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1. Introduction.

Therapeutic challenges.

The International Association for the Study of Pain (IASP) Task Force recently proposed a 

new definition of pain as an aversive sensory and emotional experience typically caused by, 

or resembling that caused by, actual or potential tissue injury [188]. Importantly, acute pain 

serves a critical Darwinian protective function: to initiate an escape response from noxious 

stimuli that in the future should be avoided for personal safety. However, chronic intractable 

pain is maladaptive and constitutes a widespread public health issue, significantly impairing 

quality of life and costing nearly $600 billion per year in the US alone [1]. Current efforts to 

develop novel pain therapeutics are guided by the following observations: 1) pain may arise 

from multiple mechanisms, and this complexity reflects the difficulty in achieving 

significant relief; 2) chronic pain states may reflect an important sex covariate in the 

development of the pain phenotype; and 3) there is a growing appreciation that secondary to 

tissue and nerve injury, elements of the immune system are recruited in a sex-dependent 

manner to influence the chronic pain phenotype. In the following sections, we will discuss 

aspects of these three points.

Categorization of pain phenotypes.

Mechanistically, pain states evolving into a chronic pain phenotype may be classified 

heuristically into four categories: (1) Nociceptive pain resulting from activation of high 

threshold sensory neurons (nociceptors); (2) Inflammatory pain resulting from persistent 
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inflammation in soft tissue (viscera, fascia, muscle), joints (arthritis), or other specific 

tissues (e.g., dental, meningeal, bone); (3) Neuropathic pain resulting from direct (trauma, 

compression, ischemia) or indirect (chemotoxins, radiation, or autoimmune attacks, as with 

paraneoplastic syndromes) injury to the peripheral afferent nerve or ganglia; or (4) 
Dysfunctional/Centralized pain occurring in the absence of a noxious stimulus, detectable 

inflammation, or structural damage to the primary afferent [228]. It should be noted that in 

accord with the IASP guidelines outlined above, these four categories are associated with the 

generation of an aversive state accompanied by changes not only in physiology (e.g., blood 

pressure, hormone release [42]) but also in reward and cognition (e.g., formation of a 

negative association leading to avoidance, development of a positive appetitive response to 

drugs that diminish the negative affect [169]). Chronic pain syndromes with neuropathic 

etiology are often challenging to manage as they tend to be refractory to treatment with anti-

inflammatory drugs, and many patients report inadequate or variable relief from commonly 

employed first-line therapies such as anticonvulsants and antidepressants [239]. While it is 

informative to consider types of pain individually from a mechanistic standpoint, many 

chronic pain conditions represent multiple phenotypes expressed simultaneously. For 

instance, effective management of cancer pain may require several functionally distinct 

medications to target various underlying processes. Furthermore, there is increasing support 

for the assertion that acute pain states secondary to tissue injury may evolve into a chronic 

condition with peripheral and central neuropathic components [183].

Sex as a covariate in the evolution of chronic pain.

Evidence is accumulating in support of quantitative and qualitative sex differences in pain 

sensitivity and analgesia. Pain syndromes with high prevalence in humans – such as arthritis, 

temporomandibular disorder, migraine and fibromyalgia – disproportionately affect females, 

occurring with significantly greater incidence than in males [158; 194]. Such disparities 

largely have been attributed to genetic and hormonal differences between males and females 

in preclinical and clinical studies, as explored in depth by several elegant reviews [20; 53; 

62; 73; 74; 158; 177]. Historically, most preclinical studies of pain hypersensitivity have 

focused on assessment of evoked behaviors in young adult male rats or mice. This approach 

largely derived from perceived challenges posed by evaluating effects of estrus cycle phases 

(which change every 4–5 days) on nociception and analgesic responsiveness [157]. 

Surprisingly, evidence suggests that variability associated with different stages of the estrus 

cycle is no greater than that occurring intrinsically in males [15]. There is a high failure rate 

of analgesic investigational new drugs in clinical trials, particularly for pain conditions with 

greater incidence in women [17]. Thus, elucidation of the molecular underpinnings of 

chronic pain states in females and the mechanisms underlying sex-dependent differences in 

pain signaling is critical for successful development of novel therapeutics [159]. Recent 

efforts are emphasizing inclusion of females and of spontaneous painful disease models such 

as osteoarthritis in companion animals to identify novel druggable targets for pain symptoms 

[111; 158], although the literature still remains biased toward males [159]. Recognizing this 

issue, the NIH specifically mandated that studies must employ both males and females 

unless there are organ-specific reasons to exclude one sex or the other. Several preclinical 

studies suggest that interactions between the immune and nervous systems contribute to sex 

differences in many chronic pain syndromes, and may serve as a source of novel drug targets 
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that are specific to either males, females or both [10; 40; 54; 133; 178; 195; 199; 206; 242]. 

In the present review, we provide a comprehensive synthesis of reported sex differences in 

neuroimmune mechanisms of pain hypersensitivity in rodent models, suggesting potential 

high-value targets to pursue for sex-specific treatments of chronic pain in men and women.

2. Assessment of nociception in rodent models

In humans, pain is difficult to assess reliably using objective clinical measures due to its 

highly subjective and individualized nature [45]. Thus, diagnosis of pain syndromes and 

subsequent evaluation of therapeutic efficacy relies heavily on patients’ descriptions of their 

pain levels, features, and location. As non-verbal organisms (infants, rodents) lack this 

capacity, one endpoint that can be isolated and examined easily in behavioral models is 

nociception, or the neural process of encoding noxious stimuli constituting the sensory, non-

affective component of pain (Figure 1). For excellent reviews of pain circuitry in 

development and adulthood, see Treede, Fitzgerald et. al., and Basbaum and Fields [14; 77; 

223]. Injury- or disease-induced pain hypersensitivity results from peripheral or central 

sensitization, or the increased responsiveness of nociceptive neurons in the peripheral (PNS) 

and central nervous systems (CNS) to normal or subthreshold primary afferent input [122], a 

process mediated by several mechanisms described herein. Pain hypersensitivity presents 

both in humans and in animals as allodynia, wherein stimuli that do not normally produce 

pain are perceived as painful, or hyperalgesia, a state of enhanced sensitivity to noxious 

stimuli that is often coupled with spontaneous (non-evoked) pain [196]. If present at the site 

of injury, hyperalgesia is considered as primary, while that which occurs in the surrounding 

area is termed secondary. The development of secondary hyperalgesia is attributed to central 

sensitization.

Classically, nociception in animals is measured as nocifensive (reflexive withdrawal) 

behaviors in response to evoked stimuli. However, the low probability of clinical success for 

candidate analgesic molecules based on evoked endpoints alone has sparked efforts to 

improve the face validity of preclinical paradigms of chronic pain [235]. Several groups have 

pursued various methods of also capturing affective and motivational components of the pain 

state in rodents as well as in larger animals [27; 79; 96; 131; 146; 162; 171], although these 

approaches are still undergoing refinement. In contrast to a spinally-organized nociceptive 

reflex, the perception and expression of pain unpleasantness depend on higher order 

functions in cognitive and limbic regions of the brain (Figure 2). Since the affective 

component of a pain state manifests as spontaneous as well as time-, species- and paradigm-

dependent behaviors, there is no singular assay in existence that encapsulates the human 

experience of pain in an animal. Nonetheless, some testing approaches can capture specific 

aspects of emotional and motivational responses to noxious stimuli. When utilized 

concurrently with evoked measures, these methods may provide a stronger assessment of 

candidate analgesic drug efficacy in preclinical pain models. For example, rodents in pain 

display coping behaviors such as licking the site of injury or emitting ultrasonic 

vocalizations [96]. Context-dependent approach or avoidance responses following injury 

include conditioned place aversion (CPA) to a location linked with an aversive experience 

(i.e., a pain state) and conditioned place preference (CPP) for a site in which the pain state is 

alleviated [170]. Similarly, operant paradigms for self-administration of analgesic drugs 
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display motivated and goal-directed behaviors to obtain relief from pain [90; 93], although 

interpretation of the results is complicated if the drug itself is intrinsically rewarding. Since 

depression often is co-morbid with chronic pain, incorporation of assays of depression-like 

behaviors comprised of both evoked measures, such as the forced swim test, and 

spontaneous assessments of anhedonia, including motivation for naturally reinforcing 

substances like sucrose [221].

3. Influence of sex on evoked and spontaneous nocifensive behaviors

Several rodent models of chronic pain states exhibit sex differences that parallel findings in 

many human disorders, with greater sensitivity to nociceptive stimuli in females (Table 1). 

For example, tactile allodynia is more pronounced and/or of longer duration in female 

rodents in nerve injury paradigms of Chronic Constriction Injury (CCI) [226; 227] (but see 

also [216]), partial Sciatic Nerve Ligation (pSNL) [51], Sciatic Nerve Ligation (SNL) [32; 

210; 212], Intra-Articular Lysophosphatidic Acid- (IA LPA)-induced neuropathy [174] and 

Endoneurial injection of functionally active Myelin Basic Protein (MBP) fragment (84–104) 

[40]. Hyperalgesic priming, an age-dependent model of the acute to chronic pain transition 

characterized by the prolongation of hyperalgesia by repeated nociceptive insults, also 

exhibits sexual dimorphism. This paradigm elicits increased allodynia and facial grimacing 

in female compared with male rodents in a dural Calcitonin Gene-Related Peptide (CGRP) 

model of migraine [10]. Female mice also experience earlier onset of pain-related functional 

deficits with systemic Lipopolysaccharide (LPS) [106], IA Complete Freund’s Adjuvant 

(CFA)-Induced Arthritis [46], Muscle hyperalgesia [86], and Femoral Bone Cancer, 

correlating with faster progression of disease [64; 121]. Both mechanical and cold allodynia 

are more pronounced in female versus male mice in models of Multiple Sclerosis 

(Experimental Autoimmune Encephalitis, EAE) [185] and of Complex Regional Pain 

Syndrome (CRPS) [213].

In contrast, some studies report greater expression of pain hypersensitivity in males. For 

example, the development of allodynia following intrathecal (IT) LPS or the initiation of 

arthritis (K/BxN serum transfer- or intraplantar IPLT CFA-induced) is more pronounced in 

male mice [26; 205; 206; 242; 243], yet also see [22]. Similarly, males also exhibit increased 

allodynia versus females in the Spared Nerve Injury (SNI) model [97; 205; 206], yet also see 

[24]). The discrepancies in magnitude of allodynia reported by these studies may be 

explained in part by different strains of rodents or paradigms utilized. Evidence of sex 

differences also is emerging both in mice and in humans for the expression of cued pain-

related fear memory mediated by limbic, mesolimbic, and cortical circuits [11; 153]. For 

example, context-dependent pain hypersensitivity is increased in males relative to females 

when tested by a male experimenter or when examined in an environment previously 

associated with an aversive tonic pain experience [145; 207].

In other injury paradigms, male and female rodents develop equivalent severity of evoked or 

spontaneous pain-like behaviors. Studies utilizing Collagen Antibody-Induced Arthritis 

(CAIA) [67], IA CFA-Induced Arthritis [66], Chemotherapy-Induced Peripheral Neuropathy 

(CIPN) [69], adult reincision following neonatal paw incision [165] and IPLT formalin [243] 

models all report allodynia of similar magnitude in males and females. Interestingly, despite 
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sex differences observed in allodynia during arthritis or following IT LPS, both male and 

female mice exhibit deficits in grip strength – a widely used rheumatology measure sensitive 

to analgesics and a frequently reported deficit known to correlate with pain in Rheumatoid 

Arthritis (RA) [106; 164]. Arthritis-induced declinations of functional measures such as 

locomotor activity and home cage wheel running also are observed in mice of both sexes 

[75; 104]. Both males and females exhibit post-surgical or arthritis injury-induced grimace 

behaviors as well as depressed nesting and burrowing [101; 102; 209]. Likewise, sucrose 

consumption and social exploration following systemic delivery of low dose LPS are 

transiently reduced [181] or unchanged [246] in both sexes. The effects of morphine on CPP 

and CPA during peripheral inflammation also are not significantly different between males 

and females [8; 92]. In spite of similar levels of pain-like behaviors in both sexes, it is 

important to note that the mechanisms underlying these behaviors sometimes differ in males 

versus females [26; 50; 89; 130; 149; 178; 195]. Thus, caution should be exercised when 

drawing conclusions about positive or negative effects of treatments for pain when males 

and females are not stratified [158].

Influence of gonadal hormones.

Sex differences in nociceptive thresholds and opioid analgesia depend largely on 

organizational effects of gonadal hormone status – that is, hormone action during critical 

periods of gestation. Specifically, neonatal exposure to testosterone appears necessary for the 

phenotype of decreased nociceptive sensitivity and increased morphine analgesia observed 

in adult males relative to females [23; 43; 114; 117]. Nonetheless, the presence of 

testosterone also can exert pronociceptive actions [205]. The acute, or activational, effects of 

estrogens on pain and analgesia are decidedly more complex. Activational effects can vary 

according to the type, level, stability and route of administration of estrogens, whether they 

are administered alone or in combination with progestins, as well as the nociceptive 

paradigm utilized and the chronicity of pain state. Particular caution should be exercised in 

the interpretation of studies in which supraphysiological doses of these hormones are 

administered [52; 53].

For example, systemic administration of estradiol decreases nociceptive behaviors in the 

second phase (10–60 minutes post-injection) of IPLT formalin-induced acute pain in 

gonadectomized male or female rats [81; 115; 140] and in nerve-injured intact mice [227]. 

In contrast, some chronic pain states that emerge days to weeks after injury or inflammation 

may be exacerbated by estrogens [25; 46] or are unaffected by hormones [12]. Mu Opioid 

Receptor (MOR)-mediated analgesia in cycling females also depends on the phase of the 

estrus cycle, as morphine potency is greatest in metestrus, diestrus and proestrus phases but 

is lowest during estrus [107; 219]. The intricate effects of estrogens are perhaps best 

illustrated by the observations that estradiol suppresses the induction yet facilitates the 

expression of hyperalgesic priming [68; 70; 103]. By contrast, progesterone appears mainly 

to serve a protective function, in that it mediates pregnancy-related analgesia [192] and 

attenuates hyperalgesia precipitated by IPLT CFA- or Carrageenan-induced monoarthritis 

[189; 214], excitotoxic spinal cord injury [84] and Peripheral Diabetic Neuropathy (PDN) 

[126]. For in-depth discussions of these processes, the reader is directed to several extensive 

reviews [20; 47; 52; 105; 147; 158; 234].

Gregus et al. Page 5

Pain. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Influence of stress pathways.

Similarly, stress also exerts paradoxical analgesic and hyperalgesic effects that are sexually 

dimorphic and likely are mediated by estradiol and testosterone [99] as well as stress 

hormones of the Hypothalamic Pituitary Adrenal (HPA) axis such as Corticotrophin 

Releasing Factor (CRF), Adrenocorticotropic Hormone (ACTH), and glucocorticoids [80; 

132]. Interestingly, antisense knockdown of spinal β2 adrenergic receptors attenuates CIPN 

in female but not male rats, while the inverse is observed following knockdown of spinal 

glucocorticoid receptors [69]. Following early life stress, female rats exhibit increased 

central amygdala CRF-mediated visceral pain hypersensitivity [184] and augmented 

expression of hippocampal Tumor Necrosis Factor alpha (TNFα) and IL-6 concomitant with 

greater SNL-induced allodynia [32]. These findings indicate sex-specific dependence on 

stress mediators of the sympathetic nervous system and the HPA axis in addition to gonadal 

hormones.

Influence of genetics.

In a rodent model of lumbar L5 radiculopathy, female Sprague-Dawley and Long-Evans but 

not Holtzman rats developed more severe mechanical allodynia than their male counterparts 

[116]. These findings are corroborated by the observation that L5 spinal nerve transection 

(SNT) produced greater allodynia in female versus male Sprague-Dawley rats, but no 

significant sex difference in Holtzman rats [57]. Swim stress-induced analgesia (SIA) is 

greater in female Wistar and Spontaneously Hypertensive (SHR) but not Lewis rats [230]. In 

contrast, SIA is enhanced in male C57BL/6 and Swiss Webster mice compared with isogenic 

females [160]. Similarly, morphine antinociception also is greater in several strains of male 

rats and mice, as reviewed in depth [161]. While allodynia is expressed in both sexes of 

CD-1 mice, it is evident in male but not female C57BL/6 mice in the destabilization of the 

medial meniscus (DMM) model of knee osteoarthritis (OA) [139]. Of note, substrain 

differences of C57BL/6J versus C57BL/6N mice in nociceptive behaviors are found 

following IPLT formalin, but not with IPLT CFA or CCI models [28]. QTL mapping in a 

cross of these strains uncovered a difference between B6J versus B6N, with thermal 

nociception being more pronounced in males. These observations indicate that rodent strain 

also should be considered when drawing conclusions about sex differences in pain 

hypersensitivity.

4. Sex-dependent neuroimmune mechanisms of pain hypersensitivity

Tissue damage or infection initiates an immune response that can ultimately lead to a 

chronic pain state. Acute inflammation serves a dual purpose in that a wide variety of 

mediators are secreted to prevent the organism from incurring further injury and to recruit 

peripheral immune cells for containing and repairing the damage. Historically, these factors 

have been characterized as either maladaptive “pro-inflammatory” or beneficial “pro-

resolving”, and are released sequentially to promote active healing. Our current 

understanding of pathogen- or damage associated molecular pattern-induced inflammatory 

responses may best be described as an organized progression of interactions between 

immune cells. Accordingly, the secretion of factors by each cell type influences the timing 

and destination of chemotaxis by another cell type [19; 29; 82]. Under typical 
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circumstances, pain remains acute as the injury is repaired and inflammation is resolved, 

allowing the organism to resume homeostasis.

It is widely recognized that infiltrating as well as resident immune cells likely contribute to 

the transition from acute to chronic pain in instances where either the damage cannot be 

repaired or dysregulated inflammatory signaling continues even after the injury is resolved 

(see Figure 3 for definitions of immune cell types) [13]. For example, infiltrating 

neutrophils, macrophages and T-lymphocytes as well as activated Schwann cells and satellite 

cells secrete factors to communicate with resident astrocytes, microglia and 

oligodendrocytes in the CNS to release mediators that sensitize nociceptors. These processes 

in turn trigger adjacent glia and neurons to drive maintenance of hyperalgesia and allodynia 

[31; 98; 148; 155; 198; 200; 231; 247]. Among the molecules contributing to central 

sensitization are neurotransmitters (glutamate, ATP), peptide signals (cytokines, 

chemokines, neuropeptides), and bioactive lipids generated from cyclooxygenases 

(COX-1/2), 12/15-Lipoxygenases (12/15-LOX), and endocannabinoid system enzymes [87; 

88; 108; 138; 236; 237; 241].

Emerging evidence supports a profound role for sex-specific immune responses that may 

underlie disparities in incidence of pain and other neurological disorders [18; 60; 62; 141; 

186; 191; 208]. Due to specific challenges unique to each sex, the male and female immune 

systems have different requirements, with the female immune system specifically requiring 

the flexibility to allow for pregnancy without attacking the fetus or sperm required for 

procreation [187]. Consequently, females have larger populations of most immune cells, 

higher levels of immunoglobulins, and exhibit stronger responses to infection [110; 168]. 

Conversely in males, the Y chromosome contains multiple genes involved in epigenetic 

regulation of the immune system and susceptibility to autoimmune diseases [37]. While 

some neuroimmune interactions underly nociceptive processing in both males and females, 

some pain states exhibit clear sex-specific mechanisms that likely affect their responsiveness 

to current analgesics and adjuvant therapeutics [9].

Male-specific nociceptive mechanisms.

Chronification of pain states in males is believed to be facilitated largely by the innate 

immune system through neutrophil recruitment to the injury site [197] and to the spinal 

vasculature [156], along with CNS infiltration of monocytes and activation of microglial-

neuronal crosstalk via several mechanisms [179] (Table 2). While significant spinal 

microgliosis is evident in both sexes of rodents following injury [3; 38; 206; 242], allodynia 

in males is believed to be mediated by several mechanisms including, but not limited to: 

stimulation of purinergic P2X4 receptors [142; 224] likely on CX3CR1- (Fractalkine 

receptor)-positive microglia [224; 248], phosphorylation of P38 Mitogen-Activated Protein 

(MAP) Kinase [100; 137; 165; 216] and release of cytokines such as Brain-Derived 

Neurotrophic Factor (BDNF) either from spinal microglia [206] or Dorsal Root Ganglion 

(DRG) nociceptors [166], acting on Tropomysin receptor kinase B (TrkB) receptors in spinal 

dorsal horn neurons. In a model of pain chronification, hyperalgesic priming with IT BDNF 

or IPLT Interleukin 6 (IL-6) is mediated by activation of spinal Dopamine D5 receptors 

(DRD5) in male but not female spinal neurons [149]. Furthermore, the NOD-like Receptor 3 
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(NLRP3) inflammasome drives IL-1β release likely from non-neuronal cells, leading to 

subsequent activation of neuronal Transient Receptor Potential Ankyrin 1 (TRPA1) in males 

but not females in a postoperative pain model of paw incision [50]. Likewise, in CCI or SNT 

paradigms of neuropathic pain, the cytokine TNFα mediates allodynia via spinal TNF 

Receptor 1 (TNFR1) only in male mice despite similar expression of allodynia in both sexes 

[56; 211]. TNFα and IL-1β are unchanged supraspinally in anterior cingulate cortex (ACC) 

following common peroneal nerve injury, indicating potential local release and site-specific 

involvement of these mediators. However, these studies were performed in a mixed-sex 

cohort of mice [135].

Thus, it is important to consider that male-specific involvement of macrophages and 

neuroimmune mediators in allodynia is likely dependent on the paradigm utilized, the 

activation of specific circuits (spinal versus supraspinal), hormone status, or be influenced 

by other factors such as age [94; 95; 129; 134] and strain [152; 202]. Injury-induced 

activation of Toll-Like Receptor 4 (TLR4) is a prominent example of this controversy. IT 

delivery of LPS or endogenous ligands (e.g., High Mobility Group Box 1, HMGB1) and 

models of Peripheral neuropathy or RA elicit spinal TLR4-dependent allodynia that in some, 

but not all, cases is more pronounced in males than in females [2; 195; 205; 206; 240; 242; 

243]. The observed reduction in responsivity of females to spinal TLR4 activation appears to 

be dependent on estrogen, as ovariectomy in conjunction with testosterone replacement 

restores expression of TLR4-mediated allodynia in CD-1 female mice to levels comparable 

to that observed in intact males [205]. Estrogen also attenuates LPS-induced inflammatory 

signaling and prevents expression of the proinflammatory phenotype of microglia during 

development [229; 232; 233]. Interestingly, the sex difference observed in spinal TLR4-

mediated allodynia is absent when LPS is administered either at supraspinal 

(intracerebroventricular, ICV) or peripheral (IPLT) sites in uninjured CD-1 mice [205], or 

intramuscularly (IM) in a model of non-inflammatory acidic saline-induced muscle 

hyperalgesia [83]. In addition, systemic delivery of LPS produces pain hypersensitivity in 

both male and female Sprague-Dawley rats as neonates and as adults [21], correlating with 

decreased expression of Oprm1 encoding MOR in the Periaqueductal Gray (PAG) [246] and 

IL-1β mRNA in the spinal cord, ventrolateral PAG and hippocampus [182]. These 

observations are consistent with the finding that intra-PAG LPS in rats significantly 

decreases morphine antinociception in both sexes [61]. Similarly, in both sexes of C57BL/6 

mice, IPLT formalin-induced delayed tactile hypersensitivity is prevented by global deletion 

of TLR4 [243], and spinal blockade of HMGB1 reverses CAIA-induced mechanical 

allodynia [2].

Furthermore, in some paradigms, crosstalk between macrophages and sensory neurons 

contributes to allodynia in both sexes (Table 3). For example, IPLT Angiotensin II activates 

its receptors (AT2R) in peripheral Iba1(+) leukocytes, leading to TRPA1 transactivation in 

nociceptors concurrent with pain hypersensitivity in males and females [199]. IT delivery of 

BDNF elicits allodynia in both sexes of CD-1 mice [143], while IL-6 contributes to 

enhanced hyperalgesia in males and females following muscle injury [83] and peripheral 

inflammation [83; 217]. In a model of hyperalgesic priming for migraine, intracisternal (IC) 

IL-6-induced dural inflammation is BDNF-dependent in both male and female Sprague-

Dawley rats [30]. K/BxN arthritis elicits time-dependent increases in spinal and circulating 
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TNFα in males and females, and IPLT delivery of TNFα produces spinal Transient Receptor 

Potential Vanilloid 1- (TRPV1)-dependent allodynia in both sexes [22; 66].

Female-specific nociceptive mechanisms.

Sustained allodynia in females is thought to derive in part from the adaptive immune system 

via activation and infiltration of Cluster of Differentiation 4 (CD4)+ T-lymphocytes to either 

central [206] or peripheral sites following nerve injury [91; 133] (Table 2). Interestingly, 

intra-sciatic (IS) injection of MBP(84–104) elicits T-cell migration to the DRG and spinal 

cord concurrent with tactile allodynia in female but not in male mice, in which T cells 

remain localized to the sciatic nerve [40]. Voluntary wheel running attenuates EAE-induced 

allodynia, correlating with reduced release of inflammatory cytokines from myelin-reactive 

T cells and attenuated DRG neuron excitability in female but not in male mice [154]. 

However, a female-specific role of the adaptive immune system remains to be clarified and 

may be paradigm- or strain-dependent. Several investigators have demonstrated that 

infiltrating CD4+ T-cells also contribute to tactile hypersensitivity following SNT or SNI in 

male Balb/c or C57BL/6 mice and Sprague-Dawley rats, respectively [34–36; 44; 49]. CD4+ 

T-cells mediate reduced formalin-mediated nociceptive sensitivity and increased morphine 

analgesia in male compared with female CD-1 mice [193]. In addition, T regulatory cells 

(Tregs) are essential for recovery from CCI-induced tactile allodynia via TNFα Receptor 2 

(TNFR2) in both sexes [76].

Alternatively, other immune cells may be involved in female-specific mechanisms of 

neuropathic pain, as the number of mast cells is increased in lumbar spinal dura mater 

during Intradermal (ID) Capsaicin- or IPLT Carrageenan-induced inflammation [244] as 

well as on the side of the thalamus receiving nociceptive input following SNL [212], 

concurrent with allodynia in female but not in male rodents. Mast cells also mediate ID 

nitroglycerin-induced hyperalgesia, which is more pronounced in female rats [71]. However, 

paw incision- or CFA-induced activation of the mast cell receptor Mas-Related G Protein-

Coupled Receptor b2 (Mrgprb2) elicits inflammation and pain hypersensitivity that is not 

different between male and female mice [85], so a female-specific involvement of mast cells 

may depend on the pain model utilized.

Microglia are believed to drive allodynia predominantly in males, yet several reports suggest 

that females can switch to a microglia-dependent pathway in some models of pain 

hypersensitivity when adaptive immune mechanisms are suppressed [89; 205; 206]. For 

example, microglial P2X7 is activated in females during IA Carrageenan- or Collagen- 

Induced Arthritis (CIA) [173; 218] yet not following IPLT CFA monoarthritis or pSNL- or 

SNI-induced nerve injury [41; 54]. Female-specific progesterone-dependent upregulation of 

Neuregulin-1 (NRG-1) in astrocytes has been observed in a model of experimental L5 

lumbar radiculopathy, while exogenous spinal delivery of NRG-1 produces allodynia in both 

sexes [118; 119]. Mice heterozygous for NRG-1 express sex-specific reductions in serum 

cytokines in conjunction with increased hotplate latency, including IL-6, IL-8 and IL-10 in 

females and IL-1β in males [58]. However, IL-6 may also exert a female-specific protective 

effect, as female IL-6 deficient mice experience increased autotomy behavior following 

nerve injury [245]. Other mechanisms of nociception in females include inflammation-
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induced activation of CNS DRD3 [130] or DRD1 receptors [149], Gamma Aminobutyric 

Acid Receptor subtype A (GABAA) in the PAG [222] or spinal cord [78], and Prolactin 

receptors (PRLR) in sensory neurons [39; 178].

5. Future directions

Chronic pain affects up to 33% of the population and surpasses cancer, diabetes and heart 

disease in terms of societal burden [59]. Management of persistent pain is largely an exercise 

of trial and error, and the scarcity of viable treatment options places undue burden on the 

patient [183]. There is a considerable body of evidence demonstrating that an interaction 

between the nervous and immune systems underlies many pain syndromes at the molecular 

and cellular level. Since immune cells play a major role in the development of mood 

disorders [151], it is likely that they also may contribute to the averse emotional experience 

of pain. Most clinically relevant pain states have a tonic component that is not captured by 

standard evoked paradigms, so continued incorporation of spontaneous and functional 

measures of pain behaviors in preclinical studies will be critical for a deeper understanding 

of sex-related differences in chronic pain states and the future development of analgesics 

[109; 169; 171; 215]. Taken together, studies suggest that neuroimmune signaling events 

altered by injury, disease, or aberrant central nociceptive processing may serve as a rich 

resource of novel druggable targets and of predictive biomarkers suitable for patient 

stratification in trials [55] examining efficacy of potential pain therapeutics.

Given the challenges of developing safe and effective drugs reaching the CNS [201], one 

potential therapeutic avenue is to neutralize release of cytokines and chemokines released 

from circulating leukocytes and/or to intercept these cells before they cross the blood-brain 

barrier (BBB). Accordingly, the development of monoclonal antibody-based interventions 

targeting immune system mediators for the treatment of cancer and autoimmune diseases has 

grown exponentially over the past decade [136]. As our understanding of the role of specific 

immune cells in the development and maintenance of central sensitization continues to 

evolve, some of the newer-generation FDA-approved biologics may be repurposed for 

treating chronic pain either of peripheral origin via systemic delivery, or by routes of 

administration that bypass the BBB (e.g. intranasal or intrathecal). Alternatively, humanized 

single-domain antibodies could be harnessed as therapeutics, diagnostic agents or as delivery 

devices of small molecules targeting specific leukocytes owing to their stability, small size 

and low production cost [16]. Nonetheless, small molecules still lead the field in percent of 

FDA approvals in spite of challenges encountered with safety and tolerability profiles [167]. 

Ultimately, it is imperative for more preclinical and clinical pain studies to draw direct 

comparisons between males and females. Including sex as a biological variable will allow 

experts both to better predict which therapeutic strategies may be effective in each sex and to 

achieve true progress in the discovery of novel non-opioid analgesics.
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Abbreviations

AT2R Angiotensin 2 Receptor

BDNF Brain-Derived Neurotrophic Factor

CGRP Calcitonin Gene-Related Peptide

S100A8 Calgranulin

S100A9 Calgranulin B

CIPN Chemotherapy-induced Peripheral Neuropathy

CCI Chronic Constriction Injury

Cd11b Cluster of Differentiation 11b

CD14 Cluster of Differentiation 14

CD2 Cluster of Differentiation 2

CD4 Cluster of Differentiation 4

CD40 Cluster of Differentiation 40

CD68 Cluster of Differentiation 68

CD8 Cluster of Differentiation 8

CAIA Collagen Antibody-Induced Arthritis

CFA Complete Freund’s Adjuvant

CRPS Complex Regional Pain Syndrome

COX2 Cyclooxygenase 2

DMM Destabilization of Medial Meniscus

dsHMGB1 disulfide High Mobility Group Box 1

DRD1 Dopamine Receptor D1

DRD3 Dopamine Receptor D3

DRD5 Dopamine Receptor D5

DRG Dorsal Root Ganglion
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ErbB Epidermal Growth Factor receptor tyrosine-protein kinase 

erbB-2

ErbB4 Erb-B2 Receptor Tyrosine Kinase 4

EAE Experimental Autoimmune Encephalomyelitis

CX3CR1 Fractalkine Receptor

GABAA Gamma Amino Butyric Acid receptor subtype A

Oprm1 Mu Opioid Receptor gene

GFAP Glial Fibrillary Acidic Protein

CXCL1 = Groα Growth Related Oncogene alpha

HMGB1 High Mobility Group Box 1

IL-1β Interleukin 1 beta

IL-6 Interleukin 6

IA Intra-Articular

IC Intracisternal

ICV Intracerebroventricular

ID Intradermal

IM Intramuscular

IP Intraperitoneal

IPLT Intraplantar

IT Intrathecal

LPS Lipopolysaccharide

Ly6G Lymphocyte antigen 6 complex locus G6D

LPA Lysophosphatidic Acid

CXCL2 MIP2α: Macrophage Inflammatory Protein 2 alpha

MAPK Mitogen-Activated Protein Kinase

Mrgbr2 Mas-Related G protein-Coupled Receptor B2

MCP1 = CCL2 Monocyte Chemoattractant Protein 1

MBP Myelin Basic Protein

NRG-1 Neuregulin-1
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NK1 Neurokinin receptor 1

NMDAR1 N-methyl D-Aspartate Receptor 1

NLRP3 Nod-Like Receptor Protein 3

P2X2 P2X purinoceptor 2

P2X3 P2X purinoceptor 3

P2X4 P2X purinoceptor 4

P2X7 P2X purinoceptor 7

pSNL partial Sciatic Nerve Ligation

PAG Periaqueductal Gray

KCC2 Potassium-chloride transporter member 5

PFC Prefrontal Cortex

PRLR Prolactin Receptor

RAMP1 Receptor Activity Modification Protein 1

SNP Sodium Nitroprusside

SNI Spared Nerve Injury

SNL Spinal Nerve Ligation

SNT Spinal Nerve Transection

TAC1 Tachykinin Precursor 1

TLR4 Toll-Like Receptor 4

TRPA1 Transient Receptor Potential Ankyrin 1

TRPV1 Transient Receptor Potential Vanilloid 1

TNFα Tumor Necrosis Factor alpha

TNFR1 Tumor Necrosis Factor Receptor 1

TNFR2 Tumor Necrosis Factor Receptor 2
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Figure 1. Nociceptive sensory primary afferent pathways.
Nociceptors specialized for detection of high-intensity mechanical, thermal and/or chemical 

stimuli originate in the sensory ganglia (dorsal root, trigeminal and nodose) of the peripheral 

nervous system generally possess small- to medium-diameter, thinly myelinated Aδ fibers 
or small-diameter unmyelinated C fibers and terminate predominantly in spinal superficial 

laminae I, II and V of the dorsal horn [180; 238]. Nociceptors can be described using the 

following categories: Red, Neurofilament H (NFH)+ Aβ large, high threshold 

mechanoreceptor (HTMR)/heat; Orange, peptidergic Aδ small/medium, HTMR/heat; 

Green, nonpeptidergic C small, HTMR/itch/chemical; Blue, peptidergic or nonpeptidergic 

C small polymodal or mechanoheat/cold; Purple, peptidergic Aδ small/medium HTMR or 

C small polymodal. In recent years, several subclassifications of nociceptors have been 

proposed, and the reader is directed to several excellent references for more detailed 

information on evolving designations of primary afferent sensory neuron subtypes: [48; 63; 

120; 124; 125; 175; 220; 225].
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Figure 2. Supraspinal nociceptive circuits.
Nociceptive information transmitted via the spinal cord dorsal horn is communicated to 

the brain along several ascending pathways (merged together in black). Laterally projecting 

systems to the somatosensory (SSC) and insular cortices (IC) correspond to the classical 

somatosensory pathway, with a highly preserved body image mapped at several synaptic 

links. This tract mediates the sensory/discriminative (red) component of the pain 

phenotype. In contrast, medially projecting systems underlying the affective (green) and 

motivational (purple) aspects of pain have relatively crude somatosensory mapping and 

project to limbic structures appreciated for their roles in emotional responses such as the 

parabrachial nucleus (PBN), amygdala (AMYG), anterior cingulate cortex (ACC), nucleus 

accumbens (NAcc) and ventral tegmental area (VTA) [5; 33; 48; 150]. Cognitive (blue) 
interpretation of nociceptive information is mediated by the ACC, prefrontal cortex (PFC), 

and NAcc. Together, these structures contribute to pain processing by integrating 

information about its sensory, cognitive and affective/motivational components. The activity 

of ascending pathways is in turn regulated by descending facilitatory and inhibitory systems, 

which send projections down to the spinal cord mainly from the ACC or periaqueductal gray 

(PAG) by way of serotonergic neurons of the nucleus raphe magnus in the rostroventral 

medulla (MED) or via noradrenergic neurons in the locus coeruleus to modulate excitability 

of dorsal horn neurons [176].
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Figure 3. Immune and glial cells linked to sex differences in pain hypersensitivity.
Neuroimmune cells are generally derived from four different progenitor stem cell types 

(Blue circles): N, Neuroepithelial [112]; D, Mesodermal [72]; M, Myeloid [7]; L, Lymphoid 

[6]. Neuroepithelial cells can differentiate into Astrocytes [203; 204], Oligodendrocytes 

[190], or Schwann Cells [163]. Mesodermal cells can be programmed into Endothelial Cells 

[144]. Myeloid-derived cells include Microglia [128], Macrophages [123], Neutrophils 

[172], or Mast Cells [113] and are referred to as Splenocytes [127] (circled in purple). 

Lymphoid cells differentiate into B-Cells [4] and T-Cells [65], and collectively these cells 

are referred to as Lymphocytes (circled in green).
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Table 2.

Sex-dependent cellular and molecular neuroimmune mechanisms driving pain hypersensitivity

Sex Model Cell Type(s) Mediator Rodent REF

Females

Nerve injury (CCI)

Schwann cells MHC-II activation of helper Th-
cells 129/FVB mice 91

Microglia, 
Astrocytes

Phospho-P38 MAPK in spinal 
cord CD-1 mice 226,227

Nerve injury (SNI) T-cells CD4+ and CD8+ T-cell infiltration 
into lumbar spinal dorsal horn CD-1 mice 206

Nerve injury (SNL) Mast cells Increased mast cell infiltration into 
lumbar spinal dorsal horn SWR/J mice 212

Nerve Injury (pSNL) T-cells Not specified; T-cell infiltration 
into DRG Sprague Dawley rats 49,133

Nerve Injury (L5 
radiculopathy) Not specified Spinal NRG1, ErbB4, and TAC1; 

Progesterone Sprague Dawley rats 118,119

Femoral bone cancer Microglia; Not 
specified

TLR4, CD11b, CD14; Not 
specified

Balb/c mice; Sprague 
Dawley rats 64,121

Migraine (IC 
nitroglycerin)

Mast cells, 
Endothelial cells P2X3 Sprague Dawley rats 71

Migraine (IC CGRP with 
priming) Not specified RAMP1, CLR, RCP ICR mice; Sprague 

Dawley rats 10

Fatigue-enhanced muscle 
insult Lymphocytes Lymphocyte migration to muscle C57BL/6 mice 86

Autoimmune 
Demyelination (IA MBP) T-cells T-cell migration into DRG and 

spinal cord; PLC in females C57BL/6 mice 40

Males

Nerve injury (SNT) Microglia
CD40+ spinal microglia 

interaction with infiltrating CD4+ 
T-cells

Balb/c mice 34,36

Nerve injury (SNI)

T-cells

CD2+ cell migration into 
ipsilateral spinal dorsal horn; Th1-

mediated
Sprague Dawley rats 49

CD4+/CD8+ cell infiltration into 
ipsilateral spinal cord C57BL/6 mice 44

Neurons TRPV1 C57BL/6 mice 44

Microglia, 
Macrophages

TLR4, P2X4, BDNF, Phospho-P38 
MAPK

CD-1, C57BL/6 
mice; Sprague 
Dawley rats

142,205,206

Nerve injury (SNL) Microglia, Neurons P2X4, Phospho-P38 MAPK Sprague Dawley, 
Wistar rats 100,224

Oral cancer Neutrophils Ly6G+ neutrophil migration to 
tumor C57BL6 mice 197

IPLT carrageenan Neutrophils; Not 
specified

S100A8+ and S100A9+ neutrophil 
migration to spinal vasculature; 

gonadal hormones

Sprague Dawley, 
Fischer 344 FBNF1 

rats
156,214

Spinal TLR4 activation (IT 
dsHMGB1)

Microglia, 
Macrophages

Spinal TNF, IL-1b, CCL2, CxCl, 
CxCl2, Gfap, CD11b, females 

recover faster
C57BL/6 mice 2,3

Spinal TLR4 activation (IT 
LPS) Not specified Spinal TLR4

CD-1, C3H/HEK, 
C3H/HeN, 

C57BL/6J, C57BL/
10ScNJ, C57BL/

10ScSnj mice

205,243
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Sex Model Cell Type(s) Mediator Rodent REF

Serum-transfer arthritis (K/
BxN) Glia Spinal TLR4 and TNFa, spinal 

TRPV1 C57BL/6 mice 22,242

Chemotherapy-induced 
Peripheral Neuropathy Not specified Spinal TLR4, females recover 

faster C57BL/6 mice 240

Pain. Author manuscript; available in PMC 2022 August 01.
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