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Quantitative systems models illuminate arrhythmia mechanisms 
in heart failure: Role of the Na+-Ca2+-Ca2+/calmodulin-dependent 
protein kinase II-reactive oxygen species feedback

Stefano Morotti and
Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA

Eleonora Grandi
Department of Pharmacology, University of California Davis, Davis, CA, 95616, USA

Abstract

Quantitative systems modeling aims to integrate knowledge in different research areas with 

models describing biological mechanisms and dynamics to gain a better understanding of complex 

clinical syndromes. Heart failure (HF) is a chronic complex cardiac disease that results from 

structural or functional disorders impairing the ability of the ventricle to fill with or eject blood. 

Highly interactive and dynamic changes in mechanical, structural, neurohumoral, metabolic, and 

electrophysiological properties collectively predispose the failing heart to cardiac arrhythmias, 

which are responsible for about a half of HF deaths. Multi-scale cardiac modeling and simulation 

integrates structural and functional data from HF experimental models and patients to improve our 

mechanistic understanding of this complex arrhythmia syndrome. In particular, it allows 

investigating how disease-induced remodeling alters the coupling of electrophysiology, Ca2+ and 

Na+ handling, contraction, and energetics that lead to rhythm derangements. The Ca2+/calmodulin 

dependent protein kinase II, which expression and activity are enhanced in HF, emerges as a 

critical hub that modulates the feedbacks between these various subsystems and promotes 

arrhythmogenesis.
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Structural and functional data integration via multi-scale quantitative cardiac modeling illuminates 

arrhythmia mechanisms in heart failure by investigating how disease-induced remodeling alters the 

coupling of electrophysiology, Ca2+ and Na+ handling, contractile function, and energetics.

Introduction

Complex systems interplay in heart failure

Heart failure (HF) is a rapidly growing health problem in the US. The number of adults 

diagnosed with HF increased from about 5.7 million (2009–2012) to about 6.5 million 

(2011–2014) and is projected to rise to more than 8 million people by 2030.6 HF is a 

pathological state in which the heart is unable to pump blood at a rate commensurate with 

the requirements of metabolizing tissues, resulting in inadequate perfusion of tissues during 

exertion, or is able to do so only with an elevated diastolic filling pressure. HF biology 

involves multiple adaptive and maladaptive pathways that work on multiple biological scales 

to maintain end-organ perfusion. These include increase in the sympathetic drive, renin-

angiotensin-aldosterone system (RAAS), and oxidative stress (Fig. 1, top).

While advances in high-throughput experimental approaches have allowed identifying and 

characterizing many individual actors in this multifaceted disease process, one major 

challenge is to mine this massive amount of information from high-throughput biological 

data to generate novel mechanistic insights in HF pathophysiology. Systems biology, 

enabled by multidisciplinary expertise from different fields, often including mathematics, 

physics, engineering, and computer science, allowed developing many tools and approaches 

to (a) integrate data in physiological networks; (b) reveal emergent mechanisms of disease; 

and (c) facilitate prediction and development of therapeutic intervention. These approaches 

apply a wide spectrum of mathematical formalisms and integrate multiple data types across 

interacting biochemical and biophysical functions and multi-scale models that are 

structurally integrated over physical scales (Fig. 1, bottom).

Alterations in cardiac electrophysiology, contractile function and their neurohormonal 

regulation, accompanied by ventricular hypertrophy and structural remodeling, all contribute 

to the HF phenotype (Fig. 1, top). Ca2+/calmodulin-dependent protein kinase (CaMKII) is 

upregulated and more active in HF,1, 47, 58 and is a key regulator of cellular subsystems 

contributing to acute mechanical and electrical dysfunction as well as chronic cardiac 
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remodeling in HF. In the context of a complex cardiac disease like HF multiple signaling 

pathways are likely to be altered, many of which might crosstalk with CaMKII signaling. 

Among these, enhanced sympathetic activation is one of the most well characterized forms 

of neural remodeling in HF and has been clearly linked to ventricular arrhythmias in animal 

models and humans.101 Altered CaMKII signaling has been associated to all major aspects 

of HF at various spatial and time scales, which makes this kinase an attractive candidate for 

therapy and the ideal center piece in our systems analysis. CaMKII phosphoregulates many 

proteins that are important in excitation-contraction (EC) coupling.7, 75 Upregulated 

expression and activity of CaMKIIδ (the predominant cardiac isoform) is seen in human HF,
47 and cardiac-specific overexpression of CaMKIIδC leads to severe HF and arrhythmias in 

mice,118, 136 whereas mice lacking CaMKIIδ develop ventricular hypertrophy following 

aortic banding, but do not decompensate into HF.70 However, despite a growing body of 

work detailing the molecular, cellular and functional aspects of CaMKII-dependent 

remodeling, key questions remain to be addressed regarding the extent to which CaMKII 

upregulation itself can explain the individual alterations that contribute to HF, and whether 

there exist interaction and synergy among the plethora of downstream CaMKII effects and 

other signaling pathways.

Systems approach to understanding cardiac arrhythmia

Failing hearts are at increased risk of arrhythmias, accounting for half of HF deaths (the 

other half due to pump failure). While sinus node dysfunction and atrial fibrillation are 

commonly seen in HF (and associated with increased risk of stroke), ventricular 

tachyarrhythmia is the most common cause of death in HF patients, and is usually associated 

to disease-induced ionic and structural remodeling. Derangements in cardiac rhythms 

emerge from abnormalities in gene or protein expression or function, cell signaling 

pathways, cell-to-cell coupling, tissue heterogeneity that can promote or exacerbate cardiac 

disease. There are several challenges in the study of arrhythmia mechanism in HF that still 

preclude translation of basic research findings to the clinic. Model organisms (large 

mammals) are expensive, and, while genetically engineered mice are valuable because there 

are now many mouse models that recapitulate major clinical features of HF with specifically 

defined molecular triggers, electrophysiologic properties for mouse are quite different than 

human. Use of human preparations is complicated by procurement issues and confounding 

clinical variables, including comorbidities and pharmacological therapies. Patient-specific 

induced pluripotent stem cell-derived cardiomyocytes are a powerful option providing 

potentially unlimited supplies of human cardiomyocytes, but they have inherent limitations: 

(a) myocyte immaturity, (b) restricted to known genetic HF causes and (c) lack of adult 

patient hearts for myocyte and organ-level study. The wealth of multi-scale data on 

alterations in cell signaling, electrophysiology, Ca2+ handling, myofilament function and 

tissue structure that can be measured in the adult animal models cannot be obtained in 

humans, but integrative mathematical models provide a systematic framework to extrapolate 

findings in the mouse to the clinical setting. Here, we review recent advances in our 

comprehensive mechanistic understanding of arrhythmia in this complex clinical syndrome 

through mechanism-based mathematical models.
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Arrhythmia mechanisms in HF: abnormalities in impulse formation and 

conduction

It is generally accepted that lethal ventricular arrhythmias occur when triggering events (e.g., 

ectopic foci) propagate in tissue as they encounter substrate for sustainability (e.g., reentrant 

loop). Premature ventricular contractions are prototypical triggers in the myocardium that 

are thought to emerge from cellular events known as early and delayed afterdepolarizations 

(EADs and DADs). DADs occur during diastole and arise from a transient inward current Iti 

carried by the Na+/Ca2+ exchanger (NCX), which is evoked by diastolic increase in 

intracellular Ca2+ concentration ([Ca2+]i) due to abnormal spontaneous Ca2+ release (SCR) 

from the sarcoplasmic reticulum (SR) (Fig. 2, bottom left). In contrast, EADs initiate during 

action potential (AP) repolarization and involve complex dynamical interaction among the 

currents that are available late in the AP (Fig. 2, middle left). EADs occur predominantly at 

slow heart rates in the setting of reduced repolarization reserve and prolonged AP duration 

(APD) due to increased inward Ca2+ and Na+ or decreased outward K+ currents, but can also 

arise from Ca2+ handling abnormalities that activate depolarizing NCX current (INCX). 

Regardless the mechanism, in large mammals, the L-type Ca2+ current (ICaL) eventually 

carries the majority of inward charge during the EAD upstroke – but recovery from 

inactivation and reactivation of the Na+ current (INa) has been shown to lead to EAD takeoff 

in specific conditions (and species).20, 84 Ectopic activity could also result from automatic 

firing, which occurs when an increase in time-dependent depolarizing inward currents 

carried by Na+ or Ca2+ or a decrease in repolarizing outward K+ currents cause progressive 

time-dependent cell depolarization. When threshold potential is reached, the cell fires, 

producing automatic activity (Fig. 2, top left).

Reentry can occur when an electrical impulse is able to re-excite areas that have already 

recovered, thereby providing a perpetuation of electrical activity. Reentry can be caused by a 

fixed anatomical obstacle (fibrosis), or be functional reentry, favored by spatially 

heterogeneous APD and conduction slowing (Fig. 2, right). For reentry to be sustained, all 

points in the reentrant path need to become excitable before the arrival of the reentrant 

impulse (termed ‘excitable gap’). When wavelength (i.e., the distance an impulse travels 

within a single refractory period) decreases due to shortening of the effective refractory 

period or due to conduction slowing, reentry will be more likely and more reentrant circuits 

can fit in the same area, making the arrhythmia more stable and less likely to terminate.

HF-induced changes alter both individual myocytes properties (e.g., ion channel dysfunction 

or expression remodeling) and cell-to-cell coupling, thus affecting impulse formation and 

propagation and enhancing both arrhythmia triggers and substrate.

Arrhythmia Triggers in HF

Triggered activity is facilitated by HF-induced modifications in ionic currents and 

intracellular Ca2+ dynamics. Dysregulation of Ca2+ handling is the most established cause of 

arrhythmias in failing myocytes, and it is due to the progressive change in the expression and 

function of many proteins involved in Ca2+ cycling. Compared to nonfailing ventricular 

myocytes, failing cells are characterized by reduced Ca2+ transient (CaT) amplitude and 
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enhanced SR Ca2+ leak, which are not only responsible for hypocontractility and impaired 

relaxation, but also for increased the propensity for EADs121 and DADs108 (Fig. 3).

CaMKII has been linked to the triggering of arrhythmias via both EADs and DADs.5 

CaMKII activation of ryanodine receptors (RyRs) enhances EC coupling65 and increases SR 

Ca2+ leak, Ca2+ sparks and waves.42 In HF, where NCX is upregulated and IK1 

downregulated, these spontaneous SR Ca2+ release events are more likely to induce DADs.96 

CaMKII-dependent phosphorylation of L-type Ca2+ channels (LTCCs) enhances the influx 

of Ca2+ thereby fueling a positive feedback mechanism that enhances CaMKII activation, 

and mediates facilitation of ICaL,8, 44 which in turn favors the development of EADs and 

modulates RyR fluxes.43 All these effects are expected to be more pronounced during 

sympathetic stimulation, when protein kinase A (PKA)-dependent phosphorylation of 

LTCC, RyR and phospholamban (PLB) further enhances Ca2+ cycling111 and thereby 

CaMKII activation. CaMKII-dependent phosphorylation also modulates the voltage-gated 

Na+ channel (NaV) kinetics similarly to a human mutation (SCN5A 1795InsD) associated 

with heritable arrhythmias.118 CaMKII-dependent enhancement of late INa could contribute 

to increased propensity for EADs in HF81 (Fig. 3).

CaMKII activity directly influences Na+ homeostasis, another key regulator of EC coupling 

that is altered in HF.38 It is well established that intracellular Na+ concentration ([Na+]i) is 

increased in myocytes from failing hearts compared to nonfailing myocytes by 2–6 mM, but 

the precise mechanistic and quantitative aspects remain unclear.38 Emerging evidence 

suggests that perturbed Na+ homeostasis and CaMKII hyperactivity are closely interrelated, 

and critically involved in electrophysiological and mechanical dysfunction in HF.46, 118, 132 

Indeed, it has been suggested that CaMKII and enhanced late INa contribute to [Na+]i 

elevation in HF, as CaMKIIδC-overexpressing mice with HF exhibit prominent late INa and 

have increased Na+ content.118 Cellular Na+ loading might cause, via outward shift in INCX, 

excessive Ca2+ load, which is associated with a number of deleterious cellular consequences, 

including abnormalities in myocyte shortening, electrical instabilities, and metabolic 

imbalance.38 It has been proposed that the [Na+]i-induced increase in Ca2+ further activates 

CaMKII, thus fueling a vicious cycle that favors spontaneous SR Ca2+ release and 

predisposes to Ca2+-related arrhythmia (Fig. 3). We have confirmed and analyzed 

quantitatively the extent of this feedback in models of healthy and failing mouse myocytes.
82 Similar results were obtained with our model of the human atrial myocyte.91 

Nevertheless, further studies are required to assess the details and extent of such feedback in 

cells characterized by a more positive AP plateau (i.e., human ventricular myocytes). In such 

condition, increase in late INa would favor AP prolongation (and EAD formation), likely 

contributing to greater [Na+]i loading.

Altered Na+ homeostasis also impacts mitochondrial function. Increased [Na+]i influences 

production of reactive oxygen species (ROS) by augmenting mitochondrial Ca2+ efflux via 

the mitochondrial NCX (mNCX) and thus reducing mitochondrial Ca2+ concentration 

([Ca2+]m).60, 73 Notably, higher oxidative stress may further exacerbate [Na+]i loading by 

enhancing late INa through direct effects on NaV1.5 or secondarily by activating 

CaMKII21, 119 (Fig. 3). A direct link between oxidative stress and CaMKII-dependent 

arrhythmias has been suggested by computational studies investigating mechanisms of EAD 
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formation upon H2O2 administration 27, 124, which showed that phosphorylation of NaV1.5 

and LTCC (caused by ROS-dependent CaMKII activation) are both required in the 

generation of these EADs.

Oxidative phosphorylation is the main source of energy for metabolic/contractile works in 

cardiac myocytes. Mitochondria provide the ATP needed for contractile function and 

sarcoplasmic and sarcolemmal ion transport, which is responsible for the myocyte electrical 

activity. Coupling mitochondrial energetics to EC coupling models is therefore needed to 

investigate the key role of energetics in modulating myocyte mechanical activity and ion 

concentration gradients, especially during impaired metabolic states in pathological 

conditions, such as HF. Thus, it is surprising that only a few computational models have 

been developed to link mitochondrial activity to membrane electrophysiology and cytosolic 

Ca2+ handling, despite the large number of modeling studies investigating in detail 

mitochondrial energetics, Ca2+ handling, pH regulation and ROS production,18, 31, 32, 55, 120 

and mitochondrial oscillations and waves.89, 130 Cortassa et al. integrated the description of 

mitochondrial energetics into a model of EC coupling to study the dynamic changes in ADP, 

NADH, and [Ca2+]m induced by changes in pacing frequency.17 Extensions of this model 

have been used to investigate the effect of ROS on AP dynamics during ischemia-

reperfusion 137 mediated by the sarcolemmal ATP-sensitive K+ (KATP) channels, and the 

interplay between of local Ca2+ and ROS signaling.45 Recently, Li et al. developed a multi-

scale model including a mitochondria-SR microdomain and simulating ROS-dependent 

modulation of RyR and SR Ca2+-ATPase (SERCA).66 Their simulations showed that 

elevated ROS production (as in disease) increases cytosolic Ca2+ by stimulating RyRs and 

inhibiting SERCA. Enhanced Ca2+ signal in turn activates INCX, Ca2+-sensitive nonspecific 

cationic channels, and Ca2+-induced Ca2+ release, indirectly affecting ICaL and leading to 

abnormality in AP shape.

Oxidative stress plays an important role in the pathophysiology of cardiac remodeling and 

HF. ROS production is increased within the mitochondria from failing hearts,60 and directly 

impairs myocyte function by modifying proteins central to EC coupling.22 Not only does 

oxidative stress activate CaMKII directly,22 but CaMKII-induced [Na+]i loading can induce 

an increase in ROS60 (Fig. 3). Studying the deleterious arrhythmogenic consequences of 

chronic CaMKII activation and oxidative stress is an important next step integrative 

modeling efforts should tackle.

Arrhythmia Substrates in HF

Development and progression of HF are accompanied by an extensive remodeling of the 

whole organ, which leads to maladaptive changes in the size of heart chambers and in the 

mechanical properties of the myocardium. Typical HF features are indeed hypertrophy, 

increased thickness of the ventricular wall, and abundance of fibrosis. These modifications 

initially occur as part of a compensatory mechanism in response to pathologic conditions 

like pressure or volume overload. Number and size of cardiomyocytes increase to 

accommodate the need of more mechanical work to maintain the cardiac output within the 

normal range. At the same time, the composition of the connective tissue changes increasing 

myocardium stiffness. Cardiac hypertrophy is regulated by an intricate web of signaling 
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pathways that influence myocyte growth, including those of CaMKII61 and calcineurin/

NFAT.48, 80 Computational models of cardiomyocyte hypertrophic signaling networks have 

successfully been used to gain a quantitative understanding of the contributions of individual 

pathways and their interactions, and to predict which signaling nodes are most important for 

cardiomyocyte hypertrophy,54, 102, 103 and apoptosis.54 Other computational studies have 

instead investigated the factors responsible for cycling of specific mediators like IP3 and 

NFAT.15, 16 Along the same lines, computational models have also begun to provide 

important insights into the development of fibrosis. The Saucerman group has developed a 

large-scale computational model of the cardiac fibroblast signaling network in order to 

identify the key drivers of differentiation in myofibroblast and extracellular matrix 

remodeling.134 Extension of modeling approaches to account for longer time scales is an 

important step to gain a comprehensive understanding of HF pathophysiology.

Conduction defects

While a decrease in refractoriness seems critical to the development of sustained classical 

(especially atrial) tachyarrhythmia, reentrant substrate in HF has been rather associated to 

structural/anatomic abnormalities and conduction delay, whereas refractoriness is actually 

increased (due to APD prolongation). Thus, structural remodeling including hyperthrophy 

and enhanced interstitial fibrosis might play a dominant role in sustaining ventricular 

tachyarrhythmia in HF. However, HF-induced alterations in Na+ and Ca2+ handling 

(possibly mediated by CaMKII) can functionally affect cell properties and tissue 

susceptibility to reentry. For example, King et al. recently highlighted novel arrhythmogenic 

consequences of abnormal Ca2+ handling resulting from catecholaminergic polymorphic 

ventricular tachycardia (CPVT) mutations, which may play a critical role in arrhythmia 

maintenance. Specifically, they found a reduced upstroke velocity of monophasic APs, inter-

atrial conduction delays and slowed epicardial conduction velocity (CV) in structurally 

normal RyR2-P2328S hearts, which were more susceptible to atrial arrhythmia triggering 

than wild type hearts.57 This strongly suggested that Ca2+-dependent alterations in NaVs56 

may promote functional reentry also in other disease conditions, such as HF. The increased 

SR Ca2+ leak in CPVT mice may result in increased CaMKII activity, which is also 

enhanced during rapid paging13 and can alter cardiac NaV function. Indeed, CaMKII 

induces loss-of-function effects on peak INa,118 which can explain conduction slowing40 

independent of structural and anatomical changes (Fig. 3). Delaying recovery of NaVs from 

inactivation can increase the slope of the APD restitution curve and hence the likelihood of 

alternans and reentry,99 and reducing NaV conductance increases the vulnerable window.123 

Christensen et al. used a multicellular mathematical model of the cardiac fiber to 

demonstrate that enhanced CaMKII activity in the infarct border zone, due primarily to 

increased oxidation, and CaMKII effects on NaVs are associated with reduced CV, 

prolonged refractoriness, and increased susceptibility to formation of conduction block at 

the border zone margin, a prerequisite for reentry.14 Heterogeneous Na+ and Ca2+ loading in 

cardiac tissue can predispose to reentrant arrhythmia, as shown in both ventricular128 and 

atrial simulations.63 Ca2+-dependent regulation of other ion channels/transporters may also 

affect CV and APD restitution. For example, Ca2+-dependent inhibition of inward rectifier K
+ current (IK1) has been suggested,25 which could indirectly reduce INa availability by 

depolarizing the resting membrane potential (RMP).

Morotti and Grandi Page 7

Wiley Interdiscip Rev Syst Biol Med. Author manuscript; available in PMC 2020 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Impaired cell-cell electrical coupling might also affect AP propagation and contribute to the 

formation of a reentrant substrate. Indeed, connexin43 (cx43), the principal gap-junctional 

protein in ventricular myocytes, is seen downregulated2, 19 and heterogeneously distributed9 

in HF. Dysregulation of cx43 has been associated to reduced electrical coupling among cells, 

decreased CV, and increased propensity for arrhythmias9, 95, 107 (Fig. 3). Interestingly, a 

recent study showed that both acute and chronic calmodulin/CaMKII inhibition improved 

conduction and enhanced localization of cx43 in the intercalated disc.114

Whether they are electrically coupled to myocytes59 or only passive obstacles, 

myofibroblasts can alter AP propagation in cardiac tissue. The first model coupling a 

cardiomyocyte to an electrically active fibroblast predicted a depolarizing effect on myocyte 

MRP and AP shortening.74 Jacquemet and Hernandez first described an opposite effect on 

APD (and a decrease in CV),50 then determined that the different outcome depends on the 

fibroblast resting membrane potential, whereby lower resting potentials shorten the AP, 

while depolarized resting potentials prolong the AP.51 Other computational investigations 

confirmed that, depending on the context, fibroblasts can differentially affect the electrical 

activity of myocytes by acting as a current source or sink,76, 86, 104, 105, 126, 127 and 

increasing/decreasing arrhythmia risk.76, 112 Investigating how different degrees of HF-

induced remodeling affect vulnerability to reentry, Gomez et al. showed that, while a 

moderate amount of fibrosis and cellular uncoupling is sufficient to elicit reentrant activity, 

very high fibrotic content and/or very low conductivity hinder the development of reentry.35

Spatially heterogeneous APD and Ca2+ signal

Transmural dispersion of repolarization (DOR) and APD gradients are altered in HF.4, 34, 71 

Computational studies have shown that electrophysiological and structural HF-induced 

remodeling (including fibrosis and tissue heterogeneity) increases APD dispersion. For 

example, while a certain degree of transmural DOR is normal and may be attributed in part 

to differential expression of Ito (which is larger at the epicardial side), CaMKII-dependent 

upregulation of Ito shortens APDs in the epicardium but prolongs APDs in the endocardium 

(where Ito is small) thus amplifying transmural DOR40 (Fig. 3). However, it has been 

proposed that heterogeneous remodeling modulates repolarization gradients and can even 

reduce transmural APD dispersion and APD gradients in HF vs. control.36 Notably, HF 

enhances susceptibility to arrhythmogenic cardiac alternans,62, 122 which amplifies electrical 

heterogeneities in the heart and has been closely associated with sudden cardiac death.

Subcellular heterogeneity in EC coupling and Ca2+ handling, either anatomical3 or 

dynamically induced,28, 29, 109, 125 is one very clear contributor to intracellular Ca2+ waves 

(and triggered activity) and Ca2+-driven AP alternans in ventricular cells. Using a ventricular 

myocyte model with detailed spatiotemporal Ca2+ cycling, Nivala et al. demonstrated that t-

tubular disruption contributes to dyssynchronous Ca2+ release and impaired contraction in 

HF.90 Comparing results obtained with normal or downregulated SERCA, they also 

characterized different mechanisms responsible for the development of Ca2+ alternans at 

different stages of HF-induced remodeling. Studying a mouse model of congestive HF, 

Louch et al. observed regions of cells characterized by both slow Ca2+ sparks kinetics and 

slow CaT rise during the AP, suggesting a link between greater variability in spark kinetics 
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and dyssynchronous Ca2+ release in HF.72 A computational analysis showed that alterations 

in Ca2+ sparks can be explained by rearrangement of RyRs within the Ca2+ release units, 

and excluded a direct role of t-tubule disruption.72 In a later investigation, the same group 

showed that synchrony of Ca2+ release in HF is also determined by the interplay between 

RyR sensitivity and SR Ca2+ loading.92

Fibrosis also affects the formation of alternans. Xie et al. showed that fibroblast-myocyte 

coupling prolongs the myocyte refractory period, facilitating induction of reentry in cardiac 

tissue.126 In a more detailed investigation, the same group also showed that such coupling 

generates a gap junction current that flows into the myocyte and is characterized by two 

main components: an early transient outward current and a background current present 

during the repolarizing phase. Depending on the relative prominence of the two, fibroblast-

myocyte coupling can either prolong or shorten the AP, promoting or suppressing both 

voltage-driven and Ca2+-driven alternans.127

It has also been shown that impairment of mitochondrial function adversely affects cardiac 

Ca2+ cycling leading to proarrhythmic Ca2+ alternans.26 Investigating the mechanisms 

linking metabolic stress and membrane instabilities, Zhou et al. analyzed how oscillations in 

mitochondrial inner membrane potential (ΔΨm) affect electrical activity in tissue.138 They 

showed that ROS-induced regional ΔΨm loss activates KATP channels that cause regional 

AP shortening, leading to the formation of a metabolic sink. Propensity for reentry and 

fibrillation resulted increased because of the disparity in refractoriness inside and outside the 

sink.138

Source-sink

Synchronization mechanisms are required for EADs and DADs to overcome the robust 

protective effects of electrotonic source-sink mismatch (especially in well-coupled 

ventricular tissue) and trigger premature ventricular complexes. Structural and 

electrophysiological remodeling in HF decreases the number of cells displaying EADs or 

DADs that are required to trigger an arrhythmia in tissue, as elegantly demonstrated in 

ventricular tissue simulations.129 Notably, whole-heart AP and Ca2+ optical mapping 

mimicking various HF-related conditions showed results for DADs that were in qualitative 

agreement with these modeling predictions.85 In failing cardiac tissue, Lang et al. observed a 

higher than normal (vs. nonfailing cardiac tissue) number of myocytes that did not 

synchronize with neighboring myocytes, and these asynchronous myocytes also often 

exhibited independent spontaneous Ca2+ waves. While in normal well-coupled tissue 

asynchronous Ca2+ waves did not produce detectable depolarizations, poor electrical 

coupling between failing myocytes enabled local Ca2+-induced inward current of sufficient 

source strength to overcome a weakened current sink to depolarize the membrane potential 

in the actual myocyte exhibiting the Ca2+ wave, and even depolarize nearby neighboring 

myocytes appreciably.64

Influence of mechanical dysfunction on electrophysiology and arrhythmia

Since the myofilaments dynamically and cooperatively buffer large amounts of cytosolic 

Ca2+,11 developing computational models coupling myofilament contraction to Ca2+ cycling 
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and membrane electrophysiology is critical to study how HF-induced changes in ion channel 

and Ca2+ dynamically affect contraction, and quantifying how impaired myofilament 

function in HF feeds back into Ca2+ and AP dynamics.10, 41, 77, 78, 88, 100 We have developed 

a model that describes electrophysiology, Ca2+ handling, myofilament activation and 

crossbridge (XB) cycling to understand the effects of β-adrenergic activation on cardiac 

mechanics in rabbit and mouse heart.87, 113 We showed that distinct changes in myofilament 

Ca2+ sensitivity and XB cycling influence CaT and contraction responses to β-adrenergic 

stimulation, but the changes in Ca2+ buffering by the myofilaments have a limited impact on 

membrane currents and AP morphology in nonfailing ventricular myocytes.87, 113 Zile and 

Trayanova simulated Ca2+ and mechanical remodeling in a coupled human 

electromechanical model and showed that HF-induced remodeling of mechanical parameters 

alters electrical, Ca2+ and mechanical alternans, and myofilament protein dynamics play an 

important role in EAD formation.139, 140

Myofilament contraction requires ATP, hence it is also important to combine energetics and 

contraction to understand how the heart adapts the rate of ATP production to energy demand 

(and HF-associated changes thereof), as for example done in.131 Tewari et al. built a multi-

scale model linking myofilament energetics to whole-body cardiovascular function116 and 

demonstrated that metabolic dysfunction in HF directly impairs myofilament contractile 

function and, consequently, systolic function.

The expression of ion channels sensitive to mechanical load (in particular to changes in cell 

strain or volume) creates a feedback mechanism (called mechano-electric feedback) that 

directly affects the membrane electrical activity. Acting like mechanoreceptors, these 

channels contribute to the regulation of the cardiac function that has to continuously adapt to 

the mechanical load. Despite the fact that a large numbers of channels are modulated by 

mechanical stress,94 modeling studies have primarily focused on stretch-activated channels 

(SACs), shown to be involved in the generation of arrhythmias induced by mechanical 

stimulation,30, 67 and in the termination of arrhythmias by precordial thump.68 Recruitment 

of SACs has also been shown to play a role in the regulation of scroll waves that underlie 

reentrant arrhythmias,49 though a more recent study showed that both SAC activation and 

stretch-induced Ca2+ release from myofilaments are associated to triggered propagating 

contractions, and that both phenomena are required to significantly perturb the AP.117

Using a cell-in-gel system that imposes an afterload during cardiomyocyte contraction, Jian 

et al. found that nitric oxide synthase (NOS) was involved in transducing mechanical load to 

potentiate CaTs and Ca2+ sparks.52 Stretch on ventricular cardiomyocytes during diastole 

also evokes changes in Ca2+ cycling via enhanced X-ROS signaling due to activation of 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 2 (NOX2).97, 98 Elevated 

ROS directly increases RyR open probability and facilitates the formation of Ca2+ sparks 

and arrhythmogenic waves.97 By modeling compartmentalized ROS signaling and ROS-

dependent modulation of RyR gating, Limbu et al. analyzed the role of X-ROS signaling in 

Ca2+ cycling regulation and arrhythmogenesis.69 They showed that, upon stretch, ROS 

levels in the dyadic space can be about an order of magnitude higher than the global ROS 

signal, suggesting the need of a better characterization of ROS signaling 

compartmentalization. They showed that X-ROS signaling can improve EC coupling in 
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physiological conditions (by enhancing CaT amplitude), but that can also increase the 

propensity for arrhythmias in response to oxidative stress.

Cardiomyocytes express also mechano-sensitive proteins that are not directly involved in the 

regulation of membrane potential or Ca2+ handling, but are instead responsible for signaling 

cascades associated to pathological remodeling and hypertrophy. Tan et al. developed a 

network model of cardiac mechano-signaling to identify the key sensors involved in the 

stretch-induced hypertrophic response.115 This large-scale model integrates results from 

many published studies into one coherent platform that allows the identification of emerging 

behaviors and crosstalk mechanisms that could not be seen analyzing isolated pathways. The 

analysis revealed that cooperation between different pathways is necessary to cause growth 

and remodeling, suggesting potential targets for pharmacological treatment against HF.

Conclusion

Development of computational frameworks for simulation of cardiac electromechanical 

activity has improved our comprehensive understanding of complex cardiac arrhythmias, 

such as those occurring in HF patients. By integrating data describing different cell functions 

(membrane electrophysiology, intracellular signaling, contraction, and metabolism) in 

different time and spatial scale, these models allow for identification of emergent 

mechanisms and can potentially facilitate the development of therapeutic strategies. 

Nevertheless, there exist areas in which our understanding is incomplete and future 

modeling efforts are needed to advance the field.

We focused our review on CaMKII as a key nodal point in HF pathophysiology. An 

important extension HF modeling is the inclusion of spatio-temporal characteristics of 

CaMKII activation in myocytes and of mechanisms of CaMKII activation independent from 

Ca2+/calmodulin and ROS signaling: O-GlcNAcylation,24 S-nitrosylation,23 and Epac/NOS-

dependent pathway.93 This extension will be important to elucidate the potential synergy 

among the different activation mechanisms, and could be important for the development of 

CaMKII inhibitors for clinical applications.37

Complex network relationships are emerging through comparative analyses of large-scale 

genomic, transcriptomic, proteomic, and metabolomic profiles that can be integrated into 

detailed mechanistic models. Although still rarely done, integrating “omics” approaches 

with mathematical mechanism-based biology models might be a powerful strategy to both 

understand the data and improve the predictive ability of the models. While advancements in 

experimental research will provide modelers with novel data for further improvement of 

computational frameworks, the parallel systematic use of sensitivity analysis and uncertainty 

quantification methods will also contribute to enhance the robustness of models and their 

predictions.53, 79, 83, 106, 110

Finally, an important priority will be to translate the mechanistic insights obtained from the 

studies to new clinical interventions. The use of clinically-derived patient-specific computer 

models to optimize catheter ablation strategies133 is a relevant example of the application of 

systems biology and computational modeling approaches to therapy. The safety screening 
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FDA proposal, Comprehensive in vitro Proarrhythmia Assay (CiPA), also involves the use of 

computational models for mechanism-based in silico assessment of drug toxicity and overall 

proarrhythmic risk.33, 39 Indeed, computational models are now poised to deliver 

breakthroughs at the bedside.
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Fig. 1. Systems interplay in HF and multi-scale systems biology approaches
Top: schematic of systems involved in HF pathophysiology. HF phenotype includes 

ventricular hypertrophy, ionic and structural remodeling, and neurohormonal dysregulation 

leading to both impaired contractile function, and increased arrhythmia susceptibility. 

Bottom: systems biology approaches for data collection, analysis, and functional and 

structural integration. The data images in the upper panel are reproduced with permission 

from 12, 135.
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Fig. 2. Mechanisms of arrhythmias
Abnormalities in impulse formation include altered automaticity, early and delayed 

afterdepolarizations (left). Alterations in impulse conduction include slowing of conduction 

and increase in spatial APD heterogeneity (right).
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Fig. 3. Arrhythmogenic crosstalk and feedback of Na+-Ca2+-CaMKII-ROS in HF
Schematic of the main cellular processes linking Na+ and Ca2+ cycling, CaMKII activity and 

metabolism to increased propensity for arrhythmia in failing myocytes. CaMKII, which 

expression and activity are enhanced in HF, phosphorylates multiple targets (red symbol 

“P”), directly influencing membrane electrophysiology and Na+ and Ca2+ signals, thereby 

facilitating the development of ectopic activity (EADs and DADs). Increased Na+ load 

enhances [Ca2+]i and reduces [Ca2+]m, leading to further CaMKII activation via both Ca2+/

calmodulin- and oxidation-dependent mechanisms. In turn, increased ROS production 

(oxidative stress) can directly affect membrane electrophysiology, Ca2+ handling, and 

myofilament function (blue starred symbol). CaMKII is also involved in HF-induced 

structural remodeling that facilitates the formation of reentrant substrate.
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