
Lawrence Berkeley National Laboratory
LBL Publications

Title
Uniqueness and global optimality of the maximum likelihood estimator for the 
generalized extreme value distribution

Permalink
https://escholarship.org/uc/item/42t9f5z0

Journal
Biometrika, 109(3)

ISSN
0006-3444

Authors
Zhang, Likun
Shaby, Benjamin A

Publication Date
2022-08-24

DOI
10.1093/biomet/asab043
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/42t9f5z0
https://escholarship.org
http://www.cdlib.org/


5

10

15

20

25

30

 

Uniqueness and global optimality of the maximum likelihood
estimator for the generalized extreme value distribution

BY LIKUN ZHANG
Climate and Ecosystem Sciences Division, Lawrence Berkeley National Laboratory,

Berkeley, California 94720, U.S.A.
likunz@lbl.gov

BENJAMIN A. SHABY
Department of Statistics, Colorado State University,

Fort Collins, Colorado 80523, U.S.A.
bshaby@colostate.edu

SUMMARY

The three-parameter generalized extreme value distribution arises from classical univariate 
extreme value theory and is in common use for analysing the far tail of observed phenomena, yet 
important asymptotic properties of likelihood-based estimation under this standard model have 
not been established. In this paper, we prove that the maximum likelihood estimator is global 
and unique. An interesting secondary result entails the uniform consistency of a class of limit 
relations in a tight neighbourhood of the true shape parameter.

Some key words: Block maximum; Convergence rate; Global maximum; Law of large numbers; Profile likelihood; 
Support.

1. INTRODUCTION

Classical extreme value theory was introduced almost a century ago (Fisher & Tippett, 1928) 
and is in wide practical use, yet a basic theoretical elucidation of likelihood-based inference un-
der its central distributional construct remains incomplete. Here, we fill in some important gaps. 
The generalized extreme value (GEV) distribution arises as the only limit of suitably renormal-
ized maxima over independent and identically distributed random variables, and has therefore 
routinely been used in modelling the tail behaviour of observed phenomena. However, as the 
support of the density depends on its parameters, standard regularity conditions of classic 
asymp-totic theory are not satisfied. It is only recently that consistency and asymptotic normality 
of the maximum likelihood estimator (MLE), found locally on a restricted compact set, have 
been es-tablished. In this paper, we show that the local MLE uniquely and globally maximizes 
the GEV log-likelihood function, provided that the shape parameter is between −1 and the 
number of samples. In addition, we establish a number of convergence properties related to the 
GEV, in-cluding uniform consistency of a class of limit relations, revealing a much richer 
understanding of the likelihood than has previously appeared.

 



The family of GEV distributions forms a continuous parametric family with respect to θ =35

(τ, µ, ξ) on some measurable space (X ,A):

Pθ(y) =

{
exp

[
−
{

1 + ξ
(y−µ

τ

)}−1/ξ
]
, ξ 6= 0,

exp
{
− exp

(
−y−µ

τ

)}
, ξ = 0,
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where 1 + ξ(y − µ)/τ > 0 for ξ 6= 0, and the scale parameter τ > 0, location parameter µ ∈
R, and shape parameter ξ ∈ R. The GEV distribution unites the Gumbel, Fréchet and Weibull 
distributions into a single family to allow various shapes.

The estimation of GEV parameters, especially the shape parameter ξ, is pivotal in studying tail 
behaviour. The Pickands (Pickands, 1975), probability weighted moments (Hosking et al., 1985) 
and method of moments quantile estimators (Madsen et al., 1997) are among many estimators 
available (Beirlant et al., 2004). In this paper, we focus on the asymptotic properties of maximum 
likelihood estimators. Let pθ denote the density function of Pθ with respect to some dominating 
measure P . Since the support of the GEV density function depends on θ, the regularity conditions 
for standard likelihood inference do not hold, which gives rise to fundamental difficulties when 
studying the existence, consistency and asymptotic normality of the MLE.

Suppose θ0 = (τ0, µ0, ξ0) is the true parameter, and Y1, . . . , Yn are independent observations 
from Pθ0 . Cohen (1986, 1988) assumed ξ0 = 0 and considered samples drawn from the Gumbel 
distribution. He proved the consistency and asymptotic normality of the MLE based either on a 
fitted Gumbel distribution or on a fitted GEV distribution. The support of a Gumbel distribution 
is independent of its parameters, which makes it easier to examine the asymptotic behaviour of 
the MLE. Smith (1985) was the first to consider the MLE of a large class of irregular parametric 
families, and his formulation includes the GEV distribution when −1 < ξ0 < 0. Treating the 
samples as coming from a distribution in the domain of attraction of a GEV, Dombry (2015) 
derived the existence of a local MLE, implicitly defined as a solution of the score function, under 
the setting of triangular arrays of block maxima when ξ0 > −1. He proved that for any fixed 
compact set K ⊂ {θ : τ > 0, µ ∈ R, ξ > −1} that contains θ0, the maximum of the likelihood 
function in K is confined in an arbitrarily smaller neighbourhood K̃  of θ0 for all n large enough. 
The corresponding local MLE60

θ̂n = arg max
θ∈K

Ln(θ)

solves the score functions and converges almost surely to θ0. We denote the entries of θ̂n as
(τ̂n, µ̂n, ξ̂n) throughout the remainder of the paper.

Bücher & Segers (2017) extended the result of Dombry (2015) in the simpler setting where
Y1, . . . , Yn are independent observations from a GEV distribution, establishing a Op(n−1/2) rate
of convergence for the local MLE, and refining the incomplete proof of Smith (1985) to establish65

the asymptotic normality of θ̂n for ξ0 > −1/2 and a pre-specified set K. Subsequently, Dombry
& Ferreira (2019) proved the asymptotic normality of the MLE using a different approach. Their
results are again based upon local MLE for a likelihood function of block maxima that are ap-
proximately GEV distributed. Thus the limiting distribution has a non-trivial bias whose exact
expression depends on the asymptotic growth of block size compared to the number of blocks.70

However, the local MLE θ̂n studied by Dombry (2015), Bücher & Segers (2017) and Dombry
& Ferreira (2019) may not attain a unique, global maximum of the log-likelihood

Ln(θ) =
n∑
i=1

lθ(Yi),



in which lθ : θ 7→ log pθ(y), and θ ∈ Ωn = {θ : pθ(Yi) > 0, i = 1, . . . , n}. Amongst other
things, the uniform and global properties of Ln in Ωn are needed in Bayesian theory to de-
velop optimal decision rules and perform posterior-based inference (Hartigan, 1983), to estab- 75

lish asymptotic posterior normality (von Mises, 1931; Chen, 1985), and to construct rule-based
noninformative priors (Bernardo, 2005).

In this paper, we consider θ0 ∈ Θ = (0,∞)× R× (−1/2,∞). We will prove that the local
MLE gives a unique, global maximum point for the log-likelihood function by following a two-
step strategy: 80

(I) We first construct a small compact set K̃ containing θ0 in its interior, and prove that for all
large n, Ln in K̃ is strictly concave and attains a unique maximum;

(II) We then specify a larger compact set K, explicitly defined in terms of θ0, such that
K̃ ⊂ K. We prove for all large n, the global maximum must be attained in K; that is,
arg maxθ∈Θ Ln(θ) = θ̂n. 85

Specialising Proposition 2 in Dombry (2015) to the exact GEV setting, we have θ̂n ∈ K̃ for all
large n. One can therefore conclude that Ln(θ̂n) is indeed the unique and global maximum Ln;
the global optimality is ensured by (II), while the uniqueness is ensured by (I). This main result
is stated in the following theorem.

THEOREM 1 (GLOBAL OPTIMALITY AND UNIQUENESS). Suppose Y1, Y2, . . . are indepen-
dently sampled from Pθ0 and θ̂n is the sequence of local maxima of Ln that is found on a fixed
compact neighbourhood of θ0. Define Θn = {θ ∈ Θ : −1/2 < ξ < n− 1}. Then there almost
surely exists N > 0 such that for all n > N , Ln is uniquely maximized in Θn and

arg max
θ∈Θn

Ln(θ) = θ̂n.

Remark 1. One may object that the optimality result is not truly global because of the re- 90

striction ξ < n− 1. As the shape parameters are less than 1 for most observed data-generating
processes, the ever-expanding Θn is hardly a restriction and does not interfere with the derivation
of asymptotic posterior properties.

2. PRELIMINARIES

2.1. The joint likelihood function and its support 95

First we define the finite endpoint of the support when ξ 6= 0 as

β = β(θ) = µ− τ

ξ
. (1)

This one-to-one mapping from (τ, µ, ξ) to (τ, β, ξ) will be used to simplify notation. In addition,
define

Wi(θ) = 1 + ξ

(
Yi − µ
τ

)
=
ξ

τ
(Yi − β),

which helps simplify the log-likelihood function:

Ln(θ) = −n log τ − ξ + 1

ξ

n∑
i=1

logWi(θ)−
n∑
i=1

W
−1/ξ
i (θ) (ξ 6= 0). (2)

When ξ → 0, W−1/ξ
i (θ)→ exp{−(Yi − µ)/τ}, so Ln(θ) with ξ = 0 is included in this formu- 100

lation.
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Fig. 1. Slicing the support Ωn at different levels of ξ ∈
(−1/2,∞). A cross-section at any ξ, shown in the shaded
area, is convex with respect to (τ, µ). When ξ 6= 0, the lin-

ear boundary of the cross-section has a slope of 1/ξ.

It can be easily verified that the domain of the log-likelihood function,

Ωn = {θ ∈ Θ : ξ(Yi − β) > 0, i = 1, . . . , n}, (3)

is not a convex set, so Taylor expansion will not be helpful for studying Ln(θ). This precludes
the use of routine tools such as the mean-value theorem and makes it difficult to approximate the
difference of the function on a certain intervals. Nonetheless, if we slice Ωn at different levels105

of ξ, every cross-section is convex; see Fig. 1 for illustration. On a cross-section at a fixed ξ, the
value of β = µ− τ/ξ can be construed as the intercept of the line which has a slope of 1/ξ and
passes through (τ, µ). When ξ > 0, the condition in (3) imposes β < Y(1), and when ξ < 0, the
intercept β > Y(n), where Y(1) and Y(n) are the sample minimum and maximum. Therefore, for
any θ ∈ Θ, we can immediately tell whether θ ∈ Ωn using only Y(1) and Y(n).110

2.2. Profile likelihood
Denote the cross-section of Ωn at a certain ξ by Ωn(ξ). The convexity of Ωn(ξ) suggests

examining the log-likelihood via profiling out (τ, µ):

PLn(ξ) = sup
(τ,µ)∈Ωn(ξ)

Ln(θ).

115

The following proposition, whose proof can be found in the Supplementary Material, ensures 
that Ln(θ) is uniquely maximized on each cross-section Ωn(ξ).

PROPOSITION 1. Suppose Ln(θ) is applied to real numbers y1, . . . , yn that are not all equal. 
For ξ ∈ [−1, n − 1] \ {0}, there exists a unique and global maximizer (τn(ξ), µn(ξ)) of Ln on 
the cross-section Ωn(ξ), which can be found by solving{

τ =
[
n−1

∑n
i=1{ξ(yi − β)}−1/ξ

]−ξ
,

(ξ + 1)
∑n

i=1{ξ(yi − β)}−1 = n
∑n

i=1{ξ(yi − β)}−1−1/ξ
/∑n

i=1{ξ(yi − β)}−1/ξ.
(4)

For ξ = 0, the unique and global maximizer (τn(0), µn(0)) on Ωn(0) can be found by solving{
nτ = ∑n

i=1

{
1 − exp

(
−yi−µ

τ

)}
yi,

n = ∑n
i=1 exp

(
−yi−µ

τ

)
.



120For ξ ∈/ [−1, n − 1], PLn(ξ) = ∞. Meanwhile, (τn(ξ), µn(ξ)) = (0, y(1)) when ξ > n − 1 and 
(τn(ξ), µn(ξ)) = (0, y(n)) when ξ < −1, in which y(1) and y(n) denote the minimum and maxi-
mum values.

Remark 2. The system in Proposition 1 is defined in terms of (τ, β ) for convenience, but its 
solution can be easily transformed into (τn(ξ), µn(ξ)) using (1).

Remark 3. By definition, PLn(ξ) = Ln{τn(ξ), µn(ξ), ξ}. Inserting (4) into (2), 125

PLn(ξ) = −n log

(
1

n

n∑
i=1

[ξ{yi − βn(ξ)}]−1/ξ

)
− ξ + 1

ξ

n∑
i=1

log[ξ{yi − βn(ξ)}]− n (5)

when ξ ∈ [−1, n− 1] \ {0}. By the continuity of Ln at ξ = 0, we know that

lim
ξ→0

µn(ξ) = µn(0), lim
ξ→0

τn(ξ) = τn(0), lim
ξ→0

PLn(ξ) = PLn(0).

130

To find the global maximum, we now need only compare the maxima from each cross-section. 
If the profile l ikelihood P Ln as a  function of ξ  were s trictly concave in [−1, n − 1], i t would 
have a unique maximum at ξ such that PL′n(ξ) = 0, and then (τn(ξ), µn(ξ), ξ) would be the 
unique global maximizer for Ln. Unfortunately, PLn is not a strictly concave function of ξ. The 
following proposition, whose proof can be found in the Supplementary Material, demonstrates 
that the first derivative P L′n is not monotonically decreasing, and it behaves irregularly when ξ 
approaches the bounds of the interval (−1, n − 1).

PROPOSITION 2. Under the assumptions of Proposition 1, the first derivative PL′n is well-
defined and continuous in ξ ∈ (−1, n − 1). When ξ 6= 0, PL′n is taken using (5): 135

PL′n(ξ) = − 
n 
ξ
−
n∑n

i=1[ξ{y βn(ξ)}]−1/ξ log[ξ{yi − βn(ξ)}]
ξ2 i∑−ni=1[ξ{yi − βn(ξ)}]−1/ξ

+
1

ξ2
∑n
i=1

log[ξ{yi − βn(ξ)}].
(6)

For ξ = 0, the first derivative coincides with the limit:

lim
ξ→0

PL′n(ξ) =
∑

nµ′n(0) − i
n
=1{yi − µn(0) + τ ′n(0)}τn(0)

+
∑n

i=1{yi − µn(0) + τ ′n(0)}2 − nτ ′n(0)2

2τn(0)2
.

Additionally, PL′n(ξ)→∞ when ξ ↗ n− 1 and PL′n(ξ)→ −∞ when ξ ↘ −1. By the inter-
mediate zero theorem, there must exist a ξ ∈ (−1, n− 1) such that PL′n(ξ) = 0.

If a value of ξ satisfies PL′n(ξ) = 0, (4) and (6) together ensure that (τn(ξ), µn(ξ), ξ) solves
the score equations. Hence this result provides an alternative approach to proving the existence 140

of the local MLE for Ln. However, proving the strong consistency of the local MLE requires n
independently Pθ0-distributed random variables.

Figure 2 illustrates some key features of the profile likelihood function. We simulate
Y1, . . . , Yn from Pθ0 and calculate the log-likelihood PLn at a grid of ξ values ranging from −1
to n− 1. For all cases, including ξ0 = −0.2, ξ0 = 0 and ξ0 = 0.2, PLn appears to be uniquely 145

maximized by the local MLE, which is close to ξ0. Although it is not a concave function globally,
we observe local concavity around ξ0, which suggests adoption of the two-step strategy intro-
duced in § 1. Roughly speaking, these two steps are established in § 4 via proving (I) PLn is
strictly concave in a small neighbourhood of ξ̂n and (II) PLn(ξ) < PLn(ξ̂n) for ξ far from ξ̂n.
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Fig. 2. PLn(ξ) under Y1, . . . , Yn sampled from true ξ0 =
−0.2 (left), ξ0 = 0 (middle) and ξ0 = 0.2 (right), with
dashed lines marking the local MLE ξ̂n. For all scenar-
ios, (τ0, µ0) = (1, 0) and sample size n = 50. We see that

PLn(ξ) is not concave.

3. CONVERGENCE RATE OF THE SUPPORT BOUNDARY150

To prove (I) and (II), we will need to study the distance between the true parameter θ0 and the
boundary of the support Ωn. It is true from the definition of Ωn that if Y1, . . . , Yn are drawn from
Pθ0 , then θ0 ∈ Ωn for any n ≥ 1. It is clear that Ωn is an open set for any n, so the true parameter
θ0 is always interior to Ωn. This raises the question: can we always find a neighbourhood of θ0

which is contained by Ωn that is large enough to allow us to examine the log-likelihood in the155

vicinity of θ0? Unfortunately, this is not possible because θ0 becomes arbitrarily close to the
boundary as n approaches infinity when ξ0 6= 0.

To quantify the distance between θ0 and the boundary of Ωn, we first assume ξ0 > 0 and
examine the cross-section Ωn(ξ0). This is illustrated in Fig. 3, where θ0 = (τ0, µ0, ξ0) is shown
as a red point, and β0 = µ0 − τ0/ξ0 is the intercept of the line that passes through (τ0, µ0) with160

a slope of 1/ξ0. Figure 3 illustrates that the difference of intercepts, Y(1) − β0, is a good measure
of the distance. By analogy, if true shape parameter ξ0 < 0, the distance can be well-measured
by β0 − Y(n).

Since the support of the distribution of Pθ0 is bounded below by β0 when ξ0 > 0,
limn→∞ Y(1) = β0 almost surely. When ξ0 < 0, the support of the distribution of Pθ0 is bounded165

above by β0, so limn→∞ Y(n) = β0 almost surely. Thus in both cases, the distance between θ0

and the boundary of Ωn converges almost surely to zero. Also, Bücher & Segers (2017) showed
that θ̂n − θ0 = Op(n

−1/2), so θ̂n is also arbitrarily close to θ0 as n grows, and thus close to the
boundary of Ωn. This is concerning for the purpose of proving global optimality of θ̂n because
it would be rather challenging to handle the log-likelihood near the boundary of the support.170

Therefore, it is imperative that we compare the convergence rate of the distance between θ0

and the boundary with n−1/2 to get a clearer picture of Ln(θ) near the boundary.

PROPOSITION 3. Suppose Y1, . . . , Yn are independently sampled from Pθ0 and ε > 0 is an
arbitrary constant.

(A) If ξ0 > 0, Y(1) → β0 and Y(n) →∞ almost surely. It also holds almost surely that175

lim
n→∞

(log n)(1+ε)ξ0(Y(1) − β0) =∞, lim
n→∞

(log n)(1−ε)ξ0(Y(1) − β0) = 0,

lim
n→∞

n−(1+ε)ξ0Y(n) = 0, lim
n→∞

n−(1−ε)ξ0Y(n) =∞.



Fig. 3. The cross-section Ωn(ξ0) if true ξ0 > 0. The two
parallel dashed lines have a slope of 1/ξ0. The bullet
point is θ0 = (τ0, µ0, ξ0). Here we also compare the con-
vergence rates of θ̂n and Y(1), which are n−1/2 and
1/ logξ0 n. The red circle marks the neighbourhood of θ0

with radius n−1/2.

(B) If ξ0 < 0, Y(1) → −∞ and Y(n) → β0 almost surely. It also holds almost surely that

lim
n→∞

(log n)(1+ε)ξ0Y(1) = 0, lim
n→∞

(log n)(1−ε)ξ0Y(1) = −∞,

lim
n→∞

n−(1+ε)ξ0(β0 − Y(n)) =∞, lim
n→∞

n−(1−ε)ξ0(β0 − Y(n)) = 0.

(C) If ξ0 = 0, Y(1) → −∞ and Y(n) →∞ almost surely. It also holds almost surely that

lim
n→∞

(log log n)−1−εY(1) = 0, lim
n→∞

(log log n)−1+εY(1) = −∞,

lim
n→∞

(log n)−1−εY(n) = 0, lim
n→∞

(log n)−1+εY(n) =∞.

Remark 4. When ξ0 > 0, it demonstrates that the convergence rate of Y(1) to β0 is roughly
1/ logξ0 n. The convergence rate of θ̂n to θ0, n−1/2, is much faster than the rate of Y(1) to β0.
These two rates are compared schematically in Fig. 3. If ξ0 < 0, the convergence rate of Y(n) to 180

β0 is nξ0 , which is still slower than n−1/2 because of the restriction ξ0 > −1/2. Thus for a ball
neighbourhood of θ̂n to be contained in Ωn, its radius can be up to 1/nε for some ε ∈ (0, 1/2).
This is of vital importance in the proof of (I) and (II).

4. PROOF OF THEOREM 1
4.1. Smoothness of Hessian matrix 185

When ξ0 6= 0, construct the compact set

K̃ = {θ ∈ Θ : |τ − τ0| ≤ r, |β − β0| ≤ r, |ξ − ξ0| ≤ r},

where r is a small constant to be determined by θ0 such that the log-likelihood function is locally
concave in K̃. Slicing K̃ at different levels of ξ produces parallelograms; see Fig. 4. When
ξ0 = 0, K̃ is defined using |µ− µ0| ≤ r instead of |β − β0| ≤ r. In this section, we will prove
that for all large n, the Hessian matrix of Ln is negative definite in K̃ ∩ Ωn, and hence Ln is 190

strictly concave.



Fig. 4. Illustrating K̃ for ξ0 < 0 (left), ξ0 = 0 (middle) and
ξ0 > 0 (right). In all cases, the set K̃ sliced at ξ = ξ0 is
shown in yellow, with Ωn(ξ0) shown in blue. For ξ0 6= 0,
the slice is a parallelogram when sliced at any ξ in (ξ0 −

r, ξ0 + r).

Although the fixed larger compact set K is yet to be specified, we know from the strong
consistency of the local MLE that θ̂n ∈ K̃ for large sample size n. It is of interest to study
L′′n(θ̂n), the Hessian at θ̂n. The log-likelihood Ln(θ) in (2) and elements of its Hessian matrix
L′′n(θ) can all be written as linear combinations of sums of the form195

n∑
i=1

W
−k−a/ξ
i (θ) logbWi(θ),

where k, b = 0, 1, 2, a = 0, 1; see the Supplementary Material for the expressions for the Hes-
sian.

For constants k and a such that kξ0 + a+ 1 > 0, it is straightforward to obtain

Eθ0

{
W−k−a/ξ0(θ0) logbW (θ0)

}
= (−ξ0)bΓ(b)(kξ0 + a+ 1),

whereW (θ0) = ξ0(Y − β0)/τ0 with Y ∼ Pθ0 , and Γ(b) is the bth-order derivative of the Gamma
function. Since {W−k−a/ξi (θ0) logbWi(θ0) : i = 1, 2, . . .} is an independent and identically dis-200

tributed sequence, the strong law of large numbers gives

lim
n→∞

1

n

n∑
i=1

W
−k−a/ξ0
i (θ0) logbWi(θ0) = (−ξ0)bΓ(b)(kξ0 + a+ 1)

almost surely.
To examine L′′n(θ̂n), we replace θ0 with θ̂n in the preceding averages. Since limn→∞ θ̂n = θ0

almost surely, the continuity of the sums with respect to θ permits a pseudo large law of numbers
for the elements in L′′n(θ̂n).205

PROPOSITION 4. Suppose Y1, Y2, . . . are independently sampled from Pθ0 and θ̂n is the local
MLE of Ln(θ) that is strongly consistent. Then for constants k and a such that kξ0 + a+ 1 > 0,

lim
n→∞

1

n

n∑
i=1

W
−k−a/ξ̂n
i (θ̂n) logbWi(θ̂n) = (−ξ0)bΓ(b)(kξ0 + a+ 1) (7)

almost surely, where b is a non-negative integer.



The proof of this result depends on Proposition 3. For details see the Supplementary Material.
Proposition 4 ensures that L′′n(θ̂n) behaves like L′′n(θ0) for large n. For the next result, we show 210

that if we carefully select r for K̃ based on the value of θ0, L′′n(θ) can be approximated by
L′′n(θ̂n) in K̃ ∩ Ωn, yielding the negative-definiteness of L′′n(θ) in this neighbourhood.

PROPOSITION 5. Let Y1, Y2, . . . be independently sampled from Pθ0 and let θ̂n be the local
MLE of Ln(θ) that is strongly consistent. For a small r > 0 chosen by the rule specified in the
Supplementary Material, there almost surely existsN such that, for any n > N and θ ∈ K̃ ∩ Ωn, 215

I3 −A0(r) ≤ L′′n(θ){L′′n(θ̂n)}−1 ≤ I3 +A0(r), (8)

where I3 is the 3 × 3 identity matrix and A0(r) is a 3 × 3 symmetric positive-semidefinite matrix 
whose elements only depend on θ0 and the radius r, and whose largest eigenvalue tends to zero 
as r → 0.

As a side result, we extend the limit relations in (7) to obtain uniform consistency as the 
powers of the Wi terms change in a closed interval. In Proposition 4, changing the power con- 220

tinuously produces a continuous path of the limit. If we fix the non-negative integer b and regard
Φn(α) = n−1

∑n
i=1W

−α
i (θ̂n) logbWi(θ̂n) as a stochastic process, Φn(α) converges pointwise

almost surely to Φ(α) = (−ξ0)bΓ(b)(αξ0 + 1). The following result, which we prove in the Sup-
plementary Material, says that the rate of convergence of sequences of Φn(α) is essentially the
same within a closed interval of α. That is, there is uniform consistency, which is a stronger 225

property than stochastic equicontinuity. The uniformity will be crucial to proving step (II).

PROPOSITION 6 (UNIFORM CONSISTENCY). Suppose Y1, Y2, . . . are independently sampled
from Pθ0 and θ̂n is the local MLE of Ln(θ) that is strongly consistent. Let b be a non-negative
integer and I be a closed interval on the real line such that αξ0 + 1 > 0 for α ∈ I . Write
Φn(α) = n−1

∑n
i=1W

−α
i (θ̂n) logbWi(θ̂n) and Φ(α) = (−ξ0)bΓ(b)(αξ0 + 1). Then 230

lim
n→∞

sup
α∈I
|Φn(α)− Φ(α)| → 0

almost surely.

4.2. Step (I) and its proof
PROPOSITION 7 (STEP (I)). Let Y1, Y2, . . . be independently sampled from Pθ0 and let θ̂n be

the local MLE of Ln(θ) that is strongly consistent. Then we can find some r > 0 small enough
such that Ln(θ) is a strictly concave function in K̃ ∩ Ωn. Namely, there almost surely exists 235

N > 0 such that for all n > N ,

L′′n(θ) < 0 (θ ∈ K̃ ∩ Ωn).

Therefore, θ̂n is an unique maximum point in K̃.

Proof. Proposition 4 ensures that

lim
n→∞

1

n
L′′n(θ̂n) = −I(θ0)

almost surely, where I(θ0) is the Fisher information of Pθ0 , and we know |I(θ0)| > 0 for all
ξ0 > −1/2. Therefore, I(θ0) is positive definite, and there almost surely exists N > 0 such that 240

for all n > N , L′′n(θ̂n) < 0.



By Proposition 5, A0(r) only depends on θ0 and r. We now fix r small enough such that the
smallest eigenvalue of I3 −A0(r) is positive. By (8),

L′′n(θ) ≤ L′′n(θ̂n){I3 −A0(r)} < 0.

The choice of r only depends on θ0. �

4.3. Step (II) and its proof245

Step (II) confines the global MLE to a fixed compact set K which is constructed using the
values of θ0 such that K̃ ⊂ K. Since θ̂n = arg maxθ∈K Ln(θ) by definition, we can deduce the
global optimality of θ̂n.

PROPOSITION 8 (STEP (II)). Let Y1, Y2, . . . be independently sampled from Pθ0 and
(µn(ξ), τn(ξ)) be the maximizer of Ln on the cross-section Ωn(ξ). Then for large n, the global250

maximum must be in a cube K whose vertices are only dependent on the value of θ0; that is,
there almost surely exists N > 0 such that for all n > N ,

arg max
θ∈Θn

Ln(θ) ∈ K.

Proof. We detail the construction of the cube K in the Supplementary Material. Denote the
range of ξ in K by J . Then

J =


[0, C0ξ0], ξ0 > 0,

[C1ξ0, 0], ξ0 < 0,

[−C2/ log n,C2/ log log n], ξ0 = 0,

(9)

in which C2 = exp(γ), where γ is the Euler-Mascheroni constant, and C0, C1 > 1 are fixed con-255

stants such that (1/x− 1) log τ0 + ξ0 log Γ(1/x) > 0 when x > C0, and− log x+ γ + 0.1 < 0
when x > C1.

Utilising Proposition 1 and 2 from § 2, we show in the Supplementary Material that

PLn(ξ) < PLn(ξ̂n) (ξ 6∈ J) (10)

and

(µn(ξ), τn(ξ), ξ) ∈ K (ξ ∈ J). (11)

By (9), ξ0 is in the interior of J . Since ξ̂n converges almost surely to ξ0, we260

have ξ̂n ∈ J for sufficiently large n. Denote K1 = {θ ∈ Θ : ξ ∈ J}. Clearly, K ⊂ K1 and
(10) implies arg maxθ∈Θn Ln(θ) ∈ K1. When ξ ∈ J , (11) encloses the unique maximizer
(µn(ξ), τn(ξ)) on Ωn(ξ) in K. Equivalently, arg maxθ∈K1

Ln(θ) ∈ K. Combining (10) and
(11), arg maxθ∈Θn Ln(θ) ∈ K. �

4.4. Completing the Proof of Theorem 1265

Proposition 2 in Dombry (2015) ascertained that for all large n, the argmax point on the set K
defined in Proposition 8 is confined in any smaller neighbourhood K̃. Although his result was
developed within the framework of triangular arrays of block maxima, the proof can be adapted
to work on independent and identically distributed GEV samples.

LEMMA 1 (CONSISTENCY). Let K ⊂ Θ be a compact set that contains θ0 as an interior270

point and Y1, Y2, . . . be a sequence of independent and identically distributed random variables
with common distribution Pθ0 . Then a sequence of estimators θ̂n can be found to maximize the



log-likelihood Ln over K. For any smaller neighbourhood K̃ of θ0 such that K̃ ⊂ K, we have
θ̂n ∈ K̃ almost surely. Hence θ̂n → θ0 almost surely as n→∞.

Proof. Bücher & Segers (2017) noted that Proposition 2 in Dombry (2015) is applicable for 275

the GEV distributions. Noticing that a GEV distribution is in its own domain of attraction, the
block size sequence m(n) is set to be 1 with am = τ0 and bm = µ0.

Following the proof in Dombry (2015), K̃ is limited to be a ball neighbourhood of θ0 with an
arbitrarily small radius. It is straightforward to generalize the proof to any small neighbourhood
of θ0 such that K̃ ⊂ K. Because the closure of the set ∆ = K \ K̃ is compact, any open cover 280

of ∆ has a finite subcover, and the remaining proof applies without modification. �

Combining Proposition 8 and Lemma 1, we obtain

arg max
θ∈Θn

Ln(θ) ∈ K̃ ∩ Ωn,

and by the local strict concavity in K̃ ∩ Ωn ensured by Proposition 7,

θ̂n = arg max
K̃∩Ωn

Ln(θ),

whence we conclude that θ̂n attains the unique and global maximum of Ln.

5. DISCUSSION 285

Intermediate results necessary for the proofs of local strict concavity and boundedness of the
global MLE unveiled additional characteristics of the GEV likelihood function that may be of
independent interest. For example, the profile likelihood attains a unique maximum at each slice
of the support, the convergence rate of the support boundary to the local MLE is slower than
n−1/2, and a class of averages that are the building blocks of the Hessian matrix converge to 290

their limits uniformly. These results enhance our understanding of the GEV likelihood.
In applications, observations are never generated exactly from a GEV distribution; rather, they

come from a distribution which we typically assume to be in the domain of attraction of a GEV.
Dividing the observations into non-overlapping blocks, we make the approximating assumption
that the maxima extracted from each block are GEV distributed. Thus, the asymptotic setup of 295

Dombry (2015) and Dombry & Ferreira (2019) should be viewed as the more realistic, and our
work offers theoretical foundations for maximum likelihood estimation using the GEV when the
block size is large.

Finally, the number of block maxima in any observational record is limited. For future re-
search, it is important to examine the minimum sample size required for the observations to 300

manifest large-sample behaviour, as had been done for previous asymptotic results in extreme
value statistics. Small-sample estimators for the GEV tend to be unstable, so taking advantage
of the profile likelihood might provide an effective, and to our knowledge unexplored, approach
to estimating the shape parameter. That is, one could first calculate the maximum likelihood on
the cross-sections of the support at different levels of ξ, and then find the ξ that maximizes the 305

profile likelihood; see Fig. 2. Doing so is asymptotically guaranteed to find the global MLE, and
might improve numerical stability in small samples.
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SUPPLEMENTARY MATERIAL

The detailed proofs for the aforementioned propositions are shown in the Supplementary
Material. There are additional technical results and figures included in this document.
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