of τ as the open sets of X.

An open neighborhood of a point p ∈ X is an open set U such that p ∈ U . Note that

a set A ⊆ X may be open with respect to one topology but not another. Alternatively,

the closed sets of X are the complements of open sets, i.e. they are precisely the sets

which can be written as U c := X \ U for an open set U . Note, that it is possible for a

set to be both open and closed, in which case they are called clopen. Similarly, it is

possible for a set to be neither open or closed.

The closure of a set A is defined to be the smallest1 closed set containing A and

is denoted by A. The set A is equivalently the set of all points p ∈ X which have the

property that every open neighborhood of p contains a point of A. On the other hand, a

point p ∈ A which has an open neighborhood U ⊆ X such that U ∩A = {p} is called an

isolated point of A. A space without isolated points is necessarily infinite. If a set A

is such that A = X then we say that A is dense in X. If X contains a countable dense

set, then we say that X is separable (e.g. Q is dense in R in the Euclidean topology

and hence R is separable).

A function f : X → Y between two topological spaces is said to be continuous if the

inverse image of open sets is open i.e. f−1(B) is open in X whenever B is an open subset

1This set always exists because one can just take the intersection of all closed sets containing A, and
by the axioms this will also be a closed set.
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of Y . This coincides with the usual notion of continuity for functions f : Rn → Rm. An

immediate consequence of this definition is that if we have functions f : X → Y and

g : Y → Z where and both f and g are continuous, then the composition g ◦ f : X → Z

is also continuous. A function f : X → Y is a homeomorphism if it is a continuous

bijection whose inverse function f−1 : Y → X is also continuous. We say two topological

spaces are homeomorphic if there exists a homeomorphism between them. For all

intents and purposes, two homeomorphic spaces are the same in the eyes of topology.

Given a family of functions fi : X → Yi for i ∈ I where all Yi are topological spaces, it

is natural to ask if one can choose a topology on X so that all fi are continuous. Indeed,

it is possible to create the coarsest such topology by constructing the set of all possible

finite intersections and arbitrary unions that can be made from the sets fi(U) where i ∈ I

and U ⊆ Yi is open. This topology is called the initial topology (or weak topology) for

the family of functions {fi}i∈I .

Two important examples of initial topologies are the subspace topology and the prod-

uct topology. Given a topological space X and a subset A ⊆ X, there is a natural inclu-

sion map i : A→ X given by i(a) = a. The subspace topology on A induced from X

is the initial topology with respect to i : A → X. Now consider a family of topological

spaces Xi for i ∈ I and their Cartesian product X = Πi∈IXi. The initial topology on X

with respect to the i-th coordinate projection maps πi : X → Xi given by πi(x) = xi is

called the product topology on X = Πi∈IXi.

Two very important properties when studying general topological spaces are the Haus-

dorff property and compactness. A topological space X is said to be Hausdorff if for

any two arbitrary distinct points x, y ∈ X there exists open neighborhoods x ∈ Ux and

y ∈ Uy such that Ux∩Uy = ∅.2 We say A ⊆ X is compact if for every collection of open

sets {Ui}i∈I such that A ⊆
⋃
i∈I Ui (such collections are called open covers of A), there

2A popular mneumonic for this property is that “a space is Hausdorff if any two distinct points can
be ‘housed-off’ by open sets.”
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exists a finite subset of indices {i1, . . . , in} ⊆ I such that A ⊆ Ui1 ∪ . . . ∪ Uin .3 We say a

topological space X is compact if it is compact as a subset of itself. As an example, finite

subsets are always compact and moreover, in a Hausdorff space finite sets are always

closed. As a further example, Euclidean spaces are always Hausdorff, and a subset A

of Euclidean space is compact iff it is closed and bounded (Heine-Borel theorem). Both

compactness and the Hausdorff property are invariant under homeomorphism.

There are many nice interplays between the above definitions. Closed subsets of

compact spaces are always compact, compact subsets of Hausdorff spaces are always

closed, and continuous images of compact spaces are always compact. If f : X → Y

is a continuous bijection from a compact space X to a Hausdorff space Y then it has

continuous inverse f−1 : Y → X and hence f is a homeomorphism. A continuous function

f : X → R where X is compact always achieves its maximum and minimum for some

points in the domain (the extreme value theorem). An arbitrary product of Hausdorff

spaces is Hausdorff. An arbitrary product of compact spaces is compact (Tychonoff’s

theorem).

There are many more concepts (e.g. nets, connectedness, local compactness, separa-

tion axioms, etc.) and results but these will be sufficient for our purposes.

3.2 Metric Spaces

Though topology provides a very general way of dealing with ‘closeness,’ it will be ad-

vantageous to introduce a more numerically-oriented analogue of this notion. The most

popular way to do this is by introducing a function which allows us to measure distances.

As usual, it will be beneficial to do this in a very general way. Thus, we intend to re-

tain just enough properties of the Euclidean distance ‖x− y‖ so as to have a powerful

3Alternatively, the compactness property is often phrased “as every open cover has a finite subcover.”
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tool, but no more properties than necessary. As with the topology section, all of what is

discussed here can be readily found in standard sources [36, 58, 29].

Let X be a set. A bivariate function d : X × X → [0,∞) is called a metric if it

satisfies the following properties for all x, y, z ∈ X:

(i) d(x, x) = 0,

(ii) d(x, y) = 0 implies x = y,

(iii) d(x, y) = d(y, x),

(iv) d(x, y) ≤ d(x, z) + d(z, x).

The pair (X, d) is called a metric space. When it is clear from context what the metric

is, we often just refer to X as the metric space. If we allow d to take values of +∞

then it is an extended metric. If we do not assume property (ii) then we have a

pseudo-metric. In particular, every metric is both a pseudo-metric and an extended

metric.

The classic example of a metric is the Euclidean metric on Rn given by d(x,y) =

‖x− y‖. This is a special case (p = 2) of the `p metrics on Rn given by

dp(x,y) = p

√√√√( n∑
i=1

|xi − yi|p
)
, p ≥ 1.

A less familiar, more general, yet simpler example of a metric is the discrete metric.

Given any nonempty set X we can define the discrete metric d : X ×X → [0,∞) by

d(x, y) = 0 iff x = y and d(x, y) = 1 iff x 6= y.

Given a metric space (X, d), we can define open balls of radius r > 0 centered at a

point x ∈ X as Br(x) = {y ∈ X | d(x, y) < r}. This lets us define the metric topology

τd by declaring a set to be open iff it is the empty set or it can be expressed as a union

of open balls. It is easy to check a metric topology is always Hausdorff. As a simple
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example, the metric topology induced by the discrete metric is the discrete topology. The

analogous construction for a pseudo-metric d is Hausdorff iff d is a metric.

We can turn a subset A of metric space (X, d) into a metric space in its own right

by simply restricting the domain of the metric to A × A, i.e. equip A with the metric

dA := d|A×A : A × A → [0,∞). As one would hope, the subspace topology induced on

A by the metric topology of (X, d) and the metric topology on A given by the restricted

metric dA are actually one and the same.

Now we will consider functions f : X → Y between metric spaces (X, dX) and (Y, dY ).

Using the metric topology, we can determine whether such a function is continuous.

However, in the context of metric spaces, we can be even more precise and give a local

notion of continuity. We say the function f : X → Y is continuous at x0 ∈ X if

(∀ε > 0) (∃δ > 0) (∀y ∈ X) dX(x0, y) < δ =⇒ dY (f(x0), f(y)) < ε.

As one would hope, it turns out that f : X → Y being continuous in the topological

sense is equivalent to f : X → Y being continuous at every x ∈ X. That is, f : X → Y

is continuous iff

(∀x ∈ X) (∀ε > 0) (∃δ > 0) (∀y ∈ X) dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε.

With metric spaces, we can also introduce a more stringent notion of continuity known

as uniform continuity. A function f : X → Y is defined to be uniformly continuous if

(∀ε > 0) (∃δ > 0) (∀x, y ∈ X) dX(x, y) < δ =⇒ dY (f(x), f(y)) < ε.

Note that in the definition of uniform continuity that the ‘∀x ∈ X’ has been moved to the

inside and now occurs after ‘∃δ > 0’. This means that the choice of δ can no longer depend

on x (as was allowed in the definition of metric continuity) and can now only depend

on the choice of ε, i.e. the choice of δ must work uniformly across all of X for a given

ε > 0. Like with topological continuity, if we have three metric spaces (X, dX), (Y, dY ),
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and (Z, dZ) and uniformly continuous functions f : X → Y and g : Y → Z then the

composition g◦f : X → Z is also uniformly continuous. Also, if f : X → Y is continuous

mapping from a compact metric space to a metric space, then f is uniformly continuous.

Another important class of functions worth reviewing are the Lipschitz function. We

say a function f : X → Y between metrics spaces (X, dX) and (Y, dY ) is K-Lipschitz

for K ≥ 0 if for all x, y ∈ X we have

dY (f(x), f(y)) ≤ KdX(x, y).

We say f is a Lipschitz function so long as there exists some K ≥ 0 for which f is K-

Lipschitz. Intuitively the above formula means a K-Lipschitz function can only expand

the distance between points x, y ∈ X by at most a factor of K. A 0-Lipschitz function is

necessarily constant, and a 1-Lipschitz function is sometimes called a non-expanding

map or a short map. If f is K-Lipschitz with K < 1 then f is called a contraction

mapping. We use LipK(X, Y ) to denote the set of all K-Lipschitz maps from X to Y

and Lip(X, Y ) :=
⋃
K≥0 LipK(X, Y ). If Y = R with the Euclidean metric, we use the

simpler notation LipK(X) and Lip(X). In these notations, the metrics on X and Y need

to be declared or understood from context. It is easy to check that if f ∈ LipK(X, Y )

and g ∈ LipL(Y, Z) then g ◦ f ∈ LipLK(X,Z).

Finally, a function f : X → Y between metric spaces (X, dX) and (Y, dY ) is an

isometry if for all x, y ∈ X we have

dY (f(x), f(y)) = dX(x, y).

By definition, an isometry is always an injective map because if f(x) = f(y) = 0 then

0 = dY (f(x), f(y)) = dX(x, y) and so x = y. On the other hand a surjective isometry

has an inverse function which is also an isometry – such maps are called isometric

isomorphisms. Note that an isometry is always in Lip1(X, Y ) but the converse is not

true. However, if f ∈ Lip1(X, Y ) is bijective with f−1 ∈ Lip1(Y,X) then f is an isometric
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isomorphism.

Like in Euclidean space, it is possible to define the notion of a limit of a sequence for

a general metric space (X, d). Given a sequence of points {xm}m∈N ⊆ X, we say that

limm→∞ xm = x if for all ε > 0 there exists an N ∈ N such that for all n ≥ N we have

that xn ∈ Bε(x). In this case we say x is the limit of the sequence xm as m goes to

∞. If there does not exist an x ∈ X so that limm→∞ xm = x, we say the sequence does

not converge. We say a sequence {xm}m∈N ⊆ X is a Cauchy sequence if for all ε > 0

there exists an N ∈ N such that for all n,m ≥ N we have d(xn, xm) < ε. In other words,

a sequence is Cauchy if the elements of the sequence get arbitrarily close to each other

when we go deep enough into the sequence.

In Euclidean space Cauchy sequences always converge, but this is not true for general

metric spaces. For example, in the metric space (Q, d) where d(x, y) = |x− y| the

sequence x0 = 3, x1 = 3.1, x2 = 3.14, . . . given by the decimal truncations of π is a

Cauchy sequence in Q, but it definitely does not converge to any member of Q since π

is irrational. This can be remedied by a construction known as the completion of a

metric space. Essentially what is done is that additional points are added to the metric

space in order to fill in the gaps so that every Cauchy sequence converges. This is done

in a minimalistic and universal way which we will not detail here (see any of the standard

references that were provided for the details). We will denote the completion of a metric

space (X, d) by (X, d). As an example, R is the metric completion of Q with respect

to the Euclidean metric (and with the `p metrics as well). Note that we also use A to

denote the closure of A ⊆ X, but this will rarely lead to confusion when working with

metric spaces since it turns out that the closure of a subset of a complete metric space

(X, d) is isometrically isomorphic to the metric completion of that subset. In particular,

for a complete metric space, a subset A is closed iff it is complete. Another nice property

of the completion is that if f : X → Y is uniformly continuous then it uniquely extends

to the completion, i.e. there exists a unique continuous function f : X → Y such that
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f |X = f . A very useful property is that a compact metric space is always complete.4

Lastly, it is worth a word of warning to point out that a complete metric space can

be homeomorphic to an incomplete metric space. The classic example is that the open

interval (−π
2
, π

2
) ⊆ R is homeomorphic to all of R via f(x) = arctan(x). The latter is

a complete metric space, but the former is not as it is not even closed. However, if two

metric spaces are isometrically isomorphic then they are either both complete or both

incomplete. That is to say, completeness is not a topological property, but a metric

property.

3.3 Functional Analysis

The material in this section can be found among many standard books on measure theory

and functional analysis such as [46, 45, 56]. For a deeper comprehensive dive into these

subjects we refer the reader to [5] for topological vector spaces and [3, 4] for measure

theory. From now on, we will only use the real numbers R as our scalars unless otherwise

specified (i.e. not C) and in this section in particular, we will only consider real-valued

functions (i.e. not vector-valued) for our function spaces unless otherwise stated.

A normed vector space is a vector space V equipped with a function ‖·‖ : V →

[0,∞) called a norm which has the properties that for all α ∈ R and x ∈ V we have,

(i) ‖x‖ = 0 iff x = 0, (ii) ‖αx‖ = |α| ‖x‖, (iii) ‖x+ y‖ ≤ ‖x‖+ ‖y‖.

The norm induces a natural distance function on V given by d(x, y) = ‖x− y‖ which

turns V into a metric space. A Banach space is a normed vector space which is a

complete metric space with respect to the above induced distance function. For simple

4In fact, more can be said. A metric space is compact iff it is complete and totally bounded. This is
a generalization of the Heine-Borel theorem for Euclidean space.
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examples, the `p norms on Rn given by

‖v‖p =


(∑k

j=1 |vj|
p
) 1
p

1 ≤ p <∞,

max{|v1| , . . . , |vk|} p =∞.

all turn Rn into a Banach space. If we try to extend the concept to p < 1, then ‖·‖p is no

longer even a norm. Whenever context is clear that we are working in Euclidean space,

we will frequently omit the subscript in ‖·‖2 and simply write ‖·‖.

Function spaces also provide a rich source of examples for functional analysis. We say

a real-valued function f is bounded if there exists an R such that |f(x)| ≤ R everywhere.

Let B(A) be the set of bounded functions on a set A, let C(X) be the set of continuous

functions on a topological space X, and let U(M) be the uniformly continuous functions

on a metric space (M,d). Additionally, we can define the bounded versions of these

functions spaces as Cb(X) = C(X) ∩ B(X) and Ub(M) = U(M) ∩ B(M).

We can equip the space of bounded functions B(A) with the supremum norm

‖f‖∞,A = sup
a∈A
|f(a)| ,

and if the domain is understood we just write ‖f‖∞. This in turn defines the uniform

distance d∞(f, g) = ‖f − g‖∞. This makes all the bounded families Ub(M), Cb(X),B(A)

into Banach spaces. We can equip the other spaces with |||·||| as well but we may obtain

infinite-values and hence we will not have a true norm in general, but at least this will

induce a topology on these spaces since then d∞ is an extended metric. Conveniently, if

X is compact then C(X) = Cb(X), and similarly, if M has compact metric completion

then U(M) = Ub(M).

A key concept we will be using throughout the later chapters is the uniform closure

of a family of real-valued functions S. This is just the closure in the topology given

by the uniform distance. Equivalently, the uniform closure of S is just the set of all

functions which can be uniformly approximated via members of the family S. That is to
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say, f is in the uniform closure of S iff there exists a sequence of functions fn ∈ S such

that d∞(fn, f) → 0. Thus, the question of which functions a family of R-valued neural

network can uniformly approximate and which functions it cannot uniformly approximate

is completely answered by determining that family’s uniform closure. From this point of

view, we can see that the classical UAT in Theorem 2.1 is telling us about the uniform

closure of the family of single hidden layer neural networks under consideration.

A famous and far-reaching result known as the Stone-Weierstrass theorem gives us

sufficient conditions for determining when a family of continuous functions S ⊆ C(Ω) has

uniform closure S = C(Ω). To state the theorem, we will need to introduce the concept

of a unital algebra and what it means for a family of functions to separate points. A

collection S ⊆ C(Ω) is a unital subalgebra of C(Ω) if it contains the constant 1 function

(unital) and is both closed under linear combinations point-wise products (algebra). A

collection of real-valued functions S on Ω is said to separate points of Ω if for all

x, y ∈ X where x 6= y there exists an f ∈ S such that f(x) 6= f(y). With these notions

in place the theorem is as follows.

Theorem 3.1 (Stone-Weierstrass). Let Ω be a compact Hausdorff space and S ⊆ C(Ω)

a unital subalgebra. Then S = C(Ω) iff S separates points.

Next, we will also need to go beyond real-valued functions and consider spaces of

measures on Ω. To do this carefully would require a great deal of exposition and a

slew of technical definitions (σ-algebra, measures, Lebesgue integration, regularity, etc.)

so instead we will only convey the key ideas here. The interested reader may to the

references mentioned at the beginning of this section.

Intuitively, given a set X, a measure µ on X is just a way to assign a “size” to subsets

of X that play well with basic set operations. For example, if A,B ⊆ X and A∩B = ∅

we would expect that µ(A ∪ B) = µ(A) + µ(B) and that µ(∅) = 0. A cumbersome

technicality that occurs in the process of defining a measure is that we need to declare

which subsets are “measurable.”
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Fortunately for our purposes in which we deal (Ω, τ) compact Hausdorff, we will

only need to involve the space of finite signed regular Borel measures M(Ω).5 Though

the laundry list of adjective may make M(Ω) seem like an extremely esoteric collection

mathematical objects, it turns out that all those conditions on the measures allow us to

see M(Ω) as a sort of mirror-image of the space C(Ω). Specifically, the famous Riesz-

Markov theorem tells us that M(Ω) is the topological dual space of C(Ω), i.e. M(Ω)

can be thought of as the space of all continuous linear functionals6 on C(Ω). The way

an element µ ∈M(Ω) acts as a linear functional on C(Ω) is via integration. Specifically,

given a µ ∈ M(Ω) and an f ∈ C(Ω), they act on each other via (Lebesgue7) integration

like so,

〈µ, f〉 :=

∫
Ω

f dµ.

This is sometimes called the duality pairing. The Riesz-Markov theorem also ensures

us that if we concoct a continuous linear functional L : C(Ω) → R then there will

exist a µ ∈ M(Ω) such that L(f) =
∫

Ω
f dµ. Thus, whenever in doubt as to what the

members ofM(X) are like, one can without loss of generality think of them as continuous

linear functionals. The simplest such continuous linear functional is the evaluation map

C(Ω) 3 f 7→ f(a). By Riesz-Markov theorem we know there is an associated measure we

can use to represent the evaluation map, and it is the Dirac delta measure δa ∈ M(Ω).

As a measure, the Dirac delta δa ∈M(Ω) also has a very simple definition given by

δa(A) =


1 if a ∈ A,

0 if a /∈ A,

where A is any Borel set.8

5These are sometimes known as Radon measures.
6A functional is just scalar valued map. A linear functional is just a linear scalar-valued map. The

scalar here being R.
7The definition of Lebesgue integration is crucial for this to work out correctly but is very technical,

so we leave that to the references.
8We won’t delve into the precise meaning, but know that every open and closed set is a Borel set.
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A Borel probability measure on our compact Hausdorff space (Ω, τ) is a member

µ ∈ M(Ω) such that µ(A) ≥ 0 for all Borel sets A and
∫

Ω
dµ = 1. That is to say, µ is

non-negative everywhere and has total mass 1. The set of all Borel probability measures

on (Ω, τ) is denoted by P(Ω).

One thing that M(Ω) is missing is a topology. We can give it a metric topology

by using the so-called total variation distance dTV , but this is not the best path for us.

Our preferred topology is the weak-* topology. The weak-* topology on M(Ω) is the

coarsest topology on M(Ω) that ensures all the linear functionals 〈−, f〉 : M(Ω) → R

are continuous. In other words, the weak-* topology is the initial topology with respect

to the family of functions {〈−, f〉 | f ∈ C(Ω)}.

One great benefit of the weak-* topology is that every closed and bounded set inM(Ω)

will be compact. This ultimately implies that P(Ω) is compact since Ω is compact. On

the other hand, if we used the total variation distance dTV we would find that not even

the closed unit ball would be compact. Another benefit of the weak-* topology is that if

the sequence an ∈ Ω converges to a ∈ Ω then δan converges to δa as expected. On the

other hand, the total variation distance has dTV (δa, δb) = 2 for all a 6= b. From this we

see that the weak-* topology actually respects the underlying topology of Ω.

And the countable union/intersection or complements of Borel sets are also Borel. And so on.
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Chapter 4

Spaces of Finite Subsets

Let F(Ω) denote the set of nonempty finite subsets of a set Ω. If Ω has a topological (or

metric) structure, it would be ideal to find a topological (or metric) structure for F(Ω).

There is more than one way to do this and, perhaps somewhat surprisingly, there is more

than one useful choice.

We will be focusing on equipping the space F(Ω) in its entirety with a metrics that are

compatible with the underlying metric space (Ω, d). For an interesting purely topological

approach to the bounded cardinality subset spaces of the unit circle F≤k(S1) see [52].

4.1 Set of Subsets and the Discrete Metric

As a first example, we show that for any set Ω it is possible to endow the power set

2Ω with a metric structure in a trivial way. This can be done via the discrete metric

d : 2Ω × 2Ω → [0,∞) given by

d2Ω(A,B) =


1 if A 6= B,

0 if A = B.

It is clear this is a metric. Notably, we did not require Ω to have a topology before

defining this metric. Thus, when Ω comes with a topology we are left in an undesirable
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position since we would like closeness of points in Ω to translate to notions of closeness

in F(Ω) ⊆ 2Ω. Indeed if Ω came equipped with a metric d, the only time d2Ω({x}, {y}) =

d(x, y) is when d is itself the discrete metric on Ω. Thus, outside of this special case, this

approach to metrizing F(Ω) will mainly serve as low-hanging trivial example.

4.2 Compact Subsets and the Hausdorff Metric

Let K(Ω) denote the set of all nonempty compact subsets of a space Ω. A singleton set

{x} is automatically compact in any topological space and so F(Ω) ⊆ K(Ω). Formally

we will denote this inclusion map by iK : F(Ω)→ K(Ω).

When working with a metric space (Ω, d) it is possible to metrize K(Ω) in a useful

way. The Hausdorff metric (not to be confused with the Hausdorff property) is a

metric dH on K(Ω) which can be expressed in many different ways. The most useful

version for us will be

dH(A,B) = inf {ε ≥ 0 | A ⊆ Bε, B ⊆ Aε}

where Aε =
⋃
a∈A {x ∈ Ω | d(x, a) ≤ ε} is the ε-fattening of A (the set of points within

ε of A). In plain terms, dH(A,B) ≤ ε if and only if the ε-fattening of A is large enough

to completely engulf B and the ε-fattening of B is large enough to completely engulf A.

Minimizing the choice of ε ≥ 0 which satisfy the mutually-engulfing criteria leads us at

the Hausdorff distance. See Fig. 4.1 for an example of this concept.

To each compact set A ∈ K(Ω), there corresponds a well-defined distance functional

d(A,−) : Ω → R given by d(A, x) = mina∈A d(A, x) (the minimizer exists due to com-

pactness of A). It turns out that by comparing distance functionals via the uniform

distance, we can arrive at the following equivalent formulation of the Hausdorff metric,

dH(A,B) = sup
q∈Ω

∣∣d(A, q)− d(B, q)
∣∣.
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Figure 4.1: On the left we have two compact sets, the finite collection of orange points
A, and the green region B. On the right we show two ε-fattenings for ε = 0.4. In this
example, the fattening A0.4 contains B and the fattening B0.4 contains A. Thus, ε = 0.4
satisfies the mutual engulfment criteria and so we know that dH(A,B) ≤ 0.4. To find
the exact value of dH(A,B) we would need to take the infimum over all valid ε.

(example 4.13 in [43]). For some other alternative formulas and additional background

refer to [36, 34, 2, 43].

The following are some well-known remarkable properties of the Hausdorff metric that

we shall need.1

Theorem 4.1. If (Ω, d) is compact, then so is (K(Ω), dH). Moreover, F(Ω) forms a

dense subset of K(Ω) i.e. every compact set can be dH-approximated by finite sets.

Proof. See [24] for why (Ω, d) compact implies (K(Ω), dH) is compact. For density of

F(Ω), consider an arbitrary compact set A and let ε > 0 be arbitrary. Note that U =

{Bε(x) | x ∈ A} is an open cover of A. By compactness there’s a finite subcover V =

1The topology induced on K(Ω) by dH depends only on the topology of (Ω, d) and not on the choice
of metric d. Indeed, we could have proceeded without metrics at all and used the topology of Ω to
directly define the topology of K(Ω). This topology is called the Vietoris topology [34]. However, metric
spaces are sufficient generality for the work in this thesis, so we take advantage of its existence.
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Figure 4.2: Given the finite set A ⊆ R2 on the left, we can create its empirical measure
µA = 1

|A|
∑

a∈A δa on the right. Conversely, we can get A from µA by taking the support.

{Bε1(x1), . . . , Bεn(xn)}. Thus the set of centers of these balls B = {x1, . . . , xn} are

within ε of every point of A i.e. A ⊆ Bε. Because B ⊆ A we also have B ⊆ Aε. Thus

dH(A,B) < ε and B ∈ F(Ω). Since ε was arbitrary, F(Ω) is dense in K(Ω).

4.3 Probability Measures and the Wasserstein Met-

ric

Let (Ω, d) be a compact metric space and P(Ω) its set of Borel probability measures.

One natural probability measure that we always have available is the Dirac delta at x

given by

δx(A) =


0 x /∈ A

1 x ∈ A
.

This measure can also be seen as an evaluation map, since for f ∈ C(Ω) we have

EX∼δx [f(X)] =

∫
Ω

f(ω) dδx(ω) = f(x).

The Dirac delta provides us a way to associate to any {x} ∈ F(Ω) a unique probability

measure. We can extend this idea to F(Ω) by using the concept of an empirical mea-

sure. Namely, to each A ∈ F(Ω) we associate the empirical measure µA := 1
|A|
∑

a∈A δa

(see Fig. 4.2). Formally, we denote this mapping by iP : F(Ω) → P(Ω). Since the map

iP is injective, any topology or metric on P(Ω) will induce such a structure on F(Ω)
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A useful metric we can place on P(Ω) is the 1-Wasserstein metric or simply the

Wasserstein metric for short. It can be given via the Kantorovich-Rubinstein formula

dW (µ, ν) = sup
f :M→R

1-Lipschitz

∣∣∣∣∫
M

f dµ−
∫
M

f dν

∣∣∣∣ = sup
f :M→R

1-Lipschitz

∣∣∣∣EX∼µ[f(X)]− EX∼ν [f(X)]

∣∣∣∣
This is not the only way to express this metric. Indeed, a common alternative definition

in terms of transport plans and couplings can be extended to give the p-Wasserstein

(the “primal formulation”). When expressed that way, it is a bit easier to understand

what Wasserstein metrics are measuring (see Fig. 4.3). For further details and theoretical

properties of these metrics see one of [53, 48] and for a reference with a more computation

perspective see [38].

Figure 4.3: In general, the 1-Wasserstein distance dW (µ, ν) represents the minimum effort
it would take to reshape the distribution µ into the shape of the distribution ν. For this
reason, it is also often called the “earth mover’s distance.”

One important property of the Wasserstein metric on P(Ω) is that it metrizes the

weak-* convergence of probability measures. That is to say that, that for a compact

metric space (Ω, d), that dW (µn, µ) → 0 iff
∫
f dµn →

∫
f dµ for all f ∈ C(Ω). And so,

like in the case of dH , the topology induced on P(Ω) by dW depends only on the topology

of (Ω, d) and not on the choice of metric d.

Finally, another parallel to dH is the following key property of dW :

Theorem 4.2. If (Ω, d) is compact, then so is (P(Ω), dH). Moreover, iP(F(Ω)) is dense

in P(Ω) i.e. every probability measure can be dW -approximated by empirical measures.
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Proof. The first part follows from the Riesz-Markov Theorem and Banach-Aloaglu. For

the second part see Theorem 11.4.1 of [13].

4.4 Signed Measures and Weak-* Topology

Once again we let (Ω, d) be a compact metric space. Another way to induce a topology

on F(Ω) using measure theory is to embed it not into P(Ω), but into the larger superset

space M(Ω). We do this via the mapping iM(A) : F(Ω) → M(Ω) given by iM(A) =

µA :=
∑

a∈A δa. The key difference here between iP and iM is of course the absence of

the cardinality-dependent normalization factor. Though this difference seems small, it

has a dramatic effect on the topology of F(Ω).

As mentioned in Section 3.3, it is preferrable to use the weak-* topology over the

total variation norm topology on M(Ω). If we chose to use the total variation norm

topology instead, then the induced topology on F(Ω) would actually be the discrete

topology, which of course can be metrized with the discrete metric. As we mentioned in

Section 4.1, this is undesirable unless the underlying metric space (Ω, d) was already a

discrete space. On the other hand, using the weak-* topology actually ensures that the

singleton space F1(Ω) actually is homeomorphic Ω itself.

Unfortunately, it is only possible to metrize the weak-* topology on all ofM(Ω) when

Ω is a finite set. One thing that may help, is noticing the µA = 1
|A|µ

A. Indeed, if |A| = k

then µA lies in the sphere of radius k (with respect to the total variation distance). This

suggests the following piecewise definition:

dM(µA, µB) =


|A| dW (µA, µB) if |A| = |B| ,

∞ otherwise.

This turns out to be an extended metric on iM(F(Ω)). It is clear that for fixed cardinality

k, this is just a multiple of dW and so it creates the same topology on Fk(Ω), namely
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the induced weak-* topology. Though ad-hoc extended metric naturally shares some

similarities with the Wasserstein metric, it naturally has some important differences. One

the most important differences is that for infinite Ω, neither iM(F(Ω)) or its completion

are compact. An intuitive reason why is that we can create a sequence of sets Ak with

|Ak| = k and see that dM(µAm , µAn) = ∞ for all m 6= n. This would be impossible in

metric space with compact completion.

4.5 Metrizing F(Ω)

The injective maps iK : F(Ω)→ K(Ω) and iP : F(Ω)→ P(Ω) allow us to induce the dH

and dW metrics on F(Ω). Similarly, the injective map iM : F(Ω)→M(Ω) let us induce

an extended metric on F(Ω). By a slight abuse of notation, we will interpret dW and dM

on F(Ω) as

dW (A,B) = dW (µA, µB), dM(A,B) = dM(µA, µB).

Note dH(A,B) already makes sense.

We will denote the (extended) metrized versions of F(Ω) by FH(Ω), FW (Ω), and

FM(Ω) and similarly we use the same subscript convention for the bounded cardinality

spaces F≤k(Ω),Fk(Ω) ⊆ F(Ω).
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Chapter 5

Extending the Universal

Approximation Theorem

5.1 Revisiting the Classical UAT

In this chapter we will generalize the classical UAT in various directions. To do so we will

need to generalize the idea of a neural network to allow for inputs which are not finite-

dimensional Euclidean vectors. We do this in a very general way, allowing us to apply the

neural network framework whenever we have a input space X (possibly without topology)

and are provided a collection of real-valued functions S which lets us extract features.

The family of functions S may itself be comprised of some kind of neural network as in

Point Cloud UAT (Theorem 7.2).

To the lay the foundation for this chapter, we will introduce a series of notations to

help us describe the families of functions we care about in a compact way.

5.2 Notation for Constructing Families of Functions

In this section we naturally generalize the notion of a neural network to arbitrary input

domains and introduce some notation to help study the various classes of neural networks
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that result.

Composition of families: For two collections of functions A and B, we use A ◦ B

to denote the set of all well-defined composite functions i.e. functions of the form f ◦ g

where f ∈ A and g ∈ B. If f ∈ A and g ∈ B cannot be composed (due to incompatibility

of their domain and codomains) then f ◦ g does not make sense and will not appear in

A ◦ B. For singleton sets such as A = {σ} we can write σ ◦ B instead of A ◦ B.

Sum of families: If A and B are families of functions with common domain X, then

we let A+B := {f + g | f ∈ A, g ∈ B}. For singleton sets such as A = {f} we can write

f+B instead of A+B. We also may interpret R itself as a family of constant functions so

that when A is a family of R-valued functions we have A+ R = {f + c | f ∈ A, c ∈ R}.

Powers of families: If A is a family of functions with common domain X, we use

An to denote set of maps of the form f(x) = (f1(x), . . . , fn(x)) where fi ∈ A. We use

A• to denote A• :=
⋃∞
n=1An. In particular, if A is a family of R-valued functions, then

A• is the set of all functions from X to some Euclidean space where every component

function belongs to A.

Linear span of a family: If A is a family of R-valued functions on X, then we

use spanA to denote the set of all finite linear combinations i.e. functions of the form∑n
i=1 aifi for fi ∈ A. Note that trivially A ⊆ spanA and if all members of A are

continuous, the same is true for spanA.

Algebra generated by a family: If A is a family of R-valued functions on X, then

we use Alg(A) to denote the R-algebra generated by A i.e. the set of all functions that

can be obtained via finitely many applications of multiplication, scalar multiplication,

and addition of elements of A and R. Equivalently, Alg(A) is the set of all R-valued

functions that can be written as p(f1, . . . , fn) for some multivariate polynomial p and

where all fi ∈ A. In particular, note that R ⊆ Alg(A) and A ⊆ spanA ⊆ Alg(A).

Additionally, if all members of A are continuous, the same is true for Alg(A).
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5.3 Generalized Neural Networks

Using these tools, we can describe certain families of neural networks with concise no-

tation. For the purposes of studying expressivity and function approximation, we shall

consider two neural networks to be equivalent if they represent the same underlying

function even if they have distinct architectures (computation graph).

Simple σ-networks: A simple σ-network is any single hidden-layer neural network

with 1D linear output-layer and activation function σ i.e. any network of the form

f(x) =
∑n

i=1 aiσ(wi · x + bi). The set of all simple σ-networks is denoted by N σ and

the ones with input dimension n by N σ
n . Note that both of these cases only contain

scalar-valued networks but they can be of arbitrarily large width.

Though we will not be focusing on these as much, to define deeper neural network

classes we do the following. The ` hidden layer networks on Rn are denoted by N σ
n where

σ = (σ1, . . . , σ`) is a list of `-many activation functions where σ1 is the activation for the

first hidden layer, σ2 the activation for the second hidden layer, and so on. Formally,

the family of neural networks Rn with (`+ 1) hidden-layers can be expressed recursively

by N (σ1,...,σ`,σ`+1)
n := span(σ`+1 ◦ N (σ1,...,σ`)). If we have activations σ = (σ1, . . . , σ`) and

another activation τ , we can also use the shorthand (σ, τ) := (σ1, . . . , σ`, τ).

Finally, we note here that Leshno et al.’s classical UAT can be reformulated with this

notation as follows:

Theorem 5.1 (Classical UAT rephrased). Let Ω ⊆ Rn be compact and σ ∈ C(R). Then,

the uniform closure of N σ
n is C(Ω) iff σ is not a polynomial.

Generalized neural networks: To adapt the notion of neural networks to more

general domains than Euclidean space we need ways of producing real numbers for each

possible input. Let S be a family of R-valued functions on a set X. Then we define

N σ(S) := N σ ◦S•. Similarly, deeper analogues are denoted by N σ(S) := N σ ◦S•. More

concretely, F ∈ N σ(S) if and only if we can write F = η ◦ (f1, . . . , fn) for η ∈ N σ and
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Figure 5.1: A schematic example of a deep generalized neural network. For an input
x ∈ X, the functions fi ∈ S produce real features fi(x) (blue) which are then fed as
inputs into a classical deep neural network (black).

all fi ∈ S. See Fig. 5.1 for an example.

5.4 Topological UAT

In [32], Leshno et al. prove that N σ
n with σ ∈ C(R) has universal approximation property

iff σ is not a polynomial. Using this theorem and Stone-Weierstrass we prove a UAT

for generalized neural networks on an abstract compact Hausdorff space. Though we

independently arrived at this theorem, we later discovered this result was essentially

proven by Stinchcombe in [50] (Theorem 5.1) for a different context. However, our

approach is slightly different and so we provide a detailed proof here for completeness

and the benefit of the reader.

Recall that a family of functions S on Ω separates points if for any x 6= y there is an

f ∈ S so that f(x) 6= f(y).

Theorem 5.2 (Topological-UAT). Let X be compact Hausdorff and σ ∈ C(R) non-

polynomial. If S ⊆ C(X) separates points, then the uniform closure of N σ(S) is C(X).

Proof. Let X, S, and σ satisfy the above. Let Alg(S) denote the R-algebra generated

by S. Then Alg(S) is unital subalgebra of C(X) that separates points. By the Stone-
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Weierstrass theorem Alg(S) is dense in C(X). Now let F ∈ C(X) and ε > 0 be arbitrary.

By density there is a G ∈ Alg(S) such that |F (a)−G(a)| < ε/2 for all a ∈ X. Since

G ∈ Alg(S) there is an N -variable polynomial p and s = (s1, . . . , sN) where si ∈ S, so

that G = p◦s. Since all si ∈ C(X) and X is compact, the image s(X) ⊆ RN is compact.

By the classical UAT [32], there exists an η ∈ N σ such that |p(x)− η(x)| < ε/2 for all

x ∈ s(X). Thus, for every a ∈ X we have

|F (a)− (η ◦ s)(a)| ≤ |F (a)− p(s(a))|+ |p(s(a))− η(s(a))| < ε/2 + ε/2 = ε.

Since η ◦ s ∈ N σ(S) and F ∈ C(X) was arbitrary, this this means that the uniform

closure of N σ(S) contains C(X). Conversely, the uniform limit of continuous functions is

continuous and so N σ(S) can only uniformly approximate members of C(X). Thus the

uniform closure of N σ(S) is precisely C(X).

5.5 Metric UAT

Since metric spaces are automatically Hausdorff, we can use the topological-UAT when-

ever we have a compact metric space equipped with a separating family of continuous

functions. This leads to a special application of the result.

Corollary 5.3. Let (X, d) be a compact metric space and σ ∈ C(R) non-polynomial. If

S ⊆ C(X) separates points, then N σ(S) is dense in C(X). Additionally, if D ⊆ X is

dense in X, then the uniform closure of N σ(S
∣∣
D

) is U(D).

Proof. Since X is a compact metric space, it is compact Hausdorff. Since S ⊆ C(X) sep-

arates points of X, it follows that C(X) is the uniform closure of N σ(S) by Theorem 5.2.

For the second part, recall that C(X) = U(X) when X is compact. Thus S ⊆ U(X)

and N σ(S) ⊆ U(X). Restricting the domain doesn’t change this so both S
∣∣
D

and

N σ(S
∣∣
D

) = N σ(S)
∣∣
D

are subsets of U(D). By the uniform limit theorem this means

that the uniform closure of N σ(S
∣∣
D

) is a subset of U(D). For the reverse inclusion, let
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f ∈ U(D) be arbitrary. Since f ∈ U(D) and D = X, there is a unique f̃ ∈ C(X) such

that f̃
∣∣
D

= f . This f̃ can be uniformly approximated by a sequence gn ∈ N σ(X). Thus

gn
∣∣
D

is a sequence in N σ(S)
∣∣
D

= N σ(S
∣∣
D

) that uniformly approximates f on D. This

completes the reverse inclusion and so the uniform closure of N σ(S
∣∣
D

) equals U(D).

We can state this result another way. Recall that a precompact metric space is a

metric space whose metric completion is compact.

Theorem 5.4 (Metric-UAT). Let (X, d) be a precompact metric space and σ ∈ C(R)

non-polynomial. If S ⊆ C(X) extends to a separating family of continuous functions on

the completion, then the uniform closure of N σ(S) is U(X).

Proof. The completion of X is compact by definition. Apply Corollary 5.3 using the

extension of S ensured by the hypothesis.

In abstract, it is nice to have these theorems which provide sufficient conditions for

universality on precompact metric spaces. However, it would also be nice to have some

concrete examples. This amounts to finding a suitable S for N σ(S).

Since we are working with metric spaces, we are naturally blessed with a large family of

continuous functions. For any metric space X we define the family of distance functionals

with respect to A as SAd := {d(a,−) : X → R | a ∈ A}. This is always a continuous family.

Additionally, if A is dense in X then SAd separates points of X. These properties allow

us to prove the following result.

Corollary 5.5. Let (X, d) be a precompact metric space and σ ∈ C(R) non-polynomial.

Then the uniform closure of N σ(SXd ) is U(X).

Proof. Since (X, d) is precompact, its completion (X, d) is compact. The family SXd

extends to the continuous family SX
d

=
{
d(a,−) : X → R | a ∈ X

}
. By the density of X

in X, for any x, y ∈ X we can find an a ∈ X so that d(a, x) < d(x, y)/2. This means

d(a, y) > d(x, y)/2 and so d(a, x) 6= d(a, y). Thus SX
d
⊆ C(X) separates points of X and

so the uniform closure of N σ(SXd ) is U(X) by Theorem 5.4.
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Figure 5.2: A schematic example of an element of N σ(S) as used in Theorem 5.6.

Note that if X is compact itself, then U(X) = C(X) and so N σ(SXd ) can uniformly

approximate all the continuous functions.

5.6 Generalized UAT

Now we will generalize the UATs so that we no longer assume a metric or even a topology

on the input space. That is to say, we treat the domain X as merely a set.

In this setting, we shall also be provided a set of real-valued functions S on the set

X. This family of functions S will provide us a way to extract real features for any input

element fromX. From S, we can always construct the family Alg(S) by taking all possible

products and affine combinations. We always have that S ⊆ Alg(S) and typically this

inclusion will be strict leading richer ways of extracting features. Alternatively, we have

also demonstrated that one can build generalized neural networks from S and create the

class of functions N σ(S). The following theorem shows that under very mild conditions,

the latter family is equally as powerful as the former in terms of uniform approximation.

Theorem 5.6 (Set-UAT). Let S ⊆ B(X) and σ ∈ C(R) non-polynomial. Then Alg(S)

and N σ(S) have the same uniform closure.

Proof. For each f ∈ S define the compact interval If := [infx∈X f(x), supx∈X f(x)].
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These intervals are well-defined because we are given that each f ∈ S is bounded. By

Tychonoff’s theorem [36] we know that arbitrary products of compact sets are compact,

thus the so-called Tychonoff cube
∏

f∈S If is compact. Additionally, by definition of the

product topology, the coordinate projection maps πg :
∏

f∈S If → Ig are continuous.

Moreover, the family of all projection maps S̃ = {πg | g ∈ S} is a family of real-valued

bounded functions which separate points of the Tychonoff cube (since members of the

product space are completely determined by their components).

Given these properties, we can consider the function families on the compact Haus-

dorff space
∏

f∈S If given by Alg(S̃) and N σ(S̃). By the Stone-Weierstrass theorem we

have that the uniform closure of Alg(S̃) is C(
∏

f∈S If ). Similarly, by Theorem 5.2 we

have the uniform closure of N σ(S̃) is also C(
∏

f∈S If ).

Lastly, define eS : X →
∏

f∈S If as eS(x) = (f(x))f∈S i.e. the function which maps

x to the tuple whose components are the functions of S evaluated at x. Note that

g(x) = πg(eS(x)). Thus Alg(S) = Alg(S̃) ◦ eS and N σ(S) = N σ(S̃) ◦ eS. Thus, the

uniform closures of Alg(S) and N σ(S) are the same.

In essence, this result shows that when faced with an unfamiliar input space X of

unknown topology along with a collection of real-valued functions S, nothing is lost by

considering generalized neural networks in place of Alg(S), at least from the perspec-

tive of uniform approximation. Looking at this another way, this result gives us a way

to determine the uniform approximation power of generalized neural networks by in-

stead determining what Alg(S) can approximate. Since the latter family is much more

amenable to standard tools of functional analysis (e.g. Stone-Weierstrass), this can prove

to be very helpful. Indeed, if we use the set-UAT as a starting point, all the other UATs

we discussed can be derived as a special case.

It is natural to wonder, if this result could be even further generalized. In particular,

it is possible to get the same result while removing the boundedness assumption on

S? The answer is unfortunately no. To see this one need only look at the following
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counterexample. Let X = R, let S contain only the identity map id(x) = x, and let

σ(x) = max{x, 0} (the popular ReLU nonlinearity). Immediately we can check that

Alg(S) is exactly the set of all polynomials on R and that N σ(S) is comprised solely of

continuous piecewise linear functions which have only finitely many linear pieces. This is

a problem because this means the functions in N σ(S) can have at best a linear growth

rate, which is insufficient to uniformly approximate functions such as f(x) = x2 which

live in Alg(S). Thus Alg(S) and N σ(S) do not uniformly approximate the same things

on all of R.

With that avenue closed, how else could we strengthen this result? One possibility

would be to determine a converse: If Alg(S) and N σ(S) have the same uniform closure,

what can we say about σ (assuming S ⊆ B(X) and σ ∈ C(R))? Note that if activation

function σ is a polynomial, we immediately have that N σ(S) ⊆ Alg(S). However, unlike

the Leshno et al.’s classical UAT in Euclidean space, it is sometimes possible (though

not always) for Alg(S) and N σ(S) to be equally expressive even when σ is a polynomial.

As an example, let X = R and S = {σH} where σH is the Heaviside step function. It’s

easy to see that σH(x)2 = 1, and so

σH(x)n =


σH(x) n is odd,

1 n is even.

This lets us simplify any element of Alg(S) = Alg({σH}) to the form aσH + b. Now by

choosing the identity map id(x) = x as the activation function for our neural networks,

we have that N id(S) = N id({σH}) is also exactly comprised of functions of the form

aσH + b. Thus, despite id(x) being a polynomial, we have that Alg(S) and N id(S) have

the same approximation power, and in fact we even have Alg(S) = N id(S).

A key property in the above example seems to be that σH satisfies the polynomial

equation x2 − 1 = 0. Perhaps to appropriately describe the converse in general, one first

needs to understand what polynomial equations the elements of S satisfy and from there
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deduce which activation functions would yield Alg(S) = N σ(S). We will not delve into

this any further but comment that it appears that techniques from commutative algebra

or algebraic geometry may be helpful in resolving this question.
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Chapter 6

Properties of Set Pooling Networks

In this chapter we focus on understanding which functions on F(Ω) can be represented via

neural network models such as those of PointNet [40] and Deep Sets [62]. We will consider

these architectures as functions of the form F : F(Ω) → Rn and so will necessarily be

permutation-invariant and cardinality-agnostic. Such functions can be used for point

cloud regression and can be used for classification if composed with a softmax layer at

the end. Tasks such as point cloud segmentation or point cloud generation are not directly

addressed, but some of the results here may have relevance depending on architecture

details.

6.1 PointNet, DeepSets, and Normalized-DeepSets

In addition to the max-pooling of PointNet and sum-pooling of DeepSets, we also take

special interest in the case of average-pooling. For a point cloud A ∈ F(Rn), we shall

focus primarily on neural networks that have the following form,

ψmax(A) = ρ

(
max
a∈A

ϕ(a)

)
, ψave(A) = ρ

(
1

|A|
∑
a∈A

ϕ(a)

)
, ψsum(A) = ρ

(∑
a∈A

ϕ(a)

)
.

The first and last are just the invariant PointNet and DeepSets architectures respectively,

and the middle one is what we will call normalized-DeepSets.
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Here the function ϕ : Rn → Rm is applied to each point of the point cloud A

to produce features for each of them. These point-features then get aggregated by a

permutation-invariant pooling function e.g. max/ave/sum-pooling (maximums are taken

component-wise along the feature vectors). This global point cloud feature finally gets

passed to ρ : Rm → R` to produce the output (we will usually take ` = 1). In practice

we want both ρ and ϕ to be neural networks, though we may occasionally consider them

to be general functions. It may also be of interest to use some other sort of parametrized

model with learnable parameters, but we do not explore such options here.

A key consequence of using these permutation-invariant pooling functions is that they

ensure the input to ρ does not depend on the ordering of the point cloud elements. As

a result, the output of ρ and hence the whole network is also permutation-invariant.

Another consequence of this architecture design is that because the pooling operations

scale to arbitrarily large finite cardinalities, the size of the input point cloud is not

an issue. The fact that these models can accept arbitrarily large point clouds does

not mean that cardinality is ignored. In fact, it is possible for two point clouds of

drastically differing sizes two have nearly identical outputs or extremely different outputs.

Understanding how these model’s outputs vary with respect to their inputs will be one

of the key focuses of this chapter.

6.2 Refactoring and Simplifying Notation

It will help to introduce some simplifying notation. As usual we let F(Ω) denote the set

of all nonempty finite subsets of a set Ω (i.e. point clouds in Ω), and we also let F≤k(Ω)

be the set of nonempty subsets of size ≤ k, and Fk(Ω) the set of k-point subsets. For a

function f : Ω→ R we define maxf , avef , sumf : F(Ω)→ R as the set-functions given by

maxf (A) = max
a∈A

f(a), avef (A) =
1

|A|
∑
a∈A

f(a), sumf (A) =
∑
a∈A

f(a),
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respectively. We make sense of this in the natural way if we use vector-valued f by op-

erating component-wise. When convenient, we refer to these operations as max-neurons,

averaging-neurons, and sum-neurons respectively.

With these conventions, we can refactor the PointNet, normalized-DeepSets, and

DeepSets models respectively into the following concise form,

ψmax = ρ ◦maxϕ, ψave = ρ ◦ aveϕ, ψsum = ρ ◦ sumϕ.

For simplicity of notation and to avoid redundancy when the same idea works for all

three of these pooling cases, we will use pool to denote a generic pooling function such

as max, ave, and sum. Similarly, we will use poolf to stand for poolf to denote a generic

pooling function such as maxf , avef , and sumf . With this our neural network models

take on the unified notation of,

ψpool = ρ ◦ poolϕ.

Collectively, we call such architectures set pooling networks.

6.3 Stability and Limits

Looking at ψave and ψsum, it may at first seem that the use of average-pooling instead

of sum-pooling makes no difference. Indeed, this is true when cloud cardinality is fixed

since in that case the factor of |A|−1 is constant and can be absorbed into the first layer

of ρ. However, it does make a difference when cardinality is free to change.

To see this, imagine a finer and finer even sampling of the unit circle given by a

sequence of point clouds An. If we use average-pooling, then aveϕ(An) will converge to

the average value of ϕ on the circle. Similarly, if we use max-pooling then maxϕ(An)

will converge to the (component-wise) maximum of ϕ on the circle. But if we use sum-

pooling, then the components of sumϕ(An) can potentially blow-up to ±∞. This can
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pose some theoretical issues. For example, if the components of ϕ are strictly positive

functions and ρ is a non-constant linear mapping then ψsum(An) can diverge. If ρ is

oscillatory then the limit of ψsum(An) may even be undefined. As a result, the subtle

change introduced by cardinality-normalization will prove to be extremely helpful in the

ensuing analysis.

For this reason and others, the mathematical theory for the un-normalized DeepSets

model ρ ◦ sumϕ will prove difficult to treat in the same manner as the others, hence it

will get a separate treatment.

6.4 Continuity and Extensions

From now on we will assume (Ω, d) is a compact metric space and when Ω ⊆ Rn it will

be compact and equipped with the Euclidean metric. Recall from Chapter 4 that the

compactness of (Ω, d) implies that both (K(Ω), dH) and (P(Ω), dW ) are compact metric

spaces. They also contain copies of F(Ω) as dense subsets via the injective mapping

iK : F(Ω)→ P(Ω) and iP : F(Ω)→ P(Ω).

The following lemma that will show that the max-neurons, sum-neurons, and averaging-

neurons continuously extend to K(Ω),M(Ω), and P(Ω) respectively. As a result, so will

the three architectures we are studying. As a result, this will let us analyze the Point-

Net and normalized-DeepSets architectures as continuous functions on compact metric

spaces, which is mathematically a much better situation than studying them as set-

theoretic functions on an un-metrized F(Ω).

For f ∈ C(Ω), define Maxf : K(Ω) → R, Sumf :M(Ω) → R, and Avef : P(Ω) → R

as the functions given by

Maxf (K) = max
x∈K

f(x), Sumf (µ) =

∫
Ω

f dµ, Avef (µ) = Ex∼µ[f(x)]

Of course, if µ ∈ P(Ω) then Avef (µ) =
∫

Ω
f dµ = Sumf (µ) but Avef (µ) is undefined
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when µ is not a probability measure. We now prove the following lemma.

Lemma 6.1. Let (Ω, d) be compact, f ∈ C(Ω). Then

a) Maxf ∈ C(K(Ω)) and Maxf ◦ iK = maxf ,

b) Sumf ∈ C(M(Ω)) and Sumf ◦ iP = sumf ,

c) Avef ∈ C(P(Ω)) and Avef ◦ iM = avef .

As a consequence, PointNet, DeepSets, and normalized-Deepsets continuously extend

to K(Ω), M(Ω), and P(Ω) respectively. In particular, we can say that PointNet and

normalized-DeepSets are uniformly continuous on FH(Ω) and FW (Ω) respectively.

Proof. Assume (Ω, d) is compact and f ∈ C(Ω). By definition, we immediately see the

following.

a) Since iK(A) = A for all A ∈ F(Ω) we have

Maxf (iK(A)) = Maxf (A) = max
a∈A

f(a) = maxf (A).

b) By linearity of integration and the Dirac delta property
∫
f dδx = f(x) we get

Sumf (iM(A)) =

∫
f d

(∑
a∈A

δa

)
=
∑
a∈A

∫
f dδa =

∑
a∈A

f(a) = sumf (A).

c) Similarly we obtain

Avef (iP(A)) =

∫
f d

(
1

|A|
∑
a∈A

δa

)
=

1

|A|
∑
a∈A

∫
f dδa =

1

|A|
∑
a∈A

f(a) = avef (A).

The main work will be in establishing continuity of Maxf . For that case we will

appeal directly to the Hausdorff metric. For the latter two cases we appeal to the weak-*

topology.

a) Let ε > 0. Since Ω is compact, f is uniformly continuous and so there is a δ > 0 so

that |f(x)− f(y)| < ε/2 whenever d(x, y) < 2δ. Now let A,B ∈ K(Ω) and suppose
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dH(A,B) < δ. By definition this means A ⊆ Bδ and B ⊆ Aδ. So by the triangle

inequality we have

|Maxf (A)−Maxf (B)| ≤ |Maxf (A)−Maxf (Aδ)|+ |Maxf (Aδ)−Maxf (B)| .

Since Aδ is compact there is a p ∈ Aδ so that Maxf (Aδ) = f(p). Observe that if

q ∈ K ⊆ Aδ with d(p, q) < 2δ then |f(p)− f(q)| < ε/2 and f(p) = Maxf (Aδ) ≥

Maxf (K) ≥ f(q). This implies |Maxf (Aδ)−Maxf (K)| < ε/2 whenever we can

find such a q ∈ K. For K = A, note that since p ∈ Aδ there is an a ∈ A ⊆ Aδ such

that d(p, a) < δ < 2δ so, |Maxf (Aδ)−Maxf (A)| < ε/2. For K = B, note that B

is compact so there is a b ∈ B ⊆ Aδ closest to p and so,

d(p, b) ≤ dH(Aδ, B) ≤ dH(Aδ, A) + dH(A,B) < 2δ,

which means |Maxf (Aδ)−Maxf (B)| < ε/2. Thus, |Maxf (A)−Maxf (B)| < ε as

desired.

b) Recall that the topology we are using for M(Ω) is the weak-* topology for mea-

sures. Since the weak-* topology is the coarsest topology such that that all maps

µ 7→
∫
f dµ are continuous when f ∈ C(Ω), it follows that Sumf (µ) =

∫
f dµ is

continuous on M(Ω).

c) Recall that since (Ω, d) is compact that the topology induced by dW on P(Ω)

coincides with the weak-* topology (Section 4.3). Thus for the same reason as for

the previous case, we have Avef is continuous on P(Ω)

Lastly, it is clear that PointNet, DeepSets, and normalized-DeepSets continuously

extend to K(Ω), M(Ω), and P(Ω) by simply replacing maxf , sumf , and avef with their

corresponding extensions using the above. Since (Ω, d) compact implies both K(Ω) and

P(Ω) are compact, and continuous functions on compact metric spaces are uniformly

continuous, we can also deduce that PointNet and normalized-DeepSets are uniformly
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continuous on FH(Ω) and FW (Ω).

This result will be helpful in applying the UATs from Chapter 5 to our set pooling

networks.

6.5 Lipschitz Properties

By refining the continuity arguments for Maxf and Avef , we can say more. In particular,

we can deduce Lipschitz properties of these maps when f is Lipschitz. Before being able

to do so for the case of Maxf it will help to establish an analogue of the Kantorovich-

Rubinstein formula for the Hausdorff metric (for which the author could not find a

reference for in the literature).

Proposition 6.2. Let (X, d) be a metric space, and A,B ∈ K(X). Then,

dH(A,B) = sup
f :X→R

f∈Lip1(X)

∣∣Maxf (A)−Maxf (B)
∣∣

Proof. Let Dq(x) = d(x, q) and note that −Dq is 1-Lipschitz for any q ∈ X. Thus,

sup
f∈Lip1(X)

∣∣Maxf (A)−Maxf (B)
∣∣ ≥ sup

g=−Dq
q∈X

∣∣Maxg(A)−Maxg(B)
∣∣

= sup
q∈X

∣∣MinDq(A)−MinDq(B)
∣∣

= sup
q∈X

∣∣min
a∈A

d(a, q)−min
b∈B

d(b, q)
∣∣

= sup
q∈X

∣∣d(A, q)− d(B, q)
∣∣

= dH(A,B)

To show the reverse inequality, consider any f ∈ Lip1(X) and suppose without loss

of generality that Maxf (A) ≥ Maxf (B). By compactness, we know there exist an a∗ ∈ A
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and b∗ ∈ B so that f(a∗) = Maxf (A) ≥ Maxf (B) = f(b∗). This and f ∈ Lip1(X) imply

that for any b ∈ B we have

∣∣Maxf (A)−Maxf (B)
∣∣ = f(a∗)− f(b∗) ≤ f(a∗)− f(b) ≤ d(a∗, b)

Finally observe that if we replace f with the negative distance functional g = −Da∗ ∈

Lip1(X) then we can see that we have not decreased the absolute difference,

∣∣Maxg(A)−Maxg(B)
∣∣ =

∣∣MinDa∗ (A)−MinDa∗ (B)
∣∣ ≥ |0− d(a∗, b)| = d(a∗, b)

Since f ∈ Lip1(X) was arbitrary, this completes the required reverse inequality

sup
f∈Lip1(X)

∣∣Maxf (A)−Maxf (B)
∣∣ ≤ sup

g=−Dq
q∈X

∣∣Maxg(A)−Maxg(B)
∣∣.

With this proposition we can, we now readily obtain the following result.

Lemma 6.3. Suppose (Ω, d) is compact and that f : Ω → R is L-Lipschitz. Then

Maxf ∈ C(K(Ω)) and Avef ∈ C(P(Ω)) are also L-Lipschitz.

Proof. Assume f : Ω→ R is L-Lipschitz with L > 0 and note that f̃ = 1
L
f is 1-Lipschitz.

So for µ, ν ∈ P(Ω) the Kantorovich-Rubinstein formula tells us that

|Avef (µ)− Avef (ν)| = L
∣∣∣Avef̃ (µ)− Avef̃ (ν)

∣∣∣
= L

∣∣∣∣∫ f̃ dµ−
∫
f̃ dν

∣∣∣∣
≤ L sup

g∈Lip1(X)

∣∣∣∣∫ g dµ−
∫
g dν

∣∣∣∣
= LdW (µ, ν).
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Similarly, for A,B ∈ K(Ω) we have by Proposition 6.2 that

|Maxf (A)−Maxf (B)| = L
∣∣∣Maxf̃ (A)−Maxf̃ (B)

∣∣∣
≤ L sup

g∈Lip1(X)

∣∣Maxg(A)−Maxg(B)
∣∣

= LdH(A,B).

Lastly, L = 0 iff f is constant. Thus, if L = 0 then Avef and Maxf are constant and so

both are 0-Lipschitz.

Because of this, we can now show that a PointNet or normalized-DeepSets architecture

must be Lipschitz whenever all its activation functions are Lipschitz.

Theorem 6.4. Let Ω ⊆ RN be compact. Then PointNet and normalized-DeepSets net-

works with Lipschitz activation functions are Lipschitz on FH(Ω) and FW (Ω) respectively.

Proof. As usual, assume all Euclidean spaces involved have the Euclidean metric. Recall

that the networks we are considering are of the form ψ = ρ ◦ poolf where f : Ω → Rk

and ρ : Rk → Rm are feed-forward neural networks. Since f and ρ are feed-forward

neural networks, they are composition of affine transforms (which are always Lipschitz)

and nonlinear transforms. The nonlinear transform must have the form

σ(x1, x2, . . . , xn) = (σ1(x1), σ2(x2), . . . , σn(xn))

and by assumption all the activation functions σi are Li-Lipschitz for some 0 ≤ Li <∞.
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Let L = maxi Li. It is easy to check that these nonlinear transforms are also Lipschitz:

‖σ(x)− σ(y)‖ =

√√√√ n∑
i=1

|σi(xi)− σi(yi)|2,

≤

√√√√ n∑
i=1

L2 |xi − yi|2,

= L

√√√√ n∑
i=1

|xi − yi|2,

= L ‖x− y‖ .

Since compositions of Lipschitz functions are Lipschitz, it follows that both f and ρ are

Lipschitz. By Lemma 6.3, the components fi of f being Lipschitz implies maxfi and

avefi are Lipschitz. By a similar argument to the above, we can show the vector-valued

versions maxf and avef are also Lipschitz. Thus ψ = ρ ◦ poolf is Lipschitz for the cases

of pool ∈ {max, ave} since it is a composition of Lipschitz functions.

With knowledge of the weights of f and ρ one could compute Lipschitz constants for

the affine maps. If one also knew Lipschitz constant for the activation functions, then it

would be possible to directly compute Lipschitz constants for f and ρ. This would be

especially simple for networks with only ReLU activation functions as ReLU trivially has

Lipschitz constant 1. From there, one could then follow the proof to compute Lipschitz

constants for the whole set pooling network.

This results is essentially a more general quantitative alternative to Theorem 2 of [40]

since the latter shows how to find A,C ∈ F(Ω) so that the output of PointNet is constant

for any A ⊆ B ⊆ C. On the other hand, Theorem 6.4 works not only for PointNet but

also normalized-DeepSets. Moreover, it allows one to bound how different the outputs

can be based solely on the network’s Lipschitz constant and how similar the points clouds

are with respect to the corresponding metrics. Furthermore, since F(Ω) is dense in K(Ω)
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and P(Ω), we can actually extend Theorem 6.4 to apply the extension networks on K(Ω)

and P(Ω) while keeping the same Lipschitz constant.

One implication of this is that if one were to sample a mesh sufficiently well and knew

the Lipschitz constant K of the whole PointNet/normalized-DeepSets network, then it

would be possible to bound how big of a difference in the outputs two different samplings

of the same object would produce. This bound would not depend on the cardinality, but

on the quality of the sampling with respect to the metrics dH and/or dW .

Finally, one of the problems that has plagued deep learning models since their explo-

sion in popularity is the problem of adversarial examples [18]. Adversarial examples are

inputs which are modified in a virtually imperceptible way (to humans) that result in

extremely erroneous output. One recent approach to dealing with this issue is to compute

and then take advantage of the Lipschitz constant of the network (computed by taking

the product of layer-wise Lipschitz constants). With Lemma 6.3 and Theorem 6.4, this

opens up the possibility of applying a similar technique for point clouds in way that

works for variable cardinality.

6.6 Separation Properties

As we saw in Chapter 5, it is valuable property for a family of functions to separate points,

particularly for questions of function approximation. In this section we will explore the

separation capabilities of the set pooling networks which we are studying.

Lemma 6.5 (Separation Lemma). Let Ω ⊆ Rn be compact and σ ∈ C(R) non-polynomial.

Then the set of functions SMax = {Maxf | f ∈ N σ
n } and SAve = {Avef | f ∈ N σ

n } separate

points of K(Ω) and P(Ω) respectively and contain constants.

Proof. Let d denote the Euclidean distance. First note that by choosing weights correctly,

we can find a constant function h = σ(c) ∈ N σ
n for some c ∈ R. Since σ is not a

polynomial, there is a choice of c for which σ(c) 6= 0. This means Maxh ∈ SMax and
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Aveh ∈ SAve are both constant. Now we just need to show that SMax and SAve separate

points.

(SMax separates points): Let A,B ∈ K(Ω) with A 6= B. Without loss of generality,

A \ B 6= ∅ so choose a ∈ A \ B. Let f(x) = min {1, d(x,B)/d(a,B)} and note that

f(a) = 1, f(B) = {0} and f(Ω) = [0, 1]. By the classical UAT [32], N σ
n is uniform dense

in C(Ω), so there is a g ∈ N σ
n so that |f(x)− g(x)| < 1/2 for all x ∈ Ω. Note Maxg ∈ SMax

and that Maxg(A) > 1/2 and Maxg(B) < 1/2. Since A and B were arbitrary, this shows

SMax separates point in K(X).

(SAve separates points): Given µ1, µ2 ∈ P(Ω) with µ1 6= µ2, by the Hahn-Banach

separation theorem there exists a weak-* continuous linear functional L : M(Ω) → R

that separates them. Let δ = |L(µ1)− L(µ2)|. The topological dual of M(Ω) with the

weak-* topology is equivalent to C(Ω) and so there is an f ∈ C(Ω) so that L(η) =
∫
f dη

for all η ∈ M(Ω). Since N σ
n is uniform dense in C(Ω) there is a g ∈ N σ

n so the that

|f(x)− g(x)| < δ/2 for all x ∈ Ω. Define J(η) =
∫
g dη. Then for all η ∈ P(Ω) we

have |L(η)− J(η)| ≤
∫
|f − g| dη < δ

2

∫
dη = δ/2. Applying the triangle inequality we

obtain,

δ ≤ |L(µ1)− J(µ1)|︸ ︷︷ ︸
<δ/2

+ |J(µ1)− J(µ2)|+ |J(µ2)− L(µ2)|︸ ︷︷ ︸
<δ/2

Thus 0 < |J(µ1)− J(µ2)| and so J = Aveg ∈ SAve separates µ1 and µ2. Since µ1 and µ2

were arbitrary, it follows that SAve separates points in P(Ω).
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Chapter 7

Universality and Limitations of

PointNet and DeepSets

In this chapter study what functions F : F(Ω)→ R can and cannot be approximated by

our set pooling networks of interest.

7.1 Notation for Set Pooling Network Classes

The set pooling networks we described can have varying degrees of complexity depending

on the architecture used in their subnetworks. As with classical feed-forward neural

networks, one expects that with more neurons comes increased expressive power and

that more layers increase practical effectiveness. To aid in our study of neural network

representations of functions F : F(Ω) → R, it well help to introduce some compact

notation for encapsulating families of set pooling networks of varying complexity.

Let poolS =
{

poolf | f ∈ S
}

. Using this notation, we make the following inductive
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families of functions based off of set pooling networks:

height 1: N σ
n,pool := N σ

n ,

height 2: N σ;τ
n,pool := N τ

(
poolNσ

n,pool

)
,

height 3: N σ;τ ;ρ
n,pool := N ρ

(
poolNσ;τ

n,pool

)
,

...

Note that the first (base case) family of neural networks N σ
n,pool are just typical feed-

forward networks and accept inputs which live in Rn. The second family N σ;τ
n,pool is

comprised of networks that accept inputs which live in F(Rn). The networks from the

third family N σ;τ ;ρ
n,pool accept inputs which live in F(F(Rn)). And so on. As a result, each

subsequent neural network class has fundamentally different capabilities compared to the

last. As height increases, the complexity of the input structures increases as well. As a

result, we say we are building “higher” networks.

The notation is such that “depth” of a “strata” of the network is distinct from the

“height” of the overall network. This is emphasised by the usage of a semi-colons in

the superscript to separate the different “strata” of the networks, whereas the number

of activation functions denoted between colons indicates the depth of that particular

“stratum.” For example, the class below is of height 3 and has depths of 3, 2, and 1 in

each stratum respectively.

N σ;τ ;ρ
n,pool = N σ1,σ2,σ3;τ1,τ2;ρ

n,pool

It is worth pointing out that with this nomenclature, the works of PointNet [40] and

DeepSets [62] focus on height 2 (though they do not use this language).

As we saw with Lemma 6.1, we can extend all the operations of our neural networks

to larger spaces in a natural way. Let Poolf be shorthand for Maxf , Sumf , or Avef . As
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before we let PoolS = {Poolf | f ∈ S} and build a hierarchy of network classes.

height 1: N σ
n,Pool := N σ

n ,

height 2: N σ;τ
n,Pool := N τ

(
PoolNσ

n,Pool

)
,

height 3: N σ;τ ;ρ
n,Pool := N ρ

(
PoolNσ;τ

n,Pool

)
,

...

These extensions have a slightly more complicated meaning. For example, networks from

N σ;τ
n,Max take compact subsets of Rn as inputs but networks from N σ;τ ;ρ

n,Max take compact

collections of compact subsets of Rn i.e. elements of K(K(Rn)). Similarly, N σ;τ
n,Ave takes

elements of P(Rn) as inputs but networks from N σ;τ ;ρ
n,Max takes elements of P(P(Rn)).

7.2 Point Cloud UAT

The following theorems show that one hidden layer in the inner network and one hidden

layer in the outer network suffice to prove the universal approximation theorems for

PointNet and normalized-DeepSets.

Theorem 7.1. Let Ω ⊆ Rn be compact and σ, τ ∈ C(R) non-polynomial. Then N σ;τ
n,Max

and N σ;τ
n,Ave are uniform dense in C(A) and C(B) respectively, whenever A ⊆ K(Ω) and

B ⊆ P(Ω) are closed subsets.

Proof. Since Ω is compact, we have that K(Ω) and P(Ω) are compact metric spaces.

Since A and B are closed subsets of a compact Hausdorff set, they must also be compact

Hausdorff. By Lemma 6.1 and Lemma 6.5 we know MaxNσ
n

and AveNσ
n

are comprised

of continuous functions and separate points on their domains. Those properties are

preserved when restricting to the subsets A and B. Finally, the topological-UAT (Theo-

rem 5.2) applied to N τ (MaxNσ
n

) on A and N τ (AveNσ
n

) on B yields the desired result.
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For f : F(Ω) → R the following result tells us that under mild hypothesis that

(1) PointNets can uniformly approximate f iff f is dH-uniformly continuous and (2)

normalized-DeepSets can uniformly approximate f iff f is dW -uniformly continuous.

Theorem 7.2 (Point-Cloud-UAT). Let Ω ⊆ Rn be compact. If σ, τ ∈ C(R) non-

polynomial, then the uniform closure of N σ;τ
n,max and N σ;τ

n,ave within B(F(Ω)) is U(FH(Ω))

and U(FW (Ω)) respectively.

Proof. The metric completions of FH(Ω) and FW (Ω) are isometrically isomorphic to

the compact metric spaces (K(Ω), dH) and (P(Ω), dW ) by Theorems 4.1 and 4.2. Hence

FH(Ω) and FW (Ω) are precompact. By Lemma 6.1 we have that maxNσn and aveNσn

continuously extend to MaxNσn and AveNσn which are separating families on the comple-

tions of FH(Ω) and FW (Ω) (resp.) by Lemma 6.5. Finally, by Theorem 5.4 we have

that the uniform closures of N τ (maxNσn ) and N τ (aveNσn ) are U(FH(Ω)) and U(FW (Ω))

respectively.

It’s worth noting that for the universality of normalized-DeepSets we could have

directly used Stinchcombe’s Corollary 5.1.2 from [50] which is a UAT for neural networks

on locally convex spaces. However, this result would not directly work for PointNets so

we chose the above route for consistency of technique and to be self-contained.

We now prove as a corollary a refinement of the universal approximation theorems of

[40] and [62], both of which were for the case of k-point point clouds (for fixed k). In this

version of the theorem, we are able to restrict the depth of the neural network to just

three hidden layers (when counting the pooling). Additionally, as with the above, this

result simultaneously establishes which functions cannot be uniformly approximated by

these architectures.

Corollary 7.3. Let Ω ⊆ Rn be compact. If σ, τ ∈ C(R) non-polynomial, then the uniform

closure of N σ;τ
n,max and N σ;τ

n,ave within B(Fk(Ω)) are U(FkH(Ω)) and U(FkW (Ω)) respectively.
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Proof. Apply Theorem 7.2 and restrict from FH(Ω) and FW (Ω) to FkH(Ω) and FkW (Ω).

7.3 Theoretical Issues with Standard DeepSets

To use the universal approximation results developed here, it was key for there to exists

an underlying compact Hausdorff space on which to study the networks. In the case

of PointNet and normalized-DeepSets, the compact Hausdorff space was not obvious,

but we identified the appropriate extension spaces K(Ω) and P(Ω) to which we could

unambiguously and continuously extend the networks. This gave a partial answer to the

DeepSets extension conjecture of [62] in the sense that if we replace sum-pooling with

max-pooling then these networks can be made to theoretically accept sets of uncountably

infinite cardinality (so long as they are compact i.e. members of K(Ω)). Similarly, for

sufficiently nice sets like compact smooth manifolds M ⊆ Rn one can feed the manifold’s

uniform probability measure UM of M to the extension of normalized-DeepSets to P(Ω).

However, we were not able to do this for standard DeepSets. This is because, generally

speaking, there is no compact Hausdorff space to which we can continuously extend sumf

for all reasonable neural networks f . This is because a continuous function on a compact

space is necessarily a bounded function but sumf : F(Ω) → R is generally unbounded.

To illustrate this, let Ω = [0, 1] ⊆ R and let f be a continuous function, e.g. a neural

network, which is not identically zero. Then there must be a closed interval K on which

|f | > ε for some ε > 0. From this we can see that sumf (A) for A ⊆ K grows arbitrarily

large in absolute value as the size of A increases. Thus, in this case, every sumf except

sum0 is unbounded on F(Ω) meaning there is no compact extension space. Moreover,

because of the unboundedness of generic
∑

f , we cannot even use the Theorem 5.6.

One potential way to address this issue would be to only consider bounded non-

linearities such as the sigmoid or arctan as a way to control the wild behavior as cloud
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size gets large. Even so, it is not immediately clear what the natural underlying com-

pact Hausdorff space for such a model would be and it may very well depend on the

activation functions. Alternatively, alternative tools may be needed that don’t depend

on compactness.

7.4 Limitations

Unlike the classical universal approximation theorem, we should not expect to be able

uniformly approximate all of C(FH(Ω)) or C(FW (Ω)). When Ω ⊆ Rn is compact, we

know by Theorem 7.2 that PointNet and normalized-DeepSets can only approximate the

uniformly continuous functions with respect to dH and dW . since their elements might

not even be bounded functions. For example, αK(A) = dH(A,K)−1 is unbounded but

continuous on FH(Ω) whenever K ∈ K(Ω) but K /∈ F(Ω). Subtler still, we do not even

obtain all elements of Cb(FH(Ω)) and Cb(FW (Ω)). As an example of this, observe that

βK = sin ◦αK is bounded and is also continuous on FH(Ω) because αK is. However,

βK cannot be uniformly continuous because it becomes catastrophically oscillatory as

we approach K. So both αK and βK are not uniformly dH-continuous and hence cannot

be uniformly approximated by PointNets. Analogous problematic constructions can be

made for dW and normalized-DeepSets by letting αµ(A) = dW (A, µ)−1 where µ not an

empirical measure.

We’ll now compare the representational power of these two architectures. Let Ω ⊆ RN

be compact. We define the point cloud diameter function Diam : F(Ω) → R and point

cloud center-of-mass function Cent : F(Ω) → RN by Diam(A) = maxx,y∈A d(x,y) and

Cent(A) = aveid(A) = 1
|A|
∑
x∈A x.

For the following theorem, as with many others, the reader may assume Ω is a the

closed unit ball or closed cube [0, 1]N if convenient. However, we shall formulate and

prove the result in the general setting.
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Theorem 7.4. Let (Ω, d) be an infinite compact metric space with no isolated points.

Then a function f : F(Ω) → Rn is continuous with respect to both dH and dW iff it

is constant. As a corollary, Diam is uniformly approximable by PointNet networks but

not by normalized-DeepSets networks and Cent is uniformly approximable by normalized-

DeepSets networks but not PointNet networks.

Proof. Assume f : F(Ω)→ Rn is both dH-continuous and dW -continuous. Let A ∈ F(Ω)

and let p ∈ A. For each n = 1, 2, . . . choose A′n ∈ F(Ω) to be an n-point set contained

within the 1/n-ball around p. We can do this because Ω is infinite without isolated

points. Now let An = A′n ∪ (A \ {p}).

Observe that An
dH→ A and An

dW→ {p}. Thus by continuity,

f(A) = f

(
dH
lim
n→∞

An

)
= f

(
dW
lim
n→∞

An

)
= f({p})

Note that A ∈ F(Ω) was arbitrary, hence f must always give A and any {p} ⊆ A the

same value. Now if B,C ∈ F(Ω) with q ∈ B and r ∈ C, then

f(B) = f({q}) = f({q, r}) = f({r}) = f(C).

Thus f must be constant. Thus, since constant maps are always continuous, we conclude

that a functions is continuous on F(Ω) with respect to both metrics iff it is constant.

It can be shown that Diam : K(Ω)→ R is 2-Lipschitz [17] i.e. it satisfies

|Diam(A)−Diam(B)| ≤ 2dH(A,B)

for compact A and B. Hence, Diam ∈ U(FH(Ω)).

Next we show that Cent ∈ U(FW (Ω)) by showing that each of its components are

1-Lipschitz. To see why, note that the i-th coordinate projection map πi is clearly 1-

Lipschitz, hence aveπi is also 1-Lipschitz (by Lemma 6.3), and that the i-th component

of Cent(A) is given by aveπi .

Thus, Diam and Cent are uniformly continuous on FH(Ω) and FW (Ω) (resp.) and so
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the result follows from the above and Theorem 7.2.

While it is interesting to know that these neural networks describe fundamentally dif-

ferent kinds of functions when we allow for unbounded cloud cardinality, in practice there

is always a bound due to computational resource limitations. Nevertheless, the above

result sheds some light on the radically different nature of the PointNet and normalized-

DeepSets models in the limit of large cloud size. However, even when limiting attention

to point clouds of fixed cardinality it turns out that there are simple functions which

PointNet cannot approximate.

In [54] it was shown in the proof of Theorem B.1 that sumid(A) =
∑

x∈A x cannot be

exactly represented by PointNet models ρ ◦maxf on Fk(R) if the output dimension of f

is smaller than k. They do not address if exact representation is possible with a larger

output dimension for f or whether such functions can be approximated by PointNet

models instead. Of course, the same issue will apply to the center-of-mass function aveid

as it differs by a constant factor from sumid when cloud size is held fixed.

The next result shows that even when we bound the cloud cardinality, PointNet still

cannot uniformly approximate many simple functions such as the center-of-mass function.

In fact, under mild assumptions, PointNet cannot in general uniformly approximate

averages of continuous functions on point clouds either. The minimum approximation

error for such tasks can actually be bounded and this bound is described by the following

theorem (which we will prove later).

Theorem 7.5. Let (Ω, d) be compact with no isolated points and f ∈ C(Ω,RN). Then

for every dH-continuous F : F≤k(Ω)→ Rd there exists A ∈ Fk(Ω) such that

‖F (A)− avef (A)‖ ≥ k − 2

2k
Diam(f(Ω)).

Since PointNet architectures are dH-continuous they must suffer from the above

uniform-norm error lower-bound. This means that when cloud cardinality is at least
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three, they cannot uniformly approximate functions of the form avef for continuous f

on e.g. the unit ball of Rn. In particular, they cannot even uniformly approximate the

center-of-mass function because this corresponds to the case where Ω ⊆ RN and f is the

identity map.

It is possible to see the intuition for why PointNet cannot uniformly approximate Cent

by considering the following. For a k-element point cloud, continuously move k − 2 of

those points towards either of the remaining two points p or q. This ultimately produces

the same 2-element set {p, q} in a dH-continuous way. By dH-continuity, this means

PointNet must output similar predictions for the center-of-mass as we approach {p, q}

along either of these two paths. However, this leads to conflicting estimates for the center

of mass along the way.

To obtain the explicit error lower bound in Theorem 7.5, we need a slightly more

detailed result.

Lemma 7.6. Suppose (Ω, d) has no isolated points and f ∈ C(Ω,RN) with f(p) 6= f(q)

for some p, q ∈ Ω. If k ≥ 3 and F : F≤k(Ω) → RN is dH-continuous, then for every

0 < τ < 1 there exists a k-point set A such that {p, q} ⊆ A ⊆ Ω and

‖F (A)− avef (A)‖ > (1− τ)

(
k − 2

2k

)
‖f(p)− f(q)‖ .

In particular, PointNet architectures satisfy this error bound since they are dH-continuous.

Proof. Let Cp := f(p)+f(q)
k

+ (k−2
k

)f(p) and Cq := f(p)+f(q)
k

+ (k−2
k

)f(q) and observe that

‖Cp − Cq‖ =
k − 2

k
‖f(p)− f(q)‖ 6= 0.

Let ε := τ
4
‖Cp − Cq‖ > 0. Since F is dH-continuous there exists a δ{p,q} ∈ (0, ε] such that

whenever dH(A, {p, q}) < δ{p,q} we have that ‖F (A)− F ({p, q})‖ < ε. Similarly, since f

is continuous, there exists δp, δq ∈ (0, ε] so that d(a, p) < δp implies ‖f(a)− f(p)‖ < ε

and d(a, q) < δq implies ‖f(a)− f(q)‖ < ε. Define δ := min
{
δ{p,q}, δp, δq

}
Because Ω has no isolated points, its open balls must have infinitely many points, in
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particular, Bδ(p) and Bδ(q). This ensures the existence of sets Ãδp ⊆ Bδ(p) \ {p} and

Ãδq ⊆ Bδ(q) \ {q} with cardinality k − 2. We can then define k-point supersets of {p, q}

given by

Aδp := Ãδp ∪ {p, q}, Aδp := Ãδp ∪ {p, q}.

It’s easy to see that both Aδp and Aδq are δ-close to {p, q} with respect to dH . Thus, by

definition of δ we have,

∥∥F (Aδp)− F ({p, q})
∥∥ < ε,

∥∥F (Aδq)− F ({p, q})
∥∥ < ε.

Next observe that,

avef (A
δ
p) =

1

k

∑
a∈Aδp

f(a) =
f(p) + f(q)

k
+

1

k

∑
a∈Ãδp

f(a),

avef (A
δ
q) =

1

k

∑
a∈Aδq

f(a) =
f(p) + f(q)

k
+

1

k

∑
a∈Ãδq

f(a).

Since f
(
Ãδp
)
⊆ Bε(f(p)) and f

(
Ãδq
)
⊆ Bε(f(q)), the triangle inequality implies

∥∥avef (A
δ
p)− Cp

∥∥ =
1

k

∥∥∥∥∥∥
∑
a∈Ãδp

(
f(a)− f(p)

)∥∥∥∥∥∥ ≤ 1

k

∑
a∈Ãδp

‖f(a)− f(p)‖ <
(
k − 2

k

)
ε < ε,

∥∥avef (A
δ
q)− Cq

∥∥ =
1

k

∥∥∥∥∥∥
∑
a∈Ãδq

(
f(a)− f(p)

)∥∥∥∥∥∥ ≤ 1

k

∑
a∈Ãδq

‖f(a)− f(p)‖ <
(
k − 2

k

)
ε < ε.

Now we can consider the triangle in RN formed by Cp, Cq, and F ({p, q}). By basic

geometry, we know that one of the two side lengths ‖F ({p, q})− Cp‖ or ‖F ({p, q})− Cq‖

must greater than or equal to half the third side length i.e. greater than ‖Cp − Cq‖ /2.

Without loss of generality, let ‖F ({p, q})− Cq‖ ≥ ‖Cp − Cq‖ /2 and then apply the
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triangle inequality in conjunction with our ε bounds to yield,

‖Cp − Cq‖
2

≤
∥∥F ({p, q})− F (Aδq)

∥∥+
∥∥F (Aδq)− avef (A

δ
q)
∥∥+

∥∥avef (A
δ
q)− Cq

∥∥ ,
<
∥∥F (Aδq)− avef (A

δ
q)
∥∥+ 2ε.

Finally, by rearranging and substituting ε = τ ‖Cp − Cq‖ /4 we get,

∥∥F (Aδq)− avef (A
δ
q)
∥∥ > ‖Cp − Cq‖

2
− 2ε,

=
‖Cp − Cq‖

2
− τ ‖Cp − Cq‖

2
,

=
(1− τ)

2
‖Cp − Cq‖ ,

= (1− τ)

(
k − 2

2k

)
‖f(p)− f(q)‖ .

Thus Aδq is the promised set which achieves the desired uniform-norm error.

proof of Theorem 7.5. The case of k = 1, 2 are trivial since the right-hand side becomes

non-positive. For k ≥ 3, note that by compactness of Ω, we can choose p, q ∈ Ω so that

the diameter is achieved i.e. ‖f(p)− f(q)‖ = Diam(f(Ω)). If Diam(f(Ω)) = 0 then the

inequality holds trivially, if not then there exist then we have f(p) 6= f(q) and so we

apply Lemma 7.6 and take τ → 0.

7.5 Numerical Experiments

The proof of Lemma 7.6 not only establishes the error bound but also suggest an algorith-

mic approach to finding point clouds that exhibit the failure of uniform approximation.

This lets us produce (in an architecture and weight dependent way) problematic examples

for the centor-of-mass regression with PointNet. When Ω is additionally convex (e.g. the

unit disk D in R2) it becomes fairly easy to construct many examples of Aδp and Aδq from

the proof of Lemma 7.6 for a given PointNet model, allowing us to empirically verify the
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uniform-norm error lower bound. In the following experiment, we train a simple Point-

Net architecture to learn the center-of-mass for 10-element point clouds in D. We train

on a synthetic dataset of 1 million point clouds labeled with their center-of-mass (each

element uniformly sampled from D). The PointNet architecture has ∼500K trainable

parameters. The network has the form F (A) = ρ(maxa∈Aϕ(a)) where ϕ has 2-D input

layer, 500-D hidden layer (ReLU activation), and 500-D linear output layer, and ρ has

500-D input layer, 500-D hidden layer (ReLU activation) and 2-D linear output layer

(this means this network is an element of NReLU;ReLU
2,max to which Theorem 7.2 applies).

Since it is fundamentally not possible to train with respect to the uniform-norm, we opt

to train with the traditional `2 loss.

To form our problematic examples, we pick a nonzero τ = 0.01 and two distinct points

p, q ∈ D at random. We set ε = τ ‖p− q‖ /4. We then initialize Aδp = Aδq to be the set

{p, q} union a set of 8 randomly sampled points from the unit disk D. To determine

problematic point cloud, we then update Aδp and Aδq by iteratively pulling the extra 8

points closer towards p and q (resp.) until F (Aδp) and F (Aδq) are within distance ε of

F ({p, q}) so that the criteria in the proof of Lemma 7.6 is satisfied. This must eventually

happen due to dH-continuity of the PointNet F . We are theoretically ensured one of

these two will have error larger than our error lower bound. In Fig. 7.1 we plot the the

produced error versus the distance between the seed points p and q that were used to

make Aδp and Aδq. As predicted, all the errors for the problematic examples lie above the

line representing the uniform-norm error lower bound.

This experiment was chosen because the task is very simple (computing the mean),

not very high-dimensional (ten 2D points per cloud), and yet PointNet fails to eliminate

its errors through training on virtually unlimited synthetic data. Moreover, the simple to

produce problematic examples show that PointNet never violates the error lower bound.

77



Figure 7.1: In the experimental tests of the error lower bound we see that we are always
able to find problematic examples (blue dots) for PointNet on the task of computing the
center-of-mass. The method always produces errors at least as large as the theoretical
guarantee (orange line).
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