
UC Irvine
ICS Technical Reports

Title
Average case analysis of marking algorithms

Permalink
https://escholarship.org/uc/item/42w979xb

Authors
Hirschberg, D. S.
Larmore, L. L.

Publication Date
1984

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/42w979xb
https://escholarship.org
http://www.cdlib.org/

UBRARY
-'UtHnnily ot C«IH»nil»

IRVINE

//C. (J « O --ti ' W'

Average Case Analysis of Marking Algorithms

D.S. Hirschberg^ and L.L. Larmore^

Technical Report #223

March, 1984

Abstract. The Lindstrom marking algorithm uses bounded workspace. Its time

complexity is O(n^) in all cases, but it has been assumed that the average case time
complexity is 0(n Ig n). It is proven that the average case time complexity is H{n).

Similarly, the average size of the Wegbreit bit stack is shown to be H{n).

This research was supported in part by National Science Foundation Grant MCS-82-00362, and by a
California State University PAID grant.
^Department of Information and Computer Science, University of California, Irvine, CA 92717.
^Department of Computer Science, California State University, Dominguez Hills, CA 94707.

I

I

I

I

I

I

I

Average Case Analysis of Marking Algorithms

D.S. Hirschberg^ and L.L. Larmore^
University of California, Irvine

California State University, Dominguez Hills

1. Introduction

Consider a data store organized into nodes, each of which has two link fields, L

and R. Each link field contains either the address of a node in the store, or an

uninterpreted atomic value. One specific node will be designated as the root.

In garbage collection, we may wish to mark all nodes accessible from the root;

assume then that each node has a mark bit. Several algorithms to do this are known.

Baer and Fries [1] analyze some of these, including the Schorr-Waite tag bit algorithm

[4], the Wegbreit bit-stack algorithm [5] and the Lindstrom algorithm [3].

Both the Schorr-Waite and Wegbreit algorithms have time complexity 0(n)

where n is the number of nodes accessible from the root, and both use 0(n) additional

workspace. The Schorr-Waite algorithm requires a tag bit in each node whereas the

Wegbreit algorithm uses a bit stack, whose size is 0(n) in the worst case, for the same

purpose. At first glance, it may appear that the maximum size of the Wegbreit bit

stack is 0(lg n) in the average case, but we show that it is ©(n).

The Lindstrom algorithm uses bounded workspace; in particular, it uses no stack

or tag bits. Its time complexity is O(n^) in all cases, but Lindstrom asserted [3] that the
average case time complexity is 0{n Ig n). We show that this assertion is false. In

This research was supported in part by National Science Foundation Grant MCS-82-00362, and by a
California State University PAID grant.
^Department of Information and Computer Science, University of California, Irvine, CA 92717.
^Department of Computer Science, California State University, Dominguez Hills, CA 94707.

2
particular, we prove that the average case time complexity is n(n).

2. The Lindstrom Algorithm

We refer the reader to [3] for a description of the algorithm. It is important to

note that X, the nil address, is not an atom. Essentially, descent is always to the left,

providing the left link leads to a previously unvisited node. Otherwise, descent b to the
right. If no descent b possible because both links are either atomic or lead to previously
vbited nodes, ascent b initiated and continues until a node with an unvbited right child

b found.

At all times, all fully-processed nodes (all ofwhose descendents have been vbited)

have a marked mark field (value 1), and all unvbited nodes have an unmarked mark

field (value 0). All other nodes must be on the trace path, the path of nodes from the
root to the current node. For a node on the trace path, the mark field b 0 if both links

are non-atomic and descent from that node was to the right. Otherwbe, it b 1.

The algorithm uses link reversal so it b necessary, during ascent, to determine

whether that ascent b from the left or the right. If one link field is atomic, there b no

problem. Otherwbe, the mark bit contains the information.

During descent, if a node whose mark bit is 0 (unmarked) and both of whose link

fields are non-atomic is encountered, there b no immediate way to determine whether

the node b unvbited or b on the trace path. The algorithm must search for thb node

upward along the trace path. If the node b unvisited, the time required for thb step b

clearly Vl{k), where kb the length of that trace path. Lindstrom's error was hb

supposition that the length of the trace path is 0(lg n) in the average case. Under that
hypothesb, the upward searching portion of the algorithm could be done in 0(n Ig n)

- 2

time, and other parts of the algorithm are clearly 0(n). It may actually be true that the

depth of an average node is 0(lg n), measured along the shortest possible rooted path.
But the Lindstrom algorithm does not visit each node first by the shortest path, rather

by the leftmost path which may be far longer. In fact, by Theorem 2of this paper, the
average case length of that path is ©(n).

3. The Trace Tree

We use the term list structure to refer to the collection of all nodes accessible

from the root, together with their pointers. The Schorr-Waite, Wegbreit, and

Lindstrom marking algorithms visit the nodes of a list structure, X, in the same order

(counting only first visits). We call this the visitation order.

We denote the trace tree of list structure Xby T{X), or by just T when Xis

understood. T is a binary tree which has exactly the same nodes as does X, but only a

subset of the links. For all nodes in X, the father of node x in r is the node in X from

which Xwas first visited in the visitation order. All other links of T are X. As a result

of this definition, the preorder of Twill be the visitation order of X, and a path in T

from the root to a given node P will be exactly the trace path when that node is visited

for the first time by one of the marking algorithms.

The visitation order P ,? ,...? on X can be characterized by the following four
X « Tl

rules, which also characterize the trace tree. L(P) and R(P) denote the left and right

link fields of node P in X. Similarly, L^(P) and R^(P) denote link fields of P in T.
(i) Pj = root

(ii) For 1< it < n, if L(P^ is not an atom and is not in the set {Pj,...P^}

(iii) For 1< ifc < n, if L(Pj^ is an atom or if L(Pj^€{Pj,...Pj^, let 1< ; < I:
be the largest value such that R(Py) is not atom and not in the set

-3-

{P,....Pj}. Then P^, = R(P; = R,(P;.
(iv) For 1< Jt < n, L^(P^) = ^ unless otherwise specified by rule (ii), and

= Xunless otherwise specified by rule (iii).

4. Time Analysis

For any node F, let depthJ^F) be the depth of P in 7. The time required for the
upward searching portion of the Lindstrom algorithm is clearly 0(Ylp^j^cpth^F)).

Let height be the height of 7. We can put a lower bound on the time complexity

of the Lindstrom algorithm as follows.

Theorem 1. The time complexity of the Lindstrom algorithm is

Q{n log n+ {height)^).

Proof. Since the average depth of a node must be ^(log n), the number of

upward searches must be fl(n log n). On the other hand, let QpfQi? ••• ^height ^
longest rooted path in 7, where is root. Then

•

5. Average Case Analysis

In order to do an average case analysis, it is necessary to have some

understanding of what an "average case" is. We shall assume that we are given some

distribution on the class of all list structures of size n, and that when we say average

we shall mean average weighted by this distribution. We will freely use words such as

probability, conditional probability and expected value in their usual meanings, where we

-4-

I

I

I
assume that a list structure has been selected at random from all list structures, using

the given distribution.

I Let probatoniX) be the proportion of address fields in alist structure Xwhich
are atoms. If there are no atoms, we say that A^is non-atomic.

I

I

I

I

I

I

I

I
I (i) The probability Pis an atom does not exceed a.

and (ii) The probability that P is an old node does not exceed 0k/n.

I
Intuitively we mean that, although we may allow knowledge of previously

I examined links to influence the expectation of P, we place adefinite bound on that
effect. In particular, the probability that a given link is an atom is bounded below /2,

I and the probability that it points to an old node bof the order of the proportion of old
nodes in the structure.

I

I

I

Fix n, and fix 0<p<V2. What kind of properties would we want a "random"
dbtribution of Ibt structures whose size b n and whose probatom b approximately p to

have? Intuitively, we would want to describe these properties in terms of what value we
expect a "new" (i.e., previously unexamined) link to have, given whatever information
we have about previously examined links. In an ideal sense, we would want each new
link to be an atom with probability p, and, given that it b not an atom, we would want

the probability that it points to any given node in the structure to be 1/n. It turns out
that such a strong randomness property b unnecessary. We will just assume that our
dbtribution satbfies a weaker set of conditions, which we call Weak Randomness.

Weak Randomness Assumption: There exbt constants 0 < a < V2 and 0 > 0

(not dependent on n) such that, if P b a new link and kb the number of nodes already
vbited:

Theorem 2. In the average case, height = ©(n).

-5-

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

Proof. We present an algorithm for visiting all nodes of Xin visitation order
(i.e., preorder for 7"). Let S be a stack.

Step 1

Step 2

Step 3

Step 4

Step 5:

Step 6:

S ^ 0

P •(— root

While S is non-empty or P is a new node, do steps 4 and 5

If P is an atom or an old node,

P top of stack S; pop S

Otherwise (i.e., P is a new node),

push R(P) onto stack S; P L(P)

Halt

Let us now examine what the situation is after t iterations of the loop in the

above algorithm. Stack Swill have some size, say sizeit), P will be some node, say
node{t), and P will be at depth depthJP) in the trace tree. But note that each element
on stack S is the right child of some node in the trace path of P. It follows that
depth^node{i)) > 8tze{i). '

We think of size as a stochastic function. It is clear that the number of old

nodes after t iterations of the loop of the above algorithm is < t, and that

i size{t) -f- 1 if node{t) is a new node
size{t + 1) =1

^ 8ize{t) - 1 otherwise

By the Weak Randomness Assumption, the probability that node{t) is a new node
is at least I - a - ^t/n, and the probability that node{t) is not a new node is at most a

+ ptIn. Therefore (see, for example, [2])
E(f) = the expected value of size{t)

= E(^-l) -b Prob(node(<) is a new node) - Prob(node(f) is not a new node)

- 6-

I

I
> E(f-l) + (1 - a - - (« + W'l)

I Since 8ize{0) = 0, we therefore have
E(t) > -2a-2i9i7n) = t{l - 2a) - ^t(t+l)/n

I
Now choose t = LB(l-2a)/(2^. It is seen that the expected value of 8ize{t), and

B hence the expected value of depthJ^node[t)), must be at least n(l—2q:) /4^ —1. ^

I

I

I Q(n^)

Corollary. The size of the Wegbreit bit-stack is 0{n) in the average case.

Theorem 3. The average case time complexity of the Lindstrom algorithm is

Proof. It is already known [3] that the time is 0(n), and it is f2(n) by
Theorems 1 and 2. Q

I

I

® The Schorr-Waite algorithm has both time and space complexity ©(n). The
• Wegbreit algorithm has time complexity 0(n) and average case space complexity 0(n).

The Lindstrom algorithm has bounded space complexity and average case time

H complexity 0(n^).

I Anatural question to ask is whether there exists any marking algorithm, the
product of whose average time and space complexities is less than quadratic.

I

I

I

6. An Open Question

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

vou

''•%,^"! t"?; •„• j;,

References

[1] J.-L. Baer and M. Fries, On the Efficiency of Some List Marking Algorithms,
Information Processing 77, IFIP, North-Holland Publishing Co., 1977, pp. 751-

756.

[2] P. G. Hoel, S. C. Port, and C. J. Sltone, Introduction to Stochastic Processes,
Houghton Mifflin, 1972.

ures in Bounded Workspace, CACM 17 (1974),[3] G. Lindstrom, Copying List Struct

pp. 198-202.

[4] H. Schorr and W. M. Waite, An Efficient Machine Independent Procedure for
Garbage Collection in Various List Structures, CACM 10 (1967), pp. 501-506.

[5] B. A. Wegbreit, ASpace Efficient List Structure Tracing Algorithm, lEEETC,
C-21 (1972), pp. 1009-1010.

8-

