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Abstract. We define P -strict labelings for a finite poset P as a generalization of semis-
tandard Young tableaux and show that promotion on these objects is in equivariant bijec-
tion with a toggle action on B-bounded Q-partitions of an associated poset Q. In many
nice cases, this toggle action is conjugate to rowmotion. We apply this result to flagged
tableaux, Gelfand–Tsetlin patterns, and symplectic tableaux, obtaining new cyclic sieving
and homomesy conjectures. We also show P -strict promotion can be equivalently defined
using Bender–Knuth and jeu de taquin perspectives.
Mathematics Subject Classifications. 05A19, 05E18

1. Introduction

This paper builds on the papers [37, 9, 10] investigating ever more general domains in which
promotion on tableaux (or tableaux-like objects) and rowmotion on order ideals (or generaliza-
tions of order ideals) correspond. In [37], N. Williams and the second author proved a general
result about rowmotion and toggles which yielded an equivariant bijection between promotion
on 2× n standard Young tableaux and rowmotion on order ideals of the triangular poset n−1

(by reinterpreting the Type A case of a result of D. Armstrong, C. Stump, and H. Thomas [1] as
a special case of a general theorem they showed about toggles). In [9], the second author, with
K. Dilks and O. Pechenik, found a correspondence between a × b increasing tableaux with en-
tries at most a+b+c−1 underK-promotion and order ideals of [a]× [b]× [c] under rowmotion.
In [10], the second and third authors with Dilks broadened this correspondence to generalized
promotion on increasing labelings of any finite poset P with restriction function R on the labels
and rowmotion on order ideals of a corresponding poset.
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In this paper, we generalize from rowmotion on order ideals to rowmowtion on B-bounded
Q-partitions and determine the corresponding promotion action on tableaux-like objects we call
P -strict labelings (named in analogy to column-strict tableaux). This general theorem includes
all of the previously known correspondences between promotion and rowmotion and gives new
corollaries relating P -strict promotion on flagged or symplectic tableaux toB-bounded rowmo-
tion on nice Q-partitions. Our main results also specialize to include a result of A. Kirillov and
A. Berenstein [24] which states that Bender–Knuth involutions on semistandard Young tableaux
correspond to piecewise-linear toggles on the corresponding Gelfand–Tsetlin pattern.

The paper is structured as follows. The introduction begins in Section 1.1 with a motivating
example. Then we define our new objects, P -strict labelings, and a corresponding promotion
action in Section 1.2. In Section 1.3, we define B-bounded Q-partitions and the associated tog-
gle and rowmotion actions. In Section 1.4, the final section of our introduction, we summarize
the main results of this paper. Section 2 proves our main theorems relating P -strict promotion,
toggles, andB-bounded rowmotion. Section 3 studies further properties of promotion and evac-
uation on P -strict labelings, including a jeu de taquin characterization of promotion for special
P -strict labelings. Finally, Section 4 applies our main theorem to many special cases of interest.

1.1. An example

To motivate our main results, we begin with an example (see the remaining subsections of the
introduction for definitions). In [10], Dilks and the second two authors found as an application
of their main results an equivariant bijection between promotion on increasing labelings of a
chain P = [n] := p1 l p2 l · · · l pn with the label f(pj) restricted as j 6 f(pj) 6 2j and
rowmotion on order ideals of the positive root poset n. The idea for the current paper arose
from the question of what happens in the above correspondence when order ideals of n are
replaced by n-partitions of height ` (that is, weakly increasing labelings of n with labels
in {0, 1, . . . , `}).

In this paper, we give a bijection to the following: take ` copies of P = [n] to form the poset
P × [`] = {(p, i) | p ∈ P and 0 6 i 6 `} and consider labelings f : P × [`]→ N that are strictly
increasing in each copy of P , weakly increasing along each copy of [`], and obey the restriction
j 6 f(pj, i) 6 2j as before (call this restriction R). We call these P -strict labelings of P × [`]
with restriction function R. In this special case, under a mild transformation (represented by
the top arrow of Figure 1.1), these are flagged tableaux of shape `n with flag (2, 4, . . . , 2n) (that
is, semistandard tableaux with entries in row j at most 2j). The rightmost arrow of Figure 1.1
represents the bijection from the first main result of this paper, Theorem 2.8.

Our second main result, Theorem 2.20, implies that P -strict promotion (also called flagged
promotion in this case) on these flagged tableaux is in equivariant bijection with B-bounded
rowmotion (also called piecewise-linear rowmotion) on these n-partitions with labels at most
`. Then we deduce by a theorem of D. Grinberg and T. Roby [19, Corollary 66] on birational
rowmotion that promotion on these flagged tableaux is, surprisingly, of order 2(n + 1). Note
there is no dependence on the number of columns `! We discuss this and other applications to
flagged tableaux in more detail in Section 4.2. See Corollaries 4.28 and 4.30 for these specific
results and Figure 1.1 for an example of the bijection.
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Figure 1.1: A motivating example of the bijection of this paper, relating flagged tableaux of
shape `n with flag (2, 4, 6, . . . , 2n) to n-partitions with labels at most `. See Corollaries 4.28
and 4.30, which imply the order of promotion on these flagged tableaux is 8.

1.2. Promotion on P -strict labelings

Promotion is a well-loved action defined by M.-P. Schützenberger on linear extensions of a finite
poset [31]. On a partition-shaped poset, linear extensions are equivalent to standard Young
tableaux. Promotion has been defined on many other flavors of tableaux and labelings of posets
using jeu de taquin slides and their generalizations. Equivalently (as shown in [17, 34, 9, 10]),
promotion may be defined by a sequence of involutions, introduced by E. Bender and D. Knuth
on semistandard Young tableaux [2]. This will be our main perspective; we discuss the jeu de
taquin viewpoint further in Section 3.

Below, we define P-strict labelings, which generalize both semistandard Young tableaux and
increasing labelings. We extend the definition of promotion in terms of Bender–Knuth involu-
tions to this setting. We show in Theorem 3.10 in which cases promotion may be equivalently
defined using jeu de taquin.

Definition 1.1. In this paper, P represents a finite poset with partial order 6P , l indicates a
covering relation in a poset, ` and q are positive integers, [`] denotes a chain poset (total order)
of ` elements (whose elements will be named as indicated in context), and P × [`] is the poset
{(p, i) | p ∈ P, i ∈ N, and 1 6 i 6 `} with the usual Cartesian product poset structure.
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Below, we define P -strict labelings on convex subposets of P × [`]. A convex subposet is
a subposet such that if two comparable poset elements a and b are in the subposet, then so is
the entire interval [a, b]. This level of generality is necessary to, for instance, capture the case of
promotion on semistandard Young tableaux of non-rectangular shape.

Definition 1.2. Given S a convex subposet of P × [`], let Li = {(p, i) ∈ S | p ∈ P} be the ith
layer of S and Fp = {(p, i) ∈ S | 1 6 i 6 `} be the pth fiber of S.

Convex subposets of P × [`] have a predictable structure, as we show in the following propo-
sition.

Definition 1.3. Let u : P → {0, 1, . . . , `} and v : P → {0, 1, . . . , `} with u(p) + v(p) 6 ` for
all p ∈ P and v(p1) 6 v(p2) and u(p1) > u(p2) whenever p1 6P p2. Then define P × [`]vu as
the subposet of P × [`] given by {(p, i) ∈ P × [`] | u(p) < i < `+ 1− v(p)}.
Proposition 1.4. Let S be a convex subposet of P × [`]. Then there exist u and v such that
S = P × [`]vu.

Proof. Since S is convex, along any fiber Fp we have (p, i) ∈ S with i0 < i < i1 for some
i0 > 0 and some i1 6 ` + 1. If Fp 6= ∅, let u(p) = i0 and v(p) = ` + 1 − i1. If ω mP p,
then u(ω) 6 u(p), otherwise (p, u(ω)), (ω, u(ω) + 1) ∈ S but (ω, u(ω)) /∈ S, contradicting the
convexity of S. Similarly, v(ω) > v(p). If Fp = ∅, then Fω = ∅ for all ω mP p by convexity.
For all p ∈ P with Fp = ∅, set u(p) = min{u(q) | Fq 6= ∅} and v(p) = ` − u(p). Thus
u(p) + v(p) = ` and, over all of P , u(p1) > u(p2) when p1 lP p2. Moreover, since for all p with
Fp 6= ∅ we have v(p) < `− u(p), v(p1) 6 v(p2) for all p1 lP p2.

Example 1.5. Let λ = (λ1, . . . , λn) and µ = (µ1, . . . , µn) be partitions. Consider the case
where P = [n], u(p) = µp, and v(p) = ` − λp for all p ∈ P . In this case, the convex subposet
is a skew tableau shape λ/µ that fits inside an n× ` rectangle.

Definition 1.6. Let P(Z) represent the set of all nonempty, finite subsets of Z. A restriction
function on P is a map R : P → P(Z).

In this paper, R will always represent a restriction function.

Definition 1.7. We say that a function f : P × [`]vu → Z is a P -strict labeling of P × [`]vu
with restriction functionR if f satisfies the following on P × [`]vu:

1. f(p1, i) < f(p2, i) whenever p1 <P p2,

2. f(p, i1) 6 f(p, i2) whenever i1 6 i2,

3. f(p, i) ∈ R(p).

That is, f is strictly increasing inside each copy of P (layer), weakly increasing along each copy
of the chain [`] (fiber), and such that the labels come from the restriction function R.

LetLP×[`](u, v, R) denote the set of allP -strict labelings onP×[`]vu with restriction function
R. If the convex subposet is P × [`] itself, i.e. u(p) = v(p) = 0 for all p ∈ P , we use the
notation LP×[`](R).
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The following definition says that R is consistent if every possible label is used in some
P -strict labeling.

Definition 1.8. Let R : P → P(Z). We say R is consistent with respect to P × [`]vu if,
for every p ∈ P and k ∈ R(p), there exists some P -strict labeling f ∈ LP×[`](u, v, R) and
u(p) < i < `+ 1− v(p) such that f(p, i) = k.

We denote the consistent restriction function induced by (either global or local) upper and
lower bounds a and b as Rb

a, where a, b : P → Z. In the case of a global upper bound q, our
restriction function will be Rq

1, that is, we take a to be the constant function 1 and b to be the
constant function q. Since a lower bound of 1 is used frequently, we suppress the subscript 1;
that is, if no subscript appears, we take it to be 1.

Remark 1.9. If ` = 1, LP×[`](R) = IncR(P ) from [10]. A notion of consistent R for this case
was defined. This coincides with the above definition.

We will use the following two definitions in Definition 1.12.

Definition 1.10. Let R(p)>k denote the smallest label of R(p) that is larger than k, and let
R(p)<k denote the largest label of R(p) less than k.

Definition 1.11. Say that a label f(p, i) in a P -strict labeling f ∈ LP×[`](u, v, R) is raisable
(lowerable) if there exists another P -strict labeling g ∈ LP×[`](u, v, R) where f(p, i) < g(p, i)
(f(p, i) > g(p, i)), and f(p′, i′) = g(p′, i′) for all (p′, i′) ∈ P × [`]vu, p′ 6= p.

It is important to note that the above definition is analogous to the increasing labeling case
of [10], so raisability (lowerability) is thought of with respect to the layer, not the entire P -strict
labeling.

Definition 1.12. Let the action of the kth Bender–Knuth involution ρk on a P -strict labeling
f ∈ LP×[`](u, v, R) be as follows: identify all raisable labels f(p, i) = k and all lowerable
labels f(p, i) = R(p)>k (if k = maxR(p), then there are no raisable or lowerable labels on
the fiber Fp). Call these labels ‘free’. Suppose the labels f(Fp) include a free k labels fol-
lowed by b free R(p)>k labels; ρk changes these labels to b copies of k followed by a copies
of R(p)>k. Promotion on P -strict labelings is defined as the composition of these involutions:
Pro(f) = · · · ◦ ρ3 ◦ ρ2 ◦ ρ1 ◦ · · · (f). Note that since R induces upper and lower bounds on the
labels, only a finite number of Bender–Knuth involutions act nontrivially.

We compute promotion on a P -strict labeling in Figure 1.2. We continue this example in
Figure 2.3.

Example 1.13. Consider the action of ρ1 in Figure 1.2. In the fiber Fa, neither of the 1 labels can
be raised to R(a)>1 = 3, since they are restricted above by the 3 labels in the fiber Fb. However,
the 3 label in Fa can be lowered to a 1, and so the action of ρ1 takes the one free 3 label and
replaces it with a 1. Similarly, in Fc, the 2 is lowered to a 1. In Fb, the 1 can be raised to a 3 and
the 3 can be lowered to a 1. Because there is one of each, ρ1 makes no change in Fb.

After applying ρ2, we look closer at the action of ρ3. In the fiber Fa, there are no 3 labels or
R(a)>3 = 4 labels, so we do nothing. In Fb, however, there are three 3 labels that can be raised
to R(b)>3 = 5 and one 5 that can be lowered to 3. Thus ρ3 replaces these four free labels with
one 3 and three 5 labels.
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Remark 1.14. In the case ` = 1, LP×[`](R) equals IncR(P ), the set of increasing labelings of
P with restriction function R. So the above definition specializes to generalized Bender–Knuth
involutions and increasing labeling promotion IncPro, as studied in [10]. If, in addition, P is
(skew-)partition shaped, these increasing labelings are equivalent to (skew-)increasing tableaux,
and the above definition specializes toK-Bender–Knuth involutions andK-Promotion, as in [9].

If we restrict our attention to linear extensions of P , the above definition specializes to usual
Bender–Knuth involutions and promotion, as studied in [34].

If P = [n] and ` is arbitrary, LP×[`](R
q) is equivalent to the set of semistandard Young

tableaux of shape an n×` rectangle and entries at most q, andLP×[`](u, v, R
q) is the set of skew-

semistandard Young tableaux with shape corresponding to P × [`]vu and entries at most q. In
these cases, the above definition specializes to usual Bender–Knuth involutions and promotion.
We give more details on this specialization in Section 4.1.

Given that Definition 1.12 specializes to the right thing in each of these cases (including
linear extensions and semistandard Young tableaux), we will no longer use the prefixes K-,
increasing labeling, or generalized, and rather call all these actions ‘Bender–Knuth involutions’
and ‘promotion’, letting the object acted upon specify the context.
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Figure 1.2: Promotion on a P -strict labeling of a convex subposet of P × [5], where the poset
P = {a, b, c, d} along with the restriction function R are given at the top. Each Bender–Knuth
involution ρi is shown.
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1.3. Rowmotion onQ-partitions

Rowmotion is an intriguing action that has recently generated significant interest as a prototyp-
ical action in dynamical algebraic combinatorics; see, for example, the survey articles [29, 36].
Rowmotion was originally defined on hypergraphs by P. Duchet [11] and generalized to order
ideals J(Q) of an arbitrary finite poset (Q,6Q) by A. Brouwer and A. Schrijver [4]. P. Cameron
and D. Fon-der-Flaass [5] then described it in terms of toggles; thereafter, Williams and the sec-
ond author [37] related it to promotion and gave it the name ‘rowmotion’. Rowmotion was further
generalized to piecewise-linear and birational domains by D. Einstein and J. Propp [12, 13]. In
this paper, we discuss toggling and rowmotion on Q-partitions, as a rescaling of the piecewise-
linear version.

In light of our use of P for P -strict labelings, we use Q rather than P when referring to an
arbitrary finite poset associated with the definitions of this section.

Definition 1.15. AQ-partition is a map σ : Q→ N>0 such that if x 6Q x
′, then σ(x) 6 σ(x′).

Let Q̂ denote Q with 0̂ added below all elements and 1̂ added above all elements. Let A`(Q)
denote the set of all Q̂-partitions σ with σ(0̂) = 0 and σ(1̂) = `.

Remark 1.16. In [33], Stanley uses the reverse convention: that a Q-partition is order-reversing
rather than order-preserving. We choose our convention to match with the order-preserving
nature of points in the order polytope, on which the toggles of Einstein and Propp act [12, 13].

In Definition 1.17, we generalize Definition 1.15 by specifying bounds element-wise. Then
in Definition 1.19, we define our main objects of study in this section: B-bounded Q-partitions.

Definition 1.17. Let δ, ε ∈ A`(Q). Let Aδε(Q) denote the set of all Q-partitions σ ∈ A`(Q)
with ε(x) 6 σ(x) 6 δ(x). Call these (δ, ε)-boundedQ-partitions.

Remark 1.18. If δ(x) = ` and ε(x) = 0 for all x ∈ Q, then Aδε(Q) = A`(Q).

Definition 1.19. Let B ∈ A`(W ) where W is a subset of Q that includes all maximal and
minimal elements. Let AB(Q) denote the set of all Q-partitions σ ∈ A`(Q) with σ(x) = B(x)
for all x ∈ W . Call these B-boundedQ-partitions. We refer to the subset W as dom(B), the
domain of B.

The next two remarks note that Definition 1.19 contains Definitions 1.15 and 1.17 as special
cases.
Remark 1.20. If B is defined as B(0̂) = 0, B(1̂) = `, then AB(Q̂) is equivalent to A`(Q).
Remark 1.21. Let Q′ be the poset Q with two additional elements added for each x ∈ Q: a
minimal element 0̂x covered by x and a maximal element 1̂x covering x. If B is defined as
B(0̂x) = ε(x), B(1̂x) = δ(x), then AB(Q′) is equivalent to Aδε(Q).
Remark 1.22. Note B-bounded Q-partitions correspond to rational points in a certain marked
order polytope, though this perspective is not necessary for this paper.

In Definitions 1.23 and 1.25 below, we define toggles and rowmotion. In the case ofA`(Q),
these definitions are equivalent (by rescaling) to those first given by Einstein and Propp on the
order polytope [12, 13]. By the above remarks, it is sufficient to give the definitions of toggles
and rowmotion for AB(Q).
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Definition 1.23. For σ ∈ AB(Q) and x ∈ Q \ dom(B), let

ασ(x) = min{σ(y) | y ∈ Q covers x}

and
βσ(x) = max{σ(z) | z ∈ Q is covered by x}.

Define the toggle τx : AB(Q)→ AB(Q) by

τx(σ)(x′) :=

{
σ(x′) x 6= x′

ασ(x′) + βσ(x′)− σ(x′) x = x′.

Remark 1.24. By the same reasoning as in the case of order ideal toggles, the τx satisfy:

1. τ 2
x = 1, and

2. τx and τx′ commute whenever x and x′ do not share a covering relation.

Definition 1.25. Rowmotion on AB(Q) is defined as the toggle composition Row := τx1 ◦
τx2 ◦ · · · ◦ τxm where x1, x2, . . . , xm is any linear extension of Q \ dom(B).

Remark 1.26. It may be argued that we should call these actions piecewise-linear toggles and
piecewise-linear rowmotion as defined in [12, 13], but as in the case of promotion on tableaux
and labelings, unless clarification is needed, we choose to leave the names of these actions
adjective-free, allowing the objects acted upon to indicate the context.

1.4. Summary of main results

Our first main theorem gives a correspondence between P -strict labelings LP×[`](u, v, R) under
promotion and specific B̂-boundedQ-partitionsAB̂(Q) under a composition of toggles, namely,
the toggle-promotion TogPro of Definition 2.6. Here Q is the poset Γ(P, R̂) constructed in
Section 2.1 and B̂ depends on u, v, and R. The bijection map Φ is given in Definition 2.9. See
Figure 2.3 for an illustration of this theorem and Figure 2.4 for an example of Φ.
Theorem 2.8. The set of P -strict labelings LP×[`](u, v, R) under Pro is in equivariant bijection
with the set AB̂(Γ(P,R̂)) under TogPro. More specifically, for f ∈ LP×[`](u, v, R), we have
Φ (Pro(f)) = TogPro (Φ(f)).

Our second main theorem specifies cases in which toggle-promotion is conjugate in the tog-
gle group to rowmotion, namely, when AB̂(Γ(P, R̂)) is column-adjacent (see Definition 2.19).

Theorem 2.20. If AB̂(Γ(P, R̂)) is column-adjacent, then AB̂(Γ(P, R̂)) under Row is in equiv-
ariant bijection with LP×[`](u, v, R) under Pro.

Column-adjacency holds in many cases of interest, including the case of restriction functions
induced by global or local bounds, such as the various sets of tableaux discussed in Section 4.

Our third main theorem states that in the case of a global upper bound q, P -strict promotion
can be equivalently defined in terms of jeu de taquin; see Definition 3.1 and Figure 3.1.
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Theorem 3.10. For f ∈ LP×[`](u, v, R
q), JdtPro(f) = Pro(f).

In this same special case, we define and study P -strict evacuation; see Section 3.2.
We highlight some corollaries of our main theorems. The first is a correspondence that has

been noted before (see Remark 4.16) between promotion on rectangular semistandard Young
tableaux SSYT(`n, q) and rowmotion onQ-partitionsA`(Q), whereQ is a product of two chains
poset (see Figure 4.2). Such correspondences are often of interest since they provide immediate
translation of results, such as Rhoades’ cyclic sieving theorem on SSYT(`n, q) [28], from one
domain to the other.
Corollary 4.12. The set of semistandard Young tableaux SSYT(`n, q) under Pro is in equivariant
bijection with the set A`([n]× [q − n]) under Row.

We also recover the following result of Kirillov and Berenstein relating Bender–Knuth invo-
lutions ρk on semistandard Young tableaux SSYT(λ/µ, q) with elementary transformations tk
on Gelfand–Tsetlin patterns GT(λ̃, µ̃, q) (see Figure 4.1).
Corollary 4.6 ([24, Proposition 2.2]). The set SSYT(λ/µ, q) is in bijection with GT(λ̃, µ̃, q),
where λ̃i := λ1 − µn−i+1 and µ̃i := λ1 − λn−i+1. Moreover, ρk on SSYT(λ/µ, q) corresponds
to tq−k on GT(λ̃, µ̃, q).

Theorem 2.20 specializes to the following two corollaries on flagged tableaux FT(λ, b) of
shape λ and flag b. The first was our motivating example of Subsection 1.1 and Figure 1.1; the
second involves flagged tableaux of staircase shape that have appeared in the literature [7, 32].
Corollary 4.28. The set of flagged tableaux FT(`n, (2, 4, . . . , 2n)) under Pro is in equivariant
bijection with A`( n) under Row.
Corollary 4.41. Let b = (` + 1, ` + 2, . . . , ` + n). There is an equivariant bijection between
FT (scn, b) under Pro andAδε([n]× [`]) under Row, where for (i, j) ∈ [n]× [`], δ(i, j) = n and
ε(i, j) = i− 1.

The first corollary lets us translate an existing cyclic sieving conjecture on A`( n) [23] to
these flagged tableaux (see Conjecture 4.32). The second allows us to translate an existing cyclic
sieving conjecture on flagged tableaux [7, 32] to (δ, ε)-boundedQ-partitionsAδε(Q), whereQ is
a product of two chains poset (see Conjecture 4.42 and Figure 4.3). These translations provide
new perspectives on the conjectures, which may be helpful for proving them.

We also present a new conjecture regarding homomesy on A`( n) and use our main theo-
rem to translate it to flagged tableaux in Conjecture 4.37.

Conjecture 4.35. The triple
(
A`( n),TogPro,R

)
is 0-mesic when n is even and `

2
-mesic

when n is odd, whereR is the rank-alternating label sum statistic.
Finally, we obtain the following correspondence between promotion on symplectic tableaux

of staircase shape scn and rowmotion on (δ, ε)-bounded Q-partitions Aδε(Q), where Q is the
triangular poset n (see Figure 4.4).
Corollary 4.50. There is an equivariant bijection between Sp(scn, 2n) under Pro and Aδε( n)
under Row, where for (i, j) ∈ n, δ(i, j) = min(j, n) and ε(i, j) = i− 1.

This correspondence shows the cardinality of Aδε( n) is 2n
2 , as a consequence of the sym-

plectic hook-content formula of P. Campbell and A. Stokke [6].
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2. P -strict promotion and rowmotion

In this section, we prove our first two main theorems. Theorem 2.8 relates promotion on P -strict
labelings with restriction function R and toggle-promotion on B-bounded Q-partitions, where
Q is the poset Γ(P, R̂), whose construction we discuss in the next subsection. Theorem 2.20
extends this correspondence to rowmotion in the case when our poset is column-adjacent.

2.1. Preliminary definitions

Below we give some definitions needed for the objects of our main theorems. Recall R is a
restriction function (see Definition 1.6).

Definition 2.1 ([10, Definition 2.10]). For p ∈ P , letR(p)∗ denoteR(p) with its largest element
removed.

Definition 2.2 ([10, Definition 2.11]). Let P be a poset and R : P → P(Z) a (not necessarily
consistent) map of possible labels. Then define Γ(P,R) to be the poset whose elements are
(p, k) with p ∈ P and k ∈ R(p)∗, and covering relations given by (p1, k1) l (p2, k2) if and only
if either

1. p1 = p2 and R(p1)>k2 = k1 (i.e., k1 is the next largest possible label after k2), or

2. p1 l p2 (in P ), k1 = R(p1)<k2 6= max(R(p1)), and no greater k in R(p2) has k1 =
R(p1)<k. That is to say, k1 is the largest label of R(p1) less than k2 (k1 6= max(R(p1))),
and there is no greater k ∈ R(p2) having k1 as the largest label of R(p1) less than k.

a

c

d

b {1, 2, 5}

{2, 6, 7}

{1, 3, 5}

{1, 3, 4}

d, 7

d, 6

d, 2

c, 1

c, 2

c, 5b, 5

b, 3

b, 1

a, 4

a, 3

a, 1

Figure 2.1: The diamond-shaped poset P = {a, b, c, d} is shown on the left along with a consis-
tent restriction function R, where R(p) is displayed as a set next to the corresponding element.
The poset Γ(P,R) defined in Definition 2.2 is shown on the right.
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Example 2.3. Refer to Figure 2.1. The poset Γ(P,R) consists of four chains corresponding to
each element a, b, c, and d, where each chain contains one less element than R(p). For instance,
R(a) = {1, 3, 4}, so, by (1) in Definition 2.2, Γ(P,R) contains the chain (a, 3)l(a, 1). There is
no element (a, 4) since 4 = maxR(a) and is therefore not in R(a)∗. We indicate this omission
by writing a, 4 beneath the element (a, 3). The covering relations between the elements in these
chains are described by (2) in Definition 2.2. For example, (b, 1) l (d, 2) since b l d and 1 is
the greatest element of R(b) that is strictly less than 2. Note (d, 6) does not cover (b, 3) since
5 ∈ R(b) is the greatest element less than 6, not 3.

In [10, Theorem 4.31] it is shown that if R consistent on P , increasing labelings on P under
increasing labeling promotion are in equivariant bijection with order ideals of Γ(P,R) under
toggle-promotion. This correspondence drives our first main theorem. In order to apply this
result from [10] to P -strict labelings, we need a restriction function that is consistent on P , not
just on P × [`]vu. The next definition constructs such a restriction function.

Definition 2.4. SupposeR is a consistent restriction function on P × [`]vu. Denote the number of
elements less than or equal to p in a maximum length chain containing p as h(p) and the number
of elements greater than or equal to p in a maximum length chain containing p as h̃(p). Define
a new restriction function R̂ on P given by

R̂(p) = R(p) ∪
{

min
⋃
q∈P

R(q)− h̃(p), max
⋃
q∈P

R(q) + h(p)

}
.

Proposition 2.5. If R is a consistent restriction function on P × [`]vu, then R̂ is consistent on P .

Proof. If p1 <P p2, then min
⋃
q∈P R(q)− h̃(p1), an element of R̂(p1), is less than all elements

of R̂(p2) and max
⋃
q∈P R(q)+h(p2), an element of R̂(p2), is greater than all elements of R̂(p1).

Thus, for any p′ ∈ P and any element k of R̂(p′), the labeling f of P given by

f(p) =


k p = p′

min
⋃
q∈P R(q)− h̃(p) p′ < p

max
⋃
q∈P R(q) + h(p) p′ > p

is an element of LP×[1](R̂) = IncR̂(P ) (see Remark 1.9). Since for all p ∈ P and k ∈ R̂(p)

there exists a labeling f with f(p) = k, R̂ is consistent on P .

We use the structure of Γ(P, R̂) in our main result. While any consistent restriction function
on P constructed by adding a new minimum and maximum element to each R(p) would serve
our purposes, we choose to use R̂ for the sake of consistency.

2.2. First main theorem: P -strict promotion and toggle-promotion

Below, we state and prove our first main result, Theorem 2.8. First, we define an action on
B-bounded Γ(P, R̂)-partitions.



12 Joseph Bernstein et al.

Definition 2.6. Toggle-promotion on AB(Γ(P, R̂)) is defined as the toggle composition
TogPro := · · · ◦ τ2 ◦ τ1 ◦ τ0 ◦ τ−1 ◦ τ−2 ◦ · · · , where τk denotes the composition of all the
τ(p,k) over all p ∈ P such that (p, k) /∈ dom(B).

This composition is well-defined, since the toggles within each τk commute by Remark 1.24.

Definition 2.7. Given LP×[`](u, v, R), define B̂ (on Γ(P, R̂)) as B̂(p,min R̂(p)∗) = ` − u(p)

and B̂(p,max R̂(p)∗) = v(p).

To see an example of toggle-promotion on a B̂-bounded Γ(P, R̂)-partition, refer to Fig-
ure 2.2. See Figure 2.3 for an example illustrating Theorem 2.8.

In Theorem 2.8 below, Φ is the bijection map given in Definition 2.9.

Theorem 2.8. The set of P -strict labelings LP×[`](u, v, R) under Pro is in equivariant bi-
jection with the set AB̂(Γ(P,R̂)) under TogPro. More specifically, for f ∈ LP×[`](u, v, R),
Φ (Pro(f)) = TogPro (Φ(f)).

The proof will use the following definitions and lemmas. We first define the bijection map.

Definition 2.9. We define the map Φ : LP×[`](u, v, R) → AB̂(Γ(P, R̂)) as the composition of
three intermediate maps φ1, φ2, and φ3. Start with a P -strict labeling f ∈ LP×[`](u, v, R). Let
φ1(f) = f̂ ∈ LP×[`](R̂) where f̂ is given by:

f̂(p, i) =


min R̂(p) i 6 u(p)

f(p, i) u(p) < i < `+ 1− v(p)

max R̂(p) `+ 1− v(p) 6 i.

Next, φ2 sends f̂ to the multichain O` 6 O`−1 6 . . . 6 O1 in J(Γ(P, R̂)) layer by layer,
that is, f̂(Li) is sent to its associated order ideal Oi ∈ J(Γ(P, R̂)), where Oi is generated by
the set {(p, k) | f̂(p) = k}. Lastly, φ3 maps the above multichain to a Γ(P, R̂)-partition σ,
where σ(p, k) = |{i | (p, k) /∈ Oi}|, the number of order ideals not including (p, k). Let
Φ = φ3 ◦ φ2 ◦ φ1.

The map φ2 in Definition 2.9 is the main bijection used in [10, Theorem 2.14], and the map
φ3 is the usual bijection between multichains of J(P ) and P -partitions (see [33]).

Lemma 2.10. The map Φ is well-defined and invertible.

Proof. Since P × [`]vu is a convex subposet of P × [`], f̂ ∈ LP×[`](R̂). Therefore, since f̂ is
weakly increasing across layers, O` 6 O`−1 6 . . . 6 O1 is a multichain in J(Γ(P, R̂)).

For invertibility, φ1 is invertible by removing the labels of f̂ that are not in R, and φ2

is invertible by [10]. Given σ ∈ AB̂(Γ(P, R̂)) we can recover the associated multichain by
Oi = {(p, k) | σ(p, k) > i}, so φ3 is invertible.

What remains to show is that Φ(f) ∈ AB̂(Γ(P, R̂)) for all f ∈ LP×[`](u, v, R). We ver-
ify Φ(f)(p,min R̂(p)) = ` − u(p) and Φ(f)(p,max R̂(p)∗) = v(p) for all p ∈ P . Suppose



combinatorial theory 1 (2021), #8 13

a

c

d

b {1, 2, 5}
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a, 3

a, 1

a, 8

a, -2

τ1

τ3τ4

τ6

τ5
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Figure 2.2: Toggle-promotion on a B̂-bounded Γ(P, R̂)-partition. The poset P = {a, b, c, d}
along with the restriction function R are displayed at the top left. Each toggle τi is shown.
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6

3
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7

5
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2

7

5

1

5

a

c

d

b {1, 2, 5}

{2, 6, 7}

{1, 3, 5}

{1, 3, 4}

Pro

TogPro

Φ Φ

Figure 2.3: An illustration of Theorem 2.8. Promotion on the P -strict labeling of Figure 1.2
corresponds to toggle-promotion on a B̂-bounded Γ(P, R̂)-partition. The poset P = {a, b, c, d}
along with the restriction function R are shown in the center. See Figure 2.2 for the steps in
calculating TogPro in this example.

φ1(f) = f̂ and φ2(f̂) is the multichain O` 6 . . . 6 O1. From the definition of φ1, the number
of min R̂(p) labels in f(Fp), or the number of order ideals in φ2(f̂) containing (p,min R̂(p)),
is u(p). Therefore, Φ(f)(p,min R̂(p)) = ` − u(p). Next, (p,maxR(p)∗) is included in every
order ideal associated to a layer where p is not labeled by max R̂(p). Since there are v(p) such
layers, v(p) order ideals do not contain (p,maxR(p)∗), so Φ(f)(p,max R̂(p)∗) = v(p).

Lemma 2.11. The bijection map Φ equivariantly takes the generalized Bender–Knuth involution
ρk to the toggle operator τk.

The following notation will be useful for the proof of this lemma.
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O1
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φ1 φ2 φ3

Figure 2.4: An example of the map Φ = φ3 ◦ φ2 ◦ φ1 beginning with f ∈ LP×[4](u, v, R
5)

on the left and ending with σ ∈ AB̂(Γ(P, R̂5)) on the right, where P is the chain a l b l c,
u(a, b, c) = (2, 1, 0), and v(a, b, c) = (0, 0, 1).

Definition 2.12. We consider the label at (p, i) ∈ P × [`]vu to be in position i, and the first (last)
position satisfying a particular condition is the least (greatest) such position.

Definition 2.13. For f ∈ LP×[`](u, v, R) and k ∈ Z, let

jpk =

{
min{j | f(p, j) > k} ∃b ∈ f(Fp) such that b > k

`− v(p) + 1 otherwise
.

That is, jpk is the first position in the fiber Fp with label greater than k, where we may consider
a label at (p, `− v(p) + 1) that is greater than all other labels.

Example 2.14. In Figure 2.4, we have jc4 = 3, ja4 = 5, and jb−1 = 2.

We can now write the bijection Φ in terms of jpk .

Lemma 2.15. Let f ∈ LP×[`](u, v, R) and Φ(f) = σ ∈ AB̂(Γ(P, R̂)). Then σ(p, k) = `+1−jpk
Proof. From the definition of Φ, in the multichain φ2(φ1(f)), (p, k) ∈ Oi for 1 6 i < jpk and
(p, k) /∈ Oi for jpk 6 i 6 `. Thus σ(p, k) = #{i | (p, k) /∈ Oi} = `+ 1− jpk .

Proof of Lemma 2.11. We prove this lemma by showing Φ equivariantly takes the action of ρk
on f(Fp) to the toggle τk at (p, k) ∈ Γ(P, R̂). Let f ∈ LP×[`](u, v, R) and Φ(f) = σ ∈
AB(Γ(P, R̂)).

Consider the action of ρk on f(Fp). If k /∈ R(p)∗, then ρk acts as the identity on f(Fp) and
τk acts as the identity on σ(p, k), so we are done. Therefore, let k ∈ R(p)∗. We aim to count the
number of raisable k labels and lowerable R̂(p)>k labels in f(Fp). We begin with finding the
number of raisable k.
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Using Lemma 2.15, the total number of (not necessarily raisable) k labels is given by

jpk − jpR̂(p)<k
= (`+ 1− σ(p, k))− (`+ 1− σ(p, R̂(p)<k))

= σ(p, R̂(p)<k)− σ(p, k). (1)

Now, we determine which of these labels are raisable. We consider three cases based on the
upper covers of (p, k) in Γ(P, R̂) associated to a different element of P . Let U = {(ω, c) ∈
Γ(P, R̂) | ω mP p and (ω, c) mΓ(P,R̂) (p, k)}.

Case U 6= ∅: For (ω, c) ∈ U , by construction of Γ(P, R̂), k = R̂(p)<c and c is the largest
such c ∈ R̂(ω). Equivalently, c is the greatest element of R̂(ω) that is less than or equal to
R̂(p)>k. Thus, since R̂(ω)>c > R̂(p)>k, the first position in f(Fp) that is not restricted above
by labels in f(Fω) is jωc . Therefore the first position in f(Fω) that can be raised to R̂(p)>k is
max(ω,c)∈U j

ω
c , so the number of labels in f(Fp) that can be raised to R̂(p)>k (that are necessarily

less than R̂(p)>k) is

jpk − max
(ω,c)∈U

(jωc ) = (`+ 1− σ(p, k))− max
(ω,c)∈U

(`+ 1− σ(ω, c))

= −σ(p, k)− max
(ω,c)∈U

(−σ(ω, c))

= min
(ω,c)∈U

(σ(ω, c))− σ(p, k).

CaseU = ∅ andωmP p for someω ∈ P : This implies that k 6= R̂(p)<c for any c ∈ R̂(ω)
for any ω mP p. Thus, if c > k, then we also have c > R̂(p)>k. Since f is strict on layers, if
f(p, i) = k, all f(ω, i) are greater than R(p)>k. Therefore all k labels in f(Fp) are raisable.

Case U = ∅ and p has no upper covers in P : In this case, f(Fp) is not restricted above,
and again all k labels in f(Fp) are raisable.

The number of raisable k is the lesser of the number of k labels and the number of labels
less than R̂(p)>k that can be raised to R̂(p)>k. Let Y = {y | y covers (p, k) in Γ(P, R̂)}. Then,
by the above cases, the number of raisable k in f(Fp) is given by

min
y∈Y

(σ(x))− σ(p, k).

If Z = {z | z is covered by (p, k) in Γ(P, R̂)}, by a similar argument we obtain that the
number of lowerable R̂(p)>k labels in f(Fp) is

σ(p, k)−max
z∈Z

(σ(z)) .

Suppose there are a raisable k and b lowerable R̂(p)>k in f(Fp). Apply ρk to f(Fp), and let
σpk be the Γ(P, R̂)-partition corresponding to this new P -strict labeling. For all d 6= k, the first
position in f(Fp) with a label greater than d is unchanged after applying ρk. Thus the only label
that differs between σ and σpk is the label at (p, k). Since there are b raisable k in ρk(f(Fp)), with
Y and Z defined as above we have

σ(p, k)−max
z∈Z

(σ(z)) = b = min
y∈Y

(σ(y))− σpk(p, k).
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Therefore,
σpk(p, k) = min

y∈Y
(σ(y)) + max

z∈Z
(σ(z))− σ(p, k),

which is exactly τ(p,k)(σ)(p, k).
Thus, ρk on f corresponds to toggling on σ over all elements (p, k) with p ∈ P .

In the following, we give an example of each case from the previous proof.

Example 2.16. Refer to the poset Γ(P, R̂) from Figure 2.3. For the element (a, 1) we have
U = {(b, 3), (c, 2)}, for the element (a, 3) we have a l b and a l c but U = ∅, and for the
element (d, 6) we have U = ∅ and d has no upper covers in P .

Example 2.17. Figure 2.4 shows an example of the bijection map; the number of 3 labels in
f(Fb) is 2 = σ(b, 2)− σ(b, 3) and the number of 4 labels is 1 = σ(b, 3)− σ(b, 4). The number
of positions where a 3 could be raised to a 4 is 1 = σ(c, 4)−σ(b, 3) and the number of positions
where a 4 could be lowered to a 3 is 0 = σ(b, 3)− σ(a, 2).

We now prove our first main theorem.

Proof of Theorem 2.8. By Lemma 2.10, Φ is a bijection. By Lemma 2.11, Φ(Pro(f)) = Φ(· · ·◦
ρ2 ◦ρ1 ◦ρ0 ◦ρ−1 ◦ρ−2 ◦ · · · (f)) = · · · ◦τ−2 ◦τ−1 ◦τ0 ◦τ1 ◦τ2 ◦ · · · (Φ(f)) = TogPro(Φ(f)).

2.3. Second main theorem: P -strict promotion and rowmotion

Our next main result, Theorem 2.20, says that for certain kinds of restriction functions, promo-
tion on P -strict labelings of P × [`]vu with restriction function R is equivariant with rowmotion
on B-bounded Γ(P, R̂)-partitions.

Definition 2.18. We call an element p ∈ P fixed in AB(P ) if there exists some value a such
that σ(p) = a for all σ ∈ AB(P ).

Definition 2.19. We say that AB(Γ(P,R)) is column-adjacent if whenever (p1, k1) l (p2, k2)
in Γ(P,R) and neither of (p1, k1) nor (p2, k2) are fixed in AB(Γ(P,R)), then |k2 − k1| = 1.

We call this column-adjacent because it implies that the non-fixed poset elements (p, k) of
Γ(P,R) can be partitioned into subsets indexed by k, called columns, whose elements have
covering relations with other non-fixed elements only when they are in adjacent columns. For
many nice cases, including the posets considered in Section 4, the word column is visually
appropriate.

Theorem 2.20. If AB̂(Γ(P, R̂)) is column-adjacent, then AB̂(Γ(P, R̂)) under Row is in equiv-
ariant bijection with LP×[`](u, v, R) under Pro.

Proof. Let Γ̃(P, R̂) be the poset with elements Γ(P, R̂) \ {(p, k) | (p, k) fixed in AB̂(Γ(P, R̂))}
where (p, k) l (p′, k′) in Γ̃(P, R̂) if and only if (p, k) l (p′, k′) in Γ(P, R̂). To any σ ∈
AB̂(Γ(P, R̂)) we associate a Γ̃(P, R̂)-partition σ̃ in A`(Γ̃(P, R̂)) where σ̃(p, k) = σ(p, k). We
define the toggle τ̃(p,k) onA`(Γ̃(P, R̂)) as usual with the added restriction that, if (p′, k′)m (p, k)
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in Γ(P, R̂) and (p′, k′) is fixed in AB̂(Γ(P, R̂)) with σ(p′, k′) = a for all σ, then the minimum
value of the upper covers of (p, k) may not exceed a, and, similarly, if (p′, k′)l (p, k) in Γ(P, R̂)

and (p′, k′) is fixed as a inAB̂(Γ(P, R̂)), the maximum value of the lower covers must be at least
a. Thus, τ̃(p,k)(σ̃)(p, k) = τ(p,k)(σ)(p, k).

Since these toggles on Γ̃(P, R̂)-partitions share the same commutation relations as toggles
on J(Γ̃(P, R̂)), as noted in Remark 1.24, we can apply a conjugation result from [10] as follows.
Because AB̂(Γ(P, R̂)) is column-adjacent, if (p, k) l (p′, k′) in Γ̃(P, R̂), then |k′ − k| = 1.
Now, if τ̃k is the composition over all p ∈ P of τ̃(p,k), TogPro = · · · ◦ τ̃1 ◦ τ̃0 ◦ τ̃−1 ◦ · · · is
conjugate to Row on Γ̃(P, R̂) by [10, Theorem 4.19]. Therefore, TogPro is also conjugate to
Row on AB̂(Γ(P, R̂)), and we obtain the result by Theorem 2.8.

Remark 2.21. As long as a toggle order is a column toggle order, as defined in [10], the composi-
tion of toggles will be equivariant with rowmotion, so there are many more toggle orders besides
that of TogPro that are conjugate to rowmotion. We do not need this full level of generality of
toggle orders.

We show in the following proposition that for the case where our restriction function is in-
duced by upper and lower bounds for each element (this includes the case of a global bound q),
we have the column-adjacent property, so Theorem 2.20 yields Corollary 2.24.

Proposition 2.22. AB̂(Γ(P, R̂b
a)) is column-adjacent.

The proof of the above uses the following lemma.

Lemma 2.23. If k ∈ Rb
a(p) and k + 1 /∈ Rb

a(p), then (p, k) is fixed in AB̂(Γ(P, R̂b
a)).

Proof. Let σ ∈ AB̂(Γ(P, R̂b
a)) and f = Φ−1(σ) ∈ LP×[`](u, v, R

b
a). Suppose k ∈ Rb

a(p)

and k + 1 /∈ Rb
a(p). If k + 1 > maxRb

a(p), then k = max R̂b
a(p)

∗, so (p, k) is fixed by the
definition of B̂. Suppose, then, that k + 1 < maxRb

a(p). Then there exists p′ mP p such that
k + 1 ∈ Rb

a(p
′). Otherwise, for all p′ mP p, either k + 1 > maxRb

a(p
′), k + 1 < ap′ , or there

exists k′ > k + 2 ∈ Rb
a(p
′). In all cases, we could have f(p, i) = k + 1 wherever f(p, i) = k, a

contradiction.
If k + 1 and k + 2 ∈ Rb

a(p
′), then, because P × [`]vu is a convex subposet, any position in

the fiber f(Fp′) that can be labeled by k + 1 can also be labeled by k + 2. Thus, if k + 1 and
k+ 2 ∈ Rb

a(p
′) for all covers p′mP p with k+ 1 ∈ Rb

a(p
′), then k+ 1 ∈ Rb

a(p). Therefore, there
must exist p1 of the covers p′ such that k + 2 /∈ R(p1). Moreover, if σ(p, k) < σ(p1, k + 1),
by Lemma 2.15, the first position greater than k + 1 in f(Fp1) occurs before the first position
greater than k in f(Fp). In this position, any values greater than k+ 1 and less thanRb

a(p1)>k+1,
including k + 2, would be possible, a contradiction. Thus σ(p, k) = σ(p1, k + 1). Now, either
(p1, k+ 1) is fixed by B̂ and we are done, or, by the above reasoning, there exists p2 mP p1 such
that σ(p1, k+1) = σ(p2, k+2) and k+3 /∈ Rb

a(p2). We continue this until there exists a maximal
pm ∈ P such that σ(p, k) = σ(p1, k + 1) = · · · = σ(pm, k + m) and k + m + 1 /∈ Rb

a(pm).
Since pm is maximal, k + m + 1 /∈ Rb

a(pm) only if k + m = maxRb
a(pm), so σ(pm, k + m) is

fixed by B̂. Therefore σ(p, k) is always equal to the value of a fixed element, and since σ was
arbitrary, (p, k) is fixed in AB̂(Γ(P, R̂b

a)).
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Proof of Proposition 2.22. We show that if (p1, k1) l (p2, k2) in Γ(P, R̂b
a) and |k2 − k1| > 1,

then either (p1, k1) or (p2, k2) is fixed. Without loss of generality, let k2 − k1 > 1. If p1 = p2,
then k1 + 1 /∈ Rb

a(p1), so (p1, k1) is fixed by Lemma 2.23. If p1 lP p2, then k1 + 1 /∈ Rb
a(p1),

otherwise k1 would not be the greatest element in Rb
a(p1) less than k2 by definition of Γ(P, R̂b

a).
Thus, by Lemma 2.23 again, (p1, k1) is fixed.

Corollary 2.24. The set of P -strict labelings LP×[`](u, v, R
b
a) under Pro is in equivariant bijec-

tion with the set AB̂(Γ(P, R̂b
a)) under Row.

Proof. This follows from Theorem 2.20 and Proposition 2.22.

Remark 2.25. Note that if Rb
a(p) is a non-empty interval for all p ∈ P , then we obtain Corollary

2.24 by Corollary 4.22 in [10]. However, even thoughRb
a is induced by lower and upper bounds,

this is not always the case. The requirement that Rb
a be consistent on P × [`]vu can result in

gaps in a particular Rb
a(p) depending on u and v. As an example, consider the semistandard

Young tableau with shape (4, 4, 4, 4, 2, 2, 2)/(2, 2, 2) and global maximum 5 (that is, P = [7]
with restriction function R5

1 and u, v determined by the shape). In this case, the fourth row of
the tableau can only be labeled by elements of {1, 2, 4, 5}.

2.4. Special cases ofAB̂(Γ(P, R̂))

In this subsection, we consider cases in which AB̂(Γ(P, R̂)) from our main theorem can be
more nicely described by restricting certain parameters. We begin with two propositions that
show when AB̂(Γ(P, R̂)) is equivalent to A`(Γ(P,R)) or Aδε(Γ(P,R)) from Definitions 1.15
and 1.17, and conclude with a corollary of our main theorem in the case where AB̂(Γ(P, R̂)) is
simply the product of the poset P with a chain. We use these results several times in Section 4.

Proposition 2.26. If R is consistent on P , then AB̂(Γ(P, R̂)) is equivalent to Aδε(Γ(P,R)),
where δ(p, k) = `− u(p) and ε(p, k) = v(p).

Proof. We first consider the covering relations of the elements (p, k̂) in Γ(P, R̂) given by con-
dition (2) in Definition 2.2, where k̂ ∈ R̂(p)∗ \ R(p)∗ = {min R̂(p)∗,max R̂(p)∗}. If p1 lP

p2, then min R̂(p1)∗ = R̂(p1)<min R̂(p2)∗ and, since R is consistent on P , R̂(p1)<minR(p2) >

min R̂(p1)∗, so (p1,min R̂(p1)∗) l (p2,min R̂(p2)∗) in Γ(P, R̂). Similarly, max R̂(p1)∗ is nec-
essarily R̂(p1)<max R̂(p2)∗ , and since there is no larger k ∈ R̂(p2)∗ than max R̂(p2)∗, we have
(p1,max R̂(p1)∗)l (p2,max R̂(p2)∗). Thus, if (p1, k1)l (p2, k2) in Γ(P, R̂) with p1 6= p2, then
either (p1, k1), (p2, k2) ∈ Γ(P,R) or (p1, k1), (p2, k2) ∈ Γ(P, R̂) \ Γ(P,R).

Therefore the only covering relations in Γ(P, R̂) between elements of Γ(P, R̂)\Γ(P,R) and
Γ(P,R) are given by (1) in Definition 2.2. Specifically, these are (p,minR(p))l(p,min R̂(p)∗)
and (p,max R̂(p)∗) l (p,maxR(p)) for all p ∈ P .

The above shows that (p1, k1)l(p2, k2) in Γ(P,R) if and only if (p1, k1)l(p2, k2) in Γ(P, R̂).
Let σ ∈ AB̂(Γ(P, R̂)). Then, since σ(p,max R̂(p)∗) = v(p), σ(p,min R̂(p)∗) = ` − u(p),
and (p,max R̂(p)∗) <Γ(P,R̂) (p, k) <Γ(P,R̂) (p,min R̂(p)∗) for all k ∈ R(p)∗, we have that
v(p) 6 σ(p, k) 6 ` − u(p) for all (p, k) ∈ Γ(P,R). Thus the restriction of σ to Γ(P,R) is an
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element ofAδε(Γ(P,R)) where δ(p, k) = `− u(p) and ε(p, k) = v(p), and, since this restriction
only omits the fixed values of σ, restriction to Γ(P,R) is a bijection and we have the desired
equivalence.

Proposition 2.27. If u(p) = v(p) = 0 for all p ∈ P , then AB̂(Γ(P, R̂)) is equivalent to
A`(Γ(P,R)).

Proof. Since u(p) = v(p) = 0 for all p ∈ P , P × [`]vu = P × [`] by Definition 1.3. Since R is
consistent on P × [`] it must also be consistent on P , and we can apply Proposition 2.26 where
δ(p) = ` and ε(p) = 0 for all p ∈ P , which, by Remark 1.18, gives the result.

See Figures 1.1 and 4.2 for examples of this equivalence.
For the following lemma and corollary of our main theorem, we consider a poset P to be

graded of rank n if all maximal chains of P have n+ 1 elements.

Lemma 2.28. Let P be a graded poset of rank n. Then Γ(P,Rq) is isomorphic to P × [q−n−1]
as a poset.

Proof. Write P × [q−n−1] as {(i, j) | 1 6 i 6 n, 1 6 j 6 q−n−1}, where (p, j)l (p′, j′) if
and only if p = p′ and j = j′− 1 or j = j′ and pl p′ (that is, the usual ordering (p, j) 6 (p′, j′)
if and only if p 6P p

′ and j 6 j′).
Recall the definition of h(p) from Definition 2.4. Since u = v = 0, Rp is consistent on P ,

and, since P is graded, for all p ∈ P we have Rq(p) = {h(p), h(p) + 1, . . . , q − n+ h(p)− 1}.
By definition of Γ (as noted in [10, Thm. 2.21]), (p, k)l (p′, k′) in Γ(P,Rq) if and only if either
p = p′ and k − 1 = k′ or pl p′ and k + 1 = k′. Consider the map that takes (p, k) ∈ Γ(P,Rq)
to (p, q − n + h(p) − k − 1) ∈ [P ] × [q − n − 1]. This map is a bijection to the elements of
[n]× [q−n−1], since h(p) 6 k 6 q−n+h(p)−2 implies 1 6 q−n+h(p)−k−1 6 q−n−1.
Moreover, the covers of (p, k) in Γ(P,Rq) correspond exactly to the covers of (p, q−n+i−k−1)
in P × [q − n − 1], as (p, q − n + h(p) − k − 1) l x ∈ P × [q − n − 1] if and only if
x = (p, q − n+ h(p)− (k − 1)) or x = (p′, q − n+ (h(p) + 1)− (k + 1)), where pl p′ (and
thus h(p) + 1 = h(p′)). Therefore Γ(P,Rq) is isomorphic as a poset to P × [q − n− 1].

Corollary 2.29. Let P be a graded poset of rank n. ThenLP×[`](R
q) under Pro is in equivariant

bijection with A`(P × [q − n− 1]) under Row.

Proof. By Corollary 2.24 and Proposition 2.27, LP×[`](R
q) under Pro is in equivariant bijection

with A`(Γ(P,Rq)) under Row which, by Lemma 2.28, is exactly A`(P × [q − n− 1]).

3. P -strict promotion and evacuation

In this section, we define promotion on P -strict labelings LP×[`](u, v, R
q) via jeu de taquin

and prove Theorem 3.10, which shows this is equivalent to our promotion via Bender–Knuth
involutions from Definition 1.12. We also define evacuation on P -strict labelings and show
some properties of evacuation in this setting.
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3.1. Third main theorem: P -strict promotion via jeu de taquin

We begin with the definition of jeu de taquin promotion on P -strict labelings LP×[`](u, v, R
q).

Definition 3.1. Let Z�(P × [`]vu) denote the set of labelings g : P × [`]vu → (Z ∪ �). Define
the ith jeu de taquin slide jdti : Z�(P × [`]vu)→ Z�(P × [`]vu) as follows:

jdti(g)(p, k) =



i g(p, k) = � and g(p′, k) = i for some p′ mP p (3.1a)

i
g(p, k) = �, g(p, k + 1) = i, and g(p′, k + 1) 6= �
for any p′ lP p

(3.1b)

� g(p, k) = i and g(p′, k) = � for some p′ lP p (3.1c)

� g(p, k) = i, g(p, k − 1) = �,and g(p′, k − 1) 6= i
for any p′ mP p

(3.1d)

g(p, k) otherwise. (3.1e)

In words, jdti(g) replaces a label � at (p, k) with i if i is the label of a cover of (p, k) in its layer,
or if i is the label of a cover of (p, k) in its fiber and this cover does not also cover an element
within its own layer labeled by �. Furthermore, jdti(g) replaces a label i by � if (p, k) covers
an element in its layer labeled by �, or replaces a label i by � if (p, k) covers an element in its
fiber labeled by �, provided said element is not covered by an element in its layer labeled with
i. Aside from these cases, jdti(g) leaves all other labels unchanged.

Let jdti→j : Z�(P )→ Z�(P ) be defined as

jdti→j(g)(x) =

{
j g(x) = i

g(x) otherwise.

In words, jdti→j(g)(x) replaces all labels i by j.
For f ∈ LP×[`](u, v, R

q), let jdt(f) = jdt�→(q+1)◦(jdtq)
`◦(jdtq−1)`◦· · ·◦(jdt3)`◦(jdt2)`◦

jdt1→�(f). That is, first replace all 1 labels with �. Then perform the ith jeu de taquin slide
jdti ` times for each 2 6 i 6 q. Next, replace all labels � with q + 1. Define jeu de taquin
promotion on f as JdtPro(f)(x) = jdt(f)(x)− 1.

Example 3.2. Figure 3.1 shows an example of JdtPro being applied to aP -strict labeling. In this
example,P is the Y-shaped poset on four elements and ` = 5. We perform JdtPro on theP -strict
labeling f ∈ LP×[5](u, v, R

3) where u(a, b, c, d) = (4, 1, 0, 1) and v(a, b, c, d) = (0, 0, 0, 1).
Observe that as part of JdtPro, we perform jdt�→4 ◦ (jdt3)5 ◦ (jdt2)5 ◦ jdt1→�(f). However,
in this example, we do not show the applications of jdt2 and jdt3 that have no effect on the
labeling. The final step of JdtPro is to subtract every label by 1, yielding the new P -strict
labeling JdtPro(f).

In Proposition 3.5, we show that if we begin with a P -strict labeling f , JdtPro(f) is always
a P -strict labeling. In order to prove this, we need Lemmas 3.3 and 3.4, which give us conditions
that a labeling cannot violate when performing jeu de taquin slides.

Lemma 3.3. Let f ∈ LP×[`](u, v, R
q). When performing a jeu de taquin slide of JdtPro(f), no

integer labels can violate the P -strict labeling order relations.
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Figure 3.1: We perform JdtPro on the P -strict labeling f ∈ LP×[5](u, v, 3) where u(a, b, c, d) =
(4, 1, 0, 1) and v(a, b, c, d) = (0, 0, 0, 1). For the sake of brevity, we do not show the applications
of jdt2 and jdt3 that do nothing.

Proof. Because we apply all jeu de taquin slides jdt2, then all jeu de taquin slides jdt3, and so on
for each jdti where 2 6 i 6 q, each time � is replaced by a number, that number is the smallest
label of its covers. As a result, no integer labels can violate the order relations after performing
a jeu de taquin slide.

Lemma 3.4. Let f ∈ LP×[`](u, v, R
q). If g ∈ Z�(P × [`]vu) is obtained by performing jeu de

taquin slides on f , we can never have jdti(g)(p, k) = jdti(g)(p′, k) = � when p′ >P p.

Proof. We show the claim by contradiction. Suppose jdti(g)(p, k) = jdti(g)(p′, k) = � for
some p′ >P p. Furthermore, assume this is the first application of a jeu de taquin slide for which
this occurs. In other words, we do not have two comparable elements within the same layer
that both have a label of � prior to this application of jdti. Suppose this occurs from (3.1c)
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of Definition 3.1. This implies g(p′′, k) = � for some p′′ lP p, which cannot occur by our
assumption that jdti(g)(p, k) = jdti(g)(p′, k) = � is the first application of a jeu de taquin slide
for which we have comparable elements within the same layer that are both labeled with �.

Now assume jdti(g)(p, k) = jdti(g)(p′, k) = � occurs after applying (3.1d) of Defini-
tion 3.1. For this to occur, we would need either g(p, k) = i and g(p′, k) = �, or g(p, k) = �
and g(p′, k) = i. However, by assumption, any element between (p, k) and (p′, k) cannot be
labeled with �. Furthermore, by Lemma 3.3, we cannot have any integer labels violate the order
relations, so any element between (p, k) and (p′, k) cannot be labeled with i. As a result, we
may assume p′ mP p. We can eliminate g(p, k) = � and g(p′, k) = i as a possibility, as (3.1a)
of Definition 3.1 would be applied to g(p, k), resulting in jdti(g)(p, k) = i. Therefore, we may
assume g(p, k) = i and g(p′, k) = �. We may also assume g(p, k − 1) = � in order for (3.1d)
of Definition 3.1 to be invoked. However, by our assumption, this means g(p′, k − 1) cannot
have label �, implying that g(p′, k − 1) = i. By definition, (3.1d) of Definition 3.1 cannot be
applied. We obtained a contradiction with each of (3.1c) and (3.1d) of Definition 3.1, implying
that we cannot have jdti(g)(p, k) = jdti(g)(p′, k) = � for some p′ >P p.

Proposition 3.5. For f ∈ LP×[`](u, v, R
q), JdtPro(f) ∈ LP×[`](u, v, R

q).

Proof. By construction, JdtPro(f) is a labeling of P × [`]vu with integers in {1, . . . , q}. By the
definition of JdtPro(f), we perform each jeu de taquin slide ` times. Note that we only need to
perform each jdti until the � labels are above the i labels in every fiber where both appear. This
is guaranteed to happen if we perform it ` times, as every fiber is of length at most `. We only
need to verify that JdtPro(f) has the order relations of a P -strict labeling. By Lemma 3.3, no
integer labels of JdtPro(f) can violate the order relations after performing a jeu de taquin slide.
Additionally, by Lemma 3.4, if g ∈ Z�(P × [`]vu) is obtained by performing jeu de taquin slides
on f , we can never have jdti(g)(p, k) = jdti(g)(p′, k) = � when p′ >P p. Because of this, we
guarantee that no q + 1 labels violate the order relations after performing jdt�→(q+1) as part of
JdtPro. As a result, this means the strict order relations of the P -strict labeling will be satisfied
when we perform jdt�→(q+1).

Our goal is Theorem 3.10, which states that jeu de taquin promotion from Definition 3.1
coincides with our definition of promotion by Bender–Knuth involutions. The crux of the proof
is Lemmas 3.6 and 3.8. The idea of Lemma 3.6 is as follows. By definition, when performing
JdtPro(f), we perform each jeu de taquin slide ` times. We observe that when we apply jdti to
f ∈ LP×[`](u, v, R

q), cases (3.1a) and (3.1c) of Definition 3.1 can only be invoked on the first
application of jdti.

Lemma 3.6. For f ∈ LP×[`](u, v, R
q), when applying jdti in JdtPro(f) for any 2 6 i 6 q,

(3.1a) and (3.1c) of Definition 3.1 can only be invoked on the first application of jdti.

Proof. We begin by proving the result for jdtq. Suppose g(p, k) = �. If there is a cover (p′, k)
of (p, k) in the kth layer of P × [`]vu, then we must have g(p′, k) = q, as g(p′, k) could not be
less than q nor could it be � by Lemma 3.4. Furthermore, if there does not exist a cover (p′, k)
of (p, k) in the kth layer, neither (3.1a) nor (3.1c) is invoked on � from g(p, k) when applying
jdtq. Therefore, we may assume a cover of (p, k) in the kth layer has a label of q. In other words,
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we assume there exists a p′ m p such that g(p′, k) = q. When applying jdtq, the first application
of jdtq will invoke (3.1a) and (3.1c), resulting in g(p′, k) being labeled with � for any labels
g(p′, k) such that p′ m p and g(p′, k) = q. However, on subsequent applications of jdtq, (3.1a)
cannot be invoked to result in a � for any g(p′′, k) where p′′ m p′. This is because g(p′′, k), a
label for a cover of (p′, k) in the kth layer, would need to be labeled with either q or �, neither of
which are possible due to Lemma 3.4. This means there does not exist a cover (p′′, k) of (p′, k)
in the kth layer at all, as g(p′′, k) also cannot be less than q.

We might be concerned that subsequent invocations of (3.1b) or (3.1d) within the fiber Fp′
results in a � appearing in a layer with which (3.1c) can be invoked for a second time. However,
because there is no (p′′, k) ∈ P × [`]vu, there cannot be an element (p′′, k′) ∈ P × [`]vu in any
layer k′ where k′ > k by definition of v. Hence, subsequent invocations of (3.1b) or (3.1d)
cannot position a � into a separate layer such that (3.1c) can be invoked for a second time. As a
result, for this case, the label � of g(p, k) can affect the label of a separate fiber only on the first
application of jdtq via (3.1a) and (3.1c). An analogous argument shows that if we begin with
g(p, k) = q, the label of q can only affect the label of a separate fiber on the first application of
jdtq.

We have shown that when applying jdtq in JdtPro(f), (3.1a) and (3.1c) of Definition 3.1
can only be invoked on the first application of jdtq. To show the result for any jdti, let f6i with
restriction Ri denote the P -strict labeling f restricted to the subposet of elements with labels
less than or equal to i. Because f6i has restriction functionRi, (3.1a) and (3.1c) of Definition 3.1
can only be invoked on the first application of jdti in JdtPro(f6i), which means these cases can
only be invoked on the first application of jdti in JdtPro(f).

In order to state Lemma 3.8, we need the following definition.

Definition 3.7. For f ∈ LP×[`](u, v, R
q), define JdtProi(f) to be the result of freezing all labels

of f which are at least i+1, then performing jeu de taquin slides on the elements with labels less
than or equal to i. In other words, perform jdt�→(i+1)(jdti)

`◦(jdti−1)`◦· · ·◦(jdt2)`◦jdt1→�(f),
then reduce all unfrozen labels by 1. We clarify that boxes labeled i+1 from the step jdt�→(i+1)

are considered unfrozen.

To prove Theorem 3.10, it will be sufficient to show that applying JdtProq−1 and the Bender–
Knuth involution ρq yields the same result as JdtPro itself.

Lemma 3.8. For f ∈ LP×[`](u, v, R
q), JdtPro(f) = ρq−1 ◦ JdtProq−1(f).

Proof. Both JdtPro(f) and ρq−1 ◦ JdtProq−1(f) begin by applying (jdtq−1)` ◦ (jdtq−2)` ◦ · · · ◦
(jdt2)` ◦ jdt1→� to f . Let f ′ ∈ Z�(P × [`]vu) denote the labeling obtained after performing these
jeu de taquin slides. What remains to be shown is that performing jdt�→(q+1) ◦ (jdtq)

`(f ′) and
subtracting 1 from all labels results in the same P -strict labeling as performing jdt�→(q)(f

′),
subtracting 1 from all unfrozen labels, then performing the Bender–Knuth involution ρq−1.

First, consider the case that there are no boxes � in f ′. This implies that there were no
elements labeled 1 in f , so JdtPro(f) reduces all labels by 1. On the other hand, JdtProq−1(f)
will reduce all labels by 1 except labels that are q, as these labels are frozen. However, after
reducing unfrozen labels, there are no elements with a label of q−1, which means ρq−1 changes
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all labels of q to q − 1. The cumulative effect is that all labels in f are reduced by 1. Therefore,
in this case, we have JdtPro(f) = ρq−1 ◦ JdtProq−1(f).

We now consider the case where f ′ has at least one element labeled �. When applying
jdtq, a label can only change if it is � or q. By Lemma 3.6, when applying jdtq, (3.1a) and
(3.1c) of Definition 3.1 can only be invoked on the first application of jdtq. We now show that
when applying jdtq, the first application of jdtq places the correct number of elements labeled
q and � in each fiber. Suppose Fp has a elements labeled with � and b elements labeled with
q. Additionally, suppose x of the elements that are labeled with � have a cover in a separate
fiber labeled with q and suppose y of the elements that are labeled with q cover an element in a
separate fiber labeled with a �. When performing jdtq, the x labels of � in Fp change to q and
the y labels of q in Fp change to �. Observe that the application of jdtq may cause some labels
of q and � to change positions within Fp. However, in Definition 3.1, jdtq prioritizes (3.1a)
and (3.1c), so this might not occur. Because we know a label remains in its fiber after the first
application of jdtq, the remaining applications of jdtq results in all labels � above all labels of q
in Fp. Additionally, we can determine that there are a−x+ y elements labeled � and b+x− y
labeled q in Fp. After performing (jdtq)

` for all fibers, we apply jdt�→(q+1) to replace all labels
of � with q + 1, then reduce every label by 1. The result in Fp is that we now have b + x − y
elements labeled q − 1 and a− x+ y elements labeled q.

To determine what happens when we apply ρq−1 ◦ JdtProq−1(f), we begin by performing
jdt�→(q)(f

′) and subtracting 1 from all unfrozen labels. Fp will have a elements labeled with
q−1 and b elements labeled with q. Furthermore, we know that x of the elements that are labeled
with q−1 will have a cover in a separate fiber labeled with a q and that y of the elements that are
labeled with q will cover an element in a separate fiber that is labeled with a q − 1. This means
Fp has a − x labels of q − 1 that are free and b − y labels of q that are free. Performing ρq−1

switches these into a− x elements labeled with q and b− y elements labeled q− 1. Combining
this with the x fixed labels of q− 1, we obtain b+ x− y elements labeled q− 1. Similarly, with
the y fixed labels of q, we obtain a − x + y elements labeled q. This matches the JdtPro(f)
case, allowing us to conclude that JdtPro(f) = ρq−1 ◦ JdtProq−1(f).

Before presenting the main result of this section, we first give an example demonstrating
ρq−1 ◦ JdtProq−1 and the result of Lemma 3.8.

Example 3.9. Figure 3.2 shows an example of ρq−1 ◦ JdtProq−1 being applied to the same
P -strict labeling from Figure 3.1 and Example 3.2. To perform JdtPro2, we first freeze all
labels that are greater than 2. In Figure 3.2, these frozen labels are colored blue. We then apply
jdt�→3 ◦ (jdt2)5 ◦ jdt1→�(f). Note that in Figure 3.2, we do not show applications of jdt2

that do nothing. Following this, we subtract all unfrozen labels by 1. After this step, we have
finished applying JdtPro2, so all labels are now considered unfrozen. We conclude by applying
the Bender–Knuth involution ρ2. Observe that the resulting P -strict labeling in Figure 3.2 is
identical to the P -strict labeling in Figure 3.1 obtained by applying JdtPro. Lemma 3.8 ensures
that this will always be the case.

We proceed to the main theorem of this section, which states that P -strict promotion via
jeu de taquin and P -strict promotion via Bender–Knuth toggles are equivalent. Our proof uses
Lemma 3.8 and an inductive argument.
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Figure 3.2: We perform ρq−1 ◦ JdtProq−1(f) on f ∈ LP×[5](u, v, 3) from Figure 3.1. Labels
colored blue are frozen. For the sake of brevity, we do not show the applications of jdt2 that do
nothing.

Theorem 3.10. For f ∈ LP×[`](u, v, R
q), JdtPro(f) = Pro(f).

Proof. Let f6i denote the P -strict labeling f restricted to the subposet of elements with labels
less than or equal to i and consider f6i to have restriction function Ri. By Lemma 3.8, we
have JdtPro(f62) = ρ1 ◦ JdtPro1(f62) = ρ1(f62). Now suppose JdtPro(f6i) = ρi−1 ◦ · · · ◦
ρ1(f6i). By applying Lemma 3.8, we obtain JdtPro(f6i+1) = ρi◦JdtProi(f6i+1). Observe that
JdtProi(f6i+1)6i = JdtPro(f6i). This implies that JdtProi(f6i+1) = ρi−1 ◦ · · · ◦ ρ1(f6i+1),
as none of ρ1, . . . , ρi−1 affect i+ 1. Therefore, JdtPro(f6i+1) = ρi ◦ ρi−1 ◦ · · · ◦ ρ1(f6i+1). By
induction, we know this holds for i = q− 1, yielding JdtPro(f6q) = ρq−1 ◦ρq−2 ◦ · · · ◦ρ1(f6q),
which is the desired result.
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3.2. P -strict evacuation

Evacuation has been well studied on both standard tableaux and semistandard tableaux. In [3],
Bloom, Pechenik, and Saracino provide explicit statements and proofs for several evacuation
results on semistandard tableaux. We define evacuation on P -strict labelings and investigate
which of those results can be generalized and which cannot.

Definition 3.11. For f ∈ LP×[`](u, v, R
q), we define evacuation in terms of Bender–Knuth

involutions:

E = (ρ1) ◦ (ρ2 ◦ ρ1) ◦ · · · ◦ (ρq−2 ◦ · · · ◦ ρ2 ◦ ρ1) ◦ (ρq−1 ◦ · · · ◦ ρ2 ◦ ρ1)

Additionally, define dual evacuation:

E ′ = (ρq−1) ◦ (ρq−2 ◦ ρq−1) ◦ · · · ◦ (ρ2 ◦ · · · ◦ ρq−2 ◦ ρq−1) ◦ (ρ1 ◦ · · · ◦ ρq−2 ◦ ρq−1)

Evacuation and dual evacuation have a special relation on rectangular semistandard Young
tableaux. We generalize that relation here.

Definition 3.12. We consider the product of chains poset [a1] × [a2] × · · · × [ak] as the poset
{(i1, i2, . . . , ik) | 1 6 ij 6 aj, 1 6 j 6 k}.

Definition 3.13. For each (i1, i2, . . . , ik) ∈ [a1]× [a2]× · · · × [ak], define the element given by
(a1 + 1− i1, a2 + 1− i2, . . . , ak + 1− ik) as the antipode of (i1, i2, . . . , ik).

Definition 3.14. Suppose P = [a1] × [a2] × · · · × [ak]. For f ∈ LP×[`](R
q), we obtain a new

labeling by interchanging each label with the label of its antipode, then replacing each label i
with q + 1− i. Denote this new labeling as f+.

Lemma 3.15. Let P = [a1]× [a2]× · · · × [ak] and f ∈ LP×[`](R
q). Then E ′(f) = E(f+)+.

Proof. This follows from the definitions of evacuation and dual evacuation as a product of
Bender–Knuth involutions.

Because P -strict labelings generalize both increasing labelings and semistandard Young
tableaux, a natural aim would be to generalize results from these domains. Bloom, Pechenik,
and Saracino found a homomesy result on semistandard Young tableaux under promotion [3,
Theorem 1.1]. A natural generalization to investigate would be to P -strict labelings under pro-
motion, where P is a product of two chains and ` = 2. We find that the result does not generalize
due to several evacuation results failing to hold. We note below two statements on evacuation
which do generalize and two examples showing statements that do not generalize.

Proposition 3.16. Let P be a poset. For f ∈ LP×[`](u, v, R
q), we have the following:

1. E2(f) = f

2. E ◦Pro(f) = Pro−1 ◦ E(f)
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Figure 3.3: By applying Pro7 to theP -strict labeling f on the left, we obtain theP -strict labeling
on the right. We see that these are not equal and so Proq(f) = f does not hold in general.

Proof. Both parts rely only on the commutation relations of toggles (see Remark 1.24), and
therefore follow using previous results on the toggle group.

Remark 3.17. Proq(f) = f does not hold for general f ∈ L([a]×[b])×[2](R
q). TheP -strict labeling

f ∈ L([3]×[2])×[2](R
7) from Figure 3.3 gives a counterexample.

Remark 3.18. E(f) = f+ does not hold for general f ∈ L([a]×[b])×[2](R
q). The P -strict labeling

f ∈ L([3]×[2])×[2](R
7) from Figure 3.4 gives a counterexample.

4. Applications of the main theorems to tableaux of many flavors

In this section, we apply Theorems 2.8 and 2.20 to the case in which P is a chain; in the subsec-
tions, we specialize to various types of tableaux. We translate results and conjectures from the
domain of P -strict labelings to B-bounded Γ(P, R̂)-partitions and vice versa.

4.1. Semistandard tableaux

First, we specialize Theorem 2.8 to skew semistandard Young tableaux in Corollary 4.3. We
relate this to Gelfand–Tsetlin patterns and show how a proposition of Kirillov and Berenstein,
Corollary 4.6, follows from our bijection. Finally, we state some known cyclic sieving and ho-
momesy results and use Corollary 4.3 to translate between the two domains.

We begin by defining skew semistandard Young tableaux.

Definition 4.1. Let λ = (λ1, λ2, . . . , λn) and µ = (µ1, µ2, . . . , µm) be partitions with non-zero
parts such that µ ⊂ λ. Where applicable, define µj := 0 for j > m. Let λ/µ denote the
skew partition shape defined by removing the (upper-left justified, in English notation) shape µ
from λ. A skew semistandard Young tableau of shape λ/µ is a filling of λ/µ with positive
integers such that the rows increase from left to right and the columns strictly increase from top
to bottom. Let SSYT(λ/µ, q) denote the set of semistandard Young tableaux of skew shape λ/µ
with entries at most q. In the case µ = ∅, the adjective ‘skew’ is removed.
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Figure 3.4: By applying E to the P -strict labeling f in the upper left, we obtain the P -strict
labeling in the upper right. Comparing E(f) to f+, shown in the bottom right, we see that these
P -strict labelings are not equal and so E(f) = f+ does not hold in general.

In this and the next subsections, fix the chain [n] = p1 l p2 l · · · l pn. We also use the
notation `n for the partition whose shape has n rows and ` columns.

Proposition 4.2. The set of semistandard Young tableaux SSYT(λ/µ, q) is equivalent to
L[n]×[λ1](u, v, R

q) where u(pi) = µi and v(pi) = λ1 − λi for all 1 6 i 6 n.

Proof. Each box (i, j) of a tableau in SSYT(λ/µ, q) corresponds exactly to the element (pi, j)
in P × [`]vu. The weakly increasing condition on rows and strictly increasing condition on
columns in SSYT(λ/µ, q) corresponds to the weak increase on fibers and strict increase on
layers, respectively, in L[n]×[λ1](u, v, R

q).

We now specify the B-bounded Γ(P, R̂)-partitions in bijection with SSYT(λ/µ, q). Recall
B̂ from Definition 2.7.

Corollary 4.3. SSYT(λ/µ, q) under Pro is in equivariant bijection with AB̂(Γ([n], R̂q)) un-
der Row, with ` = λ1, u(pi) = µi, v(pi) = λ1 − λi for all 1 6 i 6 n. Moreover, for
T ∈ SSYT(λ/µ, q), Φ (Pro(T )) = TogPro (Φ(T )).
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Proof. By Proposition 4.2, P -strict labelingsL[n]×[λ1](u, v, R
q) with u and v as above are exactly

semistandard Young tableaux of shape λ/µ with largest entry q, SSYT(λ/µ, q). Therefore, the
first claim follows from Corollary 2.24, where a(pi) = 1 and b(pi) = q for all 1 6 i 6 n. The
second claim follows directly from Theorem 2.8.

When P = [n], the lemma underlying our first main theorem is equivalent to a result of
Kirillov and Berenstein regarding the correspondence between Bender–Knuth involutions on
semistandard Young tableaux and elementary transformations on Gelfand–Tsetlin patterns. We
define these objects below and then state their result, Corollary 4.6, in our notation. We then
prove a more general result from which this follows, Theorem 4.8, as a corollary of our first main
theorem.

Definition 4.4. Given partitions λ = (λ1, . . . , λn), µ = (µ1, . . . , µm) such that µ ⊂ λ, and q, a
Gelfand–Tsetlin pattern from µ to λ with q + 1 rows is a trapezoidal array of nonnegative
integers a = {aij}06i6q,16j6i+m satisfying the following whenever the indices are defined:

1. a0j = µj ,

2. aij > ai−1,j ,

3. aij > ai+1,j+1, and

4. aqj = λj , where if j > |λ|, we say λj = 0

Let the set of Gelfand–Tsetlin patterns from µ to λ with q + 1 rows be denoted GT(λ, µ, q).

Definition 4.5. Let a ∈ GT(λ, µ, q). For 1 6 k 6 q−1, define the elementary transformation
tk(a) : GT(λ, µ, q)→ GT(λ, µ, q) as

tk(aij) :=

{
ai,j i 6= k

min(ai−1,j−1, ai+1,j) + max(ai−1,j, ai+1,j+1)− aij otherwise,

where we consider aij =∞ if j < 1 and aij = 0 if j > i+m.

We use the mechanism of our main theorem to prove Theorem 4.8, which yields the following
result. We prove this corollary right before Remark 4.11.

Corollary 4.6 ([24, Proposition 2.2]). The set SSYT(λ/µ, q) is in bijection with GT(λ̃, µ̃, q),
where λ̃i := λ1 − µn−i+1 and µ̃i := λ1 − λn−i+1. Moreover, ρk on SSYT(λ/µ, q) corresponds
to tq−k on GT(λ̃, µ̃, q).

To put this corollary in the language of our main theorem, we show that GT(λ̃, µ̃, q) is equiv-
alent toAB(Γ([n], R)), where the restriction functionR and the bounding functionB are defined
below.

Definition 4.7. For any convex subposetP×[`]vu and global bound q, letR be the (not necessarily
consistent) restriction function on P given by R(p) = {0, 1, . . . , q + 1} for all p ∈ P , and let B
be defined on Γ(P,R) as B(p, 0) = `− u(p) and B(p, q) = v(p).
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Thus the structure of Γ(P,R) consists of the chains (p, 0) m (p, 1) m · · · m (p, q) and we
have (p, k) l (p′, k + 1) whenever p lP p

′ and 0 6 k 6 q − 1. As we will see in the proof,
these covering relations provide the inequality conditions (2) and (3) from Definition 4.4 in
AB(Γ(P,R)) when P = [n], and B gives conditions (1) and (4).

By generalizing semistandard tableaux to P -strict labelings, we are able to prove the equiv-
ariance result of Corollary 4.6 for any poset P . In this way, AB(Γ(P,R)) can be considered a
generalization of Gelfand–Tsetlin patterns.

Theorem 4.8. The set of P -strict labelings LP×[`](u, v, R
q) is in bijection with AB(Γ(P,R))

and ρk on LP×[`](u, v, R
q) corresponds to τk on AB(Γ(P,R)).

We first define the bijection map using the value jpk from Definition 2.13. Recall from Defi-
nition 2.12 that we consider the label f(p, i) to be in position i.

Definition 4.9. Let Ψ : LP×[`](u, v, R
q) → AB(Γ(P,R)) where Ψ(f)(p, k) = ` + 1 − jpk . We

can treat Ψ(f)(p, k) as the number of positions j in the fiber Fp such that f(p, j) is larger than k,
where we consider f(p, i) > k in the positions `+ 1− v(p) 6 i 6 ` for which f is not defined.

Refer to Figure 4.1 for an example of the map Ψ.

Lemma 4.10. Ψ is a bijection.

Proof. We begin by verifying that Ψ(f) ∈ AB(Γ(P,R)). For 1 6 k 6 q, (p, k) l (p, k − 1).
Since f is weakly increasing on fibers, we have Ψ(f)(p, k) 6 Ψ(f)(p, k − 1), as there must be
at least as many positions greater than k− 1 as are greater than k. If plP p

′ and 0 6 k 6 q− 1,
then (p, k) lΓ(P,Rq) (p′, k + 1). Since there are Ψ(f)(p, k) positions greater than k in f(Fp),
there must be at least as many positions greater than k + 1 in f(Fp′) in order to accommodate
those values in f(Fp), as f is strictly increasing on layers. Thus Ψ(f)(p, k) 6 Ψ(f)(p′, k + 1),
so Ψ(f)(p, k) respects all covering relations in Γ(P,R). Moreover, Ψ(f)(p, 0) = ` − u(p)
since the first position greater than zero is at f(p, u(p) + 1) for all p, and Ψ(f)(p, q) = v(p)
since the only positions considered greater than q are those after the end of the fiber. Thus
Ψ(f) ∈ AB(Γ(P,R)).

For the reverse map, let σ ∈ AB(Γ(P,R)) and let Ψ−1(σ)(p, ` + 1 − i) = k for i such that
σ(p, k) < i 6 σ(p, k − 1). Since σ(p, k) 6 σ(p, k − 1), Ψ−1(σ) is weakly increasing on fibers,
and because σ(p, k) > σ(p′, k−1) for all p′lP p, if Ψ−1(σ)(p, j) = k then Ψ−1(σ)(p′, j) 6 k−1,
so Ψ−1(σ) is strictly increasing across layers. Thus Ψ−1(σ) ∈ LP×[`](u, v, R

q).
Now Ψ(Ψ−1(σ))(p, k) = σ(k) since there are σ(p, k) positions greater than k in Φ−1(σ)(Fp),

and, if f(p, i) = k, Ψ−1(Ψ(f))(p, i) = k since Ψ(f)(p, k) < `+ 1− (`+ 1− i) = i. Therefore
Ψ is a bijection.

Proof of Theorem 4.8. AB(Γ(P,R)) is in bijection with AB̂(Γ(P, R̂q)) via the maps Φ from
Definition 2.9 and Ψ from Definition 4.9. We wish to show this bijection ΦΨ−1 is equivariant
under the action of τ(p,k).

Let σ ∈ AB(Γ(P,R)), f = Ψ−1(σ) ∈ LP×[`](u, v, R
q), and σ = Φ(f) ∈ AB̂(Γ(P, R̂q)).

By Lemma 2.15, σ(p, k) = ` + 1 − jpk = σ(p, k) where k ∈ Rq(p)∗ (that is, for (p, k) ∈
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Γ(P, R̂q) \ dom(B̂)). Suppose k /∈ Rq(p)∗. If k < minRq(p), then f(p, i) is always greater
than k, so σ(p, k) = ` − u(p). If k > maxRq(p)∗, then f(p, i) is always less than or equal
to k, so σ(p, k) = v(p). Finally, if k1 is the largest value in Rq(p)∗ such that k1 < k, then
σ(p, k) = σ(p, k1), since the number of positions greater than k1 must be the same as the number
of positions greater than k. By Lemma 2.23, (p, k1) is fixed in AB̂(Γ(P, R̂q)) and therefore in
AB(Γ(P,R)) since k1 ∈ Rq(p)∗. Thus, whenever k /∈ Rq(p)∗, σ(p, k) is fixed, so τ(p,k) acts as
the identity on AB(Γ(P,R)). Now, for equivariance, we need only show that τ(p,k)(σ)(p, k) =
τ(p,k)(σ)(p, k) whenever k ∈ Rq(p)∗.

Let k ∈ Rq(p)∗. If (p, k) covers and is covered by the same elements in Γ(P, R̂q) as in
Γ(P,R), then we are done, so we will consider the cases in which these covers differ. Suppose
k1 > k+1 and either (p, k)m(p, k1) in Γ(P, R̂q) or there exists p′mPp such that (p, k)l(p′, k1). In
each case, by definition of Γ, k+1 /∈ Rq(p)∗ so, by Lemma 2.23, (p, k) is fixed inAB̂(Γ(P, R̂q))

and therefore inAB(Γ(P,R)). Now suppose k1 < k−1 and either (p, k)l(p, k1) or there exists
p′ lP p such that (p, k) m (p′, k1). In the first case, σ(p, k1) = σ(p, k1) = σ(p, k − 1). In the
second case, k − 1 /∈ Rq(p′), otherwise we would have (p, k) m (p′, k − 1), so σ(p′, k1) =
σ(p′, k1) = σ(p′, k − 1).

In both cases where the covers in Γ(P, R̂q) differ from Γ(P,R), the minimum value of
the upper covers and the maximum value of the lower covers of (p, k) is unchanged between
AB̂(Γ(P, R̂q)) and AB(Γ(P,R)). Thus, τ(p,k)(σ)(p, k) = τ(p,k)(σ)(p, k).

By the above, τk on AB(Γ(P,R)) is equivalent to τk on AB̂(Γ(P, R̂q)). Thus, by Lemma
2.11, τk on AB(Γ(P,R)) corresponds to ρk on LP×[`](u, v, R

q).

In the following proof of the Kirillov and Berenstein result, we consider a Gelfand–Tsetlin
pattern as a parallelogram-shaped array {aij}06i6q,16j6n with the same restrictions on values as
in Definition 4.4.

Proof of Corollary 4.6. Following Proposition 4.2, given SSYT(λ/µ, q), define u(pi) = µi and
v(pi) = λ1−λi for all 1 6 i 6 n. Then SSYT(λ/µ, q) is equivalent toL[n]×[λ1](u, v, R

q). Thus,
to apply Theorem 4.8, considerAB(Γ([n], R)) where B is defined using the u and v above, that
is, B(pi, 0) = λ1 − µi and B(pi, q) = λ1 − λi for 1 6 i 6 n.

Let σ ∈ AB(Γ([n], R)). Then the array given by aij = σ(pn+1−j, q − i) for 0 6 i 6 q and
1 6 j 6 n satisfies the inequalities aij > ai−1,j and aij > ai+1,j+1, since (pn+1−j, q − i) m
(pn+1−j, q − i + 1) and (pn+1−j, q − i) m (pn−j, q − i − 1) in Γ([n], R). Additionally, a0j =
σ(pn+1−j, q) = λ1−µn+1−j and aqj = σ(pn+1−j, 0) = λ1−λn+1−j . Thus {aij} ∈ GT(λ̃, µ̃, q).
Since the map σ 7→ {aij} given above is invertible (as it simply “rotates” the Γ([n], R)-partition
σ), AB(Γ([n], R)) is equivalent to GT(λ̃, µ̃, q).

By their respective definitions, the toggle τ(pi,k) at (pi, k) on AB(Γ([n], R)) is exactly the
elementary transformation tq−k at aq−k,q−i on GT(λ̃, µ̃, q), so τk onAB(Γ([n], R)) corresponds
to tq−k on GT(λ̃, µ̃, q). Thus, by Theorem 4.8, tq−k on GT(λ̃, µ̃, q) corresponds to ρk on
L[n]×[λ1](u, v, R

q) = SSYT(λ/µ, q).

Remark 4.11. Note, Kirillov and Berenstein [24, Proposition 2.2] actually gave a bijection be-
tween SSYT(λ/µ, q) and GT(λ, µ, q). Our bijection is dual to theirs, but this is an artifact of
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Figure 4.1: The top row shows a skew semistandard tableau with maximum entry 5 and its corre-
sponding Gelfand–Tsetlin pattern in GT(λ̃, µ̃, 5) where µ = (3, 1), µ̃ = (2, 2), λ = (5, 5, 3, 3),
and λ̃ = (5, 5, 4, 2). In the bottom row, the left is an element of AB̂(Γ([n], R̂5)) from our main
theorem, and on the right is an element of AB(Γ([n], R)) from Theorem 4.8. If we rotate this
B-bounded Γ([n], R)-partition 90 degrees counterclockwise, the labels coincide with those of
the Gelfand–Tsetlin pattern above.

our conventions, not a substantive difference. See also [22] (Appendix A, especially Proposition
A.7) and [15].

In the case where µ = ∅ and λ is a rectangle, Corollary 4.3 specializes nicely.

Corollary 4.12. The set of semistandard Young tableaux SSYT(`n, q) under Pro is in equivari-
ant bijection with the set A`([n]× [q − n]) under Row.

Proof. By Proposition 4.2, SSYT(`n, q) under Pro is equivalent toL[n]×[`](R
q) which, by Corol-

lary 2.29, is in equivariant bijection with A`([n]× [q − n]) under Row.

We now discuss a cyclic sieving result of B. Rhoades on rectangular semistandard Young
tableaux and its translation via Corollary 4.12.
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Figure 4.2: The correspondence in the top row is that of Proposition 4.2, the bijection in the
right column is our main theorem, and the bottom row more clearly shows the element of
AB̂(Γ([4], R̂7)) as an element ofA5([4]×[3]). To emphasize the underlying shape of Γ(P, R̂), in
this and the following figures we do not draw covering relations between the elements of Γ(P, R̂)
fixed by B̂ and grey out the covering relations between those elements and the rest of the poset.

Definition 4.13 ([27]). Let C be a finite cyclic group acting on a finite set X and let c be a
generator of C. Let ζ ∈ C be a root of unity having the same multiplicative order as c and let
g ∈ Q[x] be a polynomial. The triple (X,C, g) exhibits the cyclic sieving phenomenon if for
any integer d > 0, the fixed point set cardinality |Xcd | is equal to the polynomial evaluation
g(ζd).

Theorem 4.14 ([28, Theorem 1.4]). The triple (SSYT(`n, q), 〈Pro〉, X(x)) exhibits the cyclic
sieving phenomenon, where

X(x) :=
∏̀
i=1

n∏
j=1

1− xi+j+q−n−1

1− xi+j−1

Corollary 4.15. Let 1 6 n 6 q. Then the triple (A`([n]× [q − n]), 〈Row〉, X(x)) exhibits the
cyclic sieving phenomenon.
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Proof. This follows from Theorem 4.14 and Corollary 4.12. Note that X(x) is MacMahon’s
generating function for plane partitions which fit inside a box having dimensions ` by n by
q − n. These are in simple bijection with A`([n]× [q − n]).

Remark 4.16. Corollary 4.15 has been noted in the literature, for example, by Hopkins [22] and
Frieden [15]. Note the fact that the order of rowmotion on A`([n]× [q − n]) divides q (implicit
in the statement of cyclic sieving) also follows from the order of birational rowmotion on the
poset [n] × [q − n]. This was proved first by D. Grinberg and T. Roby [19] with a more direct
proof by G. Musiker and Roby [25].

We now turn our attention toward several homomesy results. Rather than present the most
general definition, this definition is given for actions with finite orbits, as this is the only case we
consider.

Definition 4.17 ([26]). Given a finite set S, an action τ : S → S, and a statistic f : S → k
where k is a field of characteristic zero, we say that (S, τ, f) exhibits homomesy if there exists
c ∈ k such that for every τ -orbit O

1

|O|
∑
x∈O

f(x) = c

where |O| denotes the number of elements in O. If such a c exists, we will say the triple is
c-mesic.

We state two known theorems below and then prove their equivalence as a corollary of
Theorem 2.8.

Theorem 4.18 ([3, Theorem 1.1]). Let S be a set of boxes in the rectangle `n that is fixed under
180◦ rotation and ΣS denote the sum of entries in the boxes of S. Then (SSYT(`n, q),Pro,ΣS)
exhibits homomesy.

Recall Definition 3.12, which specifies notation for [a]× [b], and Definition 3.13 of antipode.

Definition 4.19. A subset S of [a] × [b] is antipodal if S contains the antipode of each of its
elements.

Theorem 4.20 ([12] [13, Theorem 3.4]). Let S be a antipodal subset of [n] × [q − n] and ΣS

denote the sum of labels of S. Then (A`([n]× [q − n]),TogPro,ΣS) exhibits homomesy.

Corollary 4.21. The previous two results, Theorem 4.18 and Theorem 4.20, imply each other.

Proof. By Corollary 4.12, SSYT(`n, q) under promotion is in equivariant bijection with
A`([n] × [q − n]) under rowmotion, and also TogPro, by conjugacy. By Corollary 4.3, for
T ∈ SSYT, (`n, q) Φ (Pro(T )) = TogPro (Φ(T )). Furthermore, we claim that ΣS(T ) =

ΣS(Φ(T )) + `n(n+1)
2

. To show this claim, observe that if T is the tableau with all 1’s in the first
row, all 2’s in the second row, and so on, then ΣS(T ) = `n(n+1)

2
. Additionally, the corresponding

Q-partition Φ(T ), where Q = [n]× [q− n], is such that every label is 0. Increasing the entry of
a box in T by 1 increases the label of an element in Φ(T ) by 1, showing the claim. Because the
statistic ΣS under the bijection differs by a constant, the corollary statement follows.
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4.2. Flagged tableaux

In this section, we first specialize Theorem 2.8 to flagged tableaux and use this correspondence to
enumerate the corresponding set of B̂-bounded Γ(P, R̂)-partitions. Then, we state some recent
cyclic sieving and new homomesy conjectures and use Theorem 2.8 to translate these conjectures
between the two domains.

Definition 4.22. Let λ = (λ1, λ2, . . . , λn) and µ = (µ1, µ2, . . . , µm) be partitions with µ ⊂ λ
and let b = (b1, b2, . . . , bn) where bi is a positive integer and b1 6 b2 6 . . . 6 bn. A flagged
tableau of shape λ/µ and flag b is a skew semistandard Young tableau of shape λ/µ whose
entries in row i do not exceed bi. Let FT(λ/µ, b) denote the set of flagged tableaux of shape
λ/µ and flag b.

Note that, depending on context, b represents either the increasing sequence of positive in-
tegers (b1, . . . , bn) or the function b : [n]→ Z+ with b(pi) = bi.

Proposition 4.23. The set of flagged tableaux FT(λ/µ, b) is equivalent to L[n]×[λ1](u, v, R
b)

where u(pi) = µi and v(pi) = λ1 − λi for all 1 6 i 6 n.

Proof. Since L[n]×[λ1](u, v, R
b) ⊂ L[n]×[λ1](u, v, R

bn), by Proposition 4.2 we have that [n]-strict
labelings in L[n]×[λ1](u, v, R

b) correspond to semistandard Young tableaux whose entries in row
i are restricted above by bi, which is exactly FT(λ/µ, b).

We now specify the B̂-bounded Γ(P, R̂)-partitions in bijection with FT(λ/µ, b). Recall B̂
from Definition 2.7.

Corollary 4.24. The set FT(λ/µ, b) under Pro is in equivariant bijection with AB̂(Γ([n], R̂b))
under Row, with ` = λ1, u(pi) = µi, v(pi) = λ1 − λi for all 1 6 i 6 n. Moreover, for
T ∈ FT(λ/µ, b), Φ (Pro(T )) = TogPro (Φ(T )).

Proof. This follows from Proposition 4.23, Corollary 2.24, and Theorem 2.8.

Remark 4.25. Flagged tableaux are enumerated by an analogue of the Jacobi–Trudi formula due
to I. Gessel and X. Viennot [18] with an alternative proof by M. Wachs [38]. Thus the bijection
of Corollary 4.24 allows one to translate this to enumerate AB̂(Γ([n], R̂b)).

In the rest of this subsection, we apply Corollary 4.24 to some specific sets of flagged
tableaux, obtaining Corollaries 4.28 and 4.41 along with further corollaries and conjectures. Our
first corollary involves the triangular poset from the following definition. This poset is isomor-
phic to the TypeAn positive root poset from Coxeter theory. Though this algebraic interpretation
is what has generated interest surrounding this poset, we will not need it here.

Definition 4.26. Let n denote the subposet of [n]× [n] given by

n = {(i, j) | 1 6 i 6 n, n− i < j 6 n}.

As noted in Section 1.1 as our motivating example, we have the following correspondence
in the case of flagged tableaux of shape `n and flag b = (2, 4, . . . , 2n). Following the procedure
of Corollary 4.12, we first show that Γ([n], Rb) has the desired shape.
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Lemma 4.27. Let b = (2, 4, . . . , 2n). Then, if Rb is consistent on [n], Γ([n], Rb) and n are
isomorphic as posets.

Proof. The restriction function on [n] induced by b is given by Rb(pi) = {i, i + 1, . . . , 2i}. By
definition of Γ (as noted in [10, Thm. 2.21]), (pi1 , k1) l (pi2 , k2) if and only if either i1 = i2
and k1 − 1 = k2 or i1 + 1 = i2 and k1 + 1 = k2. Define a map from Γ([n], Rb) to n by
(pi, k) 7→ (i, n−k+i). Since i 6 k 6 2i−1 we have n−i+1 6 n−k+i 6 n+1, so the above
map is a bijection to {(i, j) | i+ j > n}. Because (i, j)l (i′, j′) ∈ [n]× [n] if and only if i = i′

and j + 1 = j′ or i+ 1 = i′ and j = j′, the covers of (pi, k) in Γ([n], Rb) correspond exactly to
the covers of (i, n− k + i) in n. Thus Γ([n], Rb) and n are isomorphic as posets.

Corollary 4.28. The set of flagged tableaux FT(`n, (2, 4, . . . , 2n)) under Pro is in equivariant
bijection with A`( n) under Row.

Proof. Let b = (2, 4, . . . , 2n). By Corollary 4.24, FT(`n, b) under Pro is in equivariant bijection
with AB̂(Γ([n], R̂b)) under Row where u(pi) = v(pi) = 0 for all pi ∈ [n]. By Proposition 2.27,
AB̂(Γ([n], R̂b)) is equivalent toA`(Γ([n], Rb)) which, by Lemma 4.27, is exactlyA`( n).

D. Grinberg and T. Roby proved a result on the order of birational rowmotion on n, which
implies the following.

Theorem 4.29 ([19, Corollary 66]). Row on A`( n) is of order dividing 2(n+ 1).

We then obtain the following as a corollary of this theorem and Corollary 4.28.

Corollary 4.30. Pro on FT(`n, (2, 4, . . . , 2n)) is of order dividing 2(n+ 1).

Note, the order does not depend on `. Therefore, the order of promotion in this case is
independent of the number of columns.

J. Propp conjectured the following instance of the cyclic sieving phenomenon (see Defini-
tion 4.13) on A`( n) under rowmotion with a polynomial analogue of the Catalan numbers.
S. Hopkins recently extended this conjecture to positive root posets of all coincidental types (see
[23, Conj 4.23], [22, Remark 5.5]).

Conjecture 4.31. The triple
(
A`( n), 〈Row〉, Cat`(x)

)
, where

Cat`(x) :=
`−1∏
j=0

n∏
i=1

1− xn+1+i+2j

1− xi+2j
,

exhibits the cyclic sieving phenomenon.

Thus, Corollary 4.28 implies the equivalence of this conjecture and the following.

Conjecture 4.32. The triple (FT(`n, (2, 4, . . . , 2n)), 〈Pro〉, Cat`(x)) exhibits the cyclic sieving
phenomenon.
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We conjecture the following homomesy statement (Conjecture 4.35), which was proved in
the case ` = 1 by S. Haddadan [20, 21].

Definition 4.33. We say a poset P is ranked if there exists a rank function rk : P → Z such
that p1 lP p2 implies rk(p2) = rk(p1) + 1.

Definition 4.34. Let P be a ranked poset and let σ ∈ A`(P ). Define rank-alternating label sum
to beR(σ) =

∑
p∈P (−1)rk(p)σ(p).

For the following conjecture, we use the rank function of n defined by rk(p) = 0 if p is a
minimal element.

Conjecture 4.35. The triple
(
A`( n),TogPro,R

)
is 0-mesic when n is even and `

2
-mesic

when n is odd.

Using Sage [35], we have checked this conjecture for n 6 6 and ` 6 3. We have also verified
that a similar statement fails to hold for the Type B/C case when n = 2 and ` = 1, and the Type
D case when n = 4 and ` = 1.

We use Corollary 4.28 to translate this to a conjecture on flagged tableaux.

Definition 4.36. Suppose T ∈ FT(`n, (2, 4, . . . , 2n)). Let RO denote the boxes in the odd rows
of T and let RE denote the boxes in the even rows of T . Furthermore, let O denote the set of
boxes in T containing an odd integer and E denote the set of boxes in T containing an even
integer. Then

∑ |RO ∩E| −
∑ |RE ∩O| denotes the difference of the number of boxes in odd

rows of T that contain an even integer and the number of boxes in even rows of T that contain
an odd integer.

Conjecture 4.37. (FT(`n, (2, 4, . . . , 2n)),Pro,
∑ |RO ∩ E| −

∑ |RE ∩O|) is 0-mesic when n
is even and `

2
-mesic when n is odd.

Theorem 4.38. The previous two conjectures, Conjecture 4.35 and Conjecture 4.37, imply each
other.

Proof. Corollary 4.24 shows thatAB̂(Γ([n], R̂b)) under TogPro is in equivariant bijection with
FT(`n, (2, 4, . . . , 2n)) under Pro. Furthermore, recall that Γ([n], Rb) and n are isomorphic as
posets by Lemma 4.27. As a result, by Proposition 2.27, the objects and the actions in these con-
jectures are equivalent. What remains to be shown is that the rank-alternating label sum statistic
R onA`( n) corresponds to the statistic

∑ |RO∩E|−
∑ |RE∩O| on FT(`n, (2, 4, . . . , 2n)).

Let T ∈ FT(`n, (2, 4, . . . , 2n)) and consider an even row, say row 2m, of T . The allowable
entries in the boxes of row 2m are {2m, 2m+1, . . . , 4m}. Using the notation of Definition 2.13,
we can compute the negation of the number of boxes that contain odd entries in row 2m as:

−(j2m
4m−1 − j2m

4m−2)− (j2m
4m−3 − j2m

4m−4)− · · · − (j2m
2m+1 − j2m

2m).

By (1) from the proof of Lemma 2.11, the corresponding computation on σ = Φ(T ) ∈
AB̂(Γ([n], R̂b)) is:

σ(2m, 4m− 1)− σ(2m, 4m− 2) + σ(2m, 4m− 3)− σ(2m, 4m− 2) + · · ·
· · · − σ(2m, 2m+ 2) + σ(2m, 2m+ 1)− σ(2m, 2m),
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which is the statisticR on the diagonal i = 2m in n.
Now consider an odd row, say row 2m+ 1, of T . The allowable entries in the boxes of row

2m+ 1 are {2m+ 1, 2m+ 2, . . . , 4m+ 2}. We can compute the number of boxes that contain
even entries in row 2m+ 1 as:

(j2m+1
4m+2 − j2m+1

4m+1) + (j2m+1
4m − j2m+1

4m−1) + · · ·+ (j2m+1
2m+2 − j2m+1

2m+1).

By (1) from the proof of Lemma 2.11, this computation on the corresponding σ is:

(σ(2m+ 1, 4m+ 1)− σ(2m+ 1, 4m+ 2)) + (σ(2m+ 1, 4m− 1)− σ(2m+ 1, 4m)) + . . .

+ (σ(2m+ 1, 2m+ 1)− σ(2m+ 1, 2m+ 2)).

However, by construction we have σ(2m + 1, 4m + 2) = B̂(2m + 1, 4m + 2) = 0. Thus, we
obtain

σ(2m+ 1, 4m+ 1)− σ(2m+ 1, 4m) + σ(2m+ 1, 4m− 1)− σ(2m+ 1, 4m− 2) + . . .

− σ(2m+ 1, 2m+ 2) + σ(2m+ 1, 2m+ 1),

which is the statisticR on the diagonal i = 2m+1 in n. As a result, by summing the statistic∑ |RO ∩ E| −
∑ |RE ∩ O| over all rows in T , we observe the corresponding statistic is R,

summed over all diagonals of the poset n.

Another set of flagged tableaux of interest in the literature is tableaux of staircase shape
scn = (n, n− 1, . . . , 2, 1) with flag b = (`+ 1, `+ 2, . . . , `+n). The Type A case of a result of
C. Ceballos, J.-P. Labbé, and C. Stump [7] on multi-cluster complexes along with a bijection of
L. Serrano and Stump [32] yields the following result on the order of promotion on these flagged
tableaux.

Theorem 4.39 ([7, Theorem 8.8], [32, Theorem 4.7]). Let b = (`+ 1, `+ 2, . . . , `+n). Pro on
FT(scn, b) is of order dividing n+ 1 + 2`.

The following conjecture is given in terms of flagged tableaux in [32] and in terms of multi-
cluster complexes in [7].

Conjecture 4.40 ([32, Conjecture 1.7],[7, Open Problem 9.2]). Let b = (`+1, `+2, . . . , `+n)
and Cat`(x) be as in Conjecture 4.31. (FT(scn, b), 〈Pro〉, Cat`(x)) exhibits the cyclic sieving
phenomenon.

Note this is a set of flagged tableaux with different shape and flag but the same cardinality
as the flagged tableaux in Corollary 4.28, the same conjectured cyclic sieving polynomial, and
a different order of promotion. The case ` = 1 follows from a result of S.P. Eu and T.S. Fu [14]
on cyclic sieving of faces of generalized cluster complexes, but for ` > 1 this conjecture is still
open.

We can translate this conjecture to rowmotion on P -partitions with the following corollary
of Theorem 2.8. Recall Definition 3.12, which specifies notation for [a]× [b].
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Corollary 4.41. Let b = (` + 1, ` + 2, . . . , ` + n). There is an equivariant bijection between
FT (scn, b) under Pro andAδε([n]× [`]) under Row, where for (i, j) ∈ [n]× [`], δ(i, j) = n and
ε(i, j) = i− 1.

Proof. By Proposition 4.23, FT(scn, b) is equivalent to L[n]×[n](u, v, R
b) where u(pi) = 0 and

v(pi) = i − 1 for all 1 6 i 6 n. The restriction function Rb consistent on [n] × [n]vu is given
by Rb(pi) = {i, i + 1, . . . ` + i}, and so Rb is also consistent on [n]. Now, by Proposition 2.26
and Corollary 4.24, FT(scn, b) under Pro is equivalent to Aδε(Γ([n], Rb)) under Row where
δ(pi, k) = n and ε(pi, k) = i − 1. Thus what remains to show is that Γ([n], Rb) is isomorphic
to [n]× [`] as a poset, and, in order to respect the bounds δ and ε, for a given i we have (pi, k) ∈
Γ([n], Rb) in correspondence with (i, j) ∈ [n]× [`] for some j.

Rb is exactly the restriction function R`+n on [n] induced by the global bound ` + n, so, by
the map (pi, k) 7→ (p, q − (n− 1) + h(p)− k − 1) from Lemma 2.28, Γ([n], Rb) is isomorphic
to [n]× [(`+n)−n] = [n]× [`] and we have the desired correspondence of elements. Therefore
Aδε(Γ([n], Rb)) is equivalent toAδε([n]× [`])) where δ(i, j) = n and ε(i, j) = i− 1 for all i.
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Figure 4.3: On the left is an element of FT (sc4, b) and, in the center, its equivalent [4]-strict
labeling. The corresponding (δ, ε)-bounded [n] × [`]-partition is shown on the right, using the
poset labels of Γ([n], R̂b).

Corollary 4.41 implies the equivalence of this conjecture and the following new conjecture.

Conjecture 4.42.
(
Aδε([n]× [`])), 〈Row〉, Cat`(x)

)
exhibits the cyclic sieving phenomenon,

where δ(i, j) = n and ε(i, j) = i− 1 for all i.

4.3. Symplectic tableaux

We begin by defining semistandard symplectic Young tableaux, following the conventions of [6].

Definition 4.43. Let λ = (λ1, λ2, . . . , λn) and µ = (µ1, µ2, . . . , µm) be partitions with non-zero
parts such that µ ⊂ λ. (Let µj := 0 for j > m.) A skew semistandard symplectic (Young)
tableau of shape λ/µ is a filling of λ/µ with entries in {1, 1, 2, 2, 3, 3, . . . } such that the rows
increase from left to right and the columns strictly increase from top to bottom, with respect to
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the ordering 1 < 1 < 2 < 2 < 3 < 3 < . . . , and such that the entries in the ith row are greater
than or equal to i. Let Sp(λ/µ, 2q) denote the set of semistandard symplectic tableaux of skew
shape λ/µ with entries at most q̄.

Proposition 4.44. The set of symplectic tableaux Sp(λ/µ, 2q) is equivalent toL[n]×[λ1](u, v, R
2q
a )

where a = (1, 3, 5, . . . , 2n− 1), u(pi) = µi and v(pi) = λ1 − λi for all 1 6 i 6 n.

Proof. SinceL[n]×[λ1](u, v, R
2q
a ) ⊂ L[n]×[λ1](u, v, R

2q), by Proposition 4.2 we have that [n]-strict
labelings inL[n]×[λ1](u, v, R

2q
a ) correspond to semistandard Young tableaux whose entries in row

i are restricted below by 2i− 1. Then, sending 2k to k and 2k − 1 to k for each 1 6 k 6 q, we
have exactly Sp(λ/µ, 2q).

We now specify the B̂-bounded Γ(P, R̂)-partitions in bijection with Sp(λ/µ, 2q). Recall B̂
from Definition 2.7.

Corollary 4.45. The set Sp(λ/µ, 2q) under Pro is in equivariant bijection withAB̂(Γ([n], R̂2q
a ))

under Row, where a = (1, 3, 5, . . . , 2n − 1) and ` = λ1, u(pi) = µi, v(pi) = λ1 − λi for all
1 6 i 6 n.

Proof. This follows from Proposition 4.44 and Corollary 2.24.

Remark 4.46. Symplectic tableaux in the case µ = ∅ are enumerated by an analogue of the
Jacobi–Trudi formula, due to M. Fulmek and C. Krattenthaler [16]. Thus the bijection of Corol-
lary 4.24 allows one to translate this to enumerate AB̂(Γ([n], R̂2q

a )).
There is also a hook-content formula for symplectic tableaux, due to P. Campbell and A.

Stokke [6]. They proved a symplectic Schur function version of this formula, but we will not
need that here.

Theorem 4.47 ([6, Corollary 4.6]). The cardinality of Sp(λ, 2q) is∏
(i,j)∈[λ]

2q + rλ(i, j)

hλ(i, j)

where hλ(i, j) is the hook length hλ(i, j) = λi + λtj − i− j + 1 and rλ(i, j) is defined to be

rλ(i, j) =

{
λi + λj − i− j + 2 if i > j

i+ j − λti − λtj if i 6 j

We use this formula to enumerate symplectic tableaux of staircase shape, finding a particu-
larly simple formula.

Corollary 4.48. The cardinality of Sp(scn, 2n) is 2n
2 .
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Proof. This follows from Theorem 4.47 above. For λ = scn = (n, n − 1, . . . 1), we have
λi = λti = n − i + 1. First, we calculate the product of the numerator, where we always take
(i, j) ∈ [λ], i.e. 1 6 i 6 n and 1 6 j 6 n− i+ 1.

∏
(i,j)∈[λ]

2n+ rλ(i, j) =

(∏
i>j

2n+ rλ(i, j)

)(∏
i6j

2n+ rλ(i, j)

)

=

(∏
i>j

2(2n− i− j + 2)

)(∏
i6j

2(i+ j − 1)

)

We now rewrite by considering the products over the columns j 6 bn
2
c or the rows i 6 dn

2
e:

= 2(n
2)

 ∏
j6bn

2
c

∏
j<i6n−j+1

2n− i− j + 2

 ∏
i6dn

2
e

∏
i6j6n−i+1

i+ j − 1


= 2(n

2)

 ∏
j6bn

2
c

(2n− 2j + 1)!

n!

 ∏
i6dn

2
e

n!

(2i− 2)!


Next, we find the product of the hook lengths, considered over the rows 1 6 i 6 n:∏

(i,j)∈[λ]

hλ(i, j) =
∏

16i6n

∏
16j6n−i+1

2n− 2i− 2j + 3

=
∏

16i6n

(2n− 2i+ 1)(2n− 2i− 1) · · · 3 · 1

=
∏

16i6n

(2n− 2i+ 1)!

2n−i(n− i)! =
1

2(n−1
2 )

∏
16i6n

(2n− 2i+ 1)!

(n− i)!

Finally,∏
(i,j)∈[λ]

2n+ rλ(i, j)

hλ(i, j)

= 2(n
2)+(n−1

2 )

 ∏
k6bn

2
c

(2n− 2k + 1)!

n!

 ∏
k6dn

2
e

n!

(2k − 2)!

/ ∏
16k6n

(2n− 2k + 1)!

(n− k)!

= 2n
2

(n!)d
n
2
e−bn

2
c
∏

16k6n

(n− k)!

/ ∏
bn
2
c<k6n

(2n− 2k + 1)!

 ∏
16k6dn

2
e

(2k − 2)!


= 2n

2

(n!)d
n
2
e−bn

2
c
∏

16k6n

(n− k)!

/ ∏
16k6dn

2
e

(2k − 1)!(2k − 2)!

= 2n
2

(n!)d
n
2
e−bn

2
c
∏

16k6n

(n− k)!

/(
(n!)d

n
2
e−bn

2
c
∏

16k6n

(n− k)!

)
= 2n

2

.
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In the rest of this subsection, we apply Corollary 4.45 to staircase-shaped symplectic tableaux
to obtain Corollaries 4.50 and 4.51. This involves the poset in the following definition. This poset
is isomorphic to the dual of the Type Bn positive root poset. As before, we will not need this
algebraic motivation here. See Figure 4.4.

Definition 4.49. Let n denote the subposet of [n]× [2n− 1] given by

n = {(i, j) | i 6 j and i+ j 6 2n}.

We obtain the following correspondence, as a corollary of our main results.

Corollary 4.50. There is an equivariant bijection between Sp(scn, 2n) under Pro and Aδε( n)
under Row, where for (i, j) ∈ n, δ(i, j) = min(j, n) and ε(i, j) = i− 1.

Proof. Let a = (1, 3, 5, . . . , 2n − 1) and define δ and ε as above. Then, by Corollary 4.45,
Sp(scn, 2n) under Pro is in equivariant bijection with AB̂(Γ([n], R̂2n

a )) under Row with ` = n,
u(pi) = 0, v(pi) = i− 1 for all 1 6 i 6 n. We show AB̂(Γ([n], R̂2n

a )) is equivalent to Aδε( n).
The restriction functionR2n

a consistent on Sp(scn, 2n) can be written explicitly asR2n
a (pi) =

{2i − 1, 2i, . . . , 2n}. Consider the poset structure of the elements of Γ([n], R̂2n
a ) that are not

fixed by B̂, that is {(pi, k) | k ∈ R2n
a (pi)

∗}. By definition of Γ (as noted in [10, Thm. 2.21]),
(pi, k1) l (pj, k2) if and only if either i = j and k1 − 1 = k2 or i + 1 = j and k1 + 1 = k2.
By the map (pi, k) → (i, 2n − 1 + i − k), the subposet Γ([n], R̂2n

a ) \ dom(B̂) is a subposet of
[n]× [2n− 1], since 1 6 i 6 n, 2i− 1 6 k 6 2n− 1 implies i 6 2n− 1 + i− k 6 2n− i, and
the above covering relations imply (i1, 2n − 1 + i1 − k1) 6 (i2, 2n − 1 + i2 − k2) if and only
if i1 6 i2 or 2n − 1 + i1 − k1 6 2n − 1 + i2 − k2. Moreover, this subposet of [n] × [2n − 1]
is exactly n, since the range i 6 2n − 1 + i − k 6 2n − i of the second component satisfies
Definition 4.49. Therefore, B̂-bounded Γ([n], R̂2n

a )-partitions are exactly elements of An( n)
with per-element bounds on the labels induced by the elements fixed by B̂.

Finally, we determine these upper and lower bounds on the label of any element (i, j) ∈ n

by determining the corresponding bounds on the label σ(pi, k) where σ ∈ AB̂(Γ([n], R̂2n
a ))

and (pi, k) ∈ Γ([n], R̂2n
a ) \ dom(B̂). For the elements (pi,min R̂2n

a (pi)
∗) fixed by B̂, we have

B̂(pi,min R̂2n
a (pi)

∗) = n − u(pi) = n, so these elements induce an upper bound of n on all
σ(pi, k). Next, the fixed elements (pi,max R̂2n

a (pi)
∗) = (pi, 2n) induce a lower bound v(pi) =

i−1 on all σ(pi, k) and an equivalent upper bound on σ(pi′ , k
′), where (pi′ , k

′) < (pi, 2n), which
is the case whenever i′ < i and k′ > 2n − (i − i′). Therefore, a generic σ(pi, k) is bounded
below by i− 1 and above by at most n and, if k = 2n− (i′− i) for any i < i′ 6 n, then σ(pi, k)
is bounded above by i′− 1. Translating toAn( n), σ(i, j) = σ(pi, 2n− 1 + i− j) (we keep the
notation σ due to the equivalence shown above) so σ(i, j) is bounded below by i− 1 and above
by at most n. We have 2n − 1 + i − j = 2n − (j + 1 − i), so σ(i, j) is bounded above by j
for 1 6 j 6 n − 1. Thus, if δ(i, j) = min(j, n) and ε(i, j) = i − 1, then AB̂(Γ([n], R̂2n

a )) is
equivalent to Aδε( n).

The corollary below follows directly from Corollaries 4.48 and 4.50.

Corollary 4.51. The cardinality of Aδε( n) with δ(i, j) = min(j, n) and ε(i, j) = i− 1 is 2n
2 .
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Figure 4.4: On the left is an element of Sp(sc3, 6) (with entries in {1, 1, 2, 2, 3, 3}), and in
the center is the equivalent [3]-strict labeling (with labels in {1, 2, 3, 4, 5, 6}). The correspond-
ing (δ, ε)-bounded n-partition is given on the right, shown as the equivalent element of
AB̂(Γ([3], R̂6

a)). Here, the poset element (p1, 5) ∈ Γ([3], R̂6
a) corresponds to (1, 1) ∈ n,

(p1, 4) corresponds to (1, 2), and so on.

It would be interesting to see whether one can find a set of symplectic tableaux that exhibit
the cyclic sieving phenomenon with respect to promotion. A nice counting formula is generally
a necessary first step.

Acknowledgments

The authors thank the anonymous referees for helpful comments. They thank the developers of
SageMath [35] software, which was helpful in this research, and the developers of CoCalc [30]
for making SageMathmore accessible. They also thank O. Cheong for developing Ipe [8], which
we used to create the figures in this paper. They thank Sam Hopkins for helpful conversations
(and the and macros from his paper [22]) and Anna Stokke for helpful conversations
regarding symplectic tableaux. JS was supported by a grant from the Simons Foundation/SFARI
(527204, JS).

References

[1] D. Armstrong, C. Stump, and H. Thomas. A uniform bijection between nonnesting and
noncrossing partitions. Trans. Amer. Math. Soc., 365(8):4121–4151, 2013.

[2] E. A. Bender and D. E. Knuth. Enumeration of plane partitions. Journal of Combinatorial
Theory, Series A, 13(1):40–54, 1972.

[3] J. Bloom, O. Pechenik, and D. Saracino. Proofs and generalizations of a homomesy conjec-
ture of Propp and Roby. Discrete Math., 339(1):194–206, 2016.



combinatorial theory 1 (2021), #8 45

[4] A. E. Brouwer and A. Schrijver. On the period of an operator, defined on antichains. Math-
ematisch Centrum, Amsterdam, 1974. Mathematisch Centrum Afdeling Zuivere Wiskunde
ZW 24/74.

[5] P. J. Cameron and D. G. Fon-Der-Flaass. Orbits of antichains revisited. European J. Com-
bin., 16(6):545–554, 1995.

[6] P. S. Campbell and A. Stokke. Hook-content formulae for symplectic and orthogonal
tableaux. Canad. Math. Bull., 55(3):462–473, 2012.
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