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Unified Summaries for Internet traffic

Cristian Estan

May 12, 2004

Abstract

Traffic analysis is important to the operation of IP
networks. The input to the analysis is raw data such
as packet header traces or NetFlow records and the
output is often the size aggregates such as the traf-
fic generated by various applications or by individual
customers. Storing the raw data allows the flexibility
of running arbitrary new analyses in the future, but
the sheer amount of raw data is often a challenge.
Sampling based techniques such as smart sampling
aim at reducing the amount of raw data while pre-
serving the ability of future analyses to accurately
estimate the traffic of any large aggregate.

There are three important measures of the traffic
of an aggregate: the number of bytes, the number of
packets and the number of flows. Current data re-
duction solutions allow estimating only one of these
measures. In this paper we propose the idea of uni-
fied summaries that allow the analyses to get unbi-
ased estimates for all three measures. Our unified
summary that takes as input flow records is based
on smart sampling and the one that reads in packet
header traces is based on sample and hold. The most
important contributions of this paper are the devel-
opment of novel unbiased statistical estimators for
the number of flows, the development of methods for
combining summaries measuring bytes and packets
using less memory than separate summaries, and ex-
perimental evaluation of the proposed solutions based
on traces of traffic.

1 Introduction

Internet traffic consists of individual conversations
called flows breaken into individual messages called
packets. Often analyses aggregate the traffic into
groups based on the fields defining the flows (e.g.
web traffic, traffic coming from UCSD), and groups
with large traffic are of most interest. The traffic of
a group (also called aggregate) can be measured in
packets or flows, and the two measures reveal diffe-
rent types of important information. Keeping track
of all packets is impractical, and the traffic must be
summarized. It is important to develop methods for
compactly summarizing the traffic that allow low er-
ror approximate analyses. There are separate so-
lutions for generating these summaries for the case
when traffic is measured in packets and for the case
when it is measured in flows. In this writeup I pro-
pose a solution that supports accurate unbiased anal-
yses for both cases.

2 Summarization methods

In this paper I discuss three abstract summariza-
tion methods: ordinary sampling [7, 3], sample and
hold [6, 4] and smart sampling [2]. Each of these
computes in a single pass over the packet headers a
traffic summary consisting of flow records. Each of
these methods has as a tuning knob that allows the
user to trade off the size of the summary (the number
of records) and the accuracy of the analyses one can
perform based on them. For simplicity I will assume
for now that the flow records only count the number
of packets. In Section 6 I will discuss counting bytes.
The abstract summarization methods discussed here
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compute a summary for a sequence of packets within
a certain time interval and ignore information of the
timing or ordering of the packets within the interval
(the binned model [3]).

2.1 Ordinary sampling

As the stream of packets is arriving, packets are sam-
pled independently at random with probability p. For
the sampled packets the entry corresponing to the
flow identifier in the packet is looked up in a hash ta-
ble and the packet counter associated with that en-
try incremented. If there is no entry for the flow
the packet belongs to, one is created and its packet
counter initialized to 1. The flow identifier and the
packet counter form the flow record.

2.2 Sample and hold

As the stream of packets is arriving, packets are sam-
pled independently at random with probability p. For
the sampled packets, unless the flow the packet be-
longs to already has an entry in the flow table, an en-
try is created and the packet counter initialized to 0.
For all packets that have an entry, the entry’s packet
counter is incremented by 1. I effect this means that
for each flow, its packets are sampled independently
at random with probability p and after one packet is
sammpled all packets belonging to the flow (including
the sampled one) are counted.

2.3 Smart sampling

As the stream of packets is arriving, we build a hash
table with a record for each active flow. At the end
of the interval we have the exact number of pack-
ets belonging to each flow and the flow records are
sampled independently at random with probabilities
depending on their packet count. Flow records with
one packet are sampled with probability p. Flow
records with s packets are sampled with probability
min(sp, 1). The packet counts in the sampled records
are left unchanged.

Algorithm Memory Processing

Ordinary sampling low low
Sample and hold low high
Smart sampling high high

Table 1: Comparison of the resource consumption of
the three algorithms

2.4 Estimating the traffic of aggre-

gates

The user of the summary is interested in estimating
the size of various aggregates containing one or more
flows. The size can be measured in packets, flows or
bytes. When one estimates the size of an aggregate,
one first finds all flows in the summary that are part
of the aggregate and sums up the individual estimates
for each of these flows. By the linearity of expecta-
tion, the expected value for the estimate of the size
of the aggregate is the sum of the expected values for
the flow in the aggregate. By the independence of
the sampling decisions for the flows, the variance in
the estimate for the aggregate is the sum of the vari-
ances for individual flows. For the rest of this paper
I will focus on the expectation and variance for the
individual flows.

3 Brief comparison of summa-

rization methods

While the three summarization methods are quite dif-
ferent, they are part of the same family of algorithms
based on sampling and hash tables with per flow en-
tries. For all three summarization algorithms, if we
set p = 1, we obtain the list of all active flows with
their exact packet counts. For all three algorithms, if
the traffic mix contains only single packet flows, the
output is a random sample of the traffic in the form
of flow records with packet count of 1. But the less
extreme configurations are more useful and for these,
there are differences among the algorithms.

The processing and memory costs of these algo-
rithms vary as shown in Table 1. Ordinary sampling
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Figure 1: The probability for a flow getting an entry
increases with the flow size. If all algorithms use the
same sampling rate p, the probability for the creation
of the entry is consistently higher for smart sampling,
but it is never higher by more than 58.2% (which is
achieved for flows of size s = 1/p).

uses little memory since it creates entries only for the
sampled packets and performs little processing since
it does table lookups only for the sampled packets.
Sample and hold consumes just as little memory as
ordinary sampling since it also creates entries only
for the sampled packets, but it incurs high process-
ing costs since it performs a lookup for each packet
and updates the counter of the corresponding flow if
found. Smart sampling uses high amounts of mem-
ory as it creates an entry for each flow. In the fol-
lowing sections we will see that the algorithms with
higher resource consumption also have more accurate
results.

When comparing the accuracy of the summaries
produced by algorithms, it is fair to compare sum-
maries of the same size, since for each algorithm,
larger summaries give more accurate results. The
size of the summaries depends on the packet sampling
probability p. The expected size of the summary is
the sum of the probabilities to have an entry for all
active flows. Figure 1 shows the probability that a
flow of size s has an entry in the summary, which is
1 − (1 − p)s for ordinary sampling and sample and

hold and min(ps, 1) for smart sampling. The entry
creation probability is consistently higher for smart
sampling, but but it is never higher by more than
1/(e − 1) = 58.2% which is achieved for flows of size
s = 1/p. Thus in the following sections I will com-
pare the three algorithms using the same sampling
probability. Ensuring that the expected report sizes
were the same would require knowledge of the distri-
bution of flows sizes. While this introduces a small
bias towards smart sampling (because it will generate
slightly larger summaries), it simplifies the compar-
ison, since no knowledge of the distribution of flow
sizes is needed.

4 Estimating packet counts

For ordinary sampling, the packet counter c of a flow
of size s has a binomial distribution with parameters
p and n. The case when c = 0 corresponds to the
entry for the flow not being present in the summary.
The unbiased packet count estimate for a flow record
with c packets is 1/p ·c. The variance of this estimate
is s/p(1 − p).

For sample and hold, the unbiased estimate for the
number of packets is c+1/p−1. The variance of this
estimate is 1/p(1/p−1)(1−(1−p)s). See Appendix A
for the details of the analysis.

For smart sampling the unbiased estimate for the
number of packets is max(1/p, c). Its variance is
s max(1/p− s, 0) [2].

In Figure 2 I compare the relative error (defined
as the ratio of the standard deviation of the esti-
mate for the flow size and the actual flow size) of
the three algorithms for a packet sampling probabi-
lity of p = 1/100 as the flow size s increases from 1
to 1,000. For algorithms, the relative error decreases
as the size of the flow increases. Smart sampling’s
error drops to 0 when the flow size reaches 1/p, since
from there on, we get an exact flow count in the sum-
mary. Sample and hold’s error is better than that for
ordinary sampling and the difference becomes more
and more pronounced as the flow size grows beyond
1/p. For s = 1/p, ordinary sampling’s erros is larger
than sample and holds by 1/

√

1 − e−1 − 1 = 25.8%.
Perhaps a more meaningful thing is to look at how
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Figure 2: Comparison of the relative error of the
packet estimates as a function of flow size for the
three types of summaries for p = 1/100. The relative
error is computed as the ratio between the standard
deviation of the estimator and the actual flow size.
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Figure 3: The relative error for an aggregate of 1000
packets decreases as the size of the flows increases if
we use sample and hold or smart sampling, while it
stays constant if we use ordinary sampling.

the relative error in the estimate of an aggregate of
size 1,000 packets changes as the size of the flows that
make it up increases from 1 to 1,000 packets. This
is what Figure 3 shows. We can see how the error
for ordinary sampling is not affected by the flow size
while it decreases as the flow sizes go up for sample
and hold and smart sampling.

5 Estimating flow counts

It has been proven [1] that one cannot get unbiased
estimates for the number of flows from a random sam-
ple of the packets. Therefore we cannot estimate the
number of flows from based on the ordinary sampling
summary.

There is an estimator for the number of flows that
is based on the sample and hold summary, and it is
an original contribution of this paper. To estimate
the number of flows in an aggregate, one finds all
the matching flow records and counts the flows that
have a packet counter larger than 1 as 1 flow and
those that have a packet counter of exactly one packet
as 1/p flows. It is obvious that this works for flows
with 1 packet. It is plausible that it works for flows
with s >> 1/p. Can we prove that it is an unbiased
estimator for all flow sizes? With a probability α that
depends on the size of the flow, one of the packets
before the last one gets sampled. In this case, the
contribution to the flow count of the estimate is 1,
so the estimator is unbiased. With probability 1− α
none of the packets before the last one gets sampled.
Within this case, with probability p the last packet
is sampled and our flow contributes 1/p to the total
and with probability 1 − p it is not sampled and it
contributes 0, thus the expectation is p · 1/p + (1 −

p) · 0 = 1. The variance of this unbiased estimator is
(1 − p)s−1(1/p − 1) as shown in Appendix A.

For smart sampling, the estimate for the number
of flows is simple. Since the flow record has the ex-
act size of the flow s, we know the exact probability
that the flow got selected: min(1, ps). Therefore, we
count each flow in the summary as 1/ min(1, ps) flows
for the estimate. The variance of this estimator is
max(0, 1/(ps) − 1).

Figure 4 compares the relative error of sample and
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Figure 4: Smart sampling has lower error for flow
count estimates that sample and hold.

hold and smart sampling for the flow count for a one
flow aggregate as the flow size increases. While the
sample and hold estimator is unbiased, it is clearly
less accurate that that based on smart sampling for
flows shorter than 1/p = 100.

6 Estimating byte counts

With ordinary sampling we can add a byte counter to
the flow records. Multiplying the value of this byte
counter by 1/p gives an unbiased estimator for the
number of bytes in the flow. If there is no limit on
maximum packet size, the variance of this estimator
can be unbounded. If packets have size at most bmax

bytes, the variance of the estimate for the number of
bytes of a flow with s packets is at most b2

max
s/p(1−

p). The flows with large packets would have higher
variance for their byte counts than the flows with
small packets.

For sample and hold we can also add a byte counter
to the entry, but there is no unbiased estimator for
the number of bytes in a flow unless we make assump-
tions about the sizes of the packets in the flow (e.g.
all packets have the same size). Another solution is
to run a separate instance of sample and hold that
samples bytes with probability q. One can estimate
the number of bytes in a flow by adding 1/q − 1 to

the counter and the variance analysis from the packet
case also carries over. The only problem is that in-
stead of having one summary, we will have two: one
for packet counts and one for byte counts.

For smart sampling, we can also count the number
of bytes in the flow records. Since we know the exact
sampling probability for the packet ps, multiplying by
its inverse gives us an unbiased estimate for the num-
ber of bytes. However, just like with ordinary sam-
pling, the variance of this estimate depends on size
of the packets of the flow: flows with smaller pack-
ets will have lower variance than flows with larger
packets. Like for sample and hold, we can run two
instances for the algorithm, one tht provides unbiased
low variance estimates for packet counts and one for
bytes.

6.1 Sharing between byte and packet

summaries

By correlating the choice of which record we sample
for the packet and byte summaries, we can reduce
the total size of the summary without affecting the
accuracy of either of them.

7 Adding multiple summaries

An important question is computing the sum of mul-
tiple summaries. For example we have separate sum-
maries for the hours of the day and we want to com-
pute a summary for the whole day.

8 Conclusions
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A Analysis details

I focus the analysis on one flow of size s packets. Since
our estimate for the size of an aggregate (whether
traffic is measured in packets or flows) is the sum of
the contribution of individual flows, by the linearity
of expectation we can obtain the expected size of the
aggregate by adding the expected contributions of the
individual flows. Since the packet sampling decisions
are independent, the variance in the estimate for the
aggregate is the sum of the variances of the contribu-
tions of individual flows. Let i < s be the number of
packets missed before an entry for our flow is created
and pi = p(1− p)i be the probability to miss exactly
i packets.

Let x be the number of packets our flow contributes
to an aggregate. What is its expected value? We will
prove by induction that E[x] = s.

Base case If s=1, the packet is sampled with pro-
bability p and in that case it is counted as 1+1/p−1 =
1/p packets. With probability 1−p it is not sampled
(and it counts as 0). Thus E[x] = p ·1/p+0 = 1 = s.

Inductive step By induction hypothesis we know
that for s′ = s − 1, E[x′] = s′ = s − 1.

E[x] = p · (s + 1/p− 1) + (1 − p)E[x′]

= ps + 1 − p + (1 − p)(s − 1)

= ps + 1 − p + s − ps − 1 + p = s

Let y be the number of flows our flow contributes
to an aggregate (it can be 0, 1, or 1/p) . What is
its expected value? We can compute it by looking
separately at the case where one packet before the
last is sampled and at the case where no packet before
tha last one is sampled (and this last case hgas two
subcases based on whether the last packet is sampled
or no). Let α =

∑

s−2

i=0
pi = 1 − (1 − p)s−1 be the

probability of catching one of the packets before the
last one.

E[y] = α · 1 + (1 − α)(p · 1/p + (1 − p)0) = 1

What are the variances of x and y?

E[x2] =
1

p

(

1

p
− 1

)

(1 − (1 − p)s) + s2

Base case If s=1, E[x2] = p(1/p)2+0 = 1/p. Also
1/p(1/p− 1)(1 − (1 − p)1) + 12 = 1/p− 1 + 1 = 1/p.

Inductive step By induction hypothesis we know
that for s′ = s − 1, E[x′2] = 1/p(1/p − 1)(1 − (1 −

p)s
′

) + s′2 = 1/p(1/p− 1)(1 − (1 − p)s−1) + (s − 1)2.
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E[x2] = p

(

1

p
− 1 + s

)2

+ (1 − p)E[x′2]

=
1

p
+ 2(s − 1) + p(s − 12) + (1 − p)(s − 1)2

+(1 − p)
1

p
(
1

p
− 1)

(

1 − (1 − p)s−1
)

=
1

p
− 1 + 1 + 2(s − 1) + (s − 12)

+(1 − p)
1

p
(
1

p
− 1) −

1

p
(
1

p
− 1)(1 − p)s

=
1

p
(
1

p
− 1)(p + 1 − p) + s2

−
1

p
(
1

p
− 1)(1 − p)s

=
1

p

(

1

p
− 1

)

(1 − (1 − p)s) + s2

V AR[x] = E[x2] − E[x]2 =
1

p

(

1

p
− 1

)

(1 − (1 − p)s)

E[y2] = α · 1 + (1 − α)
(

p (1/p)
2

+ (1 − p) · 0
)

= α + (1 − α)1/p

V AR[y] = E[y2] − E[y]2 = α + (1 − α)1/p − 1

= (1 − α)

(

1

p
− 1

)

= (1 − p)s−1

(

1

p
− 1

)
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