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NULL TESTS OF TIME-REVERSAL INVARIANCE 

H.E. Conzett 

Nuclear Science Division, Lawrence Berkeley Laboratory 

One Cyclotron Road, Berkeley, CA 94720 

ABSTRACT 

Because null tests of parity conservation exist in nuclear and particle reactions it 

has been possible to measure very precisely the (weak-interaction) parity nonconserving 

contribution to the process. There is, however, a proof of the nonexistence of a 

comparable null test of time-reversal invariance. As a result, reaction tests of T­

symmetry have, at best, achieved precisions several orders of magnitude below that of the 

tests of P-symmetry. Since transmission experiments are not included in the 

nonexistence proof, the existing formalism used to describe spin-observables in neutron 

transmission experiments has been expanded to include explicitly the target spin. Through 

this formalism, the time-reversal violating (and parity nonconserving) forward 

scattering amplitudes are identified, along with the corresponding spin-observables. It is 

noted that new and more precise tests of T -symmetry are provided in transmission 

experiments and that such investigations are applicable more generally in nuclear and 

particle physics. 
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I. INTRODUCTION 

It has been proved that there exists no null test of time-reversal invariance (TRI) in 

nuclear and particle physics in any reaction with two particles in and two particles out 

[1]. That is, there exists no single experimental observable which is required to be zero 

by TRio This follows from the fact that TRI equates a reaction observable to an observable 

in the inverse reaction, so the difference (or sum) of the two is zero. Even in elastic 

scattering, which is its own inverse reaction, two different observables are related by 

TRI; e.g., the polarization and the analyzing power, so that Py - Ay = O. Because of this 

requirement to compare two experimental observables, one of which is often difficult to 

measure with precision, it is easy to understand why such tests of T-symmetry have 

rarely attained the 1 % level of experimental error. In strong contrast, since null tests 

of parity conservation are available, e.g., the longitudinal analyzing power Az = 0 from 

P-symmetry, the weak-interaction parity nonconserving (PNC) contribution to Az in pp 

scattering has been determined with the remarkable precision of ±2 X 10-8 [2,3]. Thus, 

it is clear that a comparable null test of TRI would permit an improvement in 

experimental precision of several orders of magnitude. 

Since transmission experiments, which correspond to forward scattering, are 

neither explicitly included nor excluded in the proof of the nonexistence of a null test of 

TRI, it is of considerable interest to examine the possibilities for such a test there. 

Transmission experiments with slow neutrons have shown remarkable enhancements in 

two PNC observables, the neutron spin rotation [4] and the neutron analyzing power, Az 

[5]. These enhancements are explained in terms of close-lying parity-mixed nuclear 

levels and the p-wave barrier hindrance of the parity conserving transitions; and 

Stodolsky and Kabir have suggested that nuclear effects might also provide enhancements 

in time-reversal violating (TRV) neutron transmission observables which become 
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accessible with polarized targets [6,7]. They have developed a formalism to describe the 

spin aspects of coherent neutron transmission and have suggested some TRV observables to 

be measured. However, these again involve two observables and can be viewed as the 

polarized-target transmission analogues of the difference between the polarization and 

analyzing power, which is required to be zero by TRio Another problem associated with a 

test of TRI in coherent neutron transmission is that of the coherent neutron-spin rotation 

around the three orthogonal coordinate axes. That is, in an (x,y,z) coordinate system 

with z taken along the neutron momentum and y along the transverse target­

polarization [8], the spin rotations around the x, y, and z axes are a PNC and TRV 

rotation [6], an Abragam rotation [9], and a PNC rotation [4], respectively. 

Consequently, an otherwise straightforward test of TRI (and PNC), i.e., a transmission 

asymmetry associated with the reversal of the neutron or the target spin, would be 

difficult to interpret because of the uncontrolled components of the neutron spin which are· 

introduced by these rotations [6] 

Since coherent transmission is limited to slow neutron transmission, it is important 

to look for a TRV observable in incoherent transmission experiments, where the only 

experimental observable is the (spin-dependent) total cross-section. For example, 

recent measurements near 10 Mev have been made of the total cross-section spin­

correlation coefficient, 

Ax,y = [ux,y(++) - Ux,y(+-)]I[ux,y(++) + Ux,y(+-)] , (1 ) 

in the transmission of polarized neutrons through a vector-polarized holmium target 

[10]. In Eq. (1), taking z along the beam direction, Ux,y(++) (ux,y(+-)) is the total 

cross-section with the projectile, target transverse polarizations Px, Py = 1 
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(Px, -Py = 1). Since Ax,y is a PNC and TRV experimental observable, as will be shown 

in Sec. II, this is a null test of both P- and T -symmetry. Having determined that their 

experimental result was consistent with zero at the 5 X 10-3 (2cr) level, the authors 

suggested that it would be more appropriate to investigate the low-energy (neutron) 

regime where the PNC resonance enhancements have been seen. In this regard, Gould et ai, 

[11] have reviewed the formalism that describes PNC and TRV terms in low-energy 

resonance total cross-sections with polarized neutrons and/or polarized targets. It should 

be noted that this formalism does not apply for coherent neutron transmission, since the 

neutron spin rotations discussed above are not included. 

Clearly, it is important to examine the question of a TRV observable in the more 

ordinary and widespread possibilities for charged-particle incoherent transmission 

experiments in nuclear and particle physics at all energies. Here, one would be giving up 

the potential for enhancements from nuclear effects, but the improvement by several 

orders of magnitude in the experimental precision that can be attained in a null test of T­

symmetry is an equally definite, and more certain, "enhancement". 

II. FORMALISM 

In his treatment of coherent transmission through a polarized target, Stodolsky [6] 

describes the forward-scattering matrix simply in the 2 X 2 neutron spin-space with no 

explicit inclusion of the corresponding target spin-space matrix. Consequently, it is not 

clear that the forward-scattering matrix satisfies two necessary conditions: i), that 

there be no (incoherent) target spin-flip amplitude and ii), that only total-helicity 

conserving amplitudes survive in the forward scattering, i.e. e = 0 degrees. In the 
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following development of the spin formalism for incoherent transmission, only the second 

condition need be satisfied. 

Since both projectile and target polarizations are required in order to provide a TRV 

term in the forward-scattering matrix, I choose to follow the procedure that is standard 

for (non-forward) scattering. That is, the corresponding observable, the spin 

correlation coefficient, is given by 

(2) 

where Sj (Sk) is the projectile (target) spin operator corresponding to polarization in 

the j (k) direction, and M(8) is the transition matrix which connects the initial and 

final spin states Xf = MXj [12]. Since Sk operates in the target spin-space, it is clear 

that M must encompass the combined projectile-target spin-space. In order to identify; 

then, a TRV observable in noncoherent transmission experiments, I consider in detail, as 

prototypes, the cases with sPin-~ projectile and sPin-~ or spin-1 targets. 

A. Spin structure 

In the simplest case with spin-~ projectile and target, the 4 X 4 M-matrix can be 

expanded in terms of direct products of the 2 X 2 projectile and target Pauli spin 

matrices O"j and O"k, respectively [13], 

M(8) = L Bj,k O"j ® O"k , 
j, k 

j,k = o,x,y,z, 0"0 = 1 . (3) 

Choosing the projectile helicity frame, unit vectors along the coordinate axes are taken to 

be 
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z = k/ , Y = k/ X kf , x = y x z , (4) 

where k/ and kf are along the initial and final momenta of the projectile. Then, with 

Ux == U . x, etc., we have the following transformations under the P, T symmetry 

operations: 

(5) 

The 16 M-matrix amplitudes aj,k in Eq. (3). 

ayo. ayx. ayy. ayz. azo. azx. azy. azz. (6) 

can then be classified, from (5), according to their P and/or T symmetry. That is, an 

ampitude is 

PNC (TRV) if nx + nz (nx) is odd, (7) 

where nx (nz) is the number of x (z) subscripts [14]. 

Since Jz , the z-component of total angular momentum, is conserved and the orbital 

component /z = 0 in forward scattering, the total (channel) helicity Sz is conserved 

there. The equivalent condition is that M(O) be invariant with respect to rotation around 

the z-axis, Rz. ImpOSing this condition on Eq. (3), with Uj ® Uk == UjUk, results in the 

PNC and TRV forward-scattering matrix j' 
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M(O) = BO,o + BO,Z 0"0 O"z + BZ,O O"z 0"0 + BX,x (O"X O"x + O"y O"y) 

+ BZ,Z O"z O"z + Bx,y (O"X O"y - O"y O"X), (8) 

The fourth and sixth terms come, respectively, from the Rz-invariant forms 

(0"1 ·0"2) and k· (0"1 x 0"2)· Since the TRV amplitudes Bx,z and Bz,x vanish in 

forward scattering, there can be no test of TRI in a transmission experiment with a spin-
1 . 
2" projectile and target. However, the both PNC and TRV amplitude Bx,y suggests that a 

corresponding PNC and TRV observable is available in the incoherent transmission 

experiments that are available in nuclear and particle physics. Here one uses a treatment 

that features transmitted intensities rather than amplitudes; and the spin-dependent 

observables, i.e. the total cross-sections, are then related to the spin-dependent forward 

scattering amplitudes by the optical theorem. 

The transmission factor, defined as the ratio of transmitted to incident beam 
I 

intensities through a target of areal density d (no. of nuclei per cm2), is 

/(d)//(o) == T(d) = exp [-O"T dJ == exp [-O"J I (9) 

where O"T is the unpolarized total cross-section, and thus 0" is a dimensionless "total 

cross-section" which includes the areal density factor d. The corresponding spin-

dependent cross sections are 

O"j,k = 0"(1 + Pj Pk Aj,k) ; j, k = X, Y, Z (10) 

where Pj (Pk) is the projectile (target) polarization along the j (k) direction, and Aj,k is 

the corresponding (total cross-section) spin-correlation coefficient, which is essentially 
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defined by this equation. Then. with Uj,k(++) (Uj,k(+-)) defined as the cross section for 

the pure spin states Pj = Pk = 1 (Pj = -Pk = 1). we have 

Uj,k(++) = Uj,k(--) = u(1 + Aj,k) , 

( 1 1 ) 

Uj,k(+-) = Uj,k(-+) = u(1 - Aj,k) . 

Using these spin dependent cross-sections. the corresponding transmission factors are 

defined as 

and 

1 
Tj,k = 2 (exp [-Uj,k(++)] + exp [-Uj,k(+-) ]J . 

exp [-Ujk(++)j - exp [-Ujk(+-)j 
exp [-Ujk(++)j + exp [-Ujk(+-)j 

(12a) 

(12b) 

Thus. Tj,k is the transmission factor for a completely polarized beam transmitted through 

an unpolarized target (and vice versa). while L1 Tj,k is the transmission asymmetry of the 

polarized beam for opposite states of the target polarization. Using Eq. (11). 

Tj,k = e-u cosh uAj,k • ( 13a) 

L1 Tj,k = - tanh uAj,k . (1 3b) 

We now use the spin-dependent form of the optical theorem [15] to express uAjk in terms 

of the imaginary part of the corresponding forward scattering amplitude. That is 

( 1 4 ) 
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where Pj,k is the density matrix representing the inital polarizations and Gr(Pj, Pk} is 

the corresponding total cross-section. The normalization Tr P = 1 has been chosen. Then, 

in the established notation, 

Taking 

Eq. (14) becomes 

and with 

we have 

Then noting that 

1 
Pj,k = 4 (Go + Pj Gj) ® (Go + Pk Gk) 

Pj,k (+ ±) 
1 = 4" (1 + GjGo± Go Gk ± GjGk) . 

4rrd =K 
k - , 

Gj,k = K 1m Tr[pj,k M(O)j, 

. 1 
GAj,k = 4 K 1m Tr[(Go Gk + Gj Gk }M(O)]. 

( 1 5 ) 

( 1 6 ) 

(17) 

( 1 8) -

( 1 9), 

(20) 

(21 ) 

the only terms from M(O}, Eq. (8), that survive in Eq. (20) are the terms aO,k and aj,k, 

once the polarizations Pj, Pk have been selected. For our purpose here, to identify a 

PNCITRV observable corresponding to the amplitude ax,y, the appropriate choice is Pj = 

Px, Pk = Py (or vice versa), for which 
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O'Ax,y = KIm ax,y . (22) 

Then, with 

0' = K 1m ao,o , (23) 

Ax,y = 1m ax,y / 1m ao,o . (24) 

Thus, the spin-correlation coefficient Ax,y is the observable to measure as a true null 

test for a combined PNC, TRV effect, since the amplitude ax,y vanishes when either 

symmetry holds. Finally, the corresponding transmission asymmetry , which is the 

directly measureable quantity, is 

.t1 T x,y = - tanh(K 1m ax,y) ~ - K 1m ax,y for ax,y« 1 . ( 2 6 ) 

This is also the simplest experimentally, for which high precision can be achieved. 

B. Spin structure 

Since it is clear from the foregoing development that there is no uniquely TRV 

forward-scattering amplitude in the ~ + ~ ~ ~ + ~ spin system, it is important to 

examine the suggestion [16] for an additional T-odd, P-even term in the forward­

scattering matrix of the form k· (0' x I)(k . I), with target spin I ~ 1 since 12 

represents an alignment. Since the simplest M(O) matrix that can furnish such a term is 

that for a system with the spin structure ~ + 1 ~ ~ + 1, one can proceed then in the 

same manner as in subsection A. Eq. (3) now becomes the 6 x 6 matrix 
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M(6) = L aj,k C1j® Pk + L aj,lm C11® Plm , (27) 
j,k j,lm 

j,k = 0, x, y, z; 1m = xx, yy, xy, xz, yz , 

with the sum over 1m limited to the five independent terms. The Pk (Plm) are the 

vector, rank 1 (tensor, rank 2) components of the spin-1 matrix-operator [12]. Thus, 

the 16-term first sum combined with the 20-term second sum provides the required 36 

terms of the M-matrix. Imposing Rz-invariance, the forward scattering matrix reduces 

to 10 terms, 

M(O) = ao,o + ao,z C10 Pz + az,o C1Z Po + ax,x (C1x Px + C1y Py)+ az,z C1Z Pz 

+ ax,y (C1x Py - C1y px) + ao,zz C10 Pzz + az,zz C1Z Pzz 

+ax,xz (C1x Pxz + C1y Pyz) + ax,yz (C1x Pyz - C1y Pxz) . 

(28) 

The first 6 terms are the equivalent of Eq. (8), and the additional 4 terms arise from the 

R z -invariant forms (k.I)2, (k. (1)(k·I)2, (k·I)(C1· I), and k· (C1 x l)(k·I), 

respectively; and each of these latter terms has the /2 factor that provides the spin-1 

tensor operator Plm in Eq. (28). Then, from (7), ax,yz is the T-odd, P-even amplitude 

that has been the object of this development. So, in following the same procedure as for 

the ~ + ~ ~ ~ + ~ spin system in part A, one would like to choose the density matrix 

representing the spin-1 polarization as 

1 2 
Pyz = "3(Po + "3 Pyz Pyz), (29) 

where Pyz is the target tensor polarization, i.e., alignment along the y = z direction. 

However, unlike the situation for vector polarization, one cannot isolate the tensor 
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component Pyz. As prepared in a polarized-ion source, where the quantization (3) axis 

is an axis of cylindrical symmetry, the sole vector and tensor components are P3 and P33, 

respectively. When this axis is aligned along the direction y = z in the chosen projectile 

helicity frame, the polarization components are [12] 

Px= 0 

1 
Py = ..J2 P3 

1 
Pz= -{; P3 

1 
Pxx = -- P33 2 

1 
Pyy = "4 P33 

1 
pzz = - P33 

4 

Thus, the spin-1 target density matrix, 

Pxy= 0 

3 
Pyz = "4 P33 

Pxz = 0 . 

1 3 3 1 
PT= "3 [Po + 2 PyPy + 2 pzPz + 6(Pyy - pzz) (Pyy - Pzz) 

1 2 
+2 PxxPxx +"3 PyzPyz], 

for P3 = P33 = 1, becomes 

1 3 3 1 1 
PT= "3 (Po + 2'f2 Py + 2'f2 Pz - "4 Pxx +"2 Pyz ). 

(30) 

(31 ) 

(32) 

1 
Then, taking P3 = "3' P33 = ±1, which is a combination available from a polarized-ion 

source, the result corresponding to Eq. (20) is 

1 1 1 1 1 
crAx,yz = "6 K 1m Tr[(-"4 croPxx + 2 croPyz -"4 crxPxx + "2 crxPyz)M(O)] (33) 

And with 
2 
3 Tr[(crj Pyz)(crj' Plm) = 6 Sjj'S(yz)(lm) (34) 
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the result corresponding to Eq. (24) is 

3 
Ax,yz = "4 1m ax,Yz / 1m ao,o . (35) 

As the notation indicates, this is the spin-correlation coefficient for the beam polarization 

Px in combination with the target tensor polarization Pyz, as is shown in Fig. 1, and the 

corresponding transmission asymmetry is 

3 
.1 T x,YZ = -"4 K 1m ax,yz for ax,yz« 1 . (36) 

Although these results have been derived for the specific case of a spin-1 target, they 

are valid generally for the case of rank-2 tensor polarization of a target of spin I ~ 1. A 

very recent determination of this spin-correlation coefficient has been made in the 

transmission of 2-Mev polarized neutrons through an aligned 165Ho target with I = ~ 

[17], and the result, (1 ± 6}x1 0-4, clearly demonstrates the improvement that has been 

achieved in tests of T -symmetry by using this null-test observable. It is also clear that a 

further improvement in precision of more than two orders of magnitude can be attained in 

such transmission experiments with proton beams at higher energies, since this has 

already been demonstrated in the analagous null tests of P-symmetry. 

Even though I have described this observable Ax,yz in terms of a polarized sPin-~ 

projectile and a tensor-polarized target, the present experimental facilities may be 

better suited to using the "reverse kinematics"; for example, a tensor-polarized deuteron 

beam and a polarized proton target. This follows from the fact that proton targets have 

achieved significantly higher polarizations than have tensor-polarized deuteron targets, 

and deuteron beams of high tensor polarization are available. 
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III. SUMMARY 

The complete spin-space scattering matrix has been used in order to identify 

unambiguously the T-odd and/or P-odd forward-scattering amplitudes. These then 

provide, via the spin-dependent optical theorem, the total cross-section (transmission) 

observables that constitute null tests of the corresponding symmetries. An especially 

important result is that the TRV observable is directly proportional to the imaginary part 

of the corresponding TRV forward-scattering amplitude, in contrast to the situation that 

exists for the standard (non-forward) scattering experiments. There, T-symmetry tests 

can be accomplished only via comparison of two separate observables; e.g., Py - Ay, where 

that difference is given in terms of a TRV amplitude in a bilinear combination with a TRI 

amplitude. As a result, there have been instances where the (unknown) TRI amplitude 

turned out to be so small that no significant test of TRI had, in fact, been made [19]. This 

kind of ambiguity does not exist in this null test, and one can directly state the precise 

level to which the (imaginary part of the) T-odd amplitude has been determined. 
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FIGURE CAPTION 

Fig. 1. The experimental arrangement for the measurement of the total cross-section 

spin-correlation coefficient Ax,yz. The beam in the z-direction, with polarization Px, 

is transmitted through the target with tensor-polarization Pyz,' i e., alignment along the 

direction y = z. This is symbolic only. Other tensor polarization components are 

present, as is described in the text, but they do not contribute in the determination of 

Ax,yz. 
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