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Abstract 

In this study we examine the regression-based ratio-correlation method and suggest some new 

tools for assessing the magnitude and impact of coefficient instability on population estimation 

errors. We use a robust sample of 904 counties from 11 states and find that: (1) coefficient 

instability is not a universal source of error in regression models for population estimation and its 

impact is less than commonly assumed; (2) coefficient instability is not related to bias, but it 

does decrease precision and increase the allocation error of population estimates; and (3) 

unstable coefficients have the greatest impact on counties under 20,000 in population size. Our 

findings suggest that information about the conditions that affect coefficient instability and its 

impact on estimation error might lead to more targeted and efficient approaches for improving 

population estimates developed from regression models. 
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Introduction 

The regression approach for estimating population has a long history beginning with Snow’s [34] 

seminal paper. This method, most often used for county population estimates, involves relating 

changes in population to changes in one or more symptomatic indicators [1]. Symptomatic 

indicators relate to changes in population such as vital events, employment, school enrollment, 

voter registration, and tax returns. While variations have been developed, the most common 

regression-based approach for estimating populations is the “ratio-correlation” method 

introduced and tested by Schmitt and Crosetti [28] and Crosetti and Schmitt [3].
 
Comparative 

analysis has shown the ratio correlation method is one of the most accurate approaches for 

estimating population [1, 9, 23, 30, 15]. Swanson [39] has also observed that the ratios of change 

used in the ratio-correlation model provide some of the benefits associated with “stationarity,” an 

important characteristic associated with a good time series model. Typically, regression-based 

equations for population estimation are cross-sectional, use 30 to 250 observations, and contain 

two to four symptomatic indicators. 

Given good quality input data, the accuracy of the ratio-correlation and other regression-

based methods largely depends on the validity of the underlying assumption that the observed 

relationships between the symptomatic indicators and population in the past intercensal period 

(e.g. 2000 to 2010) will be the same in the postcensal period (e.g., 2010 to 2020) [1, 6, 21, 4: 

173]. That changes in the coefficients relating the symptomatic indicators and population 

between the estimation and postcensal periods, or coefficient instability, will transmit error into 

postcensal estimates is not debatable. However, research into the magnitude of coefficient 

instability and its effect on population estimate error is far from conclusive. Some studies have 
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found that coefficient instability is a significant issue, while others have found this not to be the 

case. Moreover, attempts to alter methods and procedures for dealing with coefficient instability 

have generally led to marginal improvements to population estimates. 

In this study, we provide expanded and updated analyses and suggest some new tools for 

assessing the magnitude and impact of coefficient instability on population estimation errors. We 

use the ratio-correlation technique, a robust sample of counties, and a variety of measures and 

analytical techniques to address the following three questions:  

(1) What is the extent and magnitude of coefficient instability? 

(2) What is the impact of coefficient instability on the bias, precision, and allocation error of 

population estimates? 

(3) What is the impact of coefficient instability on estimate error relative to the size and 

growth rate of counties? 

This study differs in several ways from previous research. First, we analyze a sample of 

904 counties from 11 states. To our knowledge, this is the largest and most diverse sample ever 

used to study regression models for population estimation, which have focused on case studies of 

counties from a single state. While valuable, these case studies are limited in their 

generalizability and unique conditions within a state can have a substantial impact on the 

behavior of ratio-correlation models through time [20]. Second, we offer new measures of the 

magnitude of coefficient instability derived directly from changes in the regression coefficients 

between the estimation and postcensal periods. Third, we examine the three main dimensions of 

estimate error (precision, bias, and allocation error). Studies of coefficient instability have 

largely focused on the accuracy of estimates, as measured by the Mean Absolute Percent Error 

(MAPE), and have not addressed estimate bias. Tayman and Schafer [43] is the only study that 
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we are aware of that has examined allocation error in the context of coefficient instability. 

Finally, we go beyond the usual approach of using aggregate data to compare typical errors for 

areas with different groupings of a characteristic (e.g., size and growth rate) by constructing 

statistical models based on data from individual counties [44]. Disaggregated statistical models 

can help identify patterns that cannot be observed through aggregated data analysis.  

Literature review 

It has been argued that further improvements in accuracy in regression models of 

population estimation are not likely until ways for adjusting or mitigating the impact of 

coefficient instability are developed [24], and many refinements have been suggested to deal 

with this problem. Ericksen [6, 7] proposed a method of postcensal estimation which combined 

the symptomatic indicators with sample survey data from the Current Population Survey. 

Swanson [37] presented a mildly restrictive approach using a theoretical causal ordering and 

principles from path analysis to modify the regression-coefficients in the postcensal period. 

Other methods for dealing with coefficient instability have included the use of dummy variables 

in the regression model [25], estimating separate models for different geographic stratifications 

[27], using differences in ratios as opposed to ratio of ratios over the estimating period [26, 29, 

36], and using logarithmic transformations of the variables [42]. 

Multicollinearity can also affect coefficient instability in that estimated coefficients may 

change radically in response to small changes in the model or data and can also create difficulties 

in assessing the statistical significance of coefficients [4: 165-175]. Attempts to mitigate the 

impact of muticollinearity on population estimates include the averaging of estimates of 

univariate regression models [22] and ridge regression [35]. 
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Improvements in estimate accuracy by these refinements have not been uniformly 

significant and the basic form of the ratio-correlation model has proven robust over a wide range 

of conditions [42, 43]. However, we are aware of only three studies that have either measured the 

extent of coefficient instability in the ratio-correlation model and its variants or ascertained its 

impact on the resultant population estimates. 

In the first of these three studies, O’Hare [23] analyzed 1970 estimates of total population 

from ratio- and difference-correlation models for counties in Michigan. These models were 

constructed over the 1950 and 1960 time period using school enrollment (grades 1-8), auto 

registration, sales tax revenue, and vital events as symptomatic indicators. Using correlation 

matrices to measure coefficient instability, he found that the difference correlation model was 

more stable over time and yielded slightly more accurate estimates than the ratio-correlation 

model with MAPEs of 4.5 and 4.7, respectively. 

In the second study, Mandell and Tayman [18] analyzed 1970 estimates of total 

population from eight ratio-correlation and eight difference-correlation models for counties in 

Florida. These alternate models constructed over the 1950-1960 and 1960-1970 time periods 

were based on different combination of symptomatic indicators that included sales tax revenues, 

school enrollment (grades 1-8), vital events, labor force population, occupied housing units, and 

families receiving aid for dependent children. Mandell and Tayman criticized the use of the 

correlation coefficient to measure coefficient instability because it consists of the unstandardized 

regression slope and the standard deviations of the independent and dependent variables. 

Therefore, one cannot know whether the change or lack of change in a correlation coefficient is 

due to coefficient instability, differences in the variability of model variables, or both. Given the 

drawback of the correlation coefficient to measure coefficient instability, they proposed the use 
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of the F-statistic based on the Chow [2] test as a direct measure to quantify the change in a set of 

regression coefficients from one time period to another. 

Mandell and Tayman [18] found that the ratio-correlation models had more stable 

coefficients than the difference correlation models and 7 of the 8 ratio-correlation models had 

lower MAPEs. This was in sharp contrast to O’Hare’s [23] findings. They also found a strong 

positive relationship (Spearman’s Rho = 0.72) between the F-statistic and MAPE for the ratio-

correlation models, but a negligible relationship in the difference-correlation models 

(Spearman’s Rho = -0.07). The findings for the ratio-model lent considerable support to the 

assertion that coefficient instability has a great impact on the accuracy of ratio-correlation 

models for population estimation. However, the lack of association found in the difference 

models cast some doubt as to the pervasiveness of the effect of coefficient instability on estimate 

accuracy and that other factors should be considered as well. 

In the third study, Tayman and Schafer [43] conducted a series of experiments that 

analyzed 1980 estimates of total population from ratio-correlation models for counties in 

Washington State. These models were constructed over the 1960 and 1970 time period using 

school enrollment (grades 1-8), voter registration, and employment as symptomatic indicators. 

They created six different tests by varying the decade of estimation (1960-1970 and 1970-1980) 

and by using estimated or actual values for the symptomatic indicators. Measurement error was 

introduced into the symptomatic indicators using predicted values derived from regression 

models for each symptomatic indicator. These six tests allowed the examination of the relative 

impacts of coefficient instability, symptomatic indicator measurement error in the estimating 

equation, and postcensal symptomatic indicator measurement error. 
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Tayman and Schafer [43] found that coefficient instability and measurement error in the 

estimating equation contributed little to estimate error, while poorly measured postcensal 

symptomatic indicators had, by far, the great impact of estimate error. The MAPE for the 

standard model (no coefficient drift or measurement error) was 2.8 compared to a MAPE 3.0 for 

the model containing just coefficient drift, to a MAPE of 2.9 for the model just containing 

measurement error in the estimating equation, and to a MAPE of 3.8 for the model containing 

measurement error in the postcensal symptomatic indicators. These findings called into question 

the prevailing thought that reducing coefficient instability would be the principal mechanism for 

achieving greater accuracy in ratio-correlation models.  

Sample 

Most of our 904-county sample comes from states that use the ratio-correlation model in their 

official population estimates. As such, we evaluate models and variables currently used in 

practice. We began with a list of contacts for the 50 states from the U.S. Census Bureau’s 

Federal State Cooperative Program for Population Estimates. Based on a review of agency web 

sites and telephone conversations, we identified 9 states that fit our criteria (California, Colorado, 

Illinois, North Carolina, Oregon, Texas, Virginia, Washington, and Wisconsin). We augmented 

this sample by adding Alaska and Nevada in part because of data availability, but also because 

these states have several unique characteristics including a relatively small number of counties, 

distinct settlement patterns (heavily rural with a few large urban centers), and economies largely 

dependent on a single industry (natural resources and gaming). 

Characteristics of the sample are shown in Table 1. The 904 counties comprise 29% of all 

counties and 37% of the 2000 population in the United States. The overall sample has larger 
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counties and faster percentage change on average than all counties, with average 2000 population 

sizes of 114,888 and 89,491 and average percent population change between 2000 and 2010 of 

7.7% and 5.2%, respectively. Median population sizes are closer, with 25,249 for the sample 

compared to 24,556 for all counties (data not shown). Median percent changes still show the 

sample counties have faster growth between 2000 and 2010 (5.7% versus 3.2%). The faster 

growth rate for the overall sample is due in large part to a smaller percent of counties with 

declines (27%) compared to 36% for all counties. 

Table 1. Population Size and Growth Rate Characteristics of the Sample   

    Percent Change Distribution 

  
No. of 

Counties 
2000 
Pop.

a
 

2000-10  
Percent 

Change
a
 < -5.0% 

-4.9 -   
-0.1% 

0.0 - 
2.9% 

3.0 - 
4.9% 

5.0 - 
9.9% 

10.0 - 
14.9% 

15.0 - 
24.9% 25.0+% 

All Counties 3,141 89,491 5.2% 17% 19% 14% 9% 16% 10% 9% 7% 
            

Sample Counties 904 114,888 7.2% 12% 15% 11% 10% 19% 12% 12% 9% 
            

Alaska 29 21,618 2.4% 28% 17% 10% 10% 7% 14% 7% 7% 

California 58 583,994 10.3% 2% 3% 12% 16% 26% 12% 24% 5% 

Colorado 63 68,033 8.4% 17% 10% 6% 8% 13% 14% 21% 11% 

Illinois 102 121,760 1.8% 19% 41% 16% 5% 10% 2% 3% 5% 

Nevada 17 117,544 13.9% 12% 6% 12% 6% 18% 6% 18% 24% 

North Carolina 100 80,465 13.1% 0% 7% 10% 6% 27% 15% 19% 16% 

Oregon 36 95,040 6.9% 8% 14% 6% 14% 28% 19% 8% 3% 

Texas 254 82,094 7.0% 17% 14% 11% 11% 16% 10% 10% 10% 

Virginia 134 52,825 9.3% 10% 12% 14% 10% 16% 10% 13% 13% 

Washington 39 151,132 12.4% 3% 3% 3% 10% 28% 28% 23% 3% 

Wisconsin 72 74,496 3.9% 7% 19% 14% 17% 28% 13% 1% 1% 

            
a
 Average across counties.           

 

There is substantial variability in size and growth rate between the 11 states (see Table 1). 

Average 2000 population sizes range from 21, 618 in Alaska to 583,994 in California. Sixty-nine 

percent of the counties in Alaska have less than 10,000 persons compared to 5% in North 

Carolina (data on the population size distribution is not shown). California, North Carolina, and 

Wisconsin are the other states where fewer than 10% of their counties contain less than 10,000 
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people, while almost one-half of the counties in Nevada fall into this category. Only 3% of the 

counties in Alaska have a population of 100,000 or more. Virginia has the second lowest percent 

of counties with 100,000 or more (10%) while fewer than 15% of the counties in Nevada and 

Texas have 2000 populations this large. California has the largest share of counties with 100,000 

or more persons (60%). Washington has the second highest share of counties of this size (28%), 

followed by Oregon (25%) and North Carolina (23%). 

The average percent change between 2000 and 2010 ranges from 1.8% for counties in 

Illinois to 13.9% for counties in Nevada. Alaska and Wisconsin are the other states where county 

growth rates average less than 5%. On average, counties in Nevada and North Carolina have the 

largest percent increases with 13.9% and 13.1%, respectively. California and Washington are the 

other states where county growth rates average more than 10%. Sixty percent of the counties in 

Illinois decline between 2000 and 2010. Alaska has the second largest percent of declining 

counties (45%), followed by Texas (31%). Less than 10% of the counties experience population 

decline in California, North Carolina, and Washington. Forty-two percent of the counties in 

Nevada experience population change of 15% or more. In North Carolina and Colorado more 

than 30% of their counties show changes at this level. Wisconsin and Illinois have the smallest 

share of counties with large percent changes at 2% and 8%, respectively, followed by Oregon 

(11%) and Alaska (14%). 

Methods 
1
 

Ratio-Correlation Model 

In the ratio-correlation method, the population and symptomatic indicators are measured as ratios 

that represent shares or proportions (e.g., county population / state population and  
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county employment / state employment) at each census point. The change in these censal ratios 

is measured by dividing the censal ratio from the latest census by the corresponding censal ratio 

from the earlier census. Ratio-correlation estimates are based on a regression equation estimated 

using variables from the last two decennial censuses points that precede the date of the 

postcensal estimate. An estimate is then derived by solving the equation using values of the 

symptomatic indicators in the postcensal estimation year. When estimating counties, the ratio-

correlation model requires an independent estimate of the state population. This study uses the 

“official” state population estimates for 2010 produced by each state agency in the sample. A 

detailed description of the ratio correlation model can be found in [41: 167-168].
2
 

A variety of symptomatic indicators were obtained for the counties in each state (see 

Table 2). Separate ratio-correlation models are estimated for the counties in each state using 

1990 and 2000 as the estimation period. These models are used to estimate the 2010 total 

population for each county, which is evaluated against the 2010 census population. Our objective 

is to estimate the “best” model for each state using standard criteria for selecting appropriate 

variables (e.g., significance tests using α = 0.05; strength of relationship; examination of residual 

statistics and plots, and tests for multicollinearity). The variables in the final models are shown in 

bold in Table 2. 

Following Tayman and Schafer [43], we evaluate the magnitude and impact of temporal 

instability by producing two sets of 2010 county estimates. The first set is based on ratio-

correlation models estimated using the 1990 and 2000 decade (Model90-00). For the second set, 

we re-estimate the models using 2000 and 2010 as the estimation period to derive coefficients 

that reflect the simulated postcensal period (Model00-10). The “best” models turn out to include  
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Table 2. Regression Model Independent Variables   

  Variable 1 Variable 2 Variable 3 Variable 4 Variable 5 Variable 6 

Alaska 
Permanent Fund 

Residents 
     

California License Drivers 
Sch. 

Enrollment 
Housing Units Births Deaths  

Colorado 
Registered 

Voters 
Sch. 

Enrollment 
QCEW 

Employment 
Registered 
Vehicles 

Births Deaths 

Illinois 
Registered 
Vehicles 

Sch. 
Enrollment 

Fed Tax 
Exemptions 

Births   

Nevada Sch. Enrollment 
QCEW 

Employment 
Labor Force Births Deaths  

North Carolina 
Registered 
Vehicles 

Sch. 
Enrollment 

Births    

Oregon 
Medicare 

Enrollment 
Sch. 

Enrollment 
State Tax 

Exemptions 
Registered 

Voters 
Births  

Texas 
Registered 
Vehicles 

Sch. 
Enrollment 

Registered 
Voters 

Births Deaths  

Virginia License Drivers 
Sch. 

Enrollment 
Housing Units Births Deaths  

Washington 
Registered 

Voters 
Sch. 

Enrollment 
Registered 
Vehicles 

Births Deaths  

Wisconsin License Drivers 
Sch. 

Enrollment 
State Tax 

Exemptions 
      

       

Notes: 1. Bold = included in the final model.     

            2. School enrollment grades 1 through 8.     

 

the same variables found in the 1990 and 2000 estimation, although the relative ranking of their 

slopes may change. For example, in Colorado the unstandardized slope for school enrollment 

(0.502) in Model90-00 is the largest of the three variables, but its value declines to 0.278 in 

Model00-10 and is the smallest (data not shown). The second set of 2010 population estimates is 

developed using the estimated coefficients from the Model00-10 while keeping all other 

information the same as in the first set of estimates. Any differences in errors between the two 

sets of estimates is due solely to coefficient changes between the estimation and simulated 

postcensal periods, which allow a direct examination of the magnitude and impact of coefficient 
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instability on population estimates not confounded by other factors. Details of the regression 

results for Model90-00 and Model00-10 for each state are available from the authors. 

Bryan [1] notes that the use of multiple and differing variables can compromise the 

comparison of ratio-correlation estimates between different subnational areas. There may be 

advantages in using the same variables for the models in each state (e.g., comparing the effect 

and importance of public school enrollment on population changes across different states). 

Enforcing homogeneous model specifications for each state does not seem warranted in this 

context. Our aim is to develop ratio-correlation models with sound and defensible statistical 

properties that exploit the maximum amount of useful information to optimize the accuracy in 

the simulated postcensal estimates. We believe using homogeneous model specifications may 

likely yield suboptimal estimates for some, if not all, states and add an extraneous source of error 

into the analysis. 

Measures of Coefficient Instability 

As noted earlier, Mandell and Tayman [18] proposed an alternative to the correlation coefficient 

for measuring coefficient instability in regression models for population estimation; namely, a 

method within covariance analysis that tests the temporal stability of a set of regression 

coefficients. The Chow test [2] uses the residual sum of squares (RSS) from two time periods 

(e.g., 1990-2000 and 2000-2010) and from a pooled regression (e.g., 1990-2010) to calculate an 

F-statistic (FChow). While the usual application of the Chow test is to statistically test the Ho: No 

structural change in the regression coefficients between the two time periods, Mandell and 

Tayman [18] also used FChow independently as an empirical index of coefficient instability with a 

smaller FChow indicating less coefficient instability. 
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While useful, FChow has important drawbacks as an empirical measure of coefficient 

instability. First, it lacks an intuitive interpretation and is unfamiliar to many users and producers 

of population estimates. Second, FChow is a global test of coefficient instability and does not 

provide information for individual coefficients in models with more than one symptomatic 

indicator. 

We propose alternatives to the FChow based on a direct comparison between the regression 

slopes for the independent variables (symptomatic indicators) that address its shortcomings. The 

absolute value of the percentage change in the unstandardized regression slopes (apchb) between 

the first and second time periods (i.e., 1990-2000 and 2000-2010) measures the instability of 

individual coefficients: 

apchbv = │(bv,t=2 – bv,t=1) / bv,t=1 × 100│ 

where, v is the independent variable; b is the unstandardized regression 

coefficient; and t is the time period. 

We take the absolute value because it is the magnitude of the slope change for each variable that 

is important in capturing coefficient instability and not the direction of that change. 

We also conduct a statistical hypothesis test of the difference between the individual 

regression coefficients using a pooled-regression with a dummy variable and interaction terms. 

The dummy variable is 0 for the 1990-2000 period and 1 for the 2000-2010 period. It represents 

the difference in the intercepts between Model90-00 and Model00-10. The interaction term(s) 

are the product of the dummy variable and each independent variable in the model and represent 

difference in the regression coefficients between the two models. The p-values for the interaction 

term(s) are used for evaluate the Ho: No difference in the individual regression coefficients. 
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We also evaluate two global measures of coefficient instability. The first measure, called 

the instability index (isi), is the arithmetic average over the apchb: 

isi = ∑apchbv, 

where, ∑ is the sum over v. 

The second is a weighted instability index (wtisi) that uses the slope from the first time period 

(bv,t=1) as the weight:
 
 

wtisi = ∑(bv,t=1 × apchbv) / ∑(bv,t=1). 

The idea behind wtisi is a large percentage change can result from a relatively small numeric 

change where the initial value is low. Basing the weight on the size of the slope will lessen the 

influence of small numeric and large percentage changes on the average. 

Measures of Estimate Error 

We analyze several commonly used measures that capture three dimensions of estimate error—

accuracy or precision, bias, and allocation error [41: 268-273]. Error is defined as the difference 

between the simulated 2010 population estimate and the 2010 census count for each county. The 

mean absolute percent error (MAPE) measures estimate accuracy in which positive and negative 

errors do not offset each other. It shows the average percentage difference between the estimated 

an actual population whether individual estimates were too high or too low. The mean algebraic 

percent error (MALPE) is a measure of bias in which positive and negative values offset each 

other. A positive MALPE reflects the tendency for the estimates to be too high on average and a 

negative MALPE reflect the tendency for the estimates to be too low on average.
3
 

The measures described above are based on the error for a particular geographic area. 

Another perspective views the misallocation of the estimates across geographic space, in our 
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study counties. Allocation error is pertinent for estimation procedures like the ratio-correlation 

model that nest population from a larger geographic area into smaller areas and use the 

postcensal population estimate from the larger area as a control. A number of measures can be 

used to measure allocation error [5, 19]. For this study we use the Index of Dissimilarity (IOD), a 

popular measure for evaluating postcensal demographic and economic estimate allocation error 

[8, 31: 425-427, 38]. The IOD compares the percentage distribution of the estimated county 

population with the percentage distribution in the census and calculates the percentage that the 

estimated distribution would have to change to match the census distribution. The IOD ranges 

from 0 to 100, with 0 indicating indentical percentage distributions and 100 indicating complete 

disparity between the estimated and census distributions. 

Other Methods  

We employ several other methods to analyze the impact of coefficient instability on estimation 

error for the total population. In addition to a descriptive comparison of the accuracy, bias, and 

allocation error for Model90-00 and Model00-10 for counties in each state, we conducted a one-

tailed paired observation t-test of Ho: μ1990-2000 > μ2000-2010 for the MAPEs and MALPEs [18]. A 

paired observation t-test is appropriate because we assume the errors for each county are related 

over time and cross-sectionally between counties. To measure the strength of the association 

between coefficient instability and estimate error, we use Spearman’s Rank-Order correlation 

coefficient (Rho).
4
 The Rho’s relate FChow, isi, wtisi to the MAPE, MALPE, and IOD for the 11 

sample states. 

To examine the impact of coefficient instability on errors by population size and growth 

rate, we construct statistical models based on the estimates for individual counties [44].
5
 The 
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dependent variable is a binary indicator assigned to each county based on a comparison of the 

absolute percent errors between Model00-10 and Model90-00, where 0 indicates a lower error in 

Model00-10 and 1 indicates a larger error in Model00-10. We first examine a univariate 

crosstabulation of the binary indicator against population size and growth rate categories and 

then use a binary logistic model to examine the combined effects of size and growth rate. [16]. 

Size is measured as the natural logarithm of the 2000 population and growth rate is measured as 

the 1990-2000 percent change in population. 

Analysis 

Magnitude of Coefficient Instability 

We begin the analysis examining the magnitude of coefficient instability for each state. Table 3 

shows the FChow and the p-value of the test hypothesis of no change in the set of regression 

coefficients along with the instability index (isi) and weighted instability index (wtisi). The 

measure of individual coefficient instability (apchb) and their p-values for the state-specific 

ratio-correlation models is shown in the Appendix. 

The measures based on the Chow test indicate that 5 of 11 states show little coefficient 

instability with FChow values less than 2.0 and p-values indicating acceptance of the null 

hypothesis. The greatest coefficient instability occurs in Texas and Illinois that have by far the 

largest FChow values of 18.6 and 21.9, respectively. The FChow values show considerable 

variability, ranging from 0.7 in Alaska to 21.9 in Texas, much larger than the range found by 

Mandell and Tayman [18] in eight ratio-correlation models for Florida (3.3 to 6.4). This 

comparison suggests that the context of the ratio-correlation model (i.e., the state where the 
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model is estimated) has a greater impact on the magnitude of coefficient instability compared to 

the effect of different sets of variables within the same context. 

Table 3. Regression Coefficient Instability Measures
a
   

 Change in Coefficients
b
 Chow Test 

Counties in Average   
Weighted 
Average F-Statistic P-value

c
 

Alaska 14.2%  14.2% 0.724 0.49 

California 7.0%  6.3% 0.973 0.41 

Colorado 49.0%  39.3% 1.508 0.20 

Illinois 71.8%  60.0% 18.568 <0.01 

Nevada 30.5%  30.5% 4.474 0.02 

North Carolina 14.6%  14.4% 0.245 0.91 

Oregon 39.6%  35.6% 2.699 0.04 

Texas 93.1%  87.4% 21.919 <0.01 

Virginia 46.5%  44.9% 1.701 0.14 

Washington 80.0%  44.4% 3.228 0.02 

Wisconsin 21.9%   14.2% 2.372 0.06 

      
a
 Based on ratio-correlation models for 1990-2000 and 2000-2010. 

b
 Absolute % change in the unstandardized regression slopes. 

c
 Ho: No change in the set of regression coefficients 

 

There is a close relationship between the global stability measures based on the Chow test 

and the change measured directly from the regression slopes. The parametric correlation 

coefficients (r) relating FChow, isi, and wtisi range from 0.746 to 0.940 (data not shown). 

California, Alaska, and North Carolina have the lowest FChow, isi, and wtisi values and the 

highest p-values. The changes in all of their individual coefficients are modest and have large p-

values (see Appendix). Illinois and Texas have the largest FChow and isi values and the largest 

and third largest wtisi values, respectively. In Texas all coefficients show substantial percent 

changes and have p-values < 0.05. In Illinois, the large and significant global instability is due to 

the school enrollment and tax exemptions variables. Births and vehicle registrations have relative 

low apchb and non-significant p-values (see Appendix). 
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There are a few inconsistencies between the measures of coefficient instability. Virginia 

and Colorado have relatively large isi and wtisi values, but their FChow statistics are relatively 

small with p-values that fail to reject the null hypothesis. In Virginia only one variable (driver 

licenses) has a large apchb (87.3%) and a significant p-value (0.031), while the changes in the 

other variables are not large enough to cause a statistically significant global change based on the 

Chow test (see Appendix). The situation is somewhat similar in Colorado, where only school 

enrollment shows a significant change and voters show a small, insignificant change. 

Interestingly, the employment variable has the largest apchb of any variable, but it is not 

significant according to its p-value (see Appendix). Wisconsin has relatively small isi and wtisi 

values, but its FChow statistic is relatively large with a p-value = 0.06 that rejects the null 

hypothesis of stability at α = 0.10. Two of the three independent variables in the Wisconsin 

model (driver licenses and tax returns) have stable coefficients, but the school variable 

coefficient has a large percent change (55.8%) with a p-value = 0.056 that causes the Chow test 

to reject the hypothesis of stability (see Appendix). 

For most states, there is not a great deal of difference between the isi and wtisi, which 

indicates consistency in the size of the unstandardized slopes in the 1990-2000 equation. The 

greatest differences are seen in Wisconsin and Washington, where the wtisi are smaller than the 

isi by 35% and 45%, respectively. In Wisconsin the wtisi reduces the influence of the 55.8% 

change in the school enrollment coefficient because its slope 0.163 is considerably smaller than 

the slopes of driver licenses (0.492 and 7.3% change) and tax returns (0.268 and 2.4% change) 

variables (see Appendix). The effect is even more dramatic in Washington, where the slope on 

voter registration variables changes by 181.7%. However, its slope of 0.093 is much smaller than 
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those of registered vehicles (0.336 and 55.1% change) and school enrollment (0.398 and 3.3% 

change). 

These findings underscore the value of having alternative measures of global coefficient 

instability and instability measures for individual coefficients to help identify the specific 

variable or variables most affecting the instability of the ratio-correlation model. They also show 

the value of analyzing both description changes and performing statistical tests on these changes. 

Impact of Coefficient Instability on Estimate Error 

Table 4 compares the errors from a model using coefficients estimated from the 1990-

2000 period (Model90-00) to errors from a model using coefficients estimated from the 2000-

2010 period (Model00-10) for the counties in each state. We expect that errors from Model00-10 

to be smaller because the coefficients are estimated over the simulated postcensal period 

effectively eliminating the effect of coefficient instability on estimate error. Along with the 

measures of error identified previously, Table 4 also shows the p-value from a paired t-test on 

MAPEs and MALPEs.  

In terms of accuracy or precision, the MAPEs from Model90-00 are larger in every state, 

except North Carolina, but there is considerable variation in the degradation of accuracy due to 

coefficient instability. Five states have numeric differences less than 0.25 (in an absolute sense) 

and fail to reject the null hypothesis of no difference at α = 0.05. The impact of coefficient 

instability is most pervasive in Nevada and Texas with differences in MAPEs of 7.90 and 3.43, 

respectively. The MAPEs from Model00-10 are 60% and 42% smaller than the MAPEs from 

Model90-00 in these states, respectively. MAPEs for Oregon and Alaska have difference of  
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Table 4. Accuracy, Bias, and Allocation Error,  
Ratio Correlation Models 1990-2000 and 2000-2010 

MAPE 

Counties in 
1990-
2000 

2000-
2010 

Numeric 
Diff.

a
 p-value

b
 

Alaska 5.02 4.30 -0.72 0.052 

California 2.21 2.19 -0.02 0.316 

Colorado 7.38 6.00 -1.38 0.007 

Illinois 4.07 2.67 -1.40 < 0.001 

Nevada 14.14 6.24 -7.90 < 0.001 

North Carolina 2.75 2.79 0.04 0.752 

Oregon 3.57 2.90 -0.67 0.046 

Texas 8.17 4.74 -3.43 < 0.001 

Virginia 3.03 2.89 -0.14 0.086 

Washington 3.18 2.94 -0.24 0.232 

Wisconsin 2.53 2.38 -0.15 0.152 

All Counties 5.07 3.62 -1.45 < 0.001 

     MALPE 

Counties in 
1990-
2000 

2000-
2010 

Numeric 
Diff.

a,c
 p-value

b
 

Alaska -2.91 -0.91 -2.00 < 0.001 
California -1.96 -1.96 0.00 0.512 
Colorado -3.82 -0.82 -3.00 < 0.001 
Illinois 1.44 0.47 -0.97 0.021 
Nevada -14.14 -4.68 -9.46 < 0.001 
North Carolina -0.80 -1.14 0.34 0.999 
Oregon -0.83 1.08 0.24 0.999 

Texas 6.69 1.37 -5.32 < 0.001 
Virginia 0.39 0.19 -0.20 0.026 
Washington -0.26 -1.04 0.78 0.992 
Wisconsin 0.56 0.03 -0.53 0.002 
All Counties 1.26 0.04 -1.22 < 0.001 

     Index of Dissimilarity 

 

Counties in 
1990-
2000 

2000-
2010 

Numeric 
Diff.

a
 

 Alaska 1.27 1.22 -0.05 
 California 0.77 0.79 0.02 
 Colorado 2.22 2.09 -0.13 
 Illinois 1.36 1.16 -0.20 
 Nevada 1.25 0.52 -0.73 
 North Carolina 1.25 1.22 -0.03 
 Oregon 1.73 1.35 -0.38 
 Texas 1.77 1.46 -0.31 
 Virginia 1.22 1.25 0.03 
 Washington 0.88 0.85 -0.03 
 Wisconsin 0.81 0.97 0.16 
 All Counties 1.32 1.17 -0.15 
 

     a 
2000-2010 Model - 1990-2000 Model. 

 b 
Ho: μ1990-2000 > μ2000-2010, using paired t-test. 

c
 Ignores the signs when different.  
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around -0.7 and Colorado and Illinois have differences of around -1.4. For all 904 counties, 

stable coefficients decrease the MAPE by-1.45 or -29%.  

The picture is somewhat murkier for the impact of coefficient instability on estimate bias. 

In four states, bias is either the same (California) or increases under the Model00-10 (North 

Carolina, Oregon, and Washington) and the null hypothesis is not rejected. Similar to accuracy, 

bias is most affected by coefficient instability in Nevada and Texas. For all 904 counties, stable 

coefficients reduce the bias to near zero in Model00-10; it was 1.26 in Model90-00. 

Allocation error is shown in the third panel of Table 4. The IOD is quite small for both 

models indicating that the ratio-correlation model has very low allocation error that is relatively 

insensitive to coefficient instability. The IOD increases slightly in Model00-10 in California and 

Virginia, and modestly in Wisconsin, but coefficient instability leads to modestly larger 

allocation errors in the other states; a lower IOD in Model00-10. The largest decrease in the IOD 

from Model90-00 to Model00-10 (-0.73) occurs in Nevada. Decreases of -0.20 or less are seen in 

five states and the IOD decreases by-0.38 in Oregon and -0.31 in Texas. For all 904 counties, the 

IOD is Model00-10 is lower by -0.15 compared to Model90-00. 

The picture is somewhat murkier for the impact of coefficient instability on estimate bias. 

In four states, bias is either the same (California) or increases under the Model00-10 (North 

Carolina, Oregon, and Washington) and the null hypothesis is not rejected. Similar to accuracy, 

bias is most affected by coefficient instability in Nevada and Texas. For all 904 counties, stable 

coefficients reduce the bias to near zero in Model00-10; it was 1.26 in Model90-00. 
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Allocation error is shown in the third panel of Table 4. The IOD is quite small for both 

models indicating that the ratio-correlation model has very low allocation error that is relatively 

insensitive to coefficient instability. The IOD increases slightly in Model00-10 in California and 

Virginia, and modestly in Wisconsin, but coefficient instability leads to modestly larger 

allocation errors in the other states; a lower IOD in Model00-10. The largest decrease in the IOD 

from Model90-00 to Model00-10 (-0.73) occurs in Nevada. Decreases of -0.20 or less are seen in 

five states and the IOD decreases by-0.38 in Oregon and -0.31 in Texas. For all 904 counties, the 

IOD is Model00-10 is lower by -0.15 compared to Model90-00. 

We have seen that the magnitude of coefficient instability and its impact on population 

estimate error varies from state to state. For example, the ratio-correlation model for Texas 

counties has the greatest degree of coefficient instability and also shows a large impact on 

estimate accuracy, bias, and allocation error. The model for North Carolina counties has little 

coefficient instability and, in turn, shows small impacts on estimate error. The model for 

Washington counties, however, has a substantial amount of coefficient instability, but its impact 

on estimation error is more muted. 

What is the strength of the relationship between coefficient instability and estimate error? 

We address this question in Figure 1 that shows Spearman’s Rho values between the three global 

measures of coefficient instability and three dimensions of estimate error for the 11 states. 

Estimate error variables are measured as the algebraic difference between Model00-10 and 

Model90-00 for each state. A larger difference (less negative to positive) indicates less impact of 

coefficient instability on estimate error. We anticipate an inverse relationship between the 

estimate error variables because for measures of coefficient instability larger values indicate 

greater coefficient instability. 
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As expected, increases in coefficient instability are associated with lower accuracy, 

greater bias, and greater allocation error. FChow shows the strongest association with all measures 

of error, while for isi and wtisi the Rho’s are generally close in value. The Rho between the FChow 

and MAPE is the strongest (-0.700) and the relationships between other measures of coefficient 

instability and various dimensions of estimate error are small to moderate in strength. They range 

from -0.455 to -0.509 for accuracy, -0.173 to -0.355 for bias, and -0.337 to -0.524 for allocation 

error. These results supports the claim by Tayman and Schafer [43] that coefficient instability 

does impact on estimate error, but its impact is more muted than would be suggested by theory 

and the literature. Moreover our findings suggest that coefficient instability has the least impact 

on estimation bias, a larger impact on allocation error, and the greatest impact on estimate 

accuracy 

-0.800

-0.600

-0.400

-0.200

0.000

Accuracy (MAPE) Bias (MALPE) Allocation (IOD)

Figure 1. Strength of Association between  Coefficient 
Instability and Estimate Error (Spearman's Rho)  

FChow

Instability Index

Weighted Instability Index
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Impact of Coefficient Instability on Estimate Error by Size and Growth Rate 

Finally, we address the relationship between estimate error resulting from coefficient instability 

and the size and growth rate of counties. To our knowledge, this topic has not received any 

attention in past studies of coefficient instability. Table 5 contains the crosstabulation of the 

binary indicator that compares the absolute percent error (ape) between Model90-00 and 

Model00-10 for each county against size and growth rate categories. In the overall sample of 904 

counties, Model00-10 that eliminates coefficient instability has a lower ape almost 61% of time. 

Still, in a sizable number of counties, Model00-10 creates larger errors compared to Model90-00 

based on parameters from the decade prior to the simulated postcensal period. Size has a weak 

but stronger and statistically significant relationship compared to growth rate (p value = 0.02 vs p 

value = 0.50). The measures of association are roughly 2.5 times larger for size than for growth 

rate. 

Model00-10 out-performs in 67.4% of the counties <5,000 persons and declines to 60.4% 

for counties 20,000-49,999. For counties with populations 50,000 or more, the percent is near 

50%, meaning that Model00-10 and Model90-00 have roughly the same performance on this 

criteria. The odds ratios and p-values show the only statistically significant effect relative to the 

reference groups are in counties with less than 20,000 persons. For example, the odds ratio for 

the smallest counties (0.526) indicates that odds of Model00-10 having a higher error than 

Model90-00 are roughly half the odds of counties with over 200,000 persons. There is much less 

variation across growth rate categories in the percent of counties where Model00-10 performs 

best. The variation ranges from 57.1% for counties that grew 20.0-49.9% to 65.6% for counties 

that declined by more than five percent. None of the odds ratios for any growth rate category is 

statistically significant. 
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Table 5. Cross-tabulation of 2000-2010 Model Error by Size and Growth Rate 

 2000 Population   

  < 5,000 
5,000 - 
19,000 

20,000 - 
49,999 

50,000- 
99,999 

100,000 
- 

199,999 200,000+ Total 

Lower Error
a
 67.4% 66.2% 60.4% 51.3% 56.0% 52.1% 60.6% 

Odds Ratio
b
 0.526 0.555 0.712 1.030 0.854 n/a  

p-value 0.032 0.014 0.164 0.913 0.610   

Sample Size 95 290 235 113 75 96 904 

        

Chi-Square 13.299 p = .021      

Kendal's Tau-c 0.126       

Spearman's r 0.114       

        

 1990-2000 Growth Rate  

  
 < -

5.0% 
    -4.9 - 

4.9% 
     5.0 - 

9.9% 
10.0 - 

19.9% 
20.0 - 

34.9% 35%+ Total 

Lower Error
a
 65.6% 64.7% 60.6% 57.3% 57.1% 63.3% 60.6% 

Odds Ratio
c
 0.905 0.942 1.124 1.287 1.300 n/a  

p-value 0.770 0.821 0.677 0.321 0.331   

Sample Size 64 204 137 246 163 90 904 

        

Chi-Square 4.368 p = .498      

Kendal's Tau-c 0.049       

Spearman's r 0.044             

        
a
 Compared to the absolute percent error from 1990-2000 model.   

b
 200,000+ is the reference group.      

c 
35.0%+ is the reference group.      

 

For a more detailed look at the relationship between size, growth rate, and error, due to 

coefficient instability, Table 6 shows the statistics from the binary logistic regression models. 

Models 1 and 2 are univariate models with size and growth rate as the independent variable. 

Model 3 includes size and growth rate together and Model 4 adds a size and growth rate 

interaction term to Model 3. 
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Table 6. Binary Logistic Regressions of 2000-2010 Model Error
a
   

Model Estimates Model 1 Model 2 Model 3 Model 4 

Constant -1.894 (0.000) -0.470 (0.000) -1.919 (0.000) -2.080 (0.000) 

Size Slope
b
  0.142 (0.002)  0.146 (0.002) 0.162 (0.004) 

Growth Rate Slope
c
  0.003 (0.470) -0.001 (0.790) 0.012 (0.615) 

Size × Growth Rate Slope    -0.001 (0.579) 
     

-2 Log Likelihood 1,202.2 1,211.6 1,202.1 1,201.8 

Cox & Snell r
2
 0.011 0.001 0.011 0.011 

Nagelkerke r
2
 0.015 0.001 0.015 0.015 

     

Notre: p-values in parenthesis.    
     

a
 Dependent Variable Coding:     

   0 = 2000-2010 model lower absolute percentage error than 1990-2000 model 

   1 = 2000-2010 model higher absolute percentage error than 1990-2000 model 

b
 Natural logarithm of 2000 population.    

c
 % change in population 1990-2000.    

 

The binary logistic regression models further confirm the findings in the cross-tabulation. 

Size is the only variable to have a significant impact on the Model00-10 binary variable; 

although the magnitude of the impact is weak. There is no effect from either growth rate or the 

interaction of size and growth rate. The two r
2
 measures for Model 1 containing only age are 

higher than Model 2 that contains only growth rate and, in addition, are identical with the two 

multivariate models. The -2 Log Likelihood value for Model 4 (1,201.8) is marginally smaller 

than the value for Model 1 (1,202.2), but the difference is not statistically significant (P[
2
 (2) > 

0.6] = 0.74). 

The coefficient for age in Model 1 is 0.142 and its corresponding odds ratio is 1.153 

(exp
0.142

). The positive slope indicates that a larger population size increases the likelihood that 

Model 00-10 will have a larger absolute percent error than Model90-00. In particular, for every 
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one-unit increase in the natural logarithm of population there is about a 15% increase in the odds 

of Model00-10 having a larger error than Model90-00. Based on the coefficients in Model 4, we 

see that for a one unit increase in the natural logarithm of population, there is a 16.2% increase in 

the odds; for a one unit increase in the growth rate a 1.2% increase in the odds; and for a one-unit 

increase in the interaction term a -0.001% decrease in the odds, which further illustrates the 

greater effect of population size. 

Using Model 1, we also can compute the probability of Model00-10 having a larger 

absolute percent error than Model90-00 (prob(larger)) for counties of a given size using the 

following formula [16: 10]: 

Prob(larger) = exp(-1.894 + (0.142* ln(pop)) / 1+ exp(-1.894 + (0.142* ln(pop)). 

For example, prob(larger) values are 0.215 and 0.596 for counties with the smallest (67) and 

largest (9,519,338) populations in the sample. 

Conclusions 

It has long been thought that coefficient instability is the major source of error in ratio-

correlation and other regression models used in population estimation. To some extent this is 

true, but cannot be taken as an absolute. One should not assume that regression coefficients 

change substantially between the estimation and postcensal periods. Using various measures of 

coefficient instability, we found that five of the 11 sample states had only marginal changes in 

their regression coefficients. In the other states, there was considerable variability in the 

magnitude of their coefficient instability; Illinois and Texas exhibited by far the greatest change 

in their coefficients. This study points out the value of using more robust samples to study 

regression models of population estimates. Results gained from a single state, the usual approach 
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used to study coefficient instability, may not be applicable to other contexts. Our findings would 

have been quite different had we analyzed for example just North Carolina (stable coefficients) 

or Texas (unstable coefficients). 

Importantly, we find there is an impact of coefficient instability on estimation error. We 

found the greatest effect was on the accuracy of population estimates; in general, greater 

coefficient instability was associated with larger absolute percent errors. The association between 

the measures of coefficient instability and estimate accuracy over the 11 states was moderate in 

strength, suggesting a more muted impact than is commonly assumed. We evaluated two other 

dimensions of estimation error—bias and allocation error. The degree of coefficient instability 

was not a good predictor of bias. In some cases, the MALPE was greater in the model that 

controlled for coefficient instability (Model00-10) and the association between coefficient 

instability and bias was negligible. The ratio-correlation method was especially robust in terms 

of allocation error. Greater coefficient instability was generally associated with larger allocation 

errors, but the IODs were very small for both ratio-correlation models for all states. 

Does coefficient instability have a different effect on estimate error depending on a 

county’s size and growth rate? We examined this question using models for individual county 

errors. Using crosstabulation and binary logistic regression techniques, we analyzed the 

likelihood for individual counties that the model controlling for coefficient instability (Model00-

10) would have a lower absolute percent error than the model estimated prior to the postcensal 

period (Model90-00). We found overall that Model00-10 did outperform Model90-00 according 

to this criterion, but Model00-10 did have larger errors in 40% of the counties. A small but 

significant relationship exists between size and the likelihood of outperformance by Model00-10, 

but no relationship is seen with growth rate. Specifically, a smaller population size increases the 
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likelihood that Model00-10 will have a smaller absolute percent error. The likelihood of 

outperformance by Model00-10 was greatest and statistically significant in counties under 

20,000 persons.  

We suggested an individual measure of coefficient instability based on absolute percent 

difference between each regression coefficient in ratio correlation models based on two time 

periods (i.e., 1990-2000 and 2000-2010) along with a method of testing the statistical 

significance of individual coefficient changes, and two global measures based on the average of 

the absolute value of the percent change in the regression slopes. We refer to these global 

measures as the instability index (isi) and weighted instability index (wtisi). We believe isi and 

wtisi are useful additions to the FChow statistic. All three measures provided reasonable estimates 

of global coefficient instability and are closely related. FChow can be used to statistically test the 

hypothesis of no change in a set of regression coefficients. Isi and wtisi have a more intuitive and 

familiar interpretation the than FChow. We prefer wtisi because its weight, based on the size of the 

regression coefficient, will lessen the influence of small numeric and large percentage changes 

on the average. 

We believe there is value of having alternative measures of global coefficient instability 

and an instability measures for individual coefficients to help identify the specific variable or 

variables most affecting the instability of the ratio-correlation model. In addition, measuring both 

description changes and conducting statistical tests on these changes provide a more 

comprehensive assessment of coefficient instability. 

This research calls into question the findings that various approaches for mitigating the 

impact of coefficient instability (e.g., averaging univariate models, variable transformation, and 

stratification) generally showed marginal improvements in estimation error. These studies 
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analyzed counties in a single state and did not ascertain the degree of coefficient instability 

before applying modifications to the ratio-correlation model. For example, in situations where 

the regression coefficients were relatively stable, improvements from modifications that did 

mitigate the impact of coefficient instability would likely not be detected. Conversely, in 

situations where regression coefficients were dramatically unstable and the effect on error of the 

modification was marginal suggest that modification was not effective in mitigating the impacts 

of coefficient instability. 

It would be useful to apply the modifications for improving regression-models of 

population estimate in counties within states where the coefficients show, respectively, stability, 

moderate instability, and high instability. The results of such an analysis would provide 

additional insights into the relationship between coefficient instability and population estimation 

error, and perhaps clarify the circumstances that would benefit most from modifications to the 

basic ratio-correlation model. Coefficient stability may well be the major source of error in 

regression models of population estimates in some contexts, but not in others. Information about 

the conditions that affect coefficient instability [20] and their impact on estimation error might 

lead to a more targeted and efficient approach for improving population estimates developed 

from regression models. 

It would also be worthwhile to investigate whether additional insights may be obtained in 

regard to coefficient instability and its effects on population estimation accuracy by modifying 

the fundamental form of the ratio-correlation model using methods such as hierarchical linear 

and random slope models [10, 26]. Hierarchical models allow the introduction of random and/or 

fixed effects that account for between-area effects not accounted for by the symptomatic 

indicators. Random slope models may provide another way to examine coefficient instability and 
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potentially allow the modeling those effects into the postcensal decade. The efficacy of these 

multi-level modeling techniques may be better suited to multiple nested geographic area 

applications of the ratio-correlation model such as when counties of multiple states are combined 

into a single model rather than as individual models for each shown in this paper. Ratio-

correlation models are estimated using ordinary least square regression techniques that ignore 

any spatial dependencies in the data, which may lead to unstable parameter estimates and 

unreliable significance tests [46]. It would be useful then to examine spatial correlation issues 

and spatial regression models in the context of population estimation 

Attempts at adjusting the fundamental form of the ratio-correlation model may come at a 

price, however. As discussed in Endnote 1, the fundamental form of the ratio-correlation method 

allows for substantive interpretations of coefficients that are very useful and their interpretations 

may be lost entirely or become less straight-forward under some modifications. We suggest 

keeping this trade-off in mind as to the practical application of alternative regression model 

forms for population estimation.  
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Endnotes 

1. The methods and results shown in this study were produced using IBM SPSS Statistics 

Version 22 and Microsoft Excel 2010 on an Intel Core I7-3770 CPU desktop computer running 

at 3.40GHz with 8GB of memory, running Windows 7 64-bit Home Premium operating system. 

2. Swanson and Prevost [40] note that the ratio-correlation method has some useful features not 

always recognized in discussions of this method and its accuracy. Unstandardized coefficients in 

a ratio-correlation model, including the intercept term, always sum to 1.00 or approximately so; 

therefore, each coefficient can be interpreted as a “proportionate weight” associated with a given 

symptomatic indicator and its change over time. The intercept term also represents a 

proportionate weight associated with an estimate of the current population in a given subarea 

based on the proportion of population relative to the parent area found in the subarea at the 

beginning of the postcensal decade; and the ratio-correlation model is fundamentally hierarchical 

in nature. Retaining this fundamental structure allows a user to assess the “proportionate 

weights” applied to the symptomatic estimators and their changes as well as the proportionate 

weight represented in the intercept term.  

3. Measures based on the average are affected by extreme values. Robust or resistant statistics 

are alternatives to the average because they focus on the main body of the data and attempt to 

minimize the impact of outlying observations [14, 17]. We also conducted the analysis using the 

Tukey biweight, a popular and widely used M-estimator [11, 13], as robust alternatives to the 

MAPE and MALPE. While Tukey biweight values were generally smaller than the 

corresponding MAPEs and MALPEs, due to the tendency for the error distributions to be right 

skewed [45], the patterns, relationships, and conclusions were not substantively affected by 

outlying errors. 
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4. We also analyzed the parametric correlation coefficient (r), but it was unduly influenced by 

one outlying observation for Nevada. 

5. We also compared MAPEs and MALPEs from the Model90-00 and Model00-10 models for 

different size and growth rate groupings across all counties, the most common way to evaluate 

the impact of characteristics on estimation error. Our findings from this aggregate analysis were 

generally consistent with the literature on the relationship between size, growth rate, and 

estimate error [12, 15, 32, 33]. The reduction in accuracy introduced by coefficient instability 

was inversely related to size, with the greatest impact seen in counties with less than 20,000 

persons. There appears to be no relationship between the impact of coefficient instability on bias 

and population size. In several size groups, bias was greater in the model that controlled for 

coefficient instability (Model00-10). For growth rate, we see a U-shaped pattern between the 

impact of coefficient stability on estimate accuracy and bias, with the greatest effects in counties 

with growth rates of less than 5%. 
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Appendix 
Unstandardized Regression Coefficients Instability Measures 

 
Estimation Period Change 

 
1990-2000 2000-2010 Number Percent P-Value 

Alaska 
    

 
Permanent Fund Residents 
RResidentsResidents 

1.054 0.904 0.150 14.2% 0.329 
 

     

 

California 

    

 

Driver’s License 0.802 0.754 0.048 6.0% 0.579 

School Enrollment 0.177 0.191 0.014 7.9% 0.758 

     

 

Colorado 

    

 

Voter Registration 0.330 0.349 0.019 5.8% 0.859 

School Enrollment 0.502 0.278 0.224 44.6% 0.018 

Employment 0.147 0.289 0.142 96.6% 0.179 

     

 

Illinois 

    

 

School Enrollment 0.254 0.026 0.228 89.8% <0.001 

Vehicle Registration 0.282 0.249 0.033 11.7% 0.663 

Births 0.150 0.191 0.041 27.3% 0.466 

Tax Exemptions 0.111 0.287 0.176 158.6% 0.011 

     

 

Nevada 

    

 

School enrollment 1.024 0.712 0.312 30.5% 0.052 

     

 

North Carolina 
    

 

Vehicle Registration 0.549 0.473 0.076 13.8% 0.380 

School Enrollment 0.209 0.243 0.034 16.3% 0.477 

Births 0.154 0.175 0.021 13.6% 0.675 

     

 

Oregon 

    

 

Tax Exemptions 0.411 0.302 0.109 26.5% 0.395 

School Enrollment 0.361 0.212 0.149 41.3% 0.089 

Medicare Enrollment 0.112 0.169 0.057 50.9% 0.540 

     

 

Texas 

    

 

Vehicle Registration 0.279 0.110 0.169 60.6% 0.002 

Voter Registration 0.125 0.279 0.154 123.2% 0.007 

School Enrollment 0.206 0.451 0.245 118.9% <0.001 

Births 0.197 0.060 0.137 69.5% <0.001 

     

 

Virginia 

    

 

Driver’s License 0.252 0.472 0.220 87.3% 0.031 

Housing Units 0.614 0.417 0.197 32.1% 0.101 

School Enrollment 0.121 0.094 0.027 22.3% 0.510 

Births 0.068 0.098 0.030 44.1% 0.501 

     

 

Washington 

    

 

Voter Registration 0.093 0.262 0.169 181.7% 0.064 

Vehicle Registration 0.336 0.151 0.185 55.1% 0.099 

School Enrollment 0.398 0.385 0.013 3.3% 0.872 

     

 

Wisconsin 

    

 

Driver License 0.492 0.528 0.036 7.3% 0.762 

Tax Exemptions 0.286 0.293 0.007 2.4% 0.955 

School Enrollment 0.163 0.254 0.091 55.8% 0.056 
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