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Efficient Distributed Backup with Delta Compression

Randal C. Burns Darrell D. E. Longy
Department of Computer Science Department of Computer Science
IBM Almaden Research Center University of California, Santa Cruz
randal@almaden.ibm.com darrell@cs.ucsc.edu

Abstract

Inexpensive storage and more powerful processors have re-
sulted in a proliferation of data that needs to be reliably
backed up. Network resource limitations make it increas-
ingly difficult to backup a distributed file system on a nightly
or even weekly basis. By using delta compression algo-
rithms, which minimally encode a version of a file using only
the bytes that have changed, a backup system can compress
the data sent to a server. With the delta backup technique,
we can achieve significant savings in network transmission
time over previous techniques.

Our measurements indicate that file system data may, on
average, be compressed to within 10% of its original size
with this method and that approximately 45% of all changed
files have also been backed up in the previous week. Based
on our measurements, we conclude that a small file store on
the client that contains copies of previously backed up files
can be used to retain versions in order to generate delta files.

To reduce the load on the backup server, we implement a
modified version storage architecture,version jumping, that
allows us to restore delta encoded file versions with at most
two accesses to tertiary storage. This minimizes server work-
load and network transmission time on file restore.

1 Introduction

Currently, file system backup takes too long and has a pro-
hibitive storage cost. Resource constraints impede the reli-
able and frequent backup of the increasing amounts of data
spinning on disks today. The time required to perform back-
up is in direct proportion to the amount of data transmittedyThe work of this author was performed while a Visiting Scientist at the
IBM Almaden Research Center.

over the network from backup clients to a backup server. By
usingdelta compression, compactly encoding a file version
as a set of changes from a previous version, our backup sys-
tem architecture reduces the size of data to be transmitted,
reducing both time to perform backup and storage required
on a backup server.

Backup and restore can be limited by both network band-
width, often 10 Mb/s, and poor throughput to tertiary storage
devices, as slow as 500 KB/s to tape storage. Since resource
limitations frequently make backing up changed files infea-
sible over a single night or even weekend, delta file com-
pression has great potential to alleviate bandwidth problems
by using available client processor cycles and disk storage to
reduce the amount of data transferred. This technology en-
ables us to perform file backup over lower bandwidth chan-
nels than were previously possible, for example a subscrip-
tion based backup service over the Internet.

Early efforts to reduce the amount of data to be backed up
produced a simple optimization,incremental backup, which
backs up only those files that have been modified since the
end of the lastepoch, the period between two backups. While
incremental backup only detects changes at the granularity
of a file,delta backuprefines this concept, transmitting only
the altered bytes in the files to be incrementally backed up
[12]. Consequently, if only a few bytes are modified in a
large file, the backup system saves the expense of transmit-
ting the large file in favor of transmitting only the changed
bytes.

Recent advances in differencing algorithms [1, 4], allow
nearly optimally compressed encodings of binary inputs in
linear time. We use such an algorithm to generate delta en-
codings of versions.

A differencing algorithm finds and outputs the changes
made between two versions of the same file by locating com-
mon strings to be copied and unique strings to be added ex-
plicitly. A delta file(�) is the encoding of the output of a
differencing algorithm. An algorithm that creates a delta file
takes as input two versions of a file, areference fileand aver-
sion fileto be encoded, and outputs a delta file representing
the modifications made between versions:



Vreference+ Vversion ! �(Vreference;Vversion):
Reconstruction, the inverse operation, requires the reference
file and a delta file to rebuild a version:Vreference+�(Vreference;Vversion) ! Vversion:

A backup system can leverage delta files to generate min-
imal file representations (see Figure 1). We enhanced the
client/server architecture of the AdStar Distributed Storage
Manager (ADSM) backup system [5] to transmit delta files
when a backup client has retained two versions of the same
file. Furthermore, both uncompressed files and delta en-
coded files still realize benefits from the standard file com-
pression methods that ADSM already utilizes [1]. We inte-
grate delta backup into ADSM and have a backwardly com-
patible system with optimizations to transmit and store a re-
duced amount of data at the server.

The server storage and network transmission benefits are
paid for in the client processor cycles to generate delta files
and in additional disk storage at a backup client to retain sec-
ond copies of files that are used to generate delta files. This
architecture optimizes the network and storage bottleneck at
the server in favor of the distributed resources of a server’s
multiple clients.

We will describe previous work in the use of delta com-
pression for version storage inx2. Our modifications to the
ADSM system architecture are presented inx3. In x4, we
describe the delta storage problem in the presence of a large
number of versions. Inx5, we analyze the performance of
the version jumping storage method and compare it to the
optimally compact storage method of linear delta chains. Inx6 potential future work is discussed and we present our con-
clusions inx7.

2 Origins of Delta Backup

Delta backup emerged from many applications, the first in-
stance appearing in database technology. The database pages
that are written between backup epochs are marked as “dirty”
using a single bit [10, 17]. At the end of an epoch, only
the dirty pages need to be backed up. This concept paral-
lels delta backup but operates only at page granularity. For
file systems, there are no guarantees that modifications have
page alignment. While dirty bits are effective for databases,
they may not apply well to file system backup.

To improve on the granularity of backup, logging meth-
ods have been used to record the changes to a database [9,
14] and a file system [16]. A logging system records every
write during an epoch to a log file. This can be used to re-
cover the version as it existed at the start of an epoch into its
current state. While semantically similar to delta compres-
sion, logging does not provide the compressibility guaran-
tees of differencing algorithms. In the database example, a

log or journal of changes grows in proportion to the number
of writes made. If the same bytes are modified more than
once or if adjacent bytes are modified at different times, this
will not be a minimal representation. For an extremely active
page, the log will likely exceed the page size. Differential
compression also has the guarantee that a log of modifica-
tions to a file will be no smaller than the corresponding delta
[4].

Recently, several commercial systems have appeared on
the marketplace that claim to perform delta backup [11, 6,
18]. While the exact methods these systems use have not
been disclosed, the product literature implies that they either
perform logging [11] or difference at the granularity of a file
block [18, 6]. We perform delta backup at the granularity
of a byte. By running differential compression algorithms
on the changed versions at this granularity, we generate and
backup minimal delta files.

2.1 Previous Work in Version Management

Despite file restoration being the infrequent operation for
backup and restore, optimizing this process has great util-
ity. Often, restore is performed when file system compo-
nents have been lost or damaged. Unavailable data and non-
functional systems cost businesses, universities and home
users lost time and revenue. This contrasts the backup oper-
ation which is generally performed at night or in other low
usage periods.

Restoring files that have been stored using delta backup
generates additional concerns in delta file management. Tra-
ditional methods for storing deltas require the decompres-
sion agent to examine either all of the versions of a given
file [13] or all versions in between the first version and the
version being restored [15]. In either case, the time to re-
construct a given file grows at least linearly (seex4.1) with
respect to the number of versions involved.

A backup system has the additional limitation that any
given delta file may reside on a physically distinct media
device and device access can be slow, generally several sec-
onds to load a tape in a tape robot [8]. Consequently, having
many distinct deltas participate in the restoration of a single
file becomes costly in device latency. An important goal of
our system is to minimize the number of deltas participating
in any given restore operation.

Previous efforts in the efficient restoration of file versions
have provided restoration execution times independent of the
number of intermediate versions. These include methods
based on AVL Dags [7], linked data structures [19, 2], or
string libraries [3]. However, these require all delta versions
of a given file to be present at restore time and are conse-
quently infeasible for a backup system. Such a backup sys-
tem would require all prior versions of a file to be recalled
from long term storage for that file to be reconstructed.

As previous methods in efficient restoration fail to ap-



File 
Store

Reference Magnetic 

Storage
Tape

Storage

Reference

File Store

RestoreManager

Delta

Compression

Algorithm

File

System

ADSM 
Delta 
Client

ADSM 
Delta
Server

Delta Compression Agent Server Hierachical 
Storage Manager

Deletion and Expiration

Policy Manager

Backup

Figure 1: Client/server schematic for a delta backup system.

ply to the backup and restore application, we describe a new
technique calledversion jumpingand an associated system
architecture. Version jumping takes many delta versions off
of the same reference version and consequently requires at
most two files to perform the restore operation on a given
version. The restoration time is also independent of the total
number of stored versions.

3 System Architecture

We modified the architecture and design of the AdStar Dis-
tributed Storage Manager (ADSM) from IBM to add delta
compression capabilities. The modified ADSM client delta
compresses file data at the granularity of a byte and trans-
mits delta files to the server. The modified ADSM server has
enhanced file deletion capabilities to ensure that each delta
file stored on the server also has the corresponding reference
file.

ADSM is a client/server backup and restore system cur-
rently available for over 30 client platforms. The ADSM
server is available for several operating systems including
Windows NT and various UNIX and mainframe operating
systems. The key features of ADSM are scheduled policy
management for file backup, both client request and server
polling, and hierarchical storage management of server me-
dia devices including tape, disk drive and optical drives.

3.1 Delta Compression at the Client

We have modified the standard ADSM client to perform delta
backup and restore operations. The modifications include
the differencing and reconstruction algorithms (seex1) and
the addition of areference file store.

In order to compute deltas, the current version of the file
must be compared with a reference version. We have the
choice of storing the reference version on the client or fetch-

ing it from the server. Obtaining the reference file from the
server is unviable since it would increase both network traf-
fic and server load, adversely affecting the time to perform
the backup. By storing the reference file at the client, we in-
cur a small local storage cost in exchange for a large benefit
in decreased backup time.

We considered several options for maintaining the refer-
ence files, including copy-on-write, shadowing, and file sys-
tem logging. Each of these options had to be rejected since
they violated the design criterion that no file system modifi-
cations could be made. Since ADSM supports more than
30 client operating systems, any file system modification
presents significant portability and maintenance concerns.
Instead, we chose to keep copies of recently backed up files
in a reference file store.

The reference file store is a reserved area on disk where
reference versions of files are kept (see Figure 1). When
sending an uncompressed file to its server, the backup client
copies this file to its reference file store. At this point, the file
system holds two copies of the same file: one active version
in file system space and a static reference version in the ref-
erence file store. When the reference file store fills, the client
selects a file to be ejected. We choose the victim file with a
simple weighted least recently used (LRU) technique. In a
backup system, many files are equally old, as they have been
backed up at the same epoch. In order to discern among
these multiple potential victims, our backup client uses an
additional metric to weight files of equal LRU value. We
select as a victim the reference file that achieved the worst
relative compression on its previous usage,i.e . the file with
the highest delta file size to uncompressed file size ratio at
the last backup. This allows us to discern from many poten-
tial victims to increase the utility of our reference file store.
At the same time, this weighting does not violate the tried
and true LRU principle and consequently can be expected to
realize all of the benefits of locality.
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When the backup client sends a file that has a prior ver-
sion in the reference file store, the client delta compresses
this file and transmits the delta version. The old version of
the file is retained in the reference file store as a common
reference file for a version jumping system.

We do not expect the storage requirements of the refer-
ence file store to be excessive. In order to evaluate the ef-
fectiveness of the reference file store, we collected data for
five months from the file servers at the School of Engineer-
ing at the University of California, Santa Cruz. Each night,
we would search for all files that had either been modified
or newly created during the past 24 hours. Our measure-
ments indicate that of approximately 2,356,400 files, less
than 0.55% are newly created or modified on an average day
and less than 2% on any given day. These recently modified
files contain approximately 1% of the file system data.

In Figure 2, we estimate the effectiveness of the reference
file store using a sliding window. We considered windows of
1–7 days. Thex-axis indicates the day in the trace, while they-axis denotes the fraction of files that were modified on that
day and that were also created or modified in that window.
Files that are not in the window are either newly created or
have not been modified recently. An average of 45% and a
maximum of 87% of files that are modified on a given day
had also been modified in the last 7 days. This locality of file
system access verifies the usefulness of a reference file store
and we expect that a small fraction, approximately 5%, of
local file system space will be adequate to maintain copies
of recently modified file versions.

3.2 Delta Versions at the Server

In addition to our client modifications, delta version stor-
age requires some enhanced file retention and file garbage
collection policies at a backup server. For example, a naı̈ve

server might discard the reference files for delta files that can
be recalled. The files that these deltas encode would then be
lost from the backup storage pool. The file retention poli-
cies we will describe require additional metadata to resolve
the dependencies between a delta file and its corresponding
reference file.

A backup server accepts and retains files from backup
clients (see Figure 1). These files are available for restora-
tion by the clients that backed them up for the duration of
their residence on the server. Files that are available for
restoration areactive files. A typical file retention policy
would be: “hold the four most recent versions of a file.”
While file retention policies may be far more complex, this
turns out to have no bearing on our analysis and consequent
requirements for backup servers. We only concern ourselves
with the existence of deletion policies on an ADSM server
and that files on the server are only active for a finite number
of backup epochs.

To reconstruct a version file to a client from a backup
server, when the server has a delta encoding of this file, the
client must restore both the delta encoding and the corre-
sponding reference file. Under this constraint, a modified
retention policy dictates that a backup server must retain all
reference files for its active files that are delta encoded. In
other words, a file cannot be deleted from the backup server
until all active files that use it as a reference file have also
been deleted. This relationship easily translates to a depen-
dency digraph with dependencies represented by directed
edges and files by nodes. This digraph is used both to encode
dependent files which need to be retained and to garbage col-
lect the reference files when the referring delta versions are
deleted.

For a version chain storage scheme, we may store a delta
file,�A2;A3 , which depends on fileA2. However, the backup
server may not storeA2. Instead it stores a delta file repre-
sentation. In this event, we have�A2;A3 depend upon the
delta encoding ofA2, �A1;A2 (see Figure 3(a)).

The dependency digraphs for delta chains never branch
and do not have cycles. Furthermore, each node in the di-
graph has at most one inbound edge and one outbound edge.
In this example, to restore fileA3, the backup server needs
to keep its delta encoding,�A2;A3 , and it needs to be able
to construct the file it depends upon,A2. Since, we only
have the delta encoding ofA2, we must retain this encod-
ing,�A1;A2 , and all files it requires to reconstructA2. The
obvious conclusion is: given a dependency digraph, to re-
construct the file at a node, the backup server must retain all
files in nodes reachable from the node to be reconstructed.

For version jumping, as in version chains, the version
digraphs do not branch. However, any node in the version
digraph may have multiple incoming edges,i.e. a file may
be a common reference file among many deltas (see Figure
3(b)).

The dependency digraphs for both version jumping and
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Figure 3: Dependency graphs for garbage collection and
server deletion policies.

delta chains are acyclic. This results directly from delta
files being generated in a strict temporal order; the refer-
ence file for any delta file is always from a previous backup
epoch. Since these digraphs are acyclic, we can implicitly
solve the dependency problem with local information. We
decide whether or not the node is available for deletion with-
out traversing the dependency digraph. This method works
for all acyclic digraphs.

At each node in the dependency digraph,i.e. for each
file, we maintain a pointer to the reference file and a refer-
ence counter. The pointer to the reference file indicates a
dependency; a delta encoded version points to its reference
file and an uncompressed file has no value for this pointer.
The reference counter stores the number of inbound edges
to a node and is used for garbage collection. A node has no
knowledge of what files depend on it, only that dependent
files exist.

When backing up a delta file, we require a client to trans-
mit its file identifier and the identifier of its reference file.
When we store a new delta file at the ADSM server, we store
the name of its reference file as its dependent reference and
initialize its reference counter to zero. We must also update
the metadata of the referenced file by incrementing its refer-
ence counter. With these two metadata fields, the modified
backup server has enough information to retain dependent
files and can guarantee that the reference files for its active
files are available.

3.3 Two-phase deletion

When storing delta files, the backup server often needs to
retain files that are no longer active. We modify deletion in
this system to place files into three states: active files, inac-
tive dependent files, and inactive independent files. Inactive
dependent files are those files that can no longer be restored
as a policy criterion for deletion has been met but need to be
retained as active delta versions depend on them. Inactive
independent files are those files suitable for removal from
storage as they cannot be restored and no active delta files
depend on them.

We add one more piece of metadata, an activity bit, to
each file backed up on our server. When a file is received
at the server, it is stored as usual and its activity bit is set.
This file is now marked asactive. The backup server imple-
ments deletion policies as usual. However, when a file re-
tention policy indicates that a file can no longer be restored,
we clear the file’s activity bit instead of deleting it. Its state
is now inactive. Clearing the activity bit is the first phase of
deletion. If no other files depend on this newly inactive file,
it may be removed from storage, the second phase.

Marking a file inactive may result in other files becoming
independent as well. The newly independent reference file is
garbage collected through the reference pointer of the delta
file. The following rules govern file deletion:� When a file has no referring deltas,i.e. its reference

counter equals zero, delete the file.� When deleting a delta file, decrement the reference
counter of its reference file and garbage collect the ref-
erence file if appropriate.

Reference counting, reference file pointers, and activity
bits correctly implement the reachability dependence rela-
tionship. The two phase deletion technique operates locally,
never traversing the implicit dependency digraph, and con-
sequently incurs little execution time overhead. The backup
server only traverses this digraph when restoring files. It
follows dependency pointers to determine the set of files re-
quired to restore the delta version in question.

4 Delta Storage and Transmission

The time to transmit files to and from a server is directly pro-
portional to the amount of data sent. For a delta backup and
restore system, the amount of data is also related to the man-
ner in which delta files are generated. We develop an analy-
sis to compare the version jumping storage method with stor-
ing delta files as version to version incremental changes. We
show that version jumping pays a small compression penalty
for file system backup when compared to the optimal linear
delta chains. In exchange for this lost compression, version
jumping allows a delta file to be rebuilt with at most two
accesses to tertiary storage.



The version storage problem for backup and restore dif-
fers due to special storage requirements and the distributed
nature of the application. Since ADSM stores files on mul-
tiple and potentially slow media devices, not all versions of
a file are readily available. This unavailability and other de-
sign considerations shape our methods for storing delta ver-
sions. If a backup system stores files on a tape robot then,
when reconstructing a file, the server may have to load a
separate tape for every delta it must access. Access to each
tape may require several seconds. Consequently, multiple
tape motions are intolerable. Our version jumping design
guarantees that at most two accesses to the backing store are
needed to rebuild a delta file.

Also, we minimize the server load by performing all of
the differencing tasks on the client. Since a server processes
requests from many clients, a system that attempted to run
compression algorithms at this location would quickly be-
come processor bound and achieve poor data throughput.
For client side differencing, we generate delta files at the
client and transmit them to the server where they are stored
unaltered. Using client differencing, the server incurs no ad-
ditional processor overhead.

4.1 Linear Delta Chains

Serializability and lack of concurrency in file systems result
in each file having a single preceeding and single following
version. This linear sequence of versions forms a history of
modifications to a file which we call aversion chain. We
now develop a notation for delta storage and analyze a linear
version chain stored using traditional methods [15].

Linear delta chains are the most compact version storage
scheme as the inter-version modification are smallest when
differencing between consecutive versions. We will use the
optimality of linear delta chains later as a basis to compare
the compression of the version jumping scheme.

We denote the uncompressedith version of a file byVi. The difference between two versionsVi andVj is in-
dicated by�(Vi;Vj). The file�(Vi;Vj) should be considered
the differentially compressed encoding ofVj with respect toVi such thatVj can be restored by the inverse differencing
operation applied toVi and�(Vi;Vj). We indicate the differ-
encing operation by�(Vi; Vj)! �(Vi;Vj)
and the inverse differencing or reconstruction operation by��1(�(Vi;Vj); Vi)! Vj :
By convention,Vi is created by modification ofVi�1. For
versionsVi andVj in a linear version chain, these versions
are adjacent if they obey the propertyj � i = 1 and an
intermediate versionVk obeys the propertyi < k < j.

For our analysis, we consider a linear sequence of ver-
sions of the same file that continues indefinitely,V1; V2; : : : ; Vi�1; Vi; Vi+1; : : : :
The traditional way to store this version chain as a series
of deltas is, for two adjacent versionsVi andVi+1, to store
the difference between these two files,�Vi;Vi+1 [13]. This
produces the following “delta chain”V1;�(V1;V2); : : : ;�(Vi�1;Vi);�(Vi;Vi+1); : : : :
Under this system, to reconstruct an arbitrary versionVi, the
algorithm must apply the inverse differencing algorithm re-
cursively for all intermediate versions2 throughi. This re-
lation can be compactly expressed as a recurrence.Vi rep-
resents the contents of theith version of a file andRi is the
recurrent file version. So when rebuildingVi, Vi = Ri andRi = ��1(�(Vi�1;Vi); Ri�1); R1 = V1:
The time required to restore a version depends upon the time
to restore all of the intermediate versions. In general, restora-
tion time grows linearly in the number of intermediate ver-
sions. In a system that retains multiple versions, the cost of
restoring the most remote version quickly becomes exorbi-
tant.

4.2 Reverse Delta Chains

Some version control systems solve the problem of long delta
chains with reverse delta chain storage [15]. A reverse delta
chain keeps the most recent version of a file present and un-
compressed. The version chain is then stored as a set of
backward deltas. For most applications, the most recent ver-
sions are accessed far more frequently than older versions
and the cost of restoring an old version with many interme-
diate versions is offset by the low probability of that version
being requested.

We have seen that linear delta chains fail to provide ac-
ceptable performance for delta storage (seex4.1). Our de-
sign constraints of client-side differencing and two tape ac-
cesses for delta restore also eliminate the use of reverse delta
chains. We show this by examining the steps taken in a re-
verse delta system to transmit the next version to the backup
server.

At some point, a server stores a reverse delta chain of the
form �(V2;V1);�(V3;V2); : : : ;�(Vn;Vn�1); Vn:
In order to backup its new version of the file,Vn+1, the
client generates a difference file,�(Vn;Vn+1) and transmits
this difference to the server. However, this delta is not the file
that the server needs to store. It needs to generate and store



�(Vn+1;Vn). Upon receiving�(Vn;Vn+1), the server must ap-
ply the difference toVn to createVn+1 and then run the dif-
ferencing algorithm to create�(Vn+1;Vn). To update a single
version in the reverse delta chain, the server must store two
new files, recall one old file, and perform both the differ-
encing and reconstruction operations. Reverse delta chains
fail to meet our design criteria as they implement neither
minimal server processor load nor reconstruction with the
minimum number of participating files.

4.3 Version Jumping Delta Chains

Our solution to the version storage implements what we call
jumping deltas. This design uses a minimum number of files
for reconstruction and performs differencing on the backup
client.

In a version jumping system, the server stores versions in
a modified forward delta chain with an occasional whole file
rather than a delta. Such a chain looks like:V1;�(V1;V2);�(V1;V3); : : : ;�(V1;Vi�1); Vi;�(Vi;Vi+1); : : :
Storing this sequence of files allows any given version to be
reconstructed by accessing at most two files from the version
chain.

When performing delta compression at the backup client,
the files transmitted to the server may be stored directly with-
out additional manipulation. Thisimmediate storageat the
server limits the processor overhead associated with each
client session and optimizes the backup server.

An obvious concern with these methods is that one ex-
pects compression to degrade when taking the difference be-
tween two non-adjacent versions,i.e. for versionsVi andVj , j�(Vi;Vj)j1 increases asj � i increases. Since the com-
pression is likely to degrade as the version distance,j � i,
increases, we require an occasional whole file to limit the
maximum version distance. This raises the question: what is
the optimal number of versions between whole files?

5 Performance Analysis

We analyze the storage and transmission cost of backing up
files using a version jumping policy. We already know that
version jumping far outperforms other version storage meth-
ods on restore, since it requires only two files to be accessed
from tertiary storage to restore a delta file. Now, by showing
that the compression loss with version jumping is small as
compared to linear delta chains, the optimal storage method
for delta compression, we conclude version jumping to be a
superior policy.

The analysis of transmission time and server storage is
identical, since our backup server immediately stores all files,

1For a fileV , we usejV j to denote the size of the file. Since files are
one dimensional streams of bytes, this is synonymous to the length ofV .

including deltas, that it receives and transmission time is in
direct proportion to the amount of data sent. We choose to
examine storage for ease of understanding the contents of
the backup server at any given time and use this analysis to
draw conclusions about transmission times as well.

5.1 Version Jumping Chains

Consider a set of versions,V1; : : : ; Vi; : : : , where any two
adjacent versions,Vi andVi+1, have�jVijmodified symbols
between them. The parameter� represents thecompressibil-
ity between adjacent versions. An ideal differencing algo-
rithm can create a delta file,�(Vi;Vi+1), with maximum size�jVij. The symbols encoded in a delta file can either replace
existing symbols or add data to the file, as all reasonable en-
codings do not mark deleted symbols [1]. The compression
achieved on versionVi is given by1� j�(Vi;Vi+1)jjVi+1j :
Since we are considering the relative compressibility of all
new versions with the same size deltas, the delta file can
be as large as size�jVij and the new version ranges in size
from jVij to (1 + �)jVij. Consequently, the worst case com-
pression occurs when the�jVij modified symbols inVi+1
replace existing symbols inVi, i.e. jVij = jVi+1j. The worst
case occurs when the file stays the same size.

Between versionsVi andVi+1, there are a maximum of�jVijmodified symbols and between versionsVi+1 andVi+2
there are at most�jVi+1jmodified symbols. By invoking the
union bound on the number of modified symbols between
versionsVi andVi+2, there are at most2�jVijmodified sym-
bols, assuming worst case compression. This occurs when
the changed symbols between versions are disjoint and the
versions are the same size. Generalizing this argument ton intermediate versions, we can express the worst case size
of the jumping delta betweenV1 andVn asn�jV1j. Having
defined the size of an arbitrary delta, we can determine how
much storage is required to store a linear set ofn versions
using the jumping delta techniqueS(n) = jV1j+ nXi=2 j�(1;i)j � jV1j 1 + � nXi=2 i! : (1)

We are also interested in determining the optimal number
of jumping deltas to be taken between whole files. We do
this by minimizing the average cost of storing a version as a
function ofn, the number of versions between whole files.
The average cost of storing an arbitrary version iss(n) = S(n)n � jV1j2n ��n2 + �n� 2�+ 2� : (2)

This function has a minimum with respect ton atn = p2�(1� �)� : (3)
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Figure 4: The per version transmission and storage cost in the worstcase parameterized by compression (�).

Equation 2 expresses the worst case per version storage
cost, and consequently the per version transmission cost, of
keeping delta files using version jumping. For any given
value of�, the optimal number of jumping deltas between
uncompressed versions is given by the minimum of Equa-
tion 2. We give a closed form solution to this minimum in
Equation 3.

Figure 4 displays both the version storage cost parame-
terized by� and the minimum of this family of curves as
a function of�. We see that for large values ofn, version
jumping provides poor compression, as the version distance
increases and the compression degrades as expected. How-
ever, there is an optimal number of versions, depending upon
compressibility, at which version jumping performs reason-
ably. When the number of transmitted versions exceeds the
number at which the storage cost is minimum (see Equa-
tion 3), the system’s best decision is to transmit the next file
without delta encoding and start a new version jumping se-
quence.

Our analysis is the worst case compression bound. In
practice, we expect to achieve much better compression, as
the version to version changes will not be completely dis-
joint and files will both grow and shrink in size.

Also, we cannot expect to detect the minimum of the stor-
age and transmission curve analytically, since� will not be
constant. Instead, a backup client that implements version
jumping monitors the size of the delta files as compared to
the corresponding uncompressed files. When the average
compression, total bytes in transmitted files over total bytes
in uncompressed files, stops decreasing, compression is de-
graded past a minimum, similar to the curve in Equation 2.
At this point the client transmits a new uncompressed file to
start a new jumping version chain. This minimum could be

local, as this policy is only a heuristic for detecting the min-
imum. However, in general, files differ more as the version
distance increases and the heuristic will detect the global
minimum.

5.2 Linear Delta Chains

Having developed an expression for the worst case per ver-
sion storage cost for version jumping (seex5.1), we do the
same for linear delta chains. Recall that linear delta chains
are not suitable for backup and restore (seex4.1) but they
do provide a bound on the best possible compression perfor-
mance of a a version storage architecture. Version jumping
provides constant time reconstruction of any version. To re-
alize this efficient file restore, we trade a small fraction of
potential compression. We quantify this loss of compres-
sion with respect to the optimally compressing linear delta
chains.

We bound compression degradation by deriving an ex-
pression for the per version storage cost under a linear delta
chain and comparing this to Equation 2. The limited loss
in compression for version jumping is offset by decreased
restore time and we conclude that version jumping is the su-
perior policy for backup and restore.

Several facts about the nature of delta storage for backup
and restore apply to our analysis. First, a backup and re-
store storage system must always retain at least one whole
file in order to be able to reconstruct versions. Addition-
ally, a backing store holds a bounded number of file system
backups. We let the number of backup versions retained be
given by the parametern and can then say that, for any file, a
backing store must retain at least one uncompressed version
of that file and at mostn � 1 deltas based on that uncom-
pressed version.
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Figure 5: The relative per version storage and transmission cost, in units of jV1j, of version jumping, Equation 2, compared to
delta chaining, Equation 5.

We derive an expression for the amount of storage used
by a linear delta chain. The minimal delta chain onn files
contains some reference file of sizejV1j andn � 1 delta
files of size�jVj j for all j between1 andn � 1. Using
the same assumptions about version to version modifications
that were used in Section 5.1, the total storage required for
ann version linear delta chain is given by:C(n) = jV1j+ nXi=2 j�(Vi�1;Vi)j � jV1j (1 + (n� 1)�) :

(4)

and the average storage required for each version is:c(n) = C(n)n � jV1jn (1 + (n� 1)�) : (5)

In Figure 5, we compare the relative per file cost of stor-
ing versions in a linear delta chain with the per version stor-
age cost of version jumping. Based on experimental results
[4], we chose� = 0:01 and� = 0:1 as a low and a high
value for the compressibility of file system data. We note
that the version jumping and delta chain storage curves are
nearly identical for small values ofn. For large values ofn,
the compression of version jumping degrades and the curves
diverge. However, at these larger values ofn, the restore
time with delta chains grows linearly larger with the number
of versions (seex4.1). In addition to the asymptotic growth
of the restore function, linear chains also require multiple ac-
cesses to slow media devices, which compounds the restore
problem. As the number of intermediate versions stored
grows, the restore cost quickly renders linear version chain
storage intolerable.

For both delta chains and version jumping, the number of
intermediate versions will need to be kept small. In version
jumping it is desirable to pick the largest value ofn less than
or equal to the minimum value of the storage function (see
Equation 3). For linear delta chainsn must be kept small to
make file restore times reasonable as restore time grows in
the size of the versions and retrieving these files generally
requires access to slow tape devices. At these small values
of n, version jumping is a superior policy as it compresses
nearly as well and requires two tape accesses to restore a file.

Fortunately, backup and restore applications generally re-
quire few versions of a file to be stored at any given time.
An organization that retains daily backups for a week and
weekly backups for a month would be considered to have
a very aggressive backup policy. This configuration would
maken valued at 9. For the majority of configurations,n
will take on a value between 2 and 10. While some appli-
cations may exist that require more versions, the expense
of storage and storage management combined with data be-
coming older and consequently less pertinent tends to limit
the number of versions kept in a backup system.

An operational jumping delta backup system will per-
form much better than this worst case analysis as many of
the worst case factors are not realized on file system data. In
particular, the modifications from version to version will not
be completely disjoint and versions of a file should change in
size. Consequently, we conclude that our system can main-
tain more deltas between whole files than this analysis spec-
ifies. Worst case analysis does allow us to assert the viability
of a version jumping system. As the worst case bounds are
plausible for the application, a delta backup system improves
on these bounds providing a viable backup architecture.



6 Future Work

While maintaining a reference file store allows recent ver-
sion modifications to be stored in a small fraction of the file
system space, large files presents a concern as they may con-
sume significant storage space in the reference file store. We
believe that there is merit to considering block based refer-
ence file storage schemes, combined block and file storing,
and finally, using digital signatures to compactly “copy” a
representation of large files and files that have been ejected
from the reference file store.

The reference store could choose to copy blocks rather
than files. This would allow only the modified blocks in a
changed file to be duplicated in the reference store. While
this may mitigate the large file problem, it prevents a dif-
ferencing algorithm from detecting changes in multi-block
files that are not block aligned. The reference store could
instead choose to save whole files for most files and only
store blocks for large files. Such a combined scheme could
heuristically address both the large file and block alignment
issues. Finally, to save storage on large files, the file blocks
could be uniquely identified using digital signatures. This
greatly reduces the storage cost but only permits delta files
to be calculated at a block granularity.

Our version jumping technique allows delta files to be re-
stored with two accesses to the backup server storage pool.
Generally, this means that two tapes must be loaded, each
requiring several seconds. However, a backup server that
could collocate delta files and reference files on the same
tape could access both files by loading a single tape. Collo-
cation of delta files would provide a significant performance
gain for file restore but would require extra tape motions
when files are backed up or migrated from a different storage
location.

7 Conclusions

By using delta file compression, we modified ADSM to send
compact encodings of versioned data reducing both the net-
work transmission time and the server storage cost. We have
presented an architecture based on the version jumping met-
hod for storing delta files at a backup server, where many
delta files are generated from a common reference file. We
have shown that version jumping far outperforms previous
methods for file system restore, as it requires only two ac-
cesses to the server store to rebuild delta files. At the same
time, version jumping pays only small compression penal-
ties when generating delta files for file system backup.

Previous methods for efficient restore were examined and
determined to not fit the problems requirements as they re-
quire all delta files to be available simultaneously. Methods
based on delta chains may require as many accesses to the
backing store as there are versions on the backup server. As
any given file may reside on physically distinct media, and

access to these devices may be slow, previous methods failed
to meet the special needs of delta backup. We then conclude
that version jumping is a practical and efficient way to limit
restore time by making small sacrifices in compression.

Modifications to both the backup client and server help
support delta backup. We described a system where the
client maintains a store of reference files so that delta files
may be generated for transmission and storage. We have
also described enhanced file deletion and garbage collection
policies at the backup server. The server determines which
files are dependent, those inactive files that must be retained
in order to reconstruct active delta files.
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