
UC Santa Cruz
UC Santa Cruz Previously Published Works

Title

Consistency and Locking for Distributing Updates to Web Servers Using a File System

Permalink

https://escholarship.org/uc/item/42t1x73n

Authors

Burns, Randal C
Rees, Robert M
Long, Darrell

Publication Date

2000-09-01

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/42t1x73n
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Consistency and Locking for Distributing Updates
to Web Servers Using a File System

R a n d a l C. B u r n s a n d R o b e r t M. R e e s Da r r e l l D. E. L o n g t

IBM Almaden Research Center University o f California, Santa Cruz

Abstract

Distributed file systems are often used to replicate a Web site's content among its many servers. However, for content that needs to
be dynamically updated and distributed to many servers, file system locking protocols exhibit high latency and heavy network usage. Poor
performance arises because the Web-serving workload differs from the assumed workload. To address the shortcomings o f file systems, we
introduce the publish consistency model well suited to the Web-serving workload and implement it in the producer-consumer locking protocol.
A comparison o f this protocol against other file system protocols by simulation shows that producer-consumer locking removes almost all
latency due to protocol overhead and significantly reduces network load.

1 Introduction
Distributed file systems are a key technology for

sharing content among many Web servers. They pro-
vide increased scalability and availability [1]. We
are particularly interested in large scale systems that
serve dynamically changing Web content with a dis-
tributed file system: files containing HTML or XML
that are concurrently updated (written) and served to
Web clients (read). A good example of such a system is
IBM's Olympics web site [2] which used the DFS file
system [3] to replicate changing data like race results at
a global scale.

Distributed file systems provide synchronized ac-
cess and consistent views of shared data, shielding Web
servers from complexity by moving these tasks into the
file system. Most often file systems implement sequen-
tial consistency [4], where all process see changes as
if they were sharing a single memory. However, Web
servers do not require sequential consistency, because
the data that they serve through the HTTP protocol does
not need an instantaneous consistency guarantee. Web
servers benefit from weakening consistency in order to
achieve better performance.

Parallelism in the workload leads to performance
problems when using an unmodified distributed file sys-
tem to share dynamically updated data among Web
servers. File systems assume that file data has affinity
to a few clients at any one time. However, when serving
Web content, load is balanced uniformly and all Web
servers have equal interest in all files. For content that
changes frequently, traditional file system consistency
protocols utilize the network heavily and exhibit high
latency.

Performance concerns aside, sequential consis-
tency is the wrong model for updating Web data, since it
results in errors when Web clients parse HTML or XML
content. When a reader (Web server) and a writer (con-
tent publisher) share a sequentially consistent file, the

reader sees each and every change to file data. Conse-
quently, a Web server can see files that are in the pro-
cess of being modified or rewritten. Such files are ei-
ther incomplete or contain data from both the new and
old version and cannot be parsed. However, before the
writer begins and after the writer finishes, the file con-
tains valid content. A more suitable model has the Web
server continue to serve the old version of the file until
the writer finishes. We call this publish consistency.

A more formal definition of publish consistency is
based on the concepts of sessions and views. In a file
system, the open and close function calls define a ses-
sion against a file. Associated with each session is that
session's image of the file data that we call a view. Data
is publish consistent if (1) write views are sequentially
consistent, (2) a reader's view does not change during
a session, (3) a reader creates a session view consistent
with the close of the most recent write session of which
it's aware, and (4) readers eventually become aware of
all write sessions. When opening a file, a reader obtains
a view of the file data and uses it for an entire session.
Modifications to files are not propagated to all readers
instantaneously. However, all readers learn about all
modifications eventually.

In publish consistency, relaxed synchronization al-
lows us to implement cache coherency data locks that
improve performance. We took the Web-serving work-
load into account when building producer-consumer
locking for publish consistency. These locks efficiently
replicate changes from a computer holding a producer
lock (for writing) to the many computers holding con-
sumer locks (for reading). These locks eliminate read
latency, because each Web server that holds a consumer
lock always has a recent view in its cache. Producer-
consumer locks also reduce network usage by reducing
the number of messages needed to update files to reflect
recent changes.

*The work of this author was performed while a Visiting Scientist at the IBM Almaden Research Center.

15

Control NeWark Server Cluster

.i
Figure 1: Storage Tank.

1.1 A Direct Access File System
A brief digression into the file system architecture

that implements producer-consumer locking helps mo-
tivate our solution and its advantages. In the Storage
Tank project at IBM research we are building a dis-
tributed file system on a storage area network (SAN).
A SAN is a high speed network designed to allow mul-
tiple computers to have shared access to many storage
devices.

For our distributed file system on a SAN, clients
access data directly over the storage area network. Most
traditional client/server file systems [5, 6, 3] store data
on the server's private disks. Clients dispatch all data
requests to a server that performs I/O on their behalf.
Unlike traditional file systems, Storage Tank clients per-
form I/O directly to shared storage devices on a SAN
(Figure 1). This direct data access model is similar
to the file system for Network Attached Secure Disks
[7] that uses shared disks on an IP network and the
Global File System [8] for SAN attached storage de-
vices. Clients communicate over a separate control net-
work for protocol messages - locking and metadata.

Our SAN file system and producer-consumer locks
have synergy. In particular, by separating metadata traf-
fic from data traffic, we efficiently distribute new ver-
sions of files by sending only metadata about the new
version to the client rather than the file data. Clients ob-
tain file data later in order to service HTTP requests and
then only need to acquire the changed portions, rather
than re-reading the whole file. This differs from non-
SAN producer-consumer implementations in which the
whole new file must be pushed to the consumers. Our
experiments present comparisons of producer-consumer
locking and other locking systems for both SAN and tra-
ditional distributed file systems.

2 Locking for Wide Area Replication
The limitation of using a file system for the wide-

area replication of Web data is performance. Generally,

file systems implement data locks that provide sequen-
tial consistency. For distributing Web data from one
writer to multiple readers, sequential consistency pro-
duces lock contention. Contention loads the network
and results in slow application progress. We illustrate
lock contention, propose a new set of locks that address
this problem, and show how our SAN file system takes
unique advantage of these locks.

2.1 Sequential Consistency

We use posting race results in an Olympics Web
site [2] as an example application to show how sequen-
tial consistency locking works for Web servers. A pos-
sible configuration of the distributed system (Figure 2)
has hundreds or thousands of Web servers integrated
with a DBMS. Race results and other frequently chang-
ing data are inserted into the database through an inter-
face like SQL or ODBC. The insertion updates database
tables and sets off a database trigger that creates new
Web content. The file system ensures that the new ver-
sion of the content is consistent at all Web servers.

Poor performance occurs for a sequential consis-
tency locking protocol when updates occur to active
files. For this example we assume that the file is being
read concurrently by multiple Web servers before, dur-
ing, and after new results are being posted and written.
For race results during the Olympics, a good example
would be a page that contains a summary of how many
gold, silver, and bronze medals have been won by each
country. This page has wide interest and changes often.
We use sequential consistency locks on whole files for
this example (the same locks used by DFS [3].) The
system's initial configuration has the clients at all Web
servers holding a shared lock (S) for the file in question.
Figure 3(a) displays the locking messages required to
update file data in a timing diagram.

Sequential consistency locking performs best when
the file system client at the database is not interrupted
while updating. In this case, the writing client requests
an exclusive lock (X) on the file. The exclusive lock
revokes all concurrently held shared locks. After the
writer completes, the client at each Web server must re-
quest a shared lock on the file to read and serve the Web
content. All messages to and from the Web server occur
for every server. In the best case, four messages - ro-
voko, re lease, aequiro, and grant - go between each
Web server and the file system server.

The situation is much worse when the file system
at the DBMS is interrupted while updating the file. In
file system protocols, data locks are preemptible so that
the system is responsive when multiple clients share file
data. For example, clients that request read locks on the
file data can revoke the DBMS's exclusive lock before

16

S ~ I J O D B C

, Post
T

I '
DBMS t

' Trigger !
FS Client T

i Write

-]
H T T P H T T P

! i
t i

T
[Web Server I [Web Server]

? Client J t ? Client J

(FS Cache) [FS Cache I [FS Cache)

~, Locking Protocol / S¢ w

FS Server

Figure 2: Replicating data among many Web servers.

it completes writing. The DBMS must reobtain an ex-
clusive lock to finish. The more Web servers there are,
and the more likely the update will be interrupted. Con-
tention for the lock can stall the update indefinitely.

The example application presents a non-traditional
workload to the file system. The workload lacks the
properties a file system expects and therefore operates
inefficiently. Specifically, the workload does not have
client locality [9] - the affinity of a file to a single client.
Instead, all clients are interested in all files.

Performance concerns aside, sequential consis-
tency is the wrong model for updating HTML and
XML. As we discussed in Section 1, reading clients
cannot understand intermediate updates and byte-level
changes. So sequential consistency leaves content in-
valid when Web servers see modifications to files at
a fine granularity. Publish consistency addresses this
problem by allowing writers to distribute updated views
only at the end of a write session.

2.2 AFS Consistency
Among existing systems, the Andrew file sys-

tem (AFS) comes closest to publish consistency. AFS
does not implement sequential consistency. Rather, it
chooses to synchronize file data between readers and
writers when files opened for write are closed. Previous
research [9] argues that data are shared infrequently to
justify this decision.

Figure 3(b) shows the protocol used in AFS to han-
dle the dynamic updates in our example. At the start of
our timing diagram all Web servers hold the file in ques-
tion open for read. In AFS an open instance registers a
client for c a l l b a c k s - messages from the server invali-
dating their cached version. The DBMS opens the file
for writing, writes the data to its cache, and closes the
file. On close the cached copy of the file is written back
to the server. The file server notifies the Web servers of
the changes by sending invalidation messages to clients
that have registered for a callback.

When compared with the protocol for sequen-

tial consistency, AFS saves only one message between
client and server. However, this belies the performance
difference. In AFS all protocol operations are asyn-
chronous; i . e . , operations between one client and a
server never wait for actions on another client. Using
the AFS protocol, the DBMS obtains a write instance
from the server directly and does not need to wait for a
synchronous revocation call to all clients. Another sig-
nificant advantage of AFS is that the old version of the
file is available at the Web servers concurrently with it
being updated at the DBMS.

The disadvantage of AFS is that it does not cor-
rectly implement publish consistency. The actual pol-
icy implemented at the client is to forward changes to a
file to reading clients whenever a writing client submits
modifications to the file system server. In general, AFS
clients write modified data to the server when closing
a file, which results in publish consistency. However,
sometimes AFS writes data to a server before the file
has been closed. This occurs in two ways. First, when
a file has been open for more than 30 seconds a timer
writes modified file data to a server. Second, i f a client's
cache becomes full it may send modified file data to a
server to make free space in its cache. In either case
reading clients can see partial updates which is a viola-
tion of publish consistency.

2.3 Implementing Publish Consistency

We offer a locking option that improves perfor-
mance when compared with AFS and sequential con-
sistency, implements publish consistency correctly, and
takes advantage of the SAN architecture. Our locking
system reduces the protocol latency that a Web Server
sees when accessing data to nearly nothing. There is a
one time cost to initially access data, but all subsequent
reads are immediate. Furthermore, for the Web-serving
workload, our protocol lessens the network utilization
by reducing the number of messages to keep a file con-
sistent among many Web servers.

We capture publish consistency in two data locks:
a producer lock (P) and a consumer lock (C). Any
client can obtain a consumer lock at any time, and a
producer lock is held by a single writer. Clients hold-
ing a consumer lock can read data and cache data for
read. Clients holding a producer lock can write data
and allocate and cache data for writing, with the caveat
that all modifications use copy-on-write semantics to re-
tain a read-only version for readers and an active version
used by the writer. File publication occurs when the P
lock holder releases its lock (Figure 3(c)). Upon release
the server notifies all clients of the new location of the
file. Recall that clients read data directly from the SAN.
Servers do not transmit data to the clients.

17

DBMS FS Server Web Server

. acqmraX)

. * revoke

&ram(Kdata)

Write Ftle

mvolte

. release(data)

release(data)

acqmre(S)

gram($,data)

DBMS FS Server

Wrltt I~le I

(a) Sequential consistency

Figure 3: Locking protocols for

Clients that receive a publication invalidate the old
version of the file and, when interested, read the new
version from the SAN. The client need not invalidate the
whole new file. Instead, it only needs to invalidate the
portions of the file that have changed. Because changed
blocks have been written out-of-place, the client knows
that portions of the file for which the location of the
physical storage has not changed have not been written
and its cached copy is valid.

Looking at our example using C and P locks,
we see that the protocol uses fewer messages between
the writing client and server than both AFS and DFS,
and, like AFS, all operations are asynchronous. The
DBMS requests and obtains a producer (P) lock from
the server. When the DBMS completes its updates, it
doses the file and releases the P lock. The writer must
release the P lock on close to publish the file. The
server sends updates that describe the location on the
SAN of the changed data to all clients that hold con-
sumer locks. The clients invalidate the affected blocks
in their cache.

Producer-consumer locking saves messages when
distributing updates to readers. In producer-consumer
locking, changes are pushed to clients in a single update
message. In contrast, AFS and sequential consistency
require data to be revoked and then later reobtained.

C and P locks dissociate updating readers" cache
contents from writing data. With C and P locks, the
Web servers are not updated until the the P lock holder
releases the lock. This means that the P lock holder
can write data to the SAN and even update the loca-
tion metadata at the server without publishing the data
to reading clients.

For our SAN file system, tMs design assumes that
storage devices cache data for read. The Web servers
read data directly from storage, and they all read the
same blocks. With a cache, a storage controller can ser-
vice most reads at memory speed. Without a cache, all

Web Server DBMS FS Server Web Server Storage
Lock Held = C

. 4

WNU~ File
wme(data)

.

reacqm~(..R 2 . Segmenm

res~;,otu/(data) read

(b) AFS consistency (c) Publish consistency

distributing data to Web servers.

reads would go to disk and any communication savings
of producer-consumer locking could potentially be lost
by repeatedly reading the same data. Most often SAN
storage systems are implemented with caches and relia-
bility features (RAID and/or mirroring.)

Producer-consumer locking is not restricted to
SANs, and analogous protocols are possible for tradi-
tional file systems. We will show that even for tradi-
tional architectures producer-consumer locking reduces
network utilization and has near-zero read latency.

Producer-consumer locking on traditional file sys-
tems exacerbates a performance problem with this de-
sign - a phenomena we call overpublishing. Overpub-
lishing occurs when the server publishes versions that
clients do not read. The publish message has network
costs that are never recovered by avoiding future server
requests.

On a SAN, publishing only sends location infor-
mation, a small amount of data. The client reads the
published file data only when requested. However, on a
traditional file system the whole file contents are trans-
mitted and publishing data consumes network band-
width for write-dominated workloads.

The overpublishing phenomena is not of concern
for Web serving in general and in particular for Web
serving with Storage Tank. Producer-consumer locking
is designed to address a specific, yet important, work-
load. The Web-serving workload consists mostly of
reads on many Web servers: writes are less frequent.
The frequency of reads prevent this workload from ex-
hibiting overpublishing.

3 Simulation R e s u l t s

We constructed a discrete event simulation of the
presented locking protocols to verify our design and un-
derstand the performance of the various protocols for a
Web-serving workload. The goal of this simulation is
to compare the network usage and latency of sequential

18

consistency, AFS consistency, and producer-consumer
locking. We present results both for file systems run-
ning without a SAN and for the locking protocols run-
ning on a SAN file system architecture. For simula-
tions on SAN hardware, we have reformulated AFS and
sequential consistency protocols to separate data and
metadata.

The discrete event simulation was constructed us-
ing the YACSIM toolkit [10]. We simulated the locking
protocols through four different components: a reading
client, a writing client, a network, and a protocol server.
These components conform with Figure 2.

We conducted multiple experiments varying the
write interval and number of Web servers while keep-
ing the read rate constant. Write intervals were varied
to explore the affects of lock contention on the system.
At lower write intervals clients refresh their cache with
new versions more frequently. At higher write intervals
clients obtain a new version of a file less frequently and
service many read requests against that version out of
their cache. For all clients, reads occur according to a
Poisson process with a mean rate of 1 read per second
at each client. We varied write intervals between 1 and
60 seconds. However, we present results only for 10
second write intervals.

3.1 Latency
The latency results (Figure 4) describe the time in-

terval between an incoming read request and the file be-
ing available at the client for reading. When the file
is not immediately available at the client, the client
is assessed the time required to communicate with the
server, the server to obtain the data through the proto-
col, and the server to deliver the data. When the data
is already at the client, the read occurs in no time. Be-
cause we do no charge any time for processing the file
locally, we measure protocol latency, rather than overall
read latency.

Results (Figure 4) show latency in seconds as a
function of the number of reading clients in the system
for a write intervals of 10 seconds. The graphs contains
curves for publish consistency (PC), sequential consis-
tency (SC), and AFS consistency (AFS).

For publish consistency, latency is negligible at all
times. In this protocol, a read lock is obtained once
at the start of the simulation and is never revoked. A
reading client always has data available. Consequently,
this result is trivial.

For the sequential consistency and AFS proto-
cols, latency increases super-linearly with the number
of reading clients. When the writing client modifies the
file, each reading client must have its cache invalidated
and then must request a new lock from the server to

0.8

0.7

0.6

~ 0.4

0.3

0.2

0.1

I

.,.-0.

10 seconds

20 40 60 80 100
Number of Clients

10-4 10 seconds (SAN)
8

7

6

2

1

0

20 40 60 80 100
Number of Clients

Figure 4: Protocol latency for readers.

reobtain data. All of these messages share the same net-
work resource and use the resource at the same time.
More clients results in more resource contention and
therefore more latency.

Contention accounts for the super-linear growth of
the latency curves for AFS and sequential consistency
protocols and serialization between readers and writers
accounts for the difference between these curves. Se-
quential consistency invalidates read copies before writ-
ing data whereas AFS updates data and then invalidates
the readers. Sequential consistency adds latency while
the clients wait for the writer to obtain its write lock,
modify the file, and release the lock.

Reduced read latency is the key performance ad-
vantage of publish consistency when compared with
sequential and AFS consistency. Producer-consumer
locking removes almost all read latency. This dramatic
improvement is most important when the number of
clients becomes large.

3.2 Network Usage
The network usage results (Figure 5) describe

the utilization of the network resource shared by Web
servers. Utilization can be considered the fraction of
the networks total capacity that a protocol uses or equiv-
alently, for an ideal network, the percentage of time that
the network is busy.

19

10 seconds
0.7

0.4

0.2

OA

Number of Clients

10 seconds (SAN)
0.02~

0.02 ~

~4
• 0.01

O.Ofl

20 40 60 80 100
Number of Clients

Figure 5: Network utilization.

For all locking protocols network usage increases
linearly with the number of reading clients. This rela-
tionship holds until the network reaches capacity. Un-
like latency, contention has no effect on network simu-
lation results. Protocols always send the same number
of messages to distribute updates.

The network complexity of the different proto-
cols accounts for the differences in the results. The
producer-consumer locking protocol saves messages
between the servers and reading clients when compared
with AFS and sequential consistency. Therefore, as the
number of clients increase, the savings increase com-
mensurately. The network usage of producer-consumer
locking therefore grows at a different rate than AFS and
sequential consistency protocols.

In traditional file systems not all messages are
equal. The messages saved by AFS and publish con-
sistency locking are protocol only messages and do not
contain data. They are not as expensive as the publish
and grant messages that contain file data. However, in
the SAN environment, no messages contain data and the
reduced message complexity has a larger effect.

3.3 Overpublishing

Producer-consumer locks exploit the properties of
the Web-serving workload to reduce latency and net-
work utilization. However, as we discussed in See-

tion 2.3, when workload assumptions are incorrect,
producer-consumer locks exhibit a behavior called over-
publishing.

To simulate overpublishing, we varied the rate at
which client read requests are serviced, focusing on read
rates that are slower than the rate at which a file is be-
ing written and published. We ran the simulation for
100 reading clients. In Figure 6, we see that when reads
occur less frequently than writes in non-SAN file sys-
tems, producer-consumer locking utilizes the network
resource more heavily than AFS or sequential consis-
tency. For a fixed number of clients, the number of
protocol messages in the producer-consumer protocol is
approximately the same regardless of read workloads.

Overpublishing is insignificant for SAN file sys-
tems, because the fixed cost of publishing just metadata
is so small.

4 R e l a t e d W o r k
Consistency describes how the different processors

in a parallel or distributed system view shared data.
Lamport defined the problem and introduced sequential
consistency [4]. Subsequent work on multiprocessors
and shared memories introduced many other similar but
more liberal models [11].

Overpublishing

0.12[0.1 :'Z':'='Z'77

t
• 0.~

o. 03 i 115 ~ 2'.5
Read rate/write rate

4 x lo-' Overpublishing (SAN)

.

0"4 [.5 1 15 2 25
Read rate/write rate

Figure 6: Overpublishing (network utilization.)

20

Consistency in file systems is derived directly from
multiprocessor research. Most modern file systems, in-
cluding DFS [3], Frangipani [12], and xFS [13], im-
plement sequential consistency. Other file systems im-
plement consistent views in a less strict manner. NFS
updates views based on time [5]. Other systems like
AFS [9] update views whenever the server is aware of
changes, but do allow distributed data views to be in-
consistent at any point in time. However, no file systems
known to the authors provide delayed update propaga-
tion based on sessions views as we do with producer-
consumer locking.

Research on view management in database sys-
tems also has similarity to publish consistency, because
databases implement multiple versions with session se-
mantics. However, an inspection of the details reveals
that the data structures and techniques share little in
common. This area is broad and well developed. Bern-
stein et al. present a nice overview of concurrency con-
lrol and view management [14].

The publish and subscribe paradigm is increas-
ingly used as a simple and efficient mechanism for in-
formation routing and multicast in object based dis-
tributed systems [15]. This work differs in that pub-
lishing is explicit, rather than implicit in the data con-
sistency model.

5 Conclusions
We have remedied the semantic and performance

shortcomings of using a file system for distributing dy-
namic updates to Web content in a large scale system.
With the sequential consistency implemented by most
file systems, Web servers can see incomplete changes to
file data that can result in parsing errors at Web clients.
We have developed the publish consistency model that
gives Web servers session semantics to files. Publish
consistency prevents parsing errors.

From publish consistency we derived the producer-
consumer cache coherency locks that reduce network
utilization among Web servers and eliminate proto-
col latency. Simulation results verify these claims.
Producer-consumer locks reduce the messages required
to distribute updates to file system clients and thereby
reduce network load. With existing file system proto-
cols, latency grows more than linearly with the number
of reading clients. Producer-consumer locking elimi-
nates all protocol latency from the reading clients, ex-
cepting startup costs to obtain the first lock.

References
[1] S. Hannis, "AFS as part of the IBM WebSphere performance

pack;' in Proceedings of Decorum '99, Mar. 1999.

[2] '°rransarc's DFS provides the scaleablility needed
to support IBM's global network of Web servers:'
http'J/www.transarc.conYSolutions/Studies/EFS_ Solu-
tions/DFSOly/dfsolympic.htm, 1999.

[3] M. L. Kazar, B. W. Leverett, O. T. Anderson, V. Apostolides,
B. A. Bottos, S. Chutani, C. E Everhart, W. A. Mason, S. Tu,
and R. Zayas, "DEcorum file system architectural overview;' in
Proceedings of the Summer USENIX Conference, June 1990.

[4] L. Lamport, "How to make a multiprocessor computer that cor-
rectly executes multiprocess programs," IEEE Transactions on
Computers, vol. C-28, no. 9, 1979.

[5] D. Walsh, B. Lyon, G. Sager, J. Chang, D. Goldberg,
S. Kleiman, T. Lyon, R. Sandberg, and P. Weiss, "Overview of
the Sun network file system;' in Proceedings of the 1985 Winter
Usenix Technical Conference, Jan. 1985.

[6] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West, "Scale
and performance in a distributed file system," ACM Transac-
tions on Computer Systems, vol. 6, Feb. 1988.

[7] G. A. Gibson, D. E Nagle, K. Amiri, E W. Chang, H. Go-
bioff, E. Riedel, D. Rochberg, and J. Zelenka, "Filesystems
for network-attach secure disks;' Tech. Rep. CMU-CS-97-118,
School of Computer Science, Carnegie Mellon University, July
1997.

[8] K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erickson,
E. Nygaard, C. J. Sabol, S. R. Sultis, D. C. Teigland, and M. T.
O'Keefe, "A 64-bit, shared disk file system for Linux" in Pro-
ceedings of the 16th IEEE Mass Storage Systems Syrup., 1999.

[9] M. L. Kazar, "Synchronization and caching issues in the An-
drew file system," in Proceedings of the USENIX W'mter Tech-
nical Conference, Feb. 1988.

[10] J.R. Jump, "YACSIM reference manual," Tech. Rep. available
at httpJ/www-ece.tice.edu/'rsim/rppt.html, Rice University
Electrical and Computer Eng. Dept., Mar. 1993.

[11] S.V. Adve and K. Gharachorioo, "Shared memory consistency
models: A tutorial,"/EEE Computer, vol. 29, Dec. 1996.

[12] C. A. Thekkath, T. Mann, and E. K. Lee, "Frangipani: A scal-
able distributed file system;' in Proceedings of the 16th ACM
Symposium on Operating System Principles, 1997.

[13] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson,
D. S. Roselli, and R. Y. Wang, "Serverless network file sys-
tems;' ACM Transactions on Computer Systems, vol. 14, Feb.
1996.

[14] P.A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency
Control and Recovery in Database Systems. Addison-Wesley
Pubfishing Company, 1987.

[15] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao,
R. Strom, and D. Sturman, "An efficient mniticast protocol for
content-based publish-subscribe systems;' in Proceedings of the
19th International Conference on Distributed Computing Sys-
tems, May 1999.

21

