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and 

Andrew M. Sessler and Jonathan S. Wurtele 
Lawrence Berkeley Laboratory 
Berkeley, California 94720 

Nov. 29, 1982 

ABSTRACT 

The density oscillations of warm particle bunches is investigated 

theoretically. Two different.mathematical approaches are employed to aerive 

the basic equation describing density oscillations; one is a fluid approach 

and the second is a more general Green's function formulation. The motion 

is analyzed in first order perturbation thoery where it Is shown, under the 

assumption of no degeneracy, that there are only stable oscillations. 

Second order perturbation theory gives damping of the motion. The pertur-

bation theory is examined and a criterion is exhibited for Its proper use. 

Thus, when the resistivity is small enough (but nonzero) then the motion is 

stable, but when the resistivity is large then the motion is essentially 

unstable with a growth rate which is that of an unbunched beam. The 

criterion is approximately evaluated using a model for a bunched beam. 

* This work was supported by the Office of Energy Research, and the Office 
of Inertial Fusion, of the U.S. Department of Energy under Contract No. 
DE-AC03-76SF00098. 
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I. Introduction 

Present heavy ion fusion schemes require the manipulation and 

acceleration of Intense particle bunches. The rf linac system uses storage 

rings to multiply current, while the induction linac accelerates significant 

currents directly to the target. Conunon to both methods Is the need for the 

stability of intense bunches of particles. This has been the subject of 

much research. 1 . 2 ' 3 ' 4  

A simple estimate of the growth length of a longitudinal resistive 

instability In an induction linac can be obtained by modifying previous 

results developed for circular machines. 5  Since one is ubelow  transltion 

or In the positive mass regime, there will be Instability only in the 

presence of resistivity. The e-folding length, far above threshold, Is thus: 

1 

-1 	R 1 (1+2

42S2MP1r

Zo 	£n(1)) N U 

where 

a = beam radius 

b = pipe radius 

Z = iX + R = the impedance per unit length 

NIL = Ion density 

r = classical proton radius 

zo  = free space Impedance 

S = q/e = charge state of ions 

M/M = Ion mass In units of proton mass 
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Letting. R = 200 c2/m, S = 2 9  N/M = 1/200, N/L = 1015/20m, and b/a 

1.5 we find a growth length A = 300m. Since envisioned linac drivers 

have lengths of kilometers, and because there are strict limits on the beam 

emittance in order to have a beam hit a small target, A is uncomfortably 

short. 

A similar calculation may be carried out for the rf linac - storage 

ring system approach to heavy ion fusion. 6  One finds that the growth time 

is comparable to, or shorter than, the storage time so that in this approach, 

also, there is difficulty created by the longitudinal resistive instability. 

The validity of this approach; namely the use of the unbunched beam 

growth rate for a bunched beam is supported by experimental observations on 

many storage rings as well as by a theoretical analysis by Wang and 

Pel legrini .7 

On the other hand Kwang Je Kim8  has found stability, in the presence 

of resistivity, of a finite bunch. His mode1 assumed uniform density, a 

step function in momentum space, and the Impedance of a uniform structure. 

We have generalized Kim's analysis to include arbitrary symmetric bunches 

and general impedances. 9  We found -- in first order perturbation thoery--

that bunches are stable In the limit of small resistivity compared to 

reactance, assuming no thermal spread and that disturbances move (in the 

beam frame) with velocities much less than the beam velocity. 

We interpret this stability as arising from the growth of the 

perturbation as it travels backwards in the beam combined with its 

subsequent decay after reflection at the bunch end. This contrasts with the 

picture in an unbunched beam where a perturbation moving backwards never 

reflects and consequently grows indefinitely (or at least until the linear 

theory becomes invalid). Thus the bunch end -- or the position near it, 
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where waves are reflected -- becomes very import 

stability in a bunched beam. 

However, the bunch end is exactly the place 

break-down for it is exactly the place where the 

approaching zero. Could the result of stability 

linearization of the problem? 

Furthermore, the stability which we find in 

nt in the creation of 

where the linear theory may 

unperturbed density is 

be an artifact of the 

first order perturbation 
I 

theory must be reconcilled with the instability found by Wang and 

Pellegrini. Could higher order terms In the perturbation theory or even 

lack of convergence of the perturbation theory be the source of this 

reconciliation? 

In Section II we derive the basic equation which is used subsequently 

to analyze the longitudinal oscillations of a bunch. We first (Sect. II.i) 

derive the equation by taking moments of the Vlasov equation (a hydrodynamic 

approach) and then (Sect. 11.2) by a more careful (but also more complicated) 

analysis. 

In Section III we give a careful, and complete, derivation of the 

result of first order perturbation theory. The result of this analysis has 

been reported previously. 9  

In Sect. IV we consider second order perturbation theory and derive an 

equation Including the effects of the energy spread of the particle 

distribution function. In addition we consider the effect of synchrotron 

motion. 

In Sect.V we consider the validity of perturbation theory. In 

particular, we show that a model can be exhibited for which the linearization 

of the problem is valid. For this model we have linear reflection of waves 

at the bunch end, with the result that a non-linear analysis (which is 

p 
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beyond the scope of this paper) is not required. Within this model, we then 

study the validity of a perturbation theory analysis. A criterion is 

obtained which when violated leads to essentially unstable motion. We 

derive an estimate of the growth rate which turns out to be that of Eq. 

Since the growth rate of Eq. (1.1) is unacceptable for heavy ion fusion 

schemes the criterion becomes a design criterion. This criterion can, in 

practice, be met. 

We have been motivated by the requirements of heavy-ion fusion -- and 

limited ourselves as a result -- to the longitudinal density oscillations of 

intense particle bunches. In the course of this study, we have developed 

much understanding of oscillations In finite bunches and how such 

oscillations N go  overa into the (previously studied) oscillations of a very 

long (infinitely long) beam. In short, we have developed a proper 

theoretical frame-work for analysis of oscillations in bunched beams. A 

similar study can be made -- and should be made -- of transverse 

oscillations in bunches and, also, of the coupled motion which results from 

combining transverse and longitudinal oscillations. These analyses would 

have application to accelerators which have very intense bunches such as are 

presently considered for material studies or free electron laser use. 

II. Derivation of Basic Equation 

11.1. Hydrodynamic Analysis 

The equation governing the motion of the ions is the Vlasov equation in 

the beam frame: 

61 
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af(x,v,t) + 	
af(x,v,t) + 	af(x,v,t) = 0 

at 	 ax 	FP 	av (2.1) 

In writing down Eq. (2.1) the following approximations have been made: 

Transverse motion Is decoupled from the longitudinal motion, 	
I 

The beam velocity, vB, is nonrelativistic, 

The ions are collisionless. 

In Eq. (2.1), 

E = E(x,t) = EA(x,t) + E5(x,t) 

where EA(x,t) is the applied electric field (which Is responsible for 

the bunching) and E 5 (x,t) is the space charge electric field. 

The line density, longitudinal current, and normalization are defined 

as follows: 

line density: 	 n(x,t) = f f(x,v,t) dv 

longitudinal current: 
	

I(x,t) = f vf(x,v,t) dv 

normal I zati on: 
	

N = f n(x,t) dx 

Other constants are defined as in Section I. 

We linearize about a steady state solution f 0 (x,v) which satisfies 
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af0 (x,v) 	 af0(x,v) 
ax 	+ 	(E + E) 	av 	= 0 	 (2.2) 

where E5 (x) Is the field due to the equilibrium distribution and 

n0 (x) = f f 0  (x,v) dv 

Substituting f(x,vt) = f0 (x,y) + f1 (x,v,t) in (2.1), and using (2.2) 

we find 

af 	af 	 of 	of 
(2.3) 

where 

ES 1 	0 = E5 - E5 

Taking moments of Eq. (2.3) we find 

an 1 	al _.._L + ._! - 0 at 	ax - 

and 

(2.4) 

a11(x,t) +
ax f v2fj ( x , v, t)dv  - 	(EA + E) n 1 (x,t) - 	E n0 (x) = 0 at  

(2.5) 

We can estimate 	f v2f1 (x,v,t)dv. Limitations at the target imply that 
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c .01 where LV is the thermal spread In the beam, so 1 f v2f1AV  
V8 	 ax 

2 	 2 ..- (v) - kn 1 (av) 	where k Is a wave number characteristic of the 

perturbation. Also av is related to the synchrotron frequency and 

the zero'th order distribution via the relation 

.tI (EA + E)(v)2/Lc22 L, 

where the synchrotron frequency is c. Thus for an applied field E
A  

carefully matched with Es, the synchrotron motion and thermal spread can 

be neglected. Equation (2.5) then becomes 

aI 

	

- 	E no  = 0 . 	 (2.6) 

Equations (2.4) and (2.6) can be combined to give 

	

a 2n 1 (x,t) + 	
(E n) = 0 . 	 (2.7) 

at2 	Max 	
o  

Really E5  is a function of current, not density, and is determined via 

the solution of the Maxwell equations with boundary conditions determined by 

the geometry and electromagnetic properties of the accelerator. The 

boundary conditions are known in the lab frame where 

I 



£ (k,) = - Z(kt,) I'(k,) 

The superscript £ denotes the lab coordinates and fields. For 

non-relativistic bunches, k = k, 	= kv8  + w and the - denotes 

Fourier transform: 

G(k,w) = ffdxdt e(t) G(x,t) 

If we restrict to the case w << v8 , which is a good 
approximation near the center of the bunch, where the beam is approximately 

uniform, then the unbunched beam result can be used: 

I 2 	 1/2 

r!:1. ( 1+ 2 Ln(b/a))J 	- .006 VB. 

Thus we approximate I9(k,j) = VB n(k,), and since the value of 

is independent of beam or lab frame, 

(k,) = - Z(k) v8  n1 (k,) , 	 (2.8) 

where 

Z(k) 	Z(k,kvB) 

Thus Eq. (2.7) becomes 

2• 'i + fr  (n. 
(2)2  ff dkd 	eikxt (-Z(k)V8  fl 1 (kpu))) = 0 	(2.9) 
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This equation can be transformed Into an integral equation using the 

convolution theorem: 

	

If n(k) = (G*F)(k) 	f G(k-k - ) F(k') dk', then n(x) • 2ir G(x) F(x). Thus 

taking the Fourier transform of (2.9) gives 

	

- 	 V8 lkq 
- &2n1(k) 	

21rM 	
fdk' n0(k-k') Z(k') 1 (k') a 0 . 	(2.10) 

11.2. Vlasov Analysis 

II.2.A Motivation 

We now present a more general formulation of the beam stability problem 

starting from the Vlasov equation. By doing this we are able to provide a 

careful and systematic derivation of the fluid equations used previously, 

and also to Investigate corrections due to thermal effects and to bounce 

motion. 

We continue to assume that perturbed quantities such as the electric 

field and distribution function vary significantly only in the longitudinal 

direction, the transverse variation of the electric field outside the beam 

being Included in the effective coupling impedance. We also assume that the 

boundary conditions are uniform, both temporaly and in the longitudinal 

direction. In other words, we are interested in frequencies and growth 

rates small compared to the frequencies of rapid fluctuations (as seen in 

the beam frame) of the external structures, and thus can replace the actual 

boundary conditions by those of a time-independent spatially uniform (In the 

longitudinal direction) wall characterized by an impedance function. We 

also assume, for simplIcity, that the particle motion Is nonrelativistic. 

I 
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It Is necessary for us to carefully distinguish lab frame quantities 

from beam frame quantities. The relationship between electric field and 

current is known, in terms of impedances, in the laboratory frame of 

reference. However, since the bunch approches and completely passes any 

fixed longitudinal position in the lab, we cannot expect a simple 

exponential dependence on time of any perturbed quantities; i.e., a 

dispersion relation doesn't ex 1st in the lab frame. However, a simple 

exponential dependence on time of the perturbed quantities can be expected 

in the beam frame if we assume uniform boundary conditions. Thus, the 

field-current relation must be transformed from the lab frame to the beam 

frame. 

II.2.B Formalism 

To begin, we write down the linearized Vlasov equation in the lab frame: 

afl 
+ 	

af 	qE0  af 	qE1  af 

at 	x  + 	- = - R 	• 	 (2.11)
av  

The difficulty In solving this equation is that E o  and f0  are both 

time dependent. The perturbed electric field is a functional of the 

perturbed current, I, defined to be 

	

I(x,t) = f dvlv j'fl(xk ,v l ,t t ) . 	 (2.12) 

We express the relationship between E 1  and I by means of the 

general equation 
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E1(x,tt) = fdt fdxk'  G (t_tL, x-x)  z(x2',t). 	(2.13) 

where causality requires 

G(t_tL ,  x_x&) = 0 	if ti" > tL. 	 (2.14) 
	61  

The fact that the arguments of G are difference variables only is clue to 

our assumption of uniform boundary conditions. 

In order to convert Eq. (2.11) into an integral equation, we define 

some subsidiary functions. We first define the unperturbed orbit functions 

as the solutions of 

OR8 	&' 
.- Ct ; x0,v01t0) = vORB(t 

dt - 
(2.15) 

_ 	

qE0 cl vORB (t 
	 = -s- (x0,t  

9.
1 

L 	
) 

dt 

which satisfy 

,i 	£. 	L 	2. 
XORB t0  x0 ,v01 t0 , = X0  

(2.16) 

(2.17) 

 

VORB (t; 	 = 

We now define a function of six variables 

 

J. 
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- x 	)s (v - v 	) t < t' 

X V 	X0)V0p 0 = fo 	tt >t 

The solution of Eq. (2.11) can now be written as 

f(x,vP,tZ) = - 	/dto  f dxO  f dv 0 

K (xL,vt,t; 	 E1(4t) 	 (2.19) 
af(x,v,t) 

avi  

where E1  Is given by Eq. (2.13). 

Multiplying Eq. (2.19) by v2  and integrating to form the current we 

get 

I( x L,tL) = - . fdt l  fdx -t  fdV R'fdv -' v K 

af(x,v,t) 
E1 (x,t) 

av 0 

where 	E1  is given by Eq. (2.13). 

We now transform to the beam frame of reference by means of 
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tt = t 

and we define 

21 
= x + vB t 

= VB + V 

t = to  

X = X0 + VBtO 

it 
Vo= VB + V0  (2.21) 

I(x,t) = I(x + v8t t) 	 (2.22) 

Note that I is the lab frame current expressed in beam frame variables, It 

Is not the current seen in the beam frame. Equation (2.20) now takes the 

form 

I(x,t) = - 	fdto  fdxo  jdvo  f dv(vB + 

K (x+vBt,  Vg *'Vt ;  x0+v8t0 , v8 +v0 ,t0 ) 

a fL 
E1 (x0 v8t0 , t 0) • v:; (XQ V 8tQ , V8 +VQ , t0 ) 	(2.23) 

If we now assume E0 = E0(x _VBt),  the equilibrium is time 

independent in the beam frame and the beam frame equilibrium forces are 

independent of time. We can thus define 

- 14 - 



f0(x011v0) = 	f(xo+vBto ,  VB + VO ,  t0 ) 	 (2.24) 

K(xv; x01 v0 ,t-t0 ) = K(x+v8t, VB+V,  t;  xo+vBto,vB+vo,to) (2.25) 

The Integral In Eq. (2.23) Is a convolution In time, and we can Fourier 

transform to obtain 

I(x,w) = - 	fdx 0  f  

af0  
K(x,v; x01 v0,) 11 (x0 , ) --- (x0 ,v0 ) 	(2.26) 

where E 1 (x0 ,) is the temporal fourier transform of E1(x0 + VBtO, t0 ). 

Now, we can use Eq. (2.13) to obtain 

El(xo+vBtQ,to) = jdt 
O 
 fdx G (t0_tL,  x0 v8t0-x) 	I(x,t) 

(2.27) 

Transforming integration variables and Fourier transforming in time we 

get 

E1(x0,w) = fdx' G(w, x0  - x') I(x', ) 	 (2.28) 

where 

G(.,x0-x') = fdt G(t, xo_x+vBt) 	. 	 (2.31) 
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Note that in Fourier transforming G the time dependence in both arguments 

must be taken Into account. We finally arrive at an Integral equation for 

I 

I(x,) = fdx ,  P(x,X',u) I(x',) , 	 (2.29) 

where we have defined 

P(x,x',) - . jdxO  jdvo  jdv(v B +V) 

- 	 af 
K(x,v; x0,v0,j) .9. (x39 v0 ) G(u,x0-x') . (2.30)av  

Let us now consider the cold beam limit, which Is obtained by taking 

f0 (x0 ,v0 ) = n0 (x0 ) 6(v0 ) 	 (2.32) 

and 

fo
d(V_V Q ) 6(x-x0-v0t) 	t 0 

K(x,v; x0 ,v0 ; t) = 	 (2.33) 

t < 0 

We then find that 

- a 	in0 (x) G(,x-x') + 

- M I 	 2 ax (n0 (x) G(u,Xx))] 
(2.34) 

S 

A 
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We can now write Eq. (2.29) as 

= 	(1 - __Lh.)[ho(x) f dx' G(t.x-x') I(x',3)}. 	(2.35) 

Since we can Identify the spatial transform of the Greens function 

G(,x) with the impedance Z(,k), equatIon (2.35) is equivalent to Eq. 

(2.10) in the limit u << kvB. 

111. First Order Perturbation Theory 

IILl. Theorems 

An analysis of Eq. (2.10) leads to some general conclusions about w. 

Case 1. Z(k) = IX(k) 	where X(k) = X*(k) = -X(-k) 

and 	X(k) < 0 for k > 0. 

_IX(k)n1*(k) 
Multiplying Eq. (2.10) by 	 and integrating over k gives 

+ i 	fdklni(k)12 X(k) ______ + 
iqv 

 ______ 

X ffdk'dk n0 (k-k') X(k) X(k') fl1*(k)  n1 (k') = 0, 

so 

2 	qv 	
ffdkdk, 

I

n 0 (k-k') X(k) xk' 	*(k) n 1 (k') 

j
dk J~n 1  (k)1 2  X(k)/k 
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The numerator in Eq. (3.1) is of the form 

fdk F(k) G*(k), 	where F(k) = fdk I n0 (k-k') X(k') n 1 (k') 

and 

G(k) = X(k) n 1 (k) 

Then Plancherel's theorem, 

fdk Fki*k = 2 fF(X) G*(x)  dx 

gives 

n0(kk 1 ) ( k') n1 (k') X(k) n(k) 	(2T)2  fdx n0() E5 ()1 2  > 0 f  
Since X(k) Is odd and X(k) < 0 for k > 0, 

fdk 1n1(k)12 X(k) <0. 

Therefore u2  > 0 and w Is real. The assumption that X(k) is negative 
I.  

for k > 0 simply states that we are not in the "negative mass regime". 

Having established stability for a reactive impedance, we now consider 

an impedance with a small resistive part. 

Take 

Z(k) = IX(k) + R(k) 	R(k) = R*(k) = R(-k) 

- 18 - 



and assume that Eq. (2.10) been solved for Z(k) = iX(k) yielding with a 

set of elgenfunctions 	O) satisfying 

- (.(0))2,-(0) + 1k 2-4 	fn0(k_k I ) IX(k') n 0 (k') dk' = 0 

(3.2) 

Additionally, assume the eigeflfrequencies w 1  are non-degenerate. 

For R << X, expand n = n 	+ 	() 	(°) , 	= 	
+ 	in Eq. (2.10) so 

0 (1) (0) 	((0) - 2. 	n 	- 	)2 (1) + 
qv8 

1k j" 0 (k_k') 

	

x 	[iX(k');(')(k') + R(k') 0)ks)J  dk' a 0 

Multiplying by 	jfl(0)*(k) X(k) 
k and integrating over k yields 

• (0) (1) fn(0)k 2 X(k) dk 
1 '•n 	'4n 	 k  

+ qv8 ff
n0(kk s  R(k') X(k) 	°(k') 

(0)*() 
 dkdk' 
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+ 	W
(0)) fxk) 	0)7k n, 1 (k) dk 

+ Z 

iqv8 ff (kk') X(k) X(k') (0)*(k) 	0 (k') = 0 . 	(3.3) 

Since fl0() 	 is real and synmietric, so Is its fourier transform 

The variables (k,k') may be interchanged In the last term above, so the 

last two terms of Eq. (3.3) can be grouped together. Using Eq. (3.2) we find 

fdk -IX(k)n1(k) 

qv 
x 

[ 

- 

 

( W
(0

)
)2 
	

0k + ZTM

ik 
 fdk' 0 (k-k') IX(k') fl(0)(kI)j 	0 

EquatIon (3.3) can now be solved for 

(1) 	
lqv 	ffdkdk' n0 (k-k') X(k) R(k') n, 0 (k') n 0 (k) 

= 2iM 	 2u °  /In,°(k)i2 X(k) 
	 (3.4) 

The numerator of Eq. (3.4) Is proportional to 

A 

11 
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ffdkdk' n0 (k-k') X(k) R(k') (0)*() 
 n 0 (k') = /dk F(k) G*(k) 

where 

F(k) = fdk s  n0 (k-k') n 0 (k') R(k') and G(k) = X(k) 

Furthermore note that since X(k) Is an odd function of k 

- 

2 (0) 	
iqkv8 	

- ("(0) 

 ) n 
	C-k) + 2TM f n0 (k-k') iX(k') n, 	(-k) dk' 

- 	 iqkv 	
- 	 -'0' = - 	0, 2 n ° '(_k) + 2MB  f n0 (k_k 5 ) iX(-k') n, 'C-k') dk' 

/7n-
0  ( (0)2 	0 	 _

) 	
-k 	

lqv 
+ C-k) 2MB . (_k_k 5 ) iX(k') n,0 (k') dk' 

= 0 , 	since this is Eq. (2.10) with k 	-k. 

Thus for non-degenerate eigenvalues, the elgenfunctions must have 

definite parity. This implies 

T(k) has the same parity as 

and 	 (k) has opposite parity of 

whence 
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Jdk F(k) G(k) = 0 

We thus find ( '. 1) =0. 

One should note that this analysis breaks down for asymmetric n 0 (x). 

We have shown that quite generally bunches are stable under small 

resistive perturbations. Before examining in detail the validity of the 

approximations made, we derive some well known results. 

111.2 Special Cases 

For wavelength long compared to the beam and accelerator transverse 

dimensions, but short compared to a bunch length, the Impedance can be taken 

as5  

Z(k) = - iqk(g0/v8) - qRs 

where g0  Is the usual geometrical factor g = 1 + 2 ln(b/a) 

cylindrical geometry. Equation (2.7) then becomes 

a2n1(x,t) - 
	

an1(X,t) + 

vBRnl(x$t))nO(x)) = o  ax'(( 90 	ax at2  

(3.5) 

for 

(3.6) 

We further specialize: 

Case 1. 	R' = 0, n0 (x) = no  = constant 

Fourier transforming gives the dispersion relation 
	

4 

- 2 + q2n090 k
2  = 0 

/q2gn  

or V  =
M 
 =v; 
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as quoted earlier (above Eq. (2.8)), this is the old result for an unbunched 

beam. 

Case 2. 	n0(x) = n0 , R' A 0 then 

2q2g0n0 2 
	

q2v8R'n0 

+ 	M 	k +1k 	M 	=0, 

whence 
1/2 

q2g0n0 	iVBR\ 	 IR'v8v 

	

N (i+ 0) 	
kv+ 290 

kg0  
for R' 

Thus the unbunched beam has a growth rate Im(w) given by 

Im() = R'VBVP  
2g0  

which is exactly the result quoted in Eq. (1.1). 

The result (3.7) corresponds to an e-folding distance x given by 

= Im(u) 	R'v 

V8 	g0  

Case 3. 	We now consider the physically  more realistic parabolic line 

density 

n0() = n0(Q)(1 - x2/L2 ) 	n0(0) = 	(normalization) 

(3.7) 
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and assume R' = 0. Then Eq. (3.6) becomes 

__________ 	\ 
3fl1 q2g0n0(0) a 
	

= 	
= 0 ii ( 	ax (3.8) 

Equation (3.8) is Legendre's equation, with 

	

n1(x) = m 	' 	'm =t2. Y'm(m+l) 
	

(3.9) 

where m = 0,1,2 and v= q2g0n0 (0)/M. Since - k. 
L 

again - - VP . This is the result previously obtained by Neuffer)0 

In the above examples we have considered impedances whose imaginary 

part grows linearly with wavenumber k. Those Impedances are good for 

wavelengths long compared to the beam rodius, rb. A better 

phenomenological impedance, Including the effect of finite pipe radius, Is 

X(k) 
-q(g0/V8 )k 

= (3.10) 
l(dk)2  

where d2  = r g0/4. In the limit k 	Eq. (3.10) gives the 

relation between E and n expected from Coulombs law. 

Case 4. n0 (x) = n0 , R' = 0, X is given by Eq. (3.10). We find the 

unbunched beam dispersion relation to be 

2 	q2  90 n0 	k2  

M 	
1 + k2d2 
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Thus we see that coasting beams are linearly unstable, whereas bunched 

beams have temporal stability under small resistive perturbations. Our 

physical picture Is that the wave decays as it moves forward, reflects near 

the end of the bunch, and then grows as It moves backwarGs. Thus, If the 

modes are nondegenerate, there is growth followed by decay followed by 

growth but no net instability. 

111.3. Transient Spatial Amplification 

In any resistive structure there will be transient spacial 

amplification even if the eigenfrequencies are real. In this section we 

will estimate the spatial growth of a perturbation In the middle of a bunch, 

where we assume a slowly varying unperturbed density. 

We consider the usual impedance Z(k) = _iqk(gQ/v) - R'q, so that 

the perturbed density is governed by Eq. (3.6). Taking the Fourier 

transform in time of Eq. (3.6) yields 

a2n1 (x,tj) 	dn0 	vBR\ an1(x,w) 	R'vB dn

ax2 	 + g0 )
(W2 

+ gonO  a-) n 1 (x,) = 0 

(3.12) 

Setting 

vBRx/2gO 
= n0  (x) e 	n1(x,) 	 (3.13) 

and using Eq. (3.12), we find '(x,) satisfies 
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2 	r 2 	R'VB 	O 	1 (dn0/dx R'v \2 
	

1 d ,dn0/dx 1 a +  ___ 	 _____ ___ 	 _____ 

	

2 I7 	g a —  - 	no + 
	B) - 	

no )j = ax 

For a slowly varying fl0(x) Eq. (3.14) simplifies to 	
(3.14) 

Explicitly we have assumed that 

R'v8  dn0 	d(dfl0/dX \ 

g0n0 ' 	 • t  no 	)' 

dn/dx 2 	2 

( 	) << 2' 
o  

p 

( R'v8\ 

\ 90 ) 

2 	1  2 	R'v 2 1 
___ 	= 0 (3.15) 

Equation (3.15) has solutions of the form 

1 	fk(xs)dxl 

	

(Xw) = k 	(x) e 

where 

1 

	

k(x) 	
'2 	R'v 2 \2 

g_ ) 

(3.16) 

(3.17) 

Thus k(x) Is shifted as the resistivity increases, and k(x) vanishes 

when the unbunched beam growth rate equals the oscillation frequency 	. 

Using Eq. (3.13) the magnitude of the perturbed density is 
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XR'V8  

- 2g0  
n 1 (xt) = e 	I no  W (I -'M 

2 ) I - 	( 3.18) 

R'v v 
where 	= 29: p • The first term, exp(_xvB Rs/2 ), is the spatial growth 

(decay) of the backward (forward) moving wave in an unbunched beam. It can 

easily be derived by assuming 	real and k complex in Section 111.2, Case 2. 

The second term in Eq. (3.18) represents a modification of this unbunched 

beam result arising from slow variation in the unperturbed density. Since 

we are considering small resistivities, a < 1; furthermore (n0(x)) -"4  

increases very slowly, and only becomes appreciable at the bunch ends where 

we must examine our opproximations in greater detail (see section V). In 

short there is little modification of the unbunched beam spatial 

amplification within regions of slowly varying density. 

IV. Second Order Perturbation Theory 

IV.l. Damping Rate 

Since our first order perturbation theory yielded neither growth or 

damping, a second Order calculation is needed to see if resistive effects 

are stabilizing or destabilizing. We employ the formalism developed in 

Section 11.2 and perform an expansion in both u/kV8  and R'. First and 

second order perturbation theory then give the damping rate for the 

parabolic bunch. We assume the standard mode1 5  for the impedance which 

corresponds to 

G&(t ,x ) = G 1 (t ) 6(x ) + G2 (t ) o"(x ) . 	 (4.1) 
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The Fourier transforms of G, , and G2  are respectively the resistive 

and reactive parts of the Impedance, denoted by Z 1 () and Z2 () 

respectively. Using Eq. (3.26) in the definition (3.21) we find 

G(w,x-x') = fdt ekt G 1 (t) 6 "(x+vBt_x') 

+ f dt e iWt
G2 (t) 6 u (xfvBtx) . 	 (4.2) 

In order to simplify this expression we use the formal identity for 

arbitrary functions, f, 

f(x + VBt) = exP(vBtfr)f(x) 	 (4.3) 

Note that our formal manipulations can be rigorously justified if we 

restrict our considerations to C perturbations of compact support,( 1 l) 

a restriction we must apply in any case to use the o-functions in Eq. 

(4.1). Using Eq. (4.3) we see that Eq. (4.2) becomes 

G(,x_x) = Zj (w - iv8  f.) 6(x-x') + 

Z2(w - IVB II)6 " (XX 1 ) . 	 ( 4.4) 

Roughly speaking, the effect of the transformation of frames has been to 

replace the beam frame frequency, u , by the equivalent lab frame 

frequency, w + k VB, where k is the wave number. 
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Equation (2.35) can now be written, in this case, as 

1v8 a) 
I(x,u) 	(1 

- -;-- 	

n0(x) 

a 2 
)< 	- IVB .& I(x,) + Z2 (u - iv8 +i 	

} S 

For the standard mode1 5  we have 

	

= - R'q 	 (4.6) 

I g0q 
Z2() = 	, 	 (4.7) 

where R' Is a resistivity. Using these expressions In Eq. (3.30) we find 

iv IL) n 	 (4.8) u ax 	0 (x) 	R'1(x,) + 	
g0 	a2Il 

- iV8. j  3X2
j  

Now, for the case we are interested in 

lul << 
	

(4.9) 

So we formally expand the inverse operator as 

( - iv8 	= (_i 	a -1 
	

(_1v8 +)2 	 (4.10) v8 ) - 

With this expansion, Eq. (4.8) becomes 
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VBa 	 ____ 
19L.3 	iv 

I(x,) = 	( i - .--_..)n0(x) [_ R'I(x,) + 	2 (i + ax 

(4.11) 

Converting Eq. (4.11) to the standard form for second order differential 

equations, we find 

+ ai (1 	dn0 + VBR 2 	 2 	IVB1 dn0 + f_ R' + 
	- 

) + 	 190 
vB 	

n0  —a))= 0 

(4.12) 

We now show that Eq. (4.12) possesses stable eigenmodes and calculate 

the damping rates. We use perturbation theory to calculate the damping 

rate, and thus assume R' small and 

VP  << 1 . 	 (4.13) 
VB 

We now divide the differential operator into a "large" part 

M = a2 +L0.L+ 	
2 

(4.14) o 	2 n0iax v2(x) 

and a "small" part 

2 	 dn0 \ B j_ 

	

2 (i 
	 . 	(4.15) 90 ax 	

190 vB 

As in section 11.2, we follow Neuffer 10  and choose 

n0 (x) = n0
(0) (i - ._.). 	

(4.16) 
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The elgenfunctions of M0  are then 

I,0(x) 	
m 	' 	 (4.17) 

with m = 1,2,3,..., and the elgenvalues are 

v(0) ____ 
Om 	

= * 	
L 	v'm(m1) . 	 (4.18) 

In order to compute the growth rates to order vP/yB consistently, both 

first and second order terms In the elgenvalue perturbation equation must be 

retained. Because the operator cM1  depends on the elgenvalue, the 

perturbation theory requl red I s slightly different from the usual, so we 

present a detailed derivation. 

We assume that the eigenfunctlon and eigenvalue can be expanded as 

= i ° x + cIri'(x) + 2 j 2 () 

(0) 

	

= 	+ 	( 1 ) + 2(2) + 	 (4.19) 

The operator equation can then be written as 

	

[M0(x,$) + c (J 
(1) 3M0 	+ 2 (2) 3M0 	(0) 
- 

n a 	 c 	—(x, 	) n 	aw 	n 

2 (1)2  2 
+ c 	a N0 	(0) 	 2 (1) 

u 

	

2 (x,. 	) + £ M(x.) + £ 	(x 2 	aw 	
1 	 a 	) 
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F 1 (o + 	( 1) 
I n 	1n 	+ 2I(2) +...] = 0 . 	(4.20) 

The zeroth order terms in this equation vanish identically, and the 

first order terms yield 

	

M0 (x.e) I' + (1) __ 	
+ 	= 0 . 	 (4.21) 

	

au 	fl 

Multiplying Eq. (4.21) by 	integrating over x, and using the fact 

that M0  Is self-adjoint we find that the first order frequency shift is 

	

(1) - - fI ° () M1  I 0 () dx 	
(4.22) 

- 	 d 5I 0  ,(x) 
aM0 	

0 I() x 

which is the usual first order result. To find the second order frequency 

shift we need the first order corrections to the eigenfunction which can be 

expanded as 

I (1)  = 	Am 1(0) (x) 	 (4.23) 
nm  

Using this expansion in Eq. (4.21) we find 

Am  

F 	(1)
aM  

- w
fl 	fI,,0(x) 	.2. (X,w ° 	i ° () - 5 I, 0 (x) MlI0)(x)1 ' fIM (0) 

	

I 	m Om 

The second order terms in Eq. (4.20) yield 	 / 	(4.24) 
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MI2 + (1) 
aM0 

 (1) + MI1 + 3 (2) 	(0) 0 	 + 
(J 	i'n 

	

1 	
3u 	fl 

(1)2 2  

+ 	
(1) aM1 1(0) = a 	(4.25)  2 	2 

Multiplying Eq. (4.25) by 1c 0 . integrating over x, and using the 

self-adjointness of N0  we find 

(2) wn  = - [ n 	(0) 	0 	+ n 	a W n 

i2 	2 

+ 
	

a N0 1(0) + (1) fi °  ! i (0) 

	

2 	
a2 	n 	n 	aw 	n 

X 1 / j(0) 
Im 
0 (0) 

a 	n 	 (4.26) 

The 	i() in Eq. (4.26) are given by Eqs. (4.23) and (4.24) which 

are in turn determined by the operators M 0  and M1  and by the zeroth 

order elgenfunctions, Eq. (4.17). 

The first order frequency shift is easily calculated and is given by 

v2 (0) 	
90 

U 

	

(1) 	p 	( IR' - 
	

n
)X(n) 2 	- 	2 	, 	 (4.27) 

VB 

where the function X(n) is 
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x (n)= 2n2+2n-2 
(4.28) 

 4n2  + 4 - 3 

and Is approximately 1/2 for n > 2. We note that in first order both a 

real frequency shift and a decay rate appear. 

A tedious but straightforward calculation of the second order frequency 

shift gives 

(0) R' Im (2) = - 
	

90 	
0(n) , 	 (4.29) 

where 

0(n)- - 
	

1 	n1 	fl 
 (2n1) 253 - 2n-1 	 (4.30) 

In Eq. (4.29), we have shown only the contribution to the decay rate and 

have ignored the additional real frequency shift. We have also ignored 

various terms of higher order in (vp/yB). Higher orders of 

perturbation theory yield no new contributions to the decay rate to this 

order in (v/v 8 ). Note that for n > 2 the second order contribution 

can be neglected in comparison to the first order contribution. 

The growth rate for an unbunched beam Is 

Im ' 	

= VPVBR. 	
(4.31) 

Thus, we see that 	
unbunched 

Im(ubuflched) J 	g0 

I Im(uuflbuflched)J 	
<< 1 . 	 (4.32) 

P1.2. Temperature Terms 

We briefly indicate how thermal effects can be included if necessary. 
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The distribution function of Eq. (2.32) was chosen to have the correct zero 

order velocity moment, but has vanishing higher order velocity moments. To 

include thermal corrections, we choose a distribution function with nonzero 

moments through second order. Thus, we now take 

1(x0 ) 
f0(x0 ,v0 ) = n0 (x0 ) 6(v0 + ) 	 2M 	

6N(V0) 
, 	 ( 4•33) 

where 1(x0 ) is a position dependent M temperature. Using this 

distribution function instead of Eq. (2.32) a straightforward calculation 

yields the equation 

2 	 dn 	v 	- 2 	 Iv 	dn 0) 
—77 —ax ( —n a — - 	2 	ig 

B  ) i[+(&.+ 
2 
 .)(i 

= mvB 0 	
2 	- - ) n0T (i + 	 . (4.34) 

We have written all the additional terms due to the temperature on the 

right hand side of this equation. We note that the equation is now a fourth 

order differential equation. If we compare the magnitude of the right hand 

side to the magnitude of the terms which gave the instablity we find 

M1 temperature - 	I 	
(435) 

M1 resistance 	v8R 	mv2(0) 

where k Is the effective wave number of perturbation. Note that the 

dependences on kT,R',n 0  in Eq.. (4.35) are exactly what one would 
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naively expect. For induction linac parameters this ratio is roughly of 

order 1 for perturbation wavelengths of 25 cm. Thus for long wavelength 

disturbances temperature corrections are unimportant, while for short wave-

lengths they dominate. To properly treat the temperature corrections on the 

short wavelength modes we should use the modified impedance model, Eq. 

(3.10). 

The effect of the temperature correction on the short-wavelength 

modified Impedance model is subtle. Using Eq. (4.33) again, one can derive 

the equation 

( vx) 
_ 

d2) d2Ø + 
3g0q2 

___ 
a2 n0T 	, 	(4.36) 

'4 

where I is related to 0 by 

1 =_fr(1_d2!7)0. 	 (437) 
ax 

and d2  Is defined In section 11.3, and where the reactive part of the 

Impedance has been replaced by 

ig0k2q 
(4.38) 

Z(k,) = (1 + (dk) 2 ) 

in the spatial Fourier transform space. In Eq. (4.36) we have ignored 

resistive terms. 

The second order equation (left hand side of Eq. (4.36)) has a singu-

larity at v = (d) 2 , but the full fourth order equation is regular there. 
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A careful treatment of this phenomenon requires singular perturbation 

theory 12  which we will not present. 

As we have pointed out, the impedance-modified temperature corrected 

model (for brevity, the "fourth order" model), Eq. (4.36), possesses the 

properties needed for a consistent linearization. Let us examine its 

dispersion relation, i.e. we take the bunch uniform and assume an eikx 

dependence. We then find 

-k 2  f V 	-d2  \ 	i 	3 V (Tim) 0 	
(4039) 

) 

Solving for w2  we find 

2 
2 	

k2  VP 	
+ 1/2 [(_k2V 
	2 	

12 k4V(T/m) 	
1/2 

= 2(1 + k2d2 ) 	 1 + k2d2  ) 	+ 	1 + k2  d2 	I 	. 	( 4.40) 

If we take the limit where kcl > 1 but where 

].2(I)< V 
m 	

(kd)4 	
(4.41) 

then we have approximately 

2 	 + ___ 	
3 k2 (T/M) 	 . 	 (4.42) U = 

d2  

If we Identify d2 so that 

2 

,) 	P 	
, 	 (4.43) 

d  
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where w is the plasma frequency then this becomes 

U = 
2 	2 + 3k2 (T/M) (4.44) 

which Is the correct dispersion relation for waves, In a warm plasma. 14  

Thus, our fourth order mode) does reduce correctly for short wavelength 

modes. 

Our treatment of thermal effects is somewhat inconsistent since we have 

corrected the distribution function but not corrected the orbit functions. 

The first order corrections to the orbits are: 

x = x0  + v0 (tt0 ) - - 	6 

V - v0  - x0  2(t-t0) - v
0 22 (t-t0 ) 2  

(4.45) 2 

where c2 Is the synchrotron frequency. These orbit corrections Include the 

effects of particles bouncing off the ends of the bunch once. Inserting 

Eqs. (4.45) into the 6-functions In Eq. (2.33), a very tedious but 

straightforward calculation yields a further correction to eM 1 : 

(EM1)bounce  = 

a 	dn0 	
) (_ !!:. + L.\ 

(3fl0IwX 
 ..L - n o 	 - 3n0x --) j (4.46) - 2 	

[(3x 	- 	
VB 	ax) \ vB 	ax 

U fl0  
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We see that these terms contribute to the third order derivative and lower 

terms and are of order c 2/ 2  compared to the zero order terms. Note 

that we have discarded terms involving products of a 2 with R 1  and 1, 

and have discarded higher order terms in (vp/yB). Taking the ratio of 

these terms to the damping term we find 

cM1 bounce - 
cM1 resistance 

2 L90 
(S' 

 2 

VBR ' 	W ) (4.47) 

This ratio Is order 1/10, thus, bounce effects are small compared to the 

decay rate for the parameters relevant to the induction linac. 

V. 	Limits of Validity 

V.) Effective Growth 

In the previous sections we arrived at the optimistic conclusion that 

intense bunched beams will be stable to longitudinal perturbations. We must 

now inquire into the limits of validity of our analysis and the effect of 

any violations of these limits. 

Our analysis has rested on three assumptions: 1) Linearization of the 

fluid or Vlasov equations; 2) a perturbation theory to calculate the effect 

of resistivity on the eigenvalues; 3) nondegeneracy of the eigenmocles of the 

zero resistivity equations. Let us coninent on each of these assumptions in 

turn. 

Whether or not linearization of the equations is valid depends on a 

number of circumstances, such as the amplitudes of initial or accidentally 

applied perturbations and the contributions of nonlinear terms which differ 
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with different density profiles. It Is reasonable, however, to proceed with 

the linearization on the assumption that linear stability criteria are 

likely indicators of troublesome parameter regimes. Let us note, on the 

other hand, that the linearization must be a posteriorl self-consistent, 

i.e., the the modes resulting from the linear analysis must satisfy the 

assumption that n 1  << no  . That linearization Is not always self-

consistent Is shown by the parabolic density model Eq. (3.8), which has 

modes, P(.) and/or Q() that are nonzero at x = L where 

no  = 0. Thus, the results of this and similarly Inconsistent models must 

be seriously questioned. 

In fact, It seems to be a property of all low order models in which the 

density goes to zero at finite distance that linearity is violated. 

Roughly, this is due to the fact that the characteristics of the associated 

partial differential equation "pile up" at zero density and thus 

perturbations will become arbitrarily large unless the zero density point is 

at infinity. The "piling up" will also be a problem for spatially infinite 

models unless the unperturbed density goes to zero slowly enough. Even with 

slowly decaying density, the standard Impedance model, Eq. (3.5) with R=O, 

violates the linearity assumption because perturbations do not spatially 

decay. The modified impedance model, Eq. (3.10), possess decaying modes 

near spatial Infinity, but is inadequate because the equation possesses 

singularities at finite x; It is generally impossible to require both 

finiteness at singular points and decay at Infinity. On the other hand, the 

fourth order model and slowly decaying unperturbed density is consistent 

with the linearization hypothesis. It has modes with exponential decay at 

Infinity and the temperature has regularized the equation for all finite x. 

Thus this is a mathematically well-posed problem once the requirement of 
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decay at infinity is applied. 

Our second assumption was that the effect of resistivity could be 

computed by a perturbation expansion in R'/X. This assumption has two 

inherent limitatIons; 1) R'/X may not be small, and 2) the expansion may not 

converge. First, R'/X may not be small if X has a zero, i.e. near a 

resonance. Pellegrini and Wang 7  have investigated such a resonance 

model and found instability. Secondly, even though Rs/X  may be small, It 

may not be small enough to assure converge of the perturbation expansion. 

aisognano 13  has made a priori estimates of the radius of convergence 

which indicate validity of the expansion for 

VBR'L 	d 

g0  < 2c57  

where d Is the spacing between the nth  elgenvalue and Its nearest 

neighbor and c(n) Is a model dependent number. If this 1imlt Is exceeded 

the perturbation expansion may continue to converge, but will give a 

deceiving description of the longitudinal motion. 

Our final assumption was that the zero-resistance modes are 

nondegenerate. That mode degeneracy can be quite important can be seen with 

the standard impedance model for an unbunched beam. Our perturbation. theory 

applied to either the mode cos (kx) or sin (kx) yields a slight damping 

rate. However, because cos (kx) and sin (kx) are degenerate, linear 

combinations are allowed, i.e. exp(+ikx); when our perturbation theory is 

applied to these modes we obtain the correct (large) growth rate. 

It is unlikely that exact degeneracy will occur in any model of a finite 

bunch; thus, we must Investigate the consequences of approximate degeneracy. 

Very long beams where modes become very close together mustdlsplay some 
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kind of "Instability" and there are two ways that this can happen. The 

first possibility is that Instability (nonzero imaginary part of ) will set 

In at some small, but nonzero mode spacing (e.g. long but not infinite 

bunch). This could be seen in an exact (nonperturbative in R'/X) dispersion 

analysis of our fourth order model. Examination of a model problem 4 9  

however, seems to Indicate that this doesn't happen. Thus, it Is unlikely 

that a dispersion analysis of Eq. (4.36) will yield the behavior that must 

go over Into the unbunched beam instability. 

Another kind of "instability" can result If we consider an initial 

perturbation which is a superposition of nearly degenerate normal modes with 

large amplitudes which, at t = o, nearly cancel to give the small initial 

perturbation. At a later time the different frequencies will give a 

different phase relationship between the modes which then appears as growth. 

Of course, in a "beat period", i.e. approximately 2w/au where au Is the mode 

spacing, the phases will return to their initial values yielding a 

subsequent "decay". As the mode spacing, a., goes to zero (the limit of a 

uniform bunch) the subsequent decay never occurs, only growth is seen. What 

we have been describing crudely can be formulated mathematically by the 

statement that the uniform beam Instability results from a bifurcation from 

the continuum. 

The effects of such an apparent instability can be expected to be as 

destructive as those of a true Instability. Thus it Is Important to try to 

determine an effective growth rate In order to compute the amplification in 

a ubeat  period", 2/o.. To do this we consider a model with just two nearly 

degenerate modes. 
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If we assume that two modes are nearly degenerate, then we can compute 

an effective growth rate using Eq. (4.22). We now assume that 

is a linear combination of two almost degenerate modes of different parity; 

we then find an effective growth rate 

•1 	 fI,°vx)vR'/gQ) ax 
	

(5.2) 
- 	 f I ° (x) dx 

Note that the numerator of this equation no longer vanishes because of the 

indefinite parity of I0).  Of course, there is a second "mode" that 

damps with the same rate. For a specific set of modes it is easy to 

evaluate Eq. (5.2), but a useful estimate is 

T - 
a 	V(o) VBR' 
x g0 

 Wn  
(5.3) 

where A is an effective "wavelength" of I n  and a is a numerical factor 

that measures the mixing and overlap of the two modes; probably x 	1/2. A 

crude estimate of the total amplification to be expected in this case is 

nmax 	
- e AW 

'1 lnitlal 
(5.4) 

Note that Eq. (5.3) goes over Into the correct unbunched beam growth rate 

Eq. (1.1), if we let 2i/A = k and take a = 1. 

V.2 Stability Criterion 

An approximate evaluation of the effective growth rate, Eq. (5.3), and 

the total amplification, Eq. (5.4), can be obtained using the fourth order 
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model. We take finite length effects Into account by the prescription 

	

k = 	 (5.5) 

where n is mode number and I is bunch length; the mode spacing given by Eq. 

(4.40) Is, for small k, the constant 

2!IV 

I 	 p 	 (5.6) 

and for very large k Is the constant 

6 ir  
= r 

(1)1/2 	
I 	 (5.7) 

For intermediate but large values of k we have 

Aw 	
6n(2,) 2 	1 	

(5.8) 

We may estimate - by Eq. (5.3). The condition 2iry/ 	< 1, for small 

amplification, becomes 

I 	L v 2  v8  R' 

iii.  > 	6n90 1 

Note that this criterion involves R'(n)/n and thus Is very frequency 

dependent. For high frequencIes, since R'(n) falls of quickly at high 

frequencies, the criterion is certainly satisfied. This is an important 

result, for It means that one will not have an effective instability of 
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short wave length modes. If the criterion is not satisfied for a few low 

modes It is, of course, possible to handle them by feedback stabilization. 

There are a number of improvements to these calculation which could be 

made. First one could, by solving either exactly or approximately, the 

fourth order model, refine the estimates for a.. One could also refine the 

estimate for the effective growth rate. We suspect that the answer lies 

near the result, Eq. (5.2), since this goes over into the correct unbunched 

beam growth rate. These two improvements would result in a design criterion 

which would be reasonably accurate. Finally, to test all of these results 

one could numerically solve, as an initial value problem the partial 

differential equation associated with the fourth order model. 

Bisognano, Haber, and Smith have numerically found threshold behavior 

for resistive instability. 5  They use the modified impedance model, 

Eq. (3.10), and find a criterion of the form Eq. (5.1). 

VI Suninary 

In this paper we have derived, by two different methods, the integral 

equation which describes density oscillations in a warm particle bunch. We 

then analyzed this equation in perturbation theory -- for small resistivity 

-- and showed that in first order the motion is stable. This behavior is to 

be contrasted with that of a uniform beam where the motion is, In first 

order, unstable. 

After performing a second order calculation we devoted attention to the 

question of the validity of the perturbation theory approach. A high-order 

model, having a cut-off Impedance and temperature effects included, is shown 

to be necessary in order to carefully study the density variation In a 
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bunch. Using very crude estimates of the spectrum of modes in the absence 

of resistivity, we obtained a criterion for bunch stability. 	This criterion 

-- which contains the impedance (as a function of frequency) -- is pre-

sented as a design criterion for heavy ion fusion induction accelerators. 
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