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Consistency and Locking for Distributing Updates 
to Web Servers Using a File System 

R a n d a l  C.  B u r n s  a n d  R o b e r t  M.  R e e s  Da r r e l l  D.  E.  L o n g  t 

IBM Almaden Research Center University o f  California, Santa Cruz 

Abstract 

Distributed file systems are often used to replicate a Web site's content among its many servers. However, for  content that needs to 
be dynamically updated and distributed to many servers, file system locking protocols exhibit high latency and heavy network usage. Poor 
performance arises because the Web-serving workload differs from the assumed workload. To address the shortcomings o f  file systems, we 
introduce the publish consistency model well suited to the Web-serving workload and implement it in the producer-consumer locking protocol. 
A comparison o f  this protocol against other file system protocols by simulation shows that producer-consumer locking removes almost all 
latency due to protocol overhead and significantly reduces network load. 

1 Introduction 
Distributed file systems are a key technology for 

sharing content among many Web servers. They pro- 
vide increased scalability and availability [1]. We 
are particularly interested in large scale systems that 
serve dynamically changing Web content with a dis- 
tributed file system: files containing HTML or XML 
that are concurrently updated (written) and served to 
Web clients (read). A good example of  such a system is 
IBM's Olympics web site [2] which used the DFS file 
system [3] to replicate changing data like race results at 
a global scale. 

Distributed file systems provide synchronized ac- 
cess and consistent views of shared data, shielding Web 
servers from complexity by moving these tasks into the 
file system. Most often file systems implement sequen- 
tial consistency [4], where all process see changes as 
if they were sharing a single memory. However, Web 
servers do not require sequential consistency, because 
the data that they serve through the HTTP protocol does 
not need an instantaneous consistency guarantee. Web 
servers benefit from weakening consistency in order to 
achieve better performance. 

Parallelism in the workload leads to performance 
problems when using an unmodified distributed file sys- 
tem to share dynamically updated data among Web 
servers. File systems assume that file data has affinity 
to a few clients at any one time. However, when serving 
Web content, load is balanced uniformly and all Web 
servers have equal interest in all files. For content that 
changes frequently, traditional file system consistency 
protocols utilize the network heavily and exhibit high 
latency. 

Performance concerns aside, sequential consis- 
tency is the wrong model for updating Web data, since it 
results in errors when Web clients parse HTML or XML 
content. When a reader (Web server) and a writer (con- 
tent publisher) share a sequentially consistent file, the 

reader sees each and every change to file data. Conse- 
quently, a Web server can see files that are in the pro- 
cess of being modified or rewritten. Such files are ei- 
ther incomplete or contain data from both the new and 
old version and cannot be parsed. However, before the 
writer begins and after the writer finishes, the file con- 
tains valid content. A more suitable model has the Web 
server continue to serve the old version of the file until 
the writer finishes. We call this publish consistency. 

A more formal definition of publish consistency is 
based on the concepts of  sessions and views. In a file 
system, the open and close function calls define a ses- 
sion against a file. Associated with each session is that 
session's image of the file data that we call a view. Data 
is publish consistent if (1) write views are sequentially 
consistent, (2) a reader's view does not change during 
a session, (3) a reader creates a session view consistent 
with the close of  the most recent write session of which 
it's aware, and (4) readers eventually become aware of 
all write sessions. When opening a file, a reader obtains 
a view of the file data and uses it for an entire session. 
Modifications to files are not propagated to all readers 
instantaneously. However, all readers learn about all 
modifications eventually. 

In publish consistency, relaxed synchronization al- 
lows us to implement cache coherency data locks that 
improve performance. We took the Web-serving work- 
load into account when building producer-consumer 
locking for publish consistency. These locks efficiently 
replicate changes from a computer holding a producer 
lock (for writing) to the many computers holding con- 
sumer locks (for reading). These locks eliminate read 
latency, because each Web server that holds a consumer 
lock always has a recent view in its cache. Producer- 
consumer locks also reduce network usage by reducing 
the number of  messages needed to update files to reflect 
recent changes. 

*The work of this author was performed while a Visiting Scientist at the IBM Almaden Research Center. 
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1.1 A Direct Access File System 
A brief digression into the file system architecture 

that implements producer-consumer locking helps mo- 
tivate our solution and its advantages. In the Storage 
Tank project at IBM research we are building a dis- 
tributed file system on a storage area network (SAN). 
A SAN is a high speed network designed to allow mul- 
tiple computers to have shared access to many storage 
devices. 

For our distributed file system on a SAN, clients 
access data directly over the storage area network. Most 
traditional client/server file systems [5, 6, 3] store data 
on the server's private disks. Clients dispatch all data 
requests to a server that performs I/O on their behalf. 
Unlike traditional file systems, Storage Tank clients per- 
form I/O directly to shared storage devices on a SAN 
(Figure 1). This direct data access model is similar 
to the file system for Network Attached Secure Disks 
[7] that uses shared disks on an IP network and the 
Global File System [8] for SAN attached storage de- 
vices. Clients communicate over a separate control net- 
work for protocol messages - locking and metadata. 

Our SAN file system and producer-consumer locks 
have synergy. In particular, by separating metadata traf- 
fic from data traffic, we efficiently distribute new ver- 
sions of files by sending only metadata about the new 
version to the client rather than the file data. Clients ob- 
tain file data later in order to service HTTP requests and 
then only need to acquire the changed portions, rather 
than re-reading the whole file. This differs from non- 
SAN producer-consumer implementations in which the 
whole new file must be pushed to the consumers. Our 
experiments present comparisons of  producer-consumer 
locking and other locking systems for both SAN and tra- 
ditional distributed file systems. 

2 Locking for Wide Area Replication 
The limitation of using a file system for the wide- 

area replication of Web data is performance. Generally, 

file systems implement data locks that provide sequen- 
tial consistency. For distributing Web data from one 
writer to multiple readers, sequential consistency pro- 
duces lock contention. Contention loads the network 
and results in slow application progress. We illustrate 
lock contention, propose a new set of locks that address 
this problem, and show how our SAN file system takes 
unique advantage of these locks. 

2.1 Sequential Consistency 

We use posting race results in an Olympics Web 
site [2] as an example application to show how sequen- 
tial consistency locking works for Web servers. A pos- 
sible configuration of the distributed system (Figure 2) 
has hundreds or thousands of Web servers integrated 
with a DBMS. Race results and other frequently chang- 
ing data are inserted into the database through an inter- 
face like SQL or ODBC. The insertion updates database 
tables and sets off a database trigger that creates new 
Web content. The file system ensures that the new ver- 
sion of the content is consistent at all Web servers. 

Poor performance occurs for a sequential consis- 
tency locking protocol when updates occur to active 
files. For this example we assume that the file is being 
read concurrently by multiple Web servers before, dur- 
ing, and after new results are being posted and written. 
For race results during the Olympics, a good example 
would be a page that contains a summary of how many 
gold, silver, and bronze medals have been won by each 
country. This page has wide interest and changes often. 
We use sequential consistency locks on whole files for 
this example (the same locks used by DFS [3].) The 
system's initial configuration has the clients at all Web 
servers holding a shared lock (S) for the file in question. 
Figure 3(a) displays the locking messages required to 
update file data in a timing diagram. 

Sequential consistency locking performs best when 
the file system client at the database is not interrupted 
while updating. In this case, the writing client requests 
an exclusive lock (X) on the file. The exclusive lock 
revokes all concurrently held shared locks. After the 
writer completes, the client at each Web server must re- 
quest a shared lock on the file to read and serve the Web 
content. All messages to and from the Web server occur 
for every server. In the best case, four messages - ro- 
voko, re lease,  aequiro, and grant - go between each 
Web server and the file system server. 

The situation is much worse when the file system 
at the DBMS is interrupted while updating the file. In 
file system protocols, data locks are preemptible so that 
the system is responsive when multiple clients share file 
data. For example, clients that request read locks on the 
file data can revoke the DBMS's exclusive lock before 
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Figure 2: Replicating data among many Web servers. 

it completes writing. The DBMS must reobtain an ex- 
clusive lock to finish. The more Web servers there are, 
and the more likely the update will be interrupted. Con- 
tention for the lock can stall the update indefinitely. 

The example application presents a non-traditional 
workload to the file system. The workload lacks the 
properties a file system expects and therefore operates 
inefficiently. Specifically, the workload does not have 
client locality [9] - the affinity of a file to a single client. 
Instead, all clients are interested in all files. 

Performance concerns aside, sequential consis- 
tency is the wrong model for updating HTML and 
XML. As we discussed in Section 1, reading clients 
cannot understand intermediate updates and byte-level 
changes. So sequential consistency leaves content in- 
valid when Web servers see modifications to files at 
a fine granularity. Publish consistency addresses this 
problem by allowing writers to distribute updated views 
only at the end of a write session. 

2.2 AFS Consistency 
Among existing systems, the Andrew file sys- 

tem (AFS) comes closest to publish consistency. AFS 
does not implement sequential consistency. Rather, it 
chooses to synchronize file data between readers and 
writers when files opened for write are closed. Previous 
research [9] argues that data are shared infrequently to 
justify this decision. 

Figure 3(b) shows the protocol used in AFS to han- 
dle the dynamic updates in our example. At the start of 
our timing diagram all Web servers hold the file in ques- 
tion open for read. In AFS an open instance registers a 
client for c a l l b a c k s  - messages from the server invali- 
dating their cached version. The DBMS opens the file 
for writing, writes the data to its cache, and closes the 
file. On close the cached copy of the file is written back 
to the server. The file server notifies the Web servers of 
the changes by sending invalidation messages to clients 
that have registered for a callback. 

When compared with the protocol for sequen- 

tial consistency, AFS saves only one message between 
client and server. However, this belies the performance 
difference. In AFS all protocol operations are asyn- 
chronous; i . e . ,  operations between one client and a 
server never wait for actions on another client. Using 
the AFS protocol, the DBMS obtains a write instance 
from the server directly and does not need to wait for a 
synchronous revocation call to all clients. Another sig- 
nificant advantage of AFS is that the old version of the 
file is available at the Web servers concurrently with it 
being updated at the DBMS. 

The disadvantage of AFS is that it does not cor- 
rectly implement publish consistency. The actual pol- 
icy implemented at the client is to forward changes to a 
file to reading clients whenever a writing client submits 
modifications to the file system server. In general, AFS 
clients write modified data to the server when closing 
a file, which results in publish consistency. However, 
sometimes AFS writes data to a server before the file 
has been closed. This occurs in two ways. First, when 
a file has been open for more than 30 seconds a timer 
writes modified file data to a server. Second, i f a  client's 
cache becomes full it may send modified file data to a 
server to make free space in its cache. In either case 
reading clients can see partial updates which is a viola- 
tion of publish consistency. 

2.3 Implementing Publish Consistency 

We offer a locking option that improves perfor- 
mance when compared with AFS and sequential con- 
sistency, implements publish consistency correctly, and 
takes advantage of the SAN architecture. Our locking 
system reduces the protocol latency that a Web Server 
sees when accessing data to nearly nothing. There is a 
one time cost to initially access data, but all subsequent 
reads are immediate. Furthermore, for the Web-serving 
workload, our protocol lessens the network utilization 
by reducing the number of  messages to keep a file con- 
sistent among many Web servers. 

We capture publish consistency in two data locks: 
a producer lock (P)  and a consumer lock (C). Any 
client can obtain a consumer lock at any time, and a 
producer lock is held by a single writer. Clients hold- 
ing a consumer lock can read data and cache data for 
read. Clients holding a producer lock can write data 
and allocate and cache data for writing, with the caveat 
that all modifications use copy-on-write semantics to re- 
tain a read-only version for readers and an active version 
used by the writer. File publication occurs when the P 
lock holder releases its lock (Figure 3(c)). Upon release 
the server notifies all clients of the new location of the 
file. Recall that clients read data directly from the SAN. 
Servers do not transmit data to the clients. 
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Clients that receive a publication invalidate the old 
version of the file and, when interested, read the new 
version from the SAN. The client need not invalidate the 
whole new file. Instead, it only needs to invalidate the 
portions of  the file that have changed. Because changed 
blocks have been written out-of-place, the client knows 
that portions of  the file for which the location of the 
physical storage has not changed have not been written 
and its cached copy is valid. 

Looking at our example using C and P locks, 
we see that the protocol uses fewer messages between 
the writing client and server than both AFS and DFS, 
and, like AFS, all operations are asynchronous. The 
DBMS requests and obtains a producer (P)  lock from 
the server. When the DBMS completes its updates, it 
doses the file and releases the P lock. The writer must 
release the P lock on close to publish the file. The 
server sends updates that describe the location on the 
SAN of the changed data to all clients that hold con- 
sumer locks. The clients invalidate the affected blocks 
in their cache. 

Producer-consumer locking saves messages when 
distributing updates to readers. In producer-consumer 
locking, changes are pushed to clients in a single update 
message. In contrast, AFS and sequential consistency 
require data to be revoked and then later reobtained. 

C and P locks dissociate updating readers" cache 
contents from writing data. With C and P locks, the 
Web servers are not updated until the the P lock holder 
releases the lock. This means that the P lock holder 
can write data to the SAN and even update the loca- 
tion metadata at the server without publishing the data 
to reading clients. 

For our SAN file system, tMs design assumes that 
storage devices cache data for read. The Web servers 
read data directly from storage, and they all read the 
same blocks. With a cache, a storage controller can ser- 
vice most reads at memory speed. Without a cache, all 
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distributing data to Web servers. 

reads would go to disk and any communication savings 
of producer-consumer locking could potentially be lost 
by repeatedly reading the same data. Most often SAN 
storage systems are implemented with caches and relia- 
bility features (RAID and/or mirroring.) 

Producer-consumer locking is not restricted to 
SANs, and analogous protocols are possible for tradi- 
tional file systems. We will show that even for tradi- 
tional architectures producer-consumer locking reduces 
network utilization and has near-zero read latency. 

Producer-consumer locking on traditional file sys- 
tems exacerbates a performance problem with this de- 
sign - a phenomena we call overpublishing. Overpub- 
lishing occurs when the server publishes versions that 
clients do not read. The publish message has network 
costs that are never recovered by avoiding future server 
requests. 

On a SAN, publishing only sends location infor- 
mation, a small amount of data. The client reads the 
published file data only when requested. However, on a 
traditional file system the whole file contents are trans- 
mitted and publishing data consumes network band- 
width for write-dominated workloads. 

The overpublishing phenomena is not of  concern 
for Web serving in general and in particular for Web 
serving with Storage Tank. Producer-consumer locking 
is designed to address a specific, yet important, work- 
load. The Web-serving workload consists mostly of  
reads on many Web servers: writes are less frequent. 
The frequency of reads prevent this workload from ex- 
hibiting overpublishing. 

3 Simulation R e s u l t s  

We constructed a discrete event simulation of the 
presented locking protocols to verify our design and un- 
derstand the performance of the various protocols for a 
Web-serving workload. The goal of  this simulation is 
to compare the network usage and latency of sequential 
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consistency, AFS consistency, and producer-consumer 
locking. We present results both for file systems run- 
ning without a SAN and for the locking protocols run- 
ning on a SAN file system architecture. For simula- 
tions on SAN hardware, we have reformulated AFS and 
sequential consistency protocols to separate data and 
metadata. 

The discrete event simulation was constructed us- 
ing the YACSIM toolkit [10]. We simulated the locking 
protocols through four different components: a reading 
client, a writing client, a network, and a protocol server. 
These components conform with Figure 2. 

We conducted multiple experiments varying the 
write interval and number of  Web servers while keep- 
ing the read rate constant. Write intervals were varied 
to explore the affects of  lock contention on the system. 
At lower write intervals clients refresh their cache with 
new versions more frequently. At higher write intervals 
clients obtain a new version of a file less frequently and 
service many read requests against that version out of 
their cache. For all clients, reads occur according to a 
Poisson process with a mean rate of 1 read per second 
at each client. We varied write intervals between 1 and 
60 seconds. However, we present results only for 10 
second write intervals. 

3.1 Latency 
The latency results (Figure 4) describe the time in- 

terval between an incoming read request and the file be- 
ing available at the client for reading. When the file 
is not immediately available at the client, the client 
is assessed the time required to communicate with the 
server, the server to obtain the data through the proto- 
col, and the server to deliver the data. When the data 
is already at the client, the read occurs in no time. Be- 
cause we do no charge any time for processing the file 
locally, we measure protocol latency, rather than overall 
read latency. 

Results (Figure 4) show latency in seconds as a 
function of the number of reading clients in the system 
for a write intervals of  10 seconds. The graphs contains 
curves for publish consistency (PC), sequential consis- 
tency (SC), and AFS consistency (AFS). 

For publish consistency, latency is negligible at all 
times. In this protocol, a read lock is obtained once 
at the start of  the simulation and is never revoked. A 
reading client always has data available. Consequently, 
this result is trivial. 

For the sequential consistency and AFS proto- 
cols, latency increases super-linearly with the number 
of reading clients. When the writing client modifies the 
file, each reading client must have its cache invalidated 
and then must request a new lock from the server to 
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Figure 4: Protocol latency for readers. 

reobtain data. All of these messages share the same net- 
work resource and use the resource at the same time. 
More clients results in more resource contention and 
therefore more latency. 

Contention accounts for the super-linear growth of 
the latency curves for AFS and sequential consistency 
protocols and serialization between readers and writers 
accounts for the difference between these curves. Se- 
quential consistency invalidates read copies before writ- 
ing data whereas AFS updates data and then invalidates 
the readers. Sequential consistency adds latency while 
the clients wait for the writer to obtain its write lock, 
modify the file, and release the lock. 

Reduced read latency is the key performance ad- 
vantage of publish consistency when compared with 
sequential and AFS consistency. Producer-consumer 
locking removes almost all read latency. This dramatic 
improvement is most important when the number of 
clients becomes large. 

3.2 Network Usage 
The network usage results (Figure 5) describe 

the utilization of the network resource shared by Web 
servers. Utilization can be considered the fraction of 
the networks total capacity that a protocol uses or equiv- 
alently, for an ideal network, the percentage of time that 
the network is busy. 
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For all locking protocols network usage increases 
linearly with the number of reading clients. This rela- 
tionship holds until the network reaches capacity. Un- 
like latency, contention has no effect on network simu- 
lation results. Protocols always send the same number 
of messages to distribute updates. 

The network complexity of the different proto- 
cols accounts for the differences in the results. The 
producer-consumer locking protocol saves messages 
between the servers and reading clients when compared 
with AFS and sequential consistency. Therefore, as the 
number of clients increase, the savings increase com- 
mensurately. The network usage of producer-consumer 
locking therefore grows at a different rate than AFS and 
sequential consistency protocols. 

In traditional file systems not all messages are 
equal. The messages saved by AFS and publish con- 
sistency locking are protocol only messages and do not 
contain data. They are not as expensive as the publish 
and grant messages that contain file data. However, in 
the SAN environment, no messages contain data and the 
reduced message complexity has a larger effect. 

3.3 Overpublishing 

Producer-consumer locks exploit the properties of 
the Web-serving workload to reduce latency and net- 
work utilization. However, as we discussed in See- 

tion 2.3, when workload assumptions are incorrect, 
producer-consumer locks exhibit a behavior called over- 
publishing. 

To simulate overpublishing, we varied the rate at 
which client read requests are serviced, focusing on read 
rates that are slower than the rate at which a file is be- 
ing written and published. We ran the simulation for 
100 reading clients. In Figure 6, we see that when reads 
occur less frequently than writes in non-SAN file sys- 
tems, producer-consumer locking utilizes the network 
resource more heavily than AFS or sequential consis- 
tency. For a fixed number of clients, the number of 
protocol messages in the producer-consumer protocol is 
approximately the same regardless of read workloads. 

Overpublishing is insignificant for SAN file sys- 
tems, because the fixed cost of publishing just metadata 
is so small. 

4 R e l a t e d  W o r k  
Consistency describes how the different processors 

in a parallel or distributed system view shared data. 
Lamport defined the problem and introduced sequential 
consistency [4]. Subsequent work on multiprocessors 
and shared memories introduced many other similar but 
more liberal models [11]. 

Overpublishing 
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Figure 6: Overpublishing (network utilization.) 
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Consistency in file systems is derived directly from 
multiprocessor research. Most modern file systems, in- 
cluding DFS [3], Frangipani [12], and xFS [13], im- 
plement sequential consistency. Other file systems im- 
plement consistent views in a less strict manner. NFS 
updates views based on time [5]. Other systems like 
AFS [9] update views whenever the server is aware of 
changes, but do allow distributed data views to be in- 
consistent at any point in time. However, no file systems 
known to the authors provide delayed update propaga- 
tion based on sessions views as we do with producer- 
consumer locking. 

Research on view management in database sys- 
tems also has similarity to publish consistency, because 
databases implement multiple versions with session se- 
mantics. However, an inspection of the details reveals 
that the data structures and techniques share little in 
common. This area is broad and well developed. Bern- 
stein et al. present a nice overview of concurrency con- 
lrol and view management [14]. 

The publish and subscribe paradigm is increas- 
ingly used as a simple and efficient mechanism for in- 
formation routing and multicast in object based dis- 
tributed systems [15]. This work differs in that pub- 
lishing is explicit, rather than implicit in the data con- 
sistency model. 

5 Conclusions 
We have remedied the semantic and performance 

shortcomings of using a file system for distributing dy- 
namic updates to Web content in a large scale system. 
With the sequential consistency implemented by most 
file systems, Web servers can see incomplete changes to 
file data that can result in parsing errors at Web clients. 
We have developed the publish consistency model that 
gives Web servers session semantics to files. Publish 
consistency prevents parsing errors. 

From publish consistency we derived the producer- 
consumer cache coherency locks that reduce network 
utilization among Web servers and eliminate proto- 
col latency. Simulation results verify these claims. 
Producer-consumer locks reduce the messages required 
to distribute updates to file system clients and thereby 
reduce network load. With existing file system proto- 
cols, latency grows more than linearly with the number 
of reading clients. Producer-consumer locking elimi- 
nates all protocol latency from the reading clients, ex- 
cepting startup costs to obtain the first lock. 
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