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Review Article

Viruses and the placenta: the essential virus first view

LUIS P. VILLARREAL

Center for Virus Research, Department of Molecular Biology and Biochemistry, University of California
Irvine, Irvine, CA, USA

Villarreal LP. Viruses and the placenta: the essential virus first view. APMIS 2016; 124: 20–30.

A virus first perspective is presented as an alternative hypothesis to explain the role of various endogenized retroviruses
in the origin of the mammalian placenta. It is argued that virus–host persistence is a key determinant of host survival
and the various ERVs involved have directly affected virus–host persistence.
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THE PROBLEM – WHY SHOULD ERVS

CONTRIBUTE TO THE COMPLEX

PLACENTAL NETWORK? CONFRONTING

THE ACCEPTED VIEWS

The emergence of mammalian vivipary and the pla-
centa presents many biological and behavioral
issues that challenge theories of evolution, see (1).
These biological and immunological dilemmas are
associated with the emergence of the ‘foreign’ mam-
malian placenta (expressing paternal genes). In
addition, the very first cell type to differentiate in
mammalian embryo is the trophectoderm which
will generate the placenta, thus major alterations to
programs of early developmental are also needed.
The placenta will mediate the blood (and immune)
exchange between mother and her non-self embryo
and contribute to very complex biological and
behavioral changes needed for live birth. All these
changes require complex and network based regula-
tory changes to the genetic programs that had
mostly been present in ancestral egg laying mam-
mals. This represents a major transition in the evo-
lution of complexity that has been difficult to
explain by traditional concepts. Over the years, it
has become increasingly evident that endogenized
retroviruses (ERVs) have been intimately and dee-
ply involved in the placenta of all mammalian lin-
eages (2). These historic retrovirus observations

include the presence of intercisternal A-type parti-
cles (IAPs) (3), presence in human oocytes (4), pres-
ence in early preimplanted embryo (5), antivial
activity of human sera (6), the presence of reverse
transcriptase (RT) inhibitors (7, 8), and the pres-
ence of ERV3 mRNA (9, 10). For a summary of
these early observations see (11). In 1997, I pro-
posed some general reasons why virus should be
involved in the origin of vivipary (12). ERVs asso-
ciated with mammalian reproductive biology are
lineage specific and their acquisition is associated
with the origin of each lineage (13, 14). But it was
the discovery of the involvement of ERV envelope
proteins (such as syncytins) in reproductive biology
that has really engaged the interest of many evolu-
tionary biologist in this virus–host relationship.
Overall, they have adopted a now well accepted
perspective that retroviruses have repeatedly pro-
vided env genes which have proved useful (were
exapated/domesticated) for the various functional
and structural requirements of a placenta (15–18).
And once the early env-mediated placenta emerged,
fitter (better) versions of placentas via newer ERVs
followed. This is the currently accepted perspective
on ERV involvement in the origin of the placenta
and it presents a ‘host come first’ perspective.
Here, the fortuitous virus is simply providing a
convenient and diverse source of useful env genes.
But, egg-laying animals (especially avians) are
highly successful and diverse, so why viruses might
mediate such a drastic change in reproductive hostReceived 4 June 2015. Accepted 26 October 2015
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biology remains an open question. In this essay, I
present a virus first perspective that offers an alterna-
tive hypothesis for virus involvement in the origin of
the placenta.

A VIRUS FIRST PERSPECTIVE JUSTIFIED:

VIRUS PERSISTENCE AND DISTINCT

SOCIAL (NETWORK) FEATURES

It has been 10 years since I published my book
which was first to present the evolution of life
from a virus first perspective (19). If the main the-
sis of that book can be stated in simple terms it is
that we must first consider the virus–host relation-
ship with better understand evolution of the host.
From this perspective, we can then see that viruses
were involved in most all major transitions of host
biology in evolution. This will likely seem an over-
stated or even preposterous position to most read-
ers. How could genetic parasites (viruses) be
providing such fundamental capacity for host evo-
lution? And why would they do so? But we have
come to recently realize that viruses are omnipre-
sent so all life must survive in its virosphere habi-
tat. And such survival often involves virus
themselves since virus, their defective and various
other genetic parasites (mostly called transposons)
can and often do provide virus resistance systems.
These viral colonizers then can also be used to
provide new sources of host complexity (such as
the placenta). Thus, to understand the deep role
virus plays, we must always consider a virus first
perspective for the evolution of complexity in the
host. Essentially, the concept is that viruses are
fully competent agents and editors of all host sys-
tems of instruction (DNA, RNA, epigenetic, trans-
lational etc.) (20). Thus, they provide the host with
new sources of instruction systems (not errors). In
addition, they promote network formation by pro-
viding coherent societies (quasispecies populations)
of agents able to edit host code content (and add
new identity) in a diffuse, distributed manner,
which promotes the creation of and editing of host
regulatory networks. Thus, a viral role in the ori-
gin of the placental regulatory network can be
expected (21). Viruses possess all the advantages of
evolution relative to host: extreme genetic adapt-
ability, extreme diversity, extreme numbers,
extreme rates of genetic exchange, tolerance for
‘unfit’ variation, and the ability to reassemble from
cryptic or ‘dead’ parts. They can transition
between the chemical and living world. Thus, I am
asserting that most initial genetic and selective
events that transform host regulatory complexity
are usually ‘pushed’ by virus action in a general

direction of increasing complexity. In this way,
viruses present an omnipresent and ancient issue.
Hence, we must always consider how any virus
action on host will affect virus–host survival in
their respective virosphere or virus habitat (e.g.,
reproductive tissue). A most significant develop-
ment would be the emergence of a stable persistent
relationship between virus and host as this repre-
sents a virus–host symbiosis that now protects the
host form the same and often other lytic (disease
causing) viruses. Persistence is difficult to attain
not the indirect result of survivor of runaway (self-
ish) replicons. Persistence inherently requires self-
regulating and self-opposing functions. Thus, even
‘defective’ (and parasitic) components of viruses
(and transposons) can express virus-specific regula-
tory (opposing) molecules (including ncRNA),
clearly promote virus–host persistence, and
respond to oppose lytic virus infection. Thus, the
presence of incomplete viral elements in host gen-
omes are not simply the remnants of past viral
infection and disease (virus sweeps), but should be
considered as the savior of the host lineage by pro-
viding the capacity for self regulation and persis-
tence of viruses that can still threaten related
species. Virus persistence provides a large selective
advantage in the virosphere. It also presents a per-
spective that is essentially the converse of the cur-
rent view in evolutionary biology: viral persistence
is a big determinant of host survival with strong
effects on host group survival as well (via virus
communication) (22). It defines a relationship
between virus and host and between host them-
selves that does not adhere to the predator–prey
theory (23, 24). Nor does it adhere to the red-
queen hypothesis. Persistent virus is usually highly
prevalent, silent, often genetically stable, co-evol-
ving with the host and usually transmitted from
parent (old) to offspring (young) or in close coor-
dination to host reproductive biology. Establishing
persistence is difficult and can be thought of as
resulting from a successful hacking of host identity
networks to insert new code and promote survival
of a new more complex virus–host identity. Since
persistence is always regulated, it is a mostly silent
state in which reactivation is tightly linked to host
(reproductive) biology with big consequences to
host and virus fitness. This makes it much more
difficult to study. Asserting the core importance of
persistent virus to host survival thus presents a big
break from historic views in evolutionary biology
and adds a process of selection that stems from
the horizontal transmission of persistent virus. As
the virosphere provides no ‘virus-free’ habitat for
any life form, all living forms have adapted to
their own viral habitat.
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APPLYING THE VIRUS FIRST PERSPECTIVE

TO PLACENTAL ORIGINS

Let us now conceptually reconsider the placenta
from this virus perspective. Accordingly, ‘exapted’
viral env genes were not initially a convenient
source of genetic errors for promoting a more effi-
cient placenta, but instead they were successful col-
onizers that allowed the host lineage to control
various persisting viruses prevalent in their repro-
ductive systems. The absence of these ERVs (envs)
would leave these host susceptible to these same
and/or other viruses (25). In this light, the presence
of an impervious eggshell would preclude the colo-
nization of the shell membrane by active and self
protective virus. But by creating a virus accessible
and rich tissue (trophectoderm; exposed after zona
pellucida loss) which is needed for host reproduc-
tion, it promotes virus-based network solutions
(e.g., genetic reprogramming, immune suppression,
transformation, membrane fusion) to biologically
difficult problems needed for vivipary to emerge
(12). In addition, the new virus–host symbiont has
acquired a very significant advantage compared the
uncolonized host that remain susceptible to the dis-
ease induced by related viruses. By modifying host
identity (and immunity), these ERVs have thus set
the stage needed to promote virus persistence as
well as a new host reproductive strategy. This
reproduction strategy must in turn promote the
reproductive success of the new virus–host combi-
nation. However, the ERV-host relationship is
often dynamic and can continue to be susceptible
to subsequent (competing, displacing) ERV colo-
nization as the persistent/acute virus habitat further
evolves [as an exemplar, see JSRV (26)]. Wild mice
show similar strain (mating) specific ERV-cancer
biology (27, 28). This virus first scenario can thus
provide an answer as to ‘why’ various distinct, but,
host lineage-specific viruses have been involved in
their placentas and promote more complex host
reproductive biology. These viruses thus resemble a
competent, but, diverse gang of highly effective net-
work hackers that seek to add new (viral) instruc-
tions. Because viruses can also disperse and interact
as populations [quasispecies: QS, see (29)], viruses
can modify distributed regulatory networks, not
simply a specific loci or individual host. Such net-
work editing need not occur by a serial set of indi-
vidual events involving master individual type virus
selection (30). They can instead involve quasis-
pecies-based and defective virus-based processes
that occur via population based virus colonization
(see the Koala-virus example below). Such diversity
makes these agents prone to multifunctional-, con-
ditional-, and context-dependent interactions.

Indeed, the QS-based feature of RNA viruses in
particular, allows us to think about the involvement
of a virus ‘consortia’ as natural editors of host
genetic content (31). Thus, the presence of such dis-
tributed virus-derived (often defective) information
is not the residual product of errors, but the pro-
duct of a QS-based colonization that directly
affected virus persistence, virosphere survival, host
competition, and has also modified host identity
systems. Host evolution is then free to adapt these
new viral network systems for host reproduction
and survival. Successful virus colonization of host
thus promotes new complex host group and indi-
vidual identity that strongly affects competition
with related, but, uncolonized host populations and
leads to a modified virosphere.

AN EXAMPLE OF ONGOING POPULATION-

BASED ENDOGINAZATION: KOALA

RETROVIRUS

Let us now outline some evidence that is most rele-
vant to this virus first scenario: that is, virosphere
survival via persisting new virus information. The
Koala’s of Australia provide a particularly recent,
relevant, and informative story, see (32). Koalas
have recently undergone an epidemic of retrovirus
(KoRV, a gamma retrovirus)-mediated leukemia.
Survivors, however, are undergoing endogenization
by an array of this same virus [which itself appears
to originated from an virus of rodents or bats (33)].
Survivors do not die from leukemia, but they can
generally still produce the virus, which is now held
in check by the endogenized (proviral) versions.
Thus, they have established persistent infections
with low disease. This endogenization is occurring
by a complex process involving geographically (and
tissue specific) distinct populations of both exoge-
neous and endogenous viruses involving an increas-
ingly large diversity of ERVs at low copy level (34).
Clearly, the endogenized KoRV must modify the
exogeneous KoRV-induced immune cell dis-regula-
tion (leukemia) that would otherwise occur. Indeed,
wild Koalas with endogenized KoRV no longer
make antibodies to KoRV (33). Thus, virus infor-
mation has become ‘one’ (symbiotic) with host and
must be involved in virus control. But not all Koala
populations have been equally affected by the epi-
demic. Populations isolated in some islands have
much less disease and no endogenization. However,
it would not be difficult to predict what might hap-
pen if the persistently infected mainland Koalas
now come in close contact with these isolated popu-
lations: survival of the persistently infected. This
new Koala KoRV virosphere requires that these

22 © 2016 APMIS. Published by John Wiley & Sons Ltd
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ERVs must remain in Koala genome along with
their capacity to cause tumors in non-endogenized
populations. Thus, inducing lethal tumors (viral
harm) is not a breeding artifact but an important
phenotype that can be transmitted to compel unin-
fected Koalas to either die or become one (persis-
tent) with KoRV. This situation promotes
reproductive isolation via the survival of KoRV
endogenized Koalas.

GAMMA ERVS IN BATS, INTERACTION

WITH OTHER VIRUSES, AND

REPRODUCTIVE ISOLATION

Gamma retroviruses viruses (in contrast to len-
tiviruses) have been very successful in endogenizing
vertebrate species (as sources of ERVs). Gamma
retroviruses are mostly transmitted from old to
young, often via reproductive tissue. Indeed, the
reproductive tracts appear to generally provide a
‘virus-rich’ and also a ‘virus-mixed’ habitat. Thus,
we might also anticipate that the placenta will need
to provide general mixed virus resistance and that
such resistance will often be mediated by resident
or endogenized virus, as has been reported (35).
Gamma-retro virus endogenization has also
occurred in bats (36). Interestingly, ERVs seems to
have also been involved in (helped) the endogeniza-
tion of filoviruses (Ebola and Marburg) that has
also occurred in bats (37). Given the capacity of
bats to host many persisting RNA viruses that are
highly pathogenic to other species, their significant
genome colonization by the gamma retroviruses
and rolling circular DNA virus defectives (express-
ing stem-loop miRNAs) is particularly interesting
(38). Such persistence by potentially lethal virus is
not simply due to the fortuitous containment of an
infection, but must have resulted from the establish-
ment of a virus ‘addiction module’ in that the same
defective virus must resist similar virus. But if the
host were to lose this (defective) virus information,
it too would become susceptible to lethal infection.
This, I suggest, defines a general issue that applies
to all species and their viruses. It also can explain
the emergence of sexually incompatible populations
(due to incompatible persistent viruses). It is fur-
thermore likely that this issue also relates to sexual
incompatibilities seen via methylation (39). Virus
persistence (addiction) is not specific to ERVs. In
wild mouse colonies, for example, many viruses can
establish prevalent and highly stable persistent
infections, including MVM, MPV, Theilers virus,
LCMV, MHV. Although some of these viruses are
also capable of causing disease (even in wild
colonies), they are often held in check by

population-based ‘virus persistence’, for example
via maternal antibodies transmitted through the
placenta at birth (40). Generally, such persistently
infected wild colonies are healthy. Yet the introduc-
tion of such wild mice into uncolonized ‘virus-free’
breeding colonies will usually result in reproductive
collapse of the entire virus-free colony. Thus, the
history of persisting virus in a specific population
can have measurable and large survival conse-
quences. Along these lines, we can consider the
recent Ebola virus epidemic. Human male survivors
appear to persistently produce viruses in reproduc-
tive tissue (41). Clearly, such persistently infected
and sexually transmissible humans pose a major
risk to all extant human populations. In contrast to
rodents and bats, humans host a lot of persistent
DNA virus infections (polyomavirus, papillo-
mavirus, adenovirus, herpes virus). Many human-
specific viruses can also be found in the reproduc-
tive organs. Herpes 6/7 and HSV-2 are especially
present in such tissues (42) and able to cause fatal
encephalitis in unprotected newborns (via non-
immune mothers) (43). Interestingly, these HVs per-
sist via microRNAs that modify host apoptosis (44)
and can act cooperatively (45). HHV 6 can also
integrate into chromosomal (centromere) DNA and
allow genomic maternal to fetal transmission (46).
And the presence of such prevalent viruses in
human reproductive tissue can have major conse-
quences to other viruses, such as HIV-1. Indeed, in
the S. African epidemic, heterosexual transmission
of HIV-1 depends heavily on co-infection with
HSV-2 (47). A similar situation applies HIV-1 and
papillomavirus-induced cancers (48). Some viruses
can inhibit HIV (49). Interestingly, HERVK serum
immunity can also affect HIV (50). Thus, the repro-
ductive tract provides a virus-rich and mixed-virus
habitat.

VIRAL IDENTITY AND IMMUNE NETWORKS

VIA PARASITE DERIVED STEM-LOOP RNA

The importance of small non-coding RNAs for
DNA virus persistence has recently become clear
(51). But small non-coding RNA regions (with
stem-loops) are also the main identifying and regu-
latory elements for most if not all RNA virus.
Indeed, the definition of a gamma retrovirus
depends on such a stem-loop element. Also, within
retroviral LTRs and various other crucial control
elements, stem-loop RNA are essential for identifi-
cation and regulatory function. Thus, RNA–RNA
interactions via stem-loop regions promote the
establishment of RNA-based regulatory networks.
Other parasitic retro-agents (LINEs/SINES, alu’s)

© 2016 APMIS. Published by John Wiley & Sons Ltd 23
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can also be transcribed to produce non-coding
stem-loop RNAs. This suggests the possibility for
an extensive and mixed system of RNA-based regu-
lation all deriving from parasitic agents (52). From
the host perspective small non-coding RNAs are
mostly thought to control host–virus (retroposon)
interaction (53). Indeed, many human microRNA’s
target retroviruses and ERVs (54).

MULTIFUNCTIONAL NETWORK ISSUES FOR

THE PLACENTA SOLVED BY ERVS

Let us now further consider a virus first (virus-origin)
perspective for the origin of the placenta. Accord-
ingly, virus should: (i) be involved the origin of the
trophectoderm (first embryonic cell to differentiate),
(ii) promote embryo implantation, (iii) promote com-
plex placenta functions (including the cellular inter-
face and invasion that feeds the embryo), (iv)
regulate the mother’s (host) immune response, (v)
communicate to reprogram the mother’s (host) phys-
iology and behavior to support the embryo during
pregnancy and after birth. These may seem like
impossible and overly diverse tasks for viruses to
help solve. This is on top of the fact that prior egg-
based reproduction must have already been working
well. But let us recall the general competence of virus
to regulate all systems of host control, including all
genetic, epigenetic, transforming systems via a pro-
cess involving transmissible-, diffuse-, ERVs-, and
ncRNA-based regulation. Such new regulations can
be forcefully superimposed onto the host. Viruses are
good for this. In the next section (on Motherhood
behavior and virus), a related complex issue of virus–
host reproduction reprogramming in the context of
parasitoid wasps is also presented, but involving dis-
tinctly different DNA viruses. With respect to the
placenta, there is indeed evidence of viral (and antivi-
ral) involvement in all of the above issues. Retroviral
and retroposon RNA is highly expressed and regu-
lated in the early embryo. And although DNA
methylation is thought to restrict retrovirus and
retroposons, stem cells (and the placenta) are open
to ERVs as their DNAs are hypomethylated (55).
lncRNA, siRNA and RNAi are all involved in early
embryo regulation but are also either derived from
retroposons or thought to regulate ERVs and retro-
posons. The RNAi system in invertebrate animals
and plants is a core innate immune regulator of virus
infection. Yet, its antiviral function was mostly lost
in jawed vertebrates along with the emergence of the
interferon system and adaptive immunity. Interest-
ingly, it retains activity in the early embryo and is
needed for early development (56), but is not appar-
ent in most somatic tissue. This strongly suggests a

major alteration to antiviral systems occurred in
early mammalian embryos. Also, lncRNA appears
to be involved in early embryo programming, but
such RNAs are mostly derived from retrotrans-
posons (57). Other expressed functional repeat
RNAs are also derived from retrotransposon (58).
Indeed, ERVs themselves appear to be directly
involved in fetal imprinting (59). Subsequently,
embryo implantation involves reverse transcriptase
activity that is derived from retroposons (60). In
addition, the placenta clearly depends on the various
ERV env (syncytin) genes for both structural and
functional needs (61). And at least ten lineages of
mammals have acquired their own version of envs
for placental function. But the regulatory regions for
these syncytins is complex and composed of mixtures
of LTRs and other regulatory regions derived from
other retroviruses (62). Indeed, the placenta does not
seem to emerge from the acquisition of a lot of new
genes, but instead appears to result from a more
complex regulation of mostly previously existing
genes via a the emergence of a regulatory network
that was derived to a large degree from ERV-LTR
elements (63). These LTRs may be providing enhan-
cer-based gene regulation (64). In addition, LTR reg-
ulation of insulin (65), poly-A control (66), NOS3
expression (67) have all been reported in the pla-
centa. The acquisition of such regulatory complexity
in the placenta along with its coherence clearly pre-
sent a big problem. How can we explain the origin
and integration of this network? A selective process
involving serial individual fittest type selection
(exapted genes) does not account well for how net-
work coherence (cooperation) is attained. Indeed, I
think such step-wise selection is not possible given
the successive and long durations needed for differ-
ential offspring survival and also the clear similarity
of viral elements to be distributed in the network in
order for the placental to be formed and function.
However, if instead we invoke a process similar to
what is occurring in Koala ERV endogenization, we
see evidence for population (network)-based colo-
nization en mass. For this to occur via the placenta,
the placenta must have been initially involved in viral
and antiviral control, as has been reported (35).
Indeed, both network emergence and antiviral status
should associate with ERV acquisition. And other
human viruses, such as HIV, HSV, could also be
affected (68).

PLACENTAL VARIATION AND

CORRESPONDING ERVS

Biologically, the placenta varies greatly between
species (69), especially its invasiveness (70). The

24 © 2016 APMIS. Published by John Wiley & Sons Ltd
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selective pressure and molecular basis for such vari-
ation has always been curious and difficult to
explain. However, if we consider the involvement of
distinct viral ecologies and colonization histories in
placental origins, we might better explain such pla-
cental variability. Endogenous viruses (often defec-
tive but some expressing env or gag) can clearly
provide restriction factors that limit exogenous
virus susceptibility (71, 72), especially env (73). Such
restrictions, however, are highly species, strain, and
virus specific. The sheep retrovirus (JSRV) seems to
provide the best model for how a virus is able to
both infect as exogenous disease causing virus yet
be essentially required for reproduction as an endo-
genized virus (74). Such a relationship can establish
a dynamic, ongoing change to host ERV composi-
tion with degradation of older displaced copies sim-
ilar to that as seen in primates (75). This JSRV
model, I suggests, captures the essence of the virus–
host dynamic in reproductive tissue. Reproductive
transmission of virus becomes key. Indeed, various
other animals show reproductive virus transmission
and ERV changes, such as drosophila (76). How-
ever, it is clear that many species are unable to pro-
duce an exogenous virus from endogenous copies,
such as primates. Clearly, there are distinct variabil-
ity in species-specific virus–host composition and
ecology. In many situations, I propose that it is
likely that other viruses of the reproductive tissue
are also involved in the placental-ERV relationship.
Thus, the ERVs expressed in placental tissues may
need to be evaluated in the context of additional
virus mixtures and could have a more generalized
antiviral affect.

ERV-DERIVED SYNCYTINS AND

GENERALIZED ANTIVIRAL ACTIVITIES

Recently, the presence of syncytin-like ERV env in
marsupial reproductive tissue has been reported
(77). Marsupials have simple short-lived placentas
in which embryos implant for periods of about 1
week, then the embryo is rejected from the interface
and must feed off of the pouch secretions. This sim-
ple placenta is much less invasive and long-lasting
then that of mammals and it also does not promote
the exchange of blood (and antibodies) between
mother and embryo. Yet even in this simplified pla-
centa it seems an ERV env gene were needed to
solve the interface problem posed by embryo
implantation. Why might a virus also provide a
good solution to this simplified biological situation?
Many ERVs that produce env genes in reproductive
tissue are dynamic and changing on an evolution-
ary time scale (75). If we adopt a virus first perspec-

tive to this situation, we could expect that an initial
and new ERV colonization resulted in a more
stable persistent relationship between virus and host
reproductive tissue, but that such a state will often
involve the emergence of a new antiviral state and
will occur via diffuse (Koala-like) network-like
mechanisms. The resulting virus–host combination
can still be subjected to further successful ERV col-
onizations that similarly further alter antiviral
states and regulatory networks. In this light, the
recent report regarding the expression patterns of
HERV-K in human reproductive tissue (early
embryos and placental cytotrophoblasts) is espe-
cially interesting (78). This ERV (env) does not
function as a syncytin, so env gene exaption is not
a possible explanation for its presence. Also, these
particular HERV Ks are relatively new and exoge-
nous additions to the human (but not chimpanzee)
genome, previously thought to provide no gene
function to humans due to polymorphisms. But
now it appears that this HERV K has provided
virus restriction factors (eng, gag) that are also
important for embryo function and it has also
induced a more general antiviral state via the
IFITM1-specific interferon response that more gen-
erally inhibits other virus replication. This general
response is operating thorough the HERVK-
encoded rec gene (a rev-like RNA transport pro-
tein) that interacts with stem-loop viral RNA
regions. In these specific embryos, however, about
1/3 of cellular mRNAs have 30 UTRs that can bind
this rec and promote ribosome occupancy. Thus,
HERVK has promoted the emergence of a new reg-
ulatory translational network in these human cells
as well as a generalized antiviral response. Indeed,
it has been previously observed that HERVK can
also interact with other viruses. For example, HIV
infection activates many human-specific HERV-Ks
found at centromeres (79). In addition, HCMV has
been reported induces HERVK (80), as has EBV
(81). The relationship between ERV envs and host
is thus complex (82). But their ability to induce
general antiviral immunity as well as edit existing
host regulatory networks seems established.

MOTHERHOOD, BEHAVIOR, AND VIRUS?

In an early paper I compared the role of ERVs in
mammalian reproduction to that of polydnaviruses
in the reproduction of parasitoid wasp (12). In both
motherhood and wasp embryo parasitization of
caterpillars, the host (caterpillar or mother) must
be able to support an embryo that is foreign. Both
these situations have some surprisingly similar sets
of biological issues to overcome, including immune
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suppression of host, altered genetic program to sup-
port (feed) the embryo and altered development
and behavior of the host. And in both situations,
endogenized viruses provide solutions to these com-
plex problems. In the parasitoid wasp, the super-
coiled closed circular DNA’s that are packaged into
VLPs are now accepted to have been clearly virus
derived (83). This complex set of distributed viral
genomes have become endogenized, are mostly
defective and are expressed exclusively in female
wasp reproductive tissue. Relatively few viral ORFs
are expressed from these circular DNAs. Indeed,
most DNA segments have repeated sequences
within them. Interestingly, a differential microRNA
response is seen in response to parasitization (84).
What is particularly fascinating about the para-
sitoid wasp is that in some situations, the para-
sitized host caterpillar becomes immobile after the
wasp parasites exit its body. The caterpillar, how-
ever, is induced to protect these wasp larvae by

making a cocoon for them and guarding them
against other parasitoid wasp species, before the
caterpillar dies. The mechanism by which this dra-
matic behavior is induced is not understood. It
seems likely, however, that the polydnavirus is
involved. Given the paucity of polydnaviral ORFs,
I would guess that regulatory RNAs are also likely
to be involved. In mammals, mothers must also
undergo major behavioral changes. Indeed, some
increase in maternal brain size occurs during preg-
nancy. It has been proposed that a general link to
brain size is due to mother–off spring bonding (85).
It is also apparent that genomic imprinting essential
for maternal brain development (86). Many of these
changes are thought to be mediated by the pla-
centa, thus trophectoderm and the placenta are
likely sources of maternal behavioral control.
Unlike the fertilized parasitoid wasp egg, which is
surrounded by polydnaviral VLP layer, the sur-
rounding placenta of mammalian embryo provides

Fig. 1. The RNA gangen hypothesis: group identity and cooperativity of an RNA collective that requires opposite func-
tions for the genesis of life (social behavior of agents). Reprinted with permission from Villarreal, Luis P. 2015. ‘Force for
Ancient and Recent Life: Viral and Stem-Loop RNA Consortia Promote Life’. Annals of the New York Academy of
Sciences 1341 (1): 25–34.
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much of the endogenous virus (ERVs) required for
reproduction. A question that arises is if these
human ERVs might also be involved in controlling
the behavioral changes of motherhood. Is the pla-
centa using ERVs in some way that alters the
mother’s physiology and behavior? As the mecha-
nism by which maternal brains are modified by the
placenta are not understood, we cannot answer this
question. Yet it is clear that the placenta does use
ERV products (env mediated budding) to communi-
cate with other maternal tissues. The human
cytotrophoblasts produce exosomes that have incor-
porated both syn-1 and syn2 (87). In addition, syn-
1 containing blood borne exosomes can regulate
the immune response (88). Also these placental
exosomes incorporate miRNA (89).

TRANSMISSIBLE SMALL RNAS, ERV

REGULATION AND MOTHERHOOD

BEHAVIOR: EVERYTHING FROM VIRUS

Given that RNAi (dicer) is active in preimplantation
embryos (56) and the ancestral role of miRNA in
silencing retroposons in preimplantation embryos
(90), ERV activity seems highly regulated by ncRNA
and specific to the placenta. Indeed, maternal plasma
has high levels miRNAs (91). And the placenta is a
major site of secretion of exosome-containing micro
RNAs (92, 93). Given the ability of miRNAs to con-
trol anxiety (94), a crucial maternal behavior, it thus
seems plausible these env (syncytin) expressing exo-
somes are involved in regulating maternal behavior.
Along these lines, the large human-specific C19MC
miRNA cluster is one of the sets of miRNAs
expressed in exosomes and this cluster is also
imprinted in placenta (95). But this primate-specific
C19MC cluster is also expressed in fetal brain and its
induced overexpression strongly associated with
pediatric brain tumors, see (96). Thus, there seems to
exist a clear pathway for the ERV mediated placen-
tal control via ncRNA’s of maternal brain growth
and behavior. The relationship of a mother to her
offspring is often considered in the context of
mother–offspring conflict. Clearly, a parasitiod lar-
vae is in a similar conflict with its caterpillar host.
But as I have outlined above, in both situations
endogenous viruses were involved in the origin (and
resolution) of these embryo–host relationships.
However, the survival advantage for the persisting
virus involved, is seldom considered. Viruses have
long been dismissed as simple selfish agents, not cen-
tral to evolution. And their persistence has been trea-
ted as a trivial matter. Here, I argue that the virus
perspective should instead be considered first. For
the virus–host relationship (e.g., persistence) sets the

stage for who will survive in the virosphere and what
may follow regarding virus–host selection. In sum-
mary, viruses are competent in all biological codes
and various forms of communication. And since
viruses can often function as diffuse populations,
they are capable ‘hackers’ of complex network sys-
tems not only able to reprogram a network but also
to provide novel solutions, often via mixed and
defective and counteracting viruses (via quasis-
pecies). In their capacity to promote persistence,
viruses also promote the infectious acquisition of
systems of identity and immunity. Because viruses
are transmissible, they affect the relationships (com-
munication) not just within individuals but also to
extended groups. This is the most powerful role.
Indeed, I have recently proposed that a quasispecies
consortia (Gangen) of transmissible stem-loop
RNA’s can better account for the origin of ribo-
zymes and the identity and communication networks
of RNA world organisms (97). See Fig. 1. From the
origin of life to the evolution of humans, viruses
seem to have been involved. Thus, the large scale
expansion ERV LTRs and other stem-loop RNA
elements (e.g., alu’s) in the recent evolution of the
human brain, might also indicate a viral role. So
powerful and ancient are viruses, that I would sum-
marize their role in life as ‘Ex Virus Omnia’ (from
virus everything).
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