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of the array slabs shown in Fig. 1 by using an eigenvalue solver based on the finite element method [10, 13]. In Fig. 
2 the modes of the six arrays I-VI are represented in the complex /x hk k  plane in the frequency range 420-424 THz, 

where kh is the wave number in silica (different colors depict multiple modes).  

 
Fig. 2. Bloch modes of the Arrays I-VI (illustrated in Fig.1) in the complex xk  plane for the frequency range 420-424 THz (arrows indicate the 

direction of increasing frequencies). 

As a general rule, we find that increasing the thickness d of the slab by one row of nanoparticles adds one mode with 
complex wavenumber in the complex xk  plane. The mode represented with a blue curve, which we refer to as 

pseudo-Brewster mode [10], exists regardless of the slab thickness, even for a single row of nanoparticles (d = a). 
This mode, which is the only one that crosses the imaginary axis hence switching from backward proper (BP) to 
forward improper (FI), according to the classification done in [14], is responsible for the ENZ behavior of the bulk 
array (i.e., infinite periods in both x and z directions). We find that the other leaky modes supported by the slab are 
equally important in this frequency range, since they can interact with incident TM-polarized plane waves. This 
interaction with propagating waves occurs by phase-matching, i.e., a forced excitation, and it is stronger when the 
imaginary part of the modes’ wavenumber, x , is very low when compared to hk . We will show that this interaction 

generates extremely narrow resonant features in the angular and frequency spectra, which open new windows of 
opportunity for the design of low-power, all-optical devices.  
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