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DISTALITY IN VALUED FIELDS AND RELATED STRUCTURES

MATTHIAS ASCHENBRENNER, ARTEM CHERNIKOV, ALLEN GEHRET,
AND MARTIN ZIEGLER

Abstract. We investigate distality and existence of distal expansions in val-
ued fields and related structures. In particular, we characterize distality in a
large class of ordered abelian groups, provide an AKE-style characterization
for henselian valued fields, and demonstrate that certain expansions of fields,
e.g., the differential field of logarithmic-exponential transseries, are distal. As a
new tool for analyzing valued fields we employ a relative quantifier elimination
for pure short exact sequences of abelian groups.
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Introduction

Distal theories were introduced in [62] as a way to distinguish those NIP theories
in which no stable behavior of any kind occurs. Examples include all (weakly)
o-minimal theories (e.g., the theory of the exponential ordered field of reals) and
all P -minimal theories (such as the theory of the field of p-adic numbers and its
analytic expansion from [24]); see the introduction of [17] for a detailed discussion.
Distality has been investigated both from the point of view of pure model theory [6,
7, 14, 49] and in connection to the extremal combinatorics of restricted families of
graphs. Indeed, as demonstrated in [17], distality of a theory is equivalent to
a definable version of the strong Erdős-Hajnal Property. Further results in [11,
18] show that many of the combinatorial consequences of distality, including the
strong Erdős-Hajnal Property, improved regularity lemmas and various generalized
incidence bounds, continue to hold for structures which are merely interpretable

in distal structures. Curiously, finding a distal expansion also appears to be the
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easiest way of establishing these combinatorial results in a given structure. This
motivates the question: which NIP structures admit distal expansions? Currently,
the only known reason for not having a distal expansion comes from interpreting
an infinite field of positive characteristic; see Section 2 below, where we also point
out that more generally, every infinite distal unital ring without zero-divisors has
characteristic zero.

The aim of this paper is to investigate both issues—distality and existence of distal
expansions—in the setting of valued fields and various related structures: ordered
abelian groups, short exact sequences of abelian group, valued fields with operators.
This provides new examples in which the aforementioned combinatorial results hold,
and along the way yields some general tools to address these problems in similar
settings. The question of classifying NIP (valued) fields is currently an active area
of research motivated by various versions of Shelah’s Conjecture. (See [27,37,42,48]
and references therein for some recent results.) In particular, good understanding
has been achieved in the dp-minimal case [45, 46]; see Section 6.6 for more details.
(We recall the definition of dp-minimality in Section 1.1.) Our results demonstrate
that some of the issues in this program simplify in the distal case, where infinite
fields of positive characteristic are ruled out, while new complications arise due to
the fact that distality is not preserved under taking reducts.

As a practical matter, we will not in general set out to prove from scratch that the
structures we are interested in are distal (or not distal). Instead, whenever possible
we will view structures as mild expansions of certain distal reducts, and then study
how distality passes from the reduct up to the original structure. For instance,
in Section 7 we show that certain expansions of valued fields by unary operators
are distal by reducing the problem to the reduct of said valued field without the
additional operators. For this reason, we will often rely on abstract criteria which
(under certain circumstances) show how the distality of a structure can be deduced
from the distality of a suitably chosen reduct.

In Section 1 we recall basic results and notions around distality, as well as prove
some auxiliary lemmas for verifying that certain expansions in an abstract model-
theoretic setting are distal. In Section 2 we briefly discuss distal fields and rings.
Using Hahn products we give an example of an infinite unital ring of prime char-
acteristic which has a distal expansion.

In Section 3 we then study distality in the class of ordered abelian groups. While
every ordered abelian group G is NIP by [35], distality may fail due to the presence
of infinite stable quotients of the form G/nG. Theorem 3.13 makes this precise by
characterizing distality in a large class of ordered abelian groups. To properly state
this result requires the many-sorted language Lqe of Cluckers and Halupczok [19],
so we only mention here a consequence and save the discussion of Lqe and the full
statement of Theorem 3.13 for Section 3.

Corollary. Let G be a strongly dependent ordered abelian group; then

G is distal ⇐⇒ G is dp-minimal

⇐⇒ G is non-singular (i.e., G/pG finite for every prime p).
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In Section 4 we consider distality in short exact sequences of abelian groups with
extra structure. That is, we consider short exact sequences of abelian groups

0 → A→ B → C → 0

viewed in a natural way as three-sorted structures with the corresponding mor-
phisms named as primitives, and with arbitrary additional structure allowed on
the sorts A and C. In Section 4.1 we give a general quantifier elimination result
for pure short exact sequences, i.e., where the image of A is assumed to be a pure
subgroup of B. (This applies when C is torsion-free.) In this case only sorts for the
quotients A/nA and certain induced maps B → A/nA have to be added in order to
eliminate quantification over B; see Corollary 4.3 for the precise statement. This
generalizes a result in [15], where all of the quotients A/nA (n ≥ 1) were assumed to
be finite. Using this quantifier elimination, we show in Section 4.2 that such a pure
short exact sequence is distal (has a distal expansion) if and only if both A and C
are distal (have distal expansions, respectively). Note that the theory of a pure
short exact sequence is interpretable in the theory of the direct product A × C,
as explained at the beginning of Section 4.1; however in general, distality is not
preserved under passing to reducts, thus a precise description of the definable sets
is necessary for our purpose. In Sections 4.3, 4.4, and 4.5 we consider variants and
extensions of our quantifier elimination theorem. We expect these elimination the-
orems for short exact sequences to have many uses. As an illustration, we employ
some of these variants in Section 5 to prove some quantifier elimination theorems
for henselian valued fields of characteristic zero.

In Section 6 we consider distality in henselian valued fields. Relying on the re-
sults of the previous sections, in Sections 6.1 and 6.2 we prove the following Ax-
Kochen-Eršov (AKE) type characterization. Recall that a valued field K with valu-
ation v : K× = K \{0} → Γ = v(K×) is said to be finitely ramified if for each n ≥ 1
there are only finitely many γ ∈ Γ such that 0 ≤ γ ≤ v(n). If Γ 6= {0}, then this
clearly implies that the field K has characteristic zero; if K has equicharacteristic
zero, then K is always finitely ramified.

Main Theorem. Let K be a henselian valued field, viewed as a structure in the

language of rings augmented by a predicate for the valuation ring, with value group Γ
and residue field k. Then K is distal (has a distal expansion) if and only if

(1) K is finitely ramified, and

(2) both Γ and k are distal (respectively, have distal expansions).

In this case k is either finite or of characteristic zero.

For example, this theorem implies that a finitely ramified henselian valued field K
with regular non-singular value group is distal if and only if the residue field of K
is distal; this generalizes the well-known facts that each p-adically closed field is
distal, and that a real closed valued field is distal iff its residue field is real closed.

In Section 6.3 we consider Jahnke’s results [42] on naming a henselian valuation
in the distal case. In Section 6.5 we formulate a conjectural classification of fields
admitting a distal expansion: a (pure) NIP field does not have a distal expansion
if and only if it interprets an infinite field of positive characteristic. We show that
this statement holds modulo Shelah’s conjecture on NIP fields and a conjecture
on distal expansions of ordered abelian groups from Section 3. For this, we rely
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on definability theorems of Koenigsmann-Jahnke [43], in a similar way as John-
son [47, Chapter 9]. In Section 6.6 we concentrate on the dp-minimal case; based
on Johnson’s results [46], we observe that our conjecture does hold unconditionally
for dp-minimal fields.

Finally, in Section 7 we show that a certain “forgetful functor” argument preserves
distality. Utilizing this, we exhibit expansions of (valued) fields with additional
operators (e.g., derivations) which are distal. Examples include the differential
field of transseries [2] and certain topological fields with a generic derivation in the
sense of [36, 67]. This also implies that the theory of differentially closed fields of
characteristic zero admits a distal expansion (Corollary 7.7). These techniques also
yield that analytic expansions of distal valued fields of characteristic zero are distal
(Corollary 7.10).

Conventions and notations. Throughout, m and n (possibly with decorations)
range over the set N = {0, 1, 2, . . .}. In general we adopt the model theoretic
conventions of Appendix B of [2]. In particular, L can be a many-sorted language.
Given a complete L-theory T , we will sometimes consider a model M |= T and
a cardinal κ(M) > |L| such that M is κ(M)-saturated and every reduct of M is
strongly κ(M)-homogeneous. Such a model is called a monster model of T . Then
every model of T of size ≤ κ(M) can be elementarily embedded into M. “Small”
will mean “of size < κ(M)”. We use x, y, z (sometimes with decorations) to
denote multivariables. Unless otherwise specified, all multivariables are assumed
to have finite size, and the size of such a multivariable x is denoted by |x|. We
shall write “|= θ” to indicate that θ is an LM-formula and M |= θ. Likewise,
“Φ(x) |= Θ(x)” will mean that Φ(x) and Θ(x) are small sets of LM-formulas such
that every a ∈ Mx realizing Φ(x) also realizes Θ(x). We write “ϕ(x) |= Θ(x)” to
abbreviate {ϕ(x)} |= Θ(x), etc.

Given linearly ordered sets I and J we denote by I⌢J the concatenation of I
and J , that is, the set K := I∪J (disjoint union) equipped with the linear ordering
extending both the orderings of I and J such that I < J . If, say, I = {i} is
a singleton, we also write I⌢J = i⌢J . Similarly, given sequences a = (ai)i∈I
and b = (bj)j∈J in Mx, where I, J are linearly ordered sets, we let a⌢b denote the
sequence (ck)k∈K where K = I⌢J and ci = ai for i ∈ I, cj = bj for j ∈ J . We
extend this notation to the concatenation of several (finitely many) linearly ordered
sets and sequences, respectively, in the natural way. If a = (ai)i∈I is a sequence
and J ⊆ I, we let aJ := (aj)j∈J . By convention “indiscernible sequence” means
“∅-indiscernible sequence”.

1. Preliminaries on Distality

Throughout this section L is a language and T is a complete L-theory. We also fix

a monster model M of T . The definitions below do not depend on the choice of this
monster model.

1.1. Two ways of defining distality. Distality has many facets, and can be
introduced in a number of equivalent ways. In this subsection we present two of
them: by means of indiscernible sequences, and via honest definitions.
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Definition 1.1. We say that T is distal if for every small parameter set B ⊆ M,
every indiscernible sequence a = (ai)i∈I in Mx, and every i ∈ I, the following
holds: if

(1) both I< = I<i := {j ∈ I : j < i} and I> = I>i := {j ∈ I : i < j} are
infinite, and

(2) aI\{i} is B-indiscernible,

then a is B-indiscernible. We say that an L-structure is distal if its theory is distal.

While the definition of distality given above involves checking a certain condition
for all infinite linearly ordered sets I< and I>, standard arguments show that this
definition is equivalent to the variant where I< and I> are fixed infinite linearly
ordered sets. More precisely, fix a linearly ordered set I = I<⌢i⌢I> where I<, I>

are infinite; then the theory T is distal if for every small parameter set B ⊆ M,
an indiscernible sequence (ai)i∈I in Mx is B-indiscernible provided (ai)i∈I\{i} is
B-indiscernible. For this reason, in practice we can (and often will) assume that I<

and I> are “nice” infinite linearly ordered sets such as Q or [0, 1].

Definition 1.1 can be localized to a particular indiscernible sequence:

Definition 1.2 ([62, Definition 2.1]). Let a = (ai)i∈I be an indiscernible sequence
in Mx. Then a is distal if for every indiscernible sequence a′ = (a′i)i∈I′ in Mx

with the same EM-type as a and I ′ = I1
⌢I2

⌢I3 where I1, I2, I3 are dense without
endpoints, and all c, d ∈ Mx, the following holds: if the sequences

a′I1
⌢c⌢a′I2

⌢a′I3 and a′I1
⌢a′I2

⌢d⌢a′I3

are indiscernible, then so is a′I1
⌢c⌢a′I2

⌢d⌢a′I3 .

Definitions 1.1 and 1.2 are connected by the following fact.

Fact 1.3 ([62, Lemma 2.7]). Suppose T is NIP, and let a = (ai)i∈I be an indis-

cernible sequence in Mx; then the following are equivalent:

(1) a is distal;

(2) for every small parameter set B ⊆ M, b ∈ Mx, and B-indiscernible se-

quence a′ = (a′i)i∈I′ in Mx with I ′ = I1
⌢I2, I1 and I2 without endpoints,

having the same EM-type as a, if the sequence a′I1
⌢b⌢a′I2 is indiscernible,

then it is also B-indiscernible.

In particular, T is distal if and only if every infinite indiscernible sequence is distal.

It is well-known that if T is distal, then T is NIP; for instance, see [34, Proposi-
tion 2.8]. Distality can be thought of as a notion of pure instability among NIP
theories. The following fact (which follows from [62, Corollary 2.15]) is evidence
for this point of view.

Fact 1.4. If T is distal then no infinite non-constant indiscernible sequence is

totally indiscernible.

In the dp-minimal case we also have a converse. We first recall the definition of
dp-minimality. Recall that a cut in a linearly ordered set I is a downward closed
subset of I; such a cut c is trivial if c = ∅ or c = I. We let I be the set of nontrivial
cuts in I, totally ordered by inclusion; if I does not have a largest element, then
the map which sends i ∈ I to the cut {j ∈ I : j ≤ i} is an embedding I → I of
ordered sets, and we then identify I with its image under this embedding. Now the
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theory T is called dp-minimal if for each indiscernible sequence a = (ai)i∈I in Mx

indexed by a dense linearly ordered set I and each c ∈ My there is a cut i ∈ I such
that the sequences (ai)i<i and (ai)i>i are c-indiscernible. (This is not the original
definition from [54], but equivalent to it thanks to [61, Lemma 1.4].)

Fact 1.5 ([62, Lemma 2.10]). If T is dp-minimal and every non-constant indis-

cernible sequence in Mx where |x| = 1 is not totally indiscernible, then T is distal.

In particular, if T is dp-minimal and every sort of M expands a linearly ordered

set, then T is distal.

Linear orders in distal theories also occur on indiscernible sequences:

Corollary 1.6. Suppose T is distal, and let a = (ai)i∈I be a non-constant indis-

cernible sequence in Mx. Then there are an L-formula θ(u, x, y, w) and some n
such that for all I0, I1 ⊆ I of size n and all i, j ∈ I such that I0 < i, j < I1 we have

i < j ⇐⇒ |= θ(aI0 , ai, aj , aI1).

Proof. By 1.4, a is not totally indiscernible, and for every indiscernible sequence
which is not totally indiscernible there are such θ and n; see, e.g., the explanation
after [13, Fact 3.1]. �

In the following we sometimes employ L-formulas whose free variables have been
separated into multivariables x, y thought of as object and parameter variables,
respectively. We use the notation ϕ(x; y) to indicate that the free variables of the
L-formula ϕ are contained among the components of the multivariables x, y (which
we also assume to be disjoint). We refer to ϕ(x; y) as a partitioned L-formula.

Given a ∈ Mx and B ⊆ My we let

tpϕ(a|B) :=
{
ϕ(x; b) : b ∈ B, |= ϕ(a; b)

}
∪
{
¬ϕ(x; b) : b ∈ B, |= ¬ϕ(a; b)

}

be the ϕ-type of a over B.

Definition 1.7. Let ϕ(x; y) be a partitioned L-formula, and let y1, y2, . . . be dis-
joint multivariables of the same sort as y. A partitioned L-formula ψ(x; y1, . . . , yn)
is a (uniform) strong honest definition for ϕ(x; y) (in T ) if for every a ∈ Mx

and finite B ⊆ My with |B| ≥ 2, there are b1, . . . , bn ∈ B such that

|= ψ(a; b1, . . . , bn) and ψ(x; b1, . . . , bn) |= tpϕ(a|B).

Remark. A strong honest definition for ϕ(x; y) remains a strong honest defini-
tion for ¬ϕ(x; y). Moreover, if ψ(x; y1, . . . , ym), ψ

′(x; y′1, . . . , y
′
n) are strong honest

definitions for the partitioned L-formulas ϕ(x; y), ϕ′(x; y), respectively, with all
multivariables yi, y

′
j disjoint, then ψ ∧ ψ′ is a strong honest definition for ϕ ∧ ϕ′.

By [14, Theorem 21] we have:

Fact 1.8. The following are equivalent:

(1) T is distal;

(2) every partitioned L-formula ϕ(x; y) has a strong honest definition in T .

When proving distality of a particular structure, Definition 1.1 is typically easier to
verify. On the other hand, occasionally 1.8(2) is more useful since it ultimately gives
more information about definable sets, and obtaining bounds on the complexity of
strong honest definitions is important for combinatorial applications.
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1.2. Reduction to one variable. In order to verify that a theory is distal, it is
enough to check distality “in dimension 1”. There are two ways to interpret this
claim. First, we observe that existence of strong honest definitions for all formulas
reduces to formulas in a single free variable.

Proposition 1.9. Suppose every partitioned L-formula ϕ(x; y) with |x| = 1 has a

strong honest definition in T . Then every partitioned L-formula ϕ(x; y) with |x|
arbitrary has a strong honest definition in T , so T is distal.

Proof. We argue by induction on the size |x| of x, with the base case |x| = 1
given by the assumption. Assume that x = (x0, x1), and let a partitioned L-formu-
la ϕ(x0, x1; y) be given. By the inductive assumption, take a strong honest defini-
tion ψ(x0; z1, . . . , zn) for the partitioned L-formula ϕ(x0;x1, y), where zi = (x1i, yi)
for i = 1, . . . , n. Set

χ(x0;x1, ~y ) := ψ
(
x0; (x1, y1), . . . , (x1, yn)

)
where ~y := (y1, . . . , yn),

let

χ+(x1; y, ~y ) := ∀x0
(
χ(x0;x1, ~y ) → ϕ(x0;x1, y)

)
,

χ−(x1; y, ~y ) := ∀x0
(
χ(x0;x1, ~y ) → ¬ϕ(x0;x1, y)

)
,

and by inductive assumption, let ρ+(x1; ~y
+) and ρ−(x1; ~y

−) be strong honest def-
initions for χ+ and χ−, respectively; here ~y + = (~y +

1 , . . . , ~y
+
n+) for some n+, and

similarly with − in place of +. We claim that

γ(x0, x1; ~y, ~y
+, ~y −) := χ(x0;x1, ~y ) ∧ ρ

+(x1; ~y
+) ∧ ρ−(x1; ~y

−)

is a strong honest definition for ϕ(x; y). To see this let ai ∈ Mxi
(i = 0, 1) and a

finite B ⊆ My with |B| ≥ 2 be given. Applying ψ to a0 and the set of parame-

ters {a1} ×B, we obtain some ~b ∈ Bn such that

|= χ(a0; a1,~b) and χ(x0; a1,~b) |= tpϕ
(
a0
∣∣{a1} ×B

)
.

Next choose ~b+ ∈
(
B × {~b}

)n+

such that

|= ρ+(a1;~b
+) and ρ+(x1;~b

+) |= tpχ+

(
a1
∣∣B × {~b }

)
.

Then for any a′1 |= ρ+(x1,~b
+) and b ∈ B we have

|= χ(x0, a
′
1,
~b ) → ϕ(x0, a

′
1, b) ⇐⇒ |= χ(x0, a1,~b ) → ϕ(x0, a1, b)

⇐⇒ |= ϕ(a0, a1, b).

Similarly, we find ~b− ∈
(
B × {~b }

)n−

such that for any a′1 |= ρ−(x1,~b
−) and b ∈ B

we have

|= χ(x0, a
′
1,
~b ) → ¬ϕ(x0, a

′
1, b) ⇐⇒ |= ¬ϕ (a0, a1, b) .

Combining, we see that for all a′1 |= ρ+(x1,~b
+) ∧ ρ−(x1,~b−) and a′0 |= χ(x0, a

′
1,
~b)

and each b ∈ B we have |= ϕ(a′0, a
′
1, b) ↔ ϕ(a0, a1, b). Thus

γ(x0, x1;~b,~b
+,~b−) |= tpϕ(a0a1|B) and |= γ(a0, a1;~b,~b

+,~b−)

hold, as wanted. �
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Remark. Let f(m) be the smallest possible number of parameters n in a strong
honest definition ψ(x; y1, . . . , yn) for partitioned L-formulas ϕ(x; y) with |x| ≤ m.
It follows from the proof that if f(1) is finite, then f(m) ≤ 2f(1) + f(m − 1)
for m ≥ 1; so f(m) ≤ (2m− 1)f(1) for all m ≥ 1. This gives a naive upper bound
on the growth of the size of distal cell decompositions, an important parameter in
combinatorial applications of distality isolated in [11, Section 2]. It is an interest-
ing (and challenging) problem to determine optimal bounds in various theories of
interest, e.g., in o-minimal or P -minimal theories.

Secondly, in terms of indiscernible sequences we have the following equivalence.

Proposition 1.10. The following are equivalent:

(1) T is distal;

(2) for every indiscernible sequence a = (ai)i∈I in Mx, i ∈ I such that I<i and
I>i are infinite, and b ∈ My with |y| = 1, if aI\{i} is b-indiscernible, then
so is a;

(3) for every indiscernible sequence a = (ai)i∈I in Mx where |x| = 1, i ∈ I such

that I<i and I>i are infinite, and b ∈ My, if aI\{i} is b-indiscernible, then
so is a.

Proof. It is not hard to see that the condition in (2) can be iterated to obtain
the same conclusion with y an arbitrary multivariable, which is sufficient to satisfy
Definition 1.1. (Alternatively, Proposition 1.9 provides a more explicit version of
this argument.) The equivalence of (1) and (3) is established in [62, Theorem 2.28].
(See also Proposition 1.17 below for a discussion.) �

Corollary 1.11. The following are equivalent:

(1) T is not distal;

(2) there is an indiscernible sequence a = (ai)i∈Q in Mx and some b ∈ My such

that aQ\{0} is b-indiscernible, and some partitioned L-formula ϕ(x; y) such
that

|= ϕ(ai; b) ⇐⇒ i 6= 0;

(3) the same statement as in (2) with |x| = 1.

Proof. To show (1) ⇒ (3), assume that the condition in Proposition 1.10(3) fails.
Then we can take some indiscernible sequence a = (ai)i∈Q in Mx where |x| = 1 and
some b ∈ My such that aQ\{0} is b-indiscernible, but a is not. Thus we can take an
L-formula ψ(x1, . . . , xn; y), where x1, . . . , xn are single variables of the same sort
as x, as well as finite subsets I1, I2 of Q with |I1| + |I2| = n − 1 and I1 < 0 < I2,
such that

(1) |= ¬ψ(aI1 , a0, aI2 ; b);
(2) |= ψ(aJ1

, aj, aJ2
; b) for all J1, J2 ⊆ Q\{0} and j ∈ Q\{0} with |J1|+ |J2| =

n− 1 and J1 < j < J2.

Let y′ := (y, y1, y2) where y1 = (x1, . . . , xm), y2 = (xm+2, . . . , xn), m = |I1|. Set

ϕ(x; y′) := ψ(y1, x, y2, y), b′ := (b, aI1 , aI2) ∈ My′ .

Choose ε ∈ Q with I1 < −ε < 0 < ε < I2 and set I ′ := {i ∈ Q : −ε < i < ε}. Then
the sequence aI′ is indiscernible and aI′\{0} is b

′-indiscernible; moreover, for i ∈ I ′

we have
|= ϕ(ai; b

′) ⇐⇒ i 6= 0.

It follows that (3) holds. Finally, (3) ⇒ (2) and (2) ⇒ (1) are obvious. �
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Remark 1.12. Let a = (ai)i∈Q be an indiscernible sequence in Mx and b ∈ My such
that aQ\{0} is b-indiscernible. It is easy to see that the set of L-formulas ϕ(x; y)
violating the conclusion of (2) in Corollary 1.11 (that is, such that |= ϕ(a0; b)
or |= ¬ϕ(ai; b) for some, or equivalently, all i 6= 0) is closed under positive boolean
combinations.

Remark 1.13. Let Q∞ = Q ∪ {∞} where ∞ /∈ Q is a new symbol and the usual
ordering of Q is extended to a total ordering of Q∞ with Q < ∞. Then Corol-
lary 1.11 and Remark 1.12 remain true with the linearly ordered set Q replaced
by Q∞. (This is used in the proof of Theorem 4.6 below.)

1.3. Induced structure and mild expansions. From [62] we record the follow-
ing. (For part (2) use [62, Corollary 2.9] along with Fact 1.3.)

Fact 1.14.

(1) If T is distal, then so is every complete theory bi-interpretable with T .
(2) Naming a small set of constants does not affect distality: if M is distal,

then for each small A ⊆ M, the LA-structure MA is distal, and if MA is

distal for some small A ⊆ M, then M is distal.

In what follows, we will often be in a situation when T is NIP and we have a definable
set D ⊆ Mx (often, a sort) such that the induced structure on D is distal. More
precisely, denote the full induced structure on D by Dind; that is, we introduce the
one-sorted language Lind which contains, for each L-formula ϕ(y1, . . . , yn) where
each yi is a multivariable of the same sort as x, an n-ary relation symbol Rϕ;
thenDind is the Lind-structure with underlying setD where each relation symbol Rϕ
is interpreted by ϕM ∩Dn. The following is then straightforward by Definition 1.1.

Lemma 1.15. If T is distal, then Dind is also distal.

We have the following lemmas in the converse direction. In the rest of this subsection

we assume that T is NIP, and we let D be an ∅-definable set such that Dind is distal.

Our goal is to conclude that under suitable circumstances, T itself is distal.

Lemma 1.16. Let B ⊆ M be small and b ∈ My, and let (ai)i∈Q be a B-indiscernible

sequence of elements from D. If (ai)i∈Q\{0} is Bb-indiscernible, then so is (ai)i∈Q.

Proof. If a fails the conclusion of the lemma, then using distality of a (in the sense
of Definition 1.2), following the proof of [62, Lemma 2.7] gives a contradiction to T
being NIP. �

We also have a dual fact, where the sequence may be anywhere in M, but the
new parameters are coming from our distal set D. (A similar observation is stated
in [29, Remark 4.26].)

Proposition 1.17. Let a = (ai)i∈Q be an indiscernible sequence in Mx and b ∈ DN ,

where N ∈ N. If (ai)i∈Q\{0} is b-indiscernible, then so is (ai)i∈Q.

This proposition can be shown along the same lines as the proof of [62, Theo-
rem 2.28]; we provide the details for the sake of completeness and correcting some
inaccuracies there. First we recall some terminology and facts from [62].

A nontrivial cut c in a linearly ordered set I is dedekind if c does not have a largest
and I \ c does not have a smallest element. Let a = (ai)i∈I be an (∅-) indiscernible
sequence in Mx where I is endless, and B ⊆ M is an arbitrary parameter set.
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Recall that since T is NIP, the LB-formulas ϕ(x) with the property that the set
of i ∈ I with |= ϕ(ai) is cofinal in I form a complete x-type lim(a|B) over B.
(See, e.g., [63, Proposition 2.8].) Given a dedekind cut c in I, letting c+ denote the
complement I \ c of c ordered by the reverse ordering, we set

lim−(c|B) := lim(ac|B), lim+(c|B) := lim(ac+ |B).

(Here a is understood from the context.) We say that b ∈ Mx fills c in a if the
sequence ac

⌢b⌢aI\c is indiscernible.

Fact 1.18 (Strong base change [62, Lemma 2.8]). Let a = (ai)i∈I be an indis-

cernible sequence in Mx and A ⊆ Mx be a small parameter set containing all ai. Let
also (cλ)λ∈Λ be a family of pairwise distinct dedekind cuts in I, and for each λ ∈ Λ,
let aλ fill the cut cλ in a. Then there exists a family (a′λ)λ∈Λ in Mx with (a′λ) ≡a (aλ)
and tp(a′λ|A) = lim+(cλ|A) for all λ ∈ Λ.

Let a = (ai)i∈I and b = (bj)j∈J be sequences in Mx and My, respectively, indexed
by linearly ordered sets I, J . We say that a is b-indiscernible if a is B-indiscernible
where B := {bj : j ∈ J}. If a is b-indiscernible and b is a-indiscernible, then a, b
are said to be mutually indiscernible.

Definition 1.19. ([62, Definition 2.12]) Indiscernible sequences a = (ai)i∈I and b =
(bi)i∈I are weakly linked if for all disjoint subsets I1, I2 ⊆ I, the sequences aI1
and bI2 are mutually indiscernible.

The following is [62, Lemma 2.14(1)]. It is stated there with the additional assump-
tion that the sequence of pairs (ai, bi)i∈I is indiscernible; however, this assumption
is not needed, and this point is important in the proof of Proposition 1.17 given
below.

Lemma 1.20. Let a = (ai)i∈I and b = (bi)i∈I be weakly linked indiscernible se-

quences, where a is distal; then a and b are mutually indiscernible.

Proof. We may arrange that I is dense. To show that a is indiscernible over b,
let I ′ ⊆ I be an arbitrary finite set; it is enough to show that a is bI′-indiscernible.
Now aI\I′ is bI′-indiscernible as a, b are weakly linked. Since a is distal, repeatedly
applying Fact 1.3 we conclude that a is bI′ -indiscernible.

Towards a contradiction assume that b is not a-indiscernible. This yields finite
subsets I1, I2 of I such that bI2 is not aI1 -indiscernible. But then by indiscernibility
of a over bI2 , there exists some set I ′1 disjoint from I2 such that aI′

1
≡bI2 aI1 ; in

particular, bI2 is not aI′
1
-indiscernible, contradicting that a, b are weakly linked. �

Proof of Proposition 1.17. Toward a contradiction assume that (ai)i∈Q\{0} is b-in-
discernible but (ai)i∈Q is not. We will show that then there is an indiscernible
sequence (bn) with bn ≡ b which is not distal (in the sense of Definition 1.2);
since bn ∈ DN , this will contradict distality of Dind. We proceed by establishing a
sequence of claims. In Claims 1.21–1.23 below we let I be a dense linearly ordered
set without endpoints and c be a dedekind cut in I.

Claim 1.21. There is a b-indiscernible sequence (a′i)i∈I and some a′ filling the

cut c in (a′i) such that tp(a′, b) 6= tp(a′i, b) for all i ∈ I.

Proof. By assumption a := (ai)i∈Q is not b-indiscernible, so we find finite sub-
sets J1, J2 of Q and a nonzero rational number j such that J1 < 0, j < J2 and

(1.1) aJ1

⌢a0
⌢aJ2

6≡b aJ1

⌢aj
⌢aJ2

.
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We may assume J1, J2 6= ∅; let j1 := maxJ1, j2 := min J2, and set

a′j := aJ1

⌢aj
⌢aJ2

for j ∈ J := (j1, j2) ⊆ Q.

Then (1.1) holds for all j ∈ J \ {0}, the sequence (a′j)j∈J is still indiscernible,

(a′j)j∈J\{0} is b-indiscernible, and tp(a′0, b) 6= tp(a′j , b) for j ∈ J \ {0}. Using
compactness, this yields the claim. �

Let now (a′i) and a′ be as in Claim 1.21; to simplify notation (and since we
have no use of our original sequence (ai)i∈Q anymore), we now rename (a′i)i∈I , a

′

as (ai)i∈I , a, respectively. Thus

• (ai)i∈I is b-indiscernible, and
• a fills the cut c in (ai) and satisfies tp(a, b) 6= tp(ai, b) for all i ∈ I.

We also fix an L-formula θ(x, y) such that |= ¬θ(a, b) ∧ θ(ai, b) for all i ∈ I.

Claim 1.22. Let c′ be a dedekind cut in I with c ⊆ c′. Then there exists an a′ ∈ Mx

such that

(1) a′ fills the cut c′ in (ai),
(2) tp(a, b) = tp(a′, b), so in particular |= ¬θ(a′, b).

Proof. As (ai)i∈I is b-indiscernible, we can choose a′ satisfying (1) and (2) by
compactness: given finite subsets I1 ⊆ cα and I2 ⊆ I \ cα there is a b-automorphism
of M which sends aI1 , aI2 to aJ1

, aJ2
, respectively, where J1 ⊆ c, J2 ⊆ I \ c. �

In the next claim we let α, β be ordinals, and let r, s (also with decorations)
range over α respectively β. We also assume that we have a strictly increasing
sequence (cr) of dedekind cuts in I with c0 = c.

Claim 1.23. There exists an array (ar,s) and a sequence (bs) such that:

(1) if s < s′, then |= θ(ar,s′ , bs);
(2) |= ¬θ(ar,s, bs);
(3) for all r0 < · · · < rn and pairwise distinct s0, . . . , sn, we have

(ar0,s0 , . . . , arn,sn) ≡ (ai0 , . . . , ain)

for some (equivalently, all) i0 < · · · < in in I;
(4) bs ≡ b.

Proof. By Claim 1.22 we obtain a sequence a′ = (a′r) such that for all r,

• a′r fills the cut cr in (ai), and
• |= ¬θ(a′r , b).

Let a := (ai). By induction on β we now choose sequences (as) and tuples (bs),
with as = (ar,s), such that

(a) ar,s |= lim+(cr|aa<sb<s), where a<s := (as′)s′<s and b<s := (bs′)s′<s; and
(b) bsas ≡a ba′.

We start with a0 := a′ and b0 := b. Then (a) holds since a′r fills the cut cr in a = (ai),
and (b) holds trivially. Assume that (as) and tuples (bs) have been chosen, for
some given value of β. Applying Fact 1.18 to the family (cr) of dedekind cuts in I
and the family a′ = (a′r), where each a′r fills cr in a, and a set of parameters A
containing all components of a, a<β, and b<β , we find a sequence aβ = (ar,β) such
that ar,β |= lim+(cr|aa<βb<β) for each r (so (a) is satisfied for β in place of s)
and aβ ≡a a′. Using this, we can move a′ to aβ by an automorphism over a, and
let bβ be the corresponding image of b; then (b) holds for β in place of s.
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Now let (ar,s) and (bs) be sequences as just constructed, satisfying (a), (b). We
check that (1)–(4) are satisfied.

(1) Let r and s < s′ with |= ¬θ(ar,s′ , bs). By (a) we have ar,s′ |= lim+(cr |bs),
hence we can take some i ∈ I such that |= ¬θ(ai, bs). But by (b) we
have bs ≡ai b, hence |= ¬θ(ai, b), contradicting our choice of θ.

(2) By (b) and choice of a′.
(3) Indeed, let r0 < · · · < rn and pairwise distinct s0, . . . , sn be given, and

let ϕ(x0, . . . , xn) be an L-formula with |= ϕ(ar0,s0 , . . . , arn,sn). Take the
unique k ∈ {0, . . . , n} such that sk = max{s0, . . . , sn}. Then by (a), for
sufficiently large ik ∈ crk we have

|= ϕ(ar0,s0 , . . . , ark−1,sk−1
, aik , ark+1,sk+1

, . . . , arn,sn).

Repeating this procedure for the maximum of {s0, . . . , sk−1, sk+1, . . . , sn},
etc., we can thus successively choose i0 < · · · < in in I (as cr0 ⊂ · · · ⊂ crn)
such that |= ϕ(ai0 , . . . , ain), which is sufficient to conclude the claim.

(4) is immediate by (b). �

For the following claim, recall our standing convention that m, n range over N.

Claim 1.24. There exists an array (am,n) and a sequence (bn) satisfying (1)–(4)
of Claim 1.23 for α = β = ω such that additionally

(5) (an, bn) is indiscernible, where an = (am,n), and
(6)

(
(am,n)n

)
is B-indiscernible where B = {b0, b1, . . . }.

Proof. We take an ordinal α sufficiently large compared to |T | (how large will be-
come clear during the course of the rest of the proof), and then an ordinal β ≥ α and
sufficiently large compared to α (also to be determined). Next, we take a linearly
ordered set I which has more than |α| many dedekind cuts, so that we can choose
a strictly increasing sequence (cr) of dedekind cuts in I. Then Claim 1.23 applies
and yields (ar,s) and (bs) having properties (1)–(4) in that claim. Set as = (ar,s).

Assuming that β is large enough compared to α, Erdős-Rado and compactness
(see, e.g., [63, Proposition 1.1]) give us an indiscernible sequence (a′n, b

′
n) such that

for every l ∈ ω there exist some s0 < · · · < sl such that (a′k, b
′
k)k≤l ≡ (ask , bsk)k≤l.

In particular, (a′r,n) and (b′n) satisfy (1)–(4) for β = ω, and (5) holds as well.
Assuming α is large enough compared to |T |, we similarly find a B′-indiscernible

sequence
(
(a′′m,n)n

)
, where B′ = {b′0, b

′
1, . . . }, such that for every l ∈ ω there exist

some r0 < · · · < rl such that
(
(a′′k,n)

)
k≤l

≡B
(
(a′rk,n)

)
k≤l

.

In particular, (a′′m,n), (b
′
n) still satisfy (1)–(5), and (6) holds as well. �

Let now (am,n) and (bn) be as in Claim 1.24; so (1)–(6) in Claims 1.23 and 1.24
hold.

Claim 1.25. The sequences (an,n) and (bn) are weakly linked, but not mutually

indiscernible.

Proof. First note that (an,n) is indiscernible by (3) applied with η given by η(n) = n
for each n, and (bn) is indiscernible by (5). Clearly, the sequences are not mutually
indiscernible because we have |= θ(an,n, bm) for allm < n by (1), but |= ¬θ(an,n, bn)
for all n by (2).
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Given a finite tuple i = (i0, . . . , in−1) ∈ Nn, we write ai := (ai0,i0 , . . . , ain−1,in−1
)

and bi := (bi0 , . . . , bin−1
). We call such a tuple strictly increasing if i0 < · · · < in−1.

To show that (an,n) and (bn) are weakly linked, it is enough to show that for all
strictly increasing i, i′, j, j′ ∈ Nn we have:

(∗1) (i ∪ i′) ∩ (j ∪ j′) = ∅ =⇒ aibj ≡ ai′bj′ .

(Here in the antecedent we identify the tuples i, i′, j, j′ with the corresponding
subsets of N.) First note that by (5) and (6), for strictly increasing i, i′, j, j′ ∈ Nn

we easily have

(∗2) ij ≡qf
< i′j′ =⇒ aibj ≡ ai′bj′ ,

where ≡qf
< indicates the equality of quantifier-free types in the language of ordered

sets. Hence in order to prove (∗1), it is enough to show that for any finite tu-
ples i, j, i′, j′ of natural numbers with i ∩ j = ∅ and i′ ∩ j′ = ∅ and i1, i2, j ∈ N
we have

(∗3) i, j < i1 < j < i2 < i′, j′ =⇒ a(i1) ≡aiai′bjbjbj′ a(i2).

Indeed, suppose i, i′, j, j′ ∈ Nn are strictly increasing with (i ∪ i′) ∩ (j ∪ j′) = ∅

as in (∗1). We claim that we can use (∗2) and (∗3) to arrange that ij ≡qf
< i′j′.

To see this let i = (i0, . . . , in−1) and j = (j0, . . . , jn−1), and suppose we have k, l
in {0, . . . , n − 1} with ik < jl whereas i

′
k > j′l . If k = n − 1, then we take any

integer ĩk > jl; otherwise, using (∗2) we first arrange that ik+1 − jl is as large

as necessary so that we may take an integer ĩk /∈ j ∪ j′ with jl < ĩk < ik+1. In

both cases set ĩm := im for m 6= k and consider the strictly increasing tuple ĩ :=
(̃i0, . . . , ĩn−1) ∈ Nn; then by (∗3) we have aibj ≡ a

ĩ
bj . Thus by induction on the

number of pairs (k, l) with ik < jl and i′k > j′l , we arrive at the case ij ≡qf
< i′j′,

and then aibj ≡ ai′bj′ follows from (∗2).

To show (∗3), let now i, j, i′, j′ be finite tuples of natural numbers with i, j < i1 <
j < i2 < i′, j′. Towards a contradiction assume that we have an L-formula ψ(x, y, z)
(for suitable disjoint multivariables x, y, z), such that with

ϕ(x, y) := ψ(x, y, aiai′bjbj′)

we have |= ϕ(a(i1), bj), but |= ¬ϕ(a(i2), bj). Recall that T is NIP, so we may let m
be the alternation number of the partitioned L-formula ϕ(x; y, z). (See [63, Sec-
tion 2.1].) In view of (∗2), we can arrange:

i1 < j −m < j < j +m < i2,(∗4)

|= ϕ(ai,n, bj) for all i, n with j −m < n < j and j −m < i < j +m,(∗5)

|= ¬ϕ(ai,n, bj) for all i, n with j < n < j +m and j −m < i < j +m.(∗6)

To see this first replace the tuple (i, j, i1, j, i2, i
′, j′) by a tuple with the same

order type such that i1 +m < j < i2 − m; modifying ϕ accordingly, we then
still have |= ϕ(a(i1), bj) ∧ ¬ϕ(a(i2), bj) by (∗2), and (∗4) holds. Next, note that
if i1 < n < j, then the tuple (i, j, i1, j, i2, i

′, j′) has the same order type as the tu-
ple (i, j, n, j, i2, i

′, j′), so |= ϕ(a(n), bj) by (∗2). Similarly we see that |= ¬ϕ(a(n), bj)
for j < n < i2. Property (6) then implies (∗5) and (∗6).
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Now let η : ω → ω be an injective function such that

• η(n) = n for |n− j| ≥ m,
• η(n) < j for even n with |n− j| < m, and
• η(n) > j for odd n with |n− j| < m.

Then the sequence (an,η(n)) is indiscernible by (4), and the truth value of the
formula ϕ(x; bj) alternates > m times on it by the choice of η and (∗5) and (∗6), a
contradiction. �

By Lemma 1.20 and Claim 1.25, we conclude that the indiscernible sequence (bn)
is not distal, and bn ≡ b for all n by (4), as promised. �

Corollary 1.26. Suppose M ⊆ acl(D). Then T is distal.

Proof. We verify that T satisfies Definition 1.1. Let a = (ai)i∈Q be an indiscernible
sequence, and let some tuple b such that aQ\{0} is b-indiscernible be given. By as-
sumption, there is some d ∈ Dn such that b ⊆ acl(d). By Ramsey and compactness,
moving d by an automorphism over b, we may assume that aQ\{0} is d-indiscernible.
By Proposition 1.17, a is d-indiscernible, hence it is also b-indiscernible as de-
sired. �

Corollary 1.27. T is distal if and only if T eq is distal.

Proof. If T eq is distal then so is T , by Lemma 1.15. For the converse note that
since T is NIP, so is T eq, and Meq ⊆ acl(M), where acl is taken in the structureMeq.
Hence the previous corollary applies to T eq in place of T . �

1.4. Distal expansions. We say that T has a distal expansion if there is an
expansion L∗ of L and a complete distal L∗-theory T ∗ which contains T . We also
say that an L-structure has a distal expansion if it can be expanded to a distal
structure (in some language expanding L). Clearly, if an L-structureM has a distal
expansion, then so does its complete theory; the converse holds if M is sufficiently
saturated.

Lemma 1.28. Suppose T is interpretable in a complete distal L∗-theory T ∗ (for
some language L∗). Then T has a distal expansion.

Proof. The theory T is definable in (T ∗)eq, which is distal by Corollary 1.27. Hence
we may replace T ∗ by (T ∗)eq and assume that T is definable in T ∗. Now Lemma 1.15
yields a distal expansion of T . �

So for example, the theory ACF0 of algebraically closed fields of characteristic zero
has a distal expansion, since it is interpretable (in fact, definable) in the theory RCF
of real closed ordered fields: if K is a real closed ordered field then its algebraic
closure is K[i] (where i

2 = −1), and the field K[i] is ∅-definable in K.

1.5. Distality and the Shelah expansion. Let M be an L-structure. Recall
that the Shelah expansion of M is the structure MSh in the language LSh obtained
from M by naming all externally definable subsets of M , i.e., sets of the form

φ(x, b)N ∩Mx =
{
a ∈Mx : N |= φ(a, b)

}

with φ(x, y) an L-formula and b ∈ Ny for some elementary extension N � M .
(Here we can replace N by an elementary extension if necessary and thus always
assume N is sufficiently saturated.)
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Fact 1.29.

(1) M is NIP if and only if MSh is NIP (Shelah [60], see also [13]);
(2) M is distal if and only if MSh is distal (Boxall-Kestner [7]).

This implies the following remark on how the operations of taking Shelah expansions
and reducts interact with distality:

Lemma 1.30. Let L′ be an expansion of the language L and let M ′ be an L′-
structure whose L-reduct is M . If M ′ is distal, then MSh has a distal expansion,

namely (M ′)Sh.

Proof. We first note that (M ′)Sh is indeed an expansion of MSh, since every suffi-
ciently saturated N � M can be expanded to an L′-structure N ′ with N ′ � M ′.
Hence MSh is a reduct of (M ′)Sh, and the latter is distal by Fact 1.29(2). �

2. Distal Fields and Rings

We emphasize the following important fact:

Fact 2.1 ([17, Corollary 6.3]). No distal structure interprets an infinite field of

positive characteristic.

We first observe that this generalizes from fields to rings without zero-divisors. In
the rest of this section we let R be a ring; here and in the rest of this paper, all

rings are assumed to be unital.

Fact 2.2 (Jacobson, see e.g., [52, Theorem 12.10]). Assume that for every r ∈ R
there is some n ≥ 2 such that rn = r. Then R is commutative.

Recall that the characteristic char(R) of R is the smallest n ≥ 1 such that n ·1 = 0,
if such an n exists, and char(R) := 0 otherwise. For a ∈ R we let

C(a) := {b ∈ R : ab = ba},

a subring of R. We also let

Z(R) :=
⋂

a∈R

C(a),

a commutative subring of R, the center of R.

Proposition 2.3. Suppose R is infinite without zero-divisors and interpretable in

a distal structure. Then R has characteristic zero.

Proof. Note that R having no zero-divisors implies that the only nilpotent element
of R is 0. First assume that R is commutative. Then R is an integral domain, and
interprets its fraction field F . But F is of characteristic 0 by Fact 2.1, and hence so
is R. Now suppose R is not commutative. In this case, Fact 2.2 yields some r ∈ R
such that rn 6= r for all n ≥ 2. Then the powers rn of r are pairwise distinct, so
the definable commutative subring R′ = Z(C(r)) of R is infinite. By what we just
showed, char(R′) = 0, hence char(R) = 0. �

Here is a slight strengthening of this proposition. An idempotent e of R is said to
be central if e ∈ Z(R), and centrally primitive if e is central, e 6= 0, and e cannot be
written as a sum e = a+b of two nonzero central idempotents a, b ∈ R with ab = 0.
For every central idempotent e of R, the ideal Re of R is a ring with multiplicative
identity e; we have a surjective ring morphism r 7→ re : R → Re, and if R has no
zero-divisors, then neither does Re.
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Corollary 2.4. Suppose R is infinite and interpretable in a distal structure, and

that for every centrally primitive idempotent e of R, the ring Re is finite or has no

zero-divisors. Then R has characteristic zero.

Proof. Let B(R) be the set of central idempotents of R forms a boolean subring
of R. Since R has NIP, B(R) is finite. Thus there are some n ≥ 1 and centrally
primitive idempotents e1, . . . , en of R such that R = Re1 ⊕ · · · ⊕ Ren (internal
direct sum of ideals of R); see [52, §22]. For some i ∈ {1, . . . , n}, the ring Rei is
infinite, and hence has no zero-divisors; by Proposition 2.3 we have char(Rei) = 0
and thus char(R) = 0. �

In the next three subsections we show that the hypothesis of not having zero-divisors
cannot be dropped in Proposition 2.3. To produce an example, we employ a certain
valued Fp-vector space; here and below, we fix a prime p.

2.1. Hahn spaces over Fp. We first define a language L and an L-theory T whose
intended model is the Hahn product H = H(Q,Fp), that is, the abelian group of
all sequences h = (hq)q∈Q in Fp with well-ordered support

supph :=
{
q ∈ Q : hq 6= 0

}
⊆ Q,

equipped with the valuation v : H → Q∞ satisfying

v(h) = min(supp h) for 0 6= h ∈ H ,

which makes H into a valued abelian group. (See, e.g., [2, p. 74].) Let L be the two-
sorted language with sorts sg (for the underlying abelian group) and sv (for the value
set), and the following primitives: a copy {0,−,+} of the language of abelian groups
on the sort sg; a copy {≤,∞} of the language of ordered sets with an additional
constant symbol ∞ on the sort sv, as well as a function symbol v of sort sgsv. Next
we define T− to be the (universal) L-theory whose models (G,S; . . . ) satisfy:

(4) (S;≤) is a linearly ordered set with largest element ∞,
(5) (G; 0,−,+) is an abelian group with pG = {0} (and hence is an Fp-vector

space in a natural way),
(6) v : G → S is a (not necessarily surjective) Fp-vector space valuation: for

every g, h ∈ G,
(a) v(g) = ∞ iff h = 0,
(b) v(g + h) ≥ min

(
v(g), v(h)

)
,

(c) v(kg) = v(g) for every k ∈ Z \ pZ.
(7) for all g, h ∈ G with vg = vh 6= ∞ there is k ∈ {1, . . . , p − 1} such

that v(g − kh) > vg (the Hahn space property [2, p. 94]).

Finally, we define T to be the L-theory containing T− whose models (G,S; . . .)
satisfy in addition:

(8) the ordered set (S;≤) is dense without smallest element, and
(9) the map v : G→ S is surjective.

Note that if (G,S; . . . ) is a model of T− which satisfies (9), then (G,S, v) is a Hahn
space over Fp in the sense of [2, Section 2.3]. All structures in the following two
subsections will be models of T−; we will denote them by (G,S), (G′, S′), (G∗, S∗),
and their valuation indiscriminately by v.
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2.2. Quantifier elimination. There are three relevant extension lemmas for mod-
els of T−:

Lemma 2.5. Let s ∈ S \ v(G). Then there are an extension (G′, S′) of (G,S)
and g′ ∈ G′ such that

(1) v(g′) = s, and
(2) given any embedding i : (G,S) → (G∗, S∗) and an element g∗ ∈ G∗ such

that v(g∗) = i(s), there is an embedding i′ : (G′, S′) → (G∗, S∗) which

extends i such that i′(g′) = g∗.

Furthermore, given any (G′, S′) and g′ ∈ G′ which satisfy (1) and (2), we have G′ =
G ⊕ Fpg

′ (internal direct sum of Fp-vector spaces), S′ = S, v(G′) = v(G) ∪ {s},
and the embedding i′ in (2) is unique.

Proof. Let g′ be an element of an Fp-vector space extension of G with g′ /∈ G, and
set G′ := G⊕Fpg

′, and extend v : G→ S to a map G′ → S, also denoted by v, such
that v(g+kg′) = min(vg, s) for g ∈ G, k ∈ F×p . One verifies easily that then (G′, S)

is a model of T− and (1), (2) hold. �

Lemma 2.6. Let P be a cut in S with P 6= S. Then there is an extension (G′, S′)
of (G,S) and some s′ ∈ S′ such that

(1) s′ realizes P , that is, P < s′ < S \ P ,
(2) given any embedding i : (G,S) → (G∗, S∗) and an element s∗ ∈ S∗ such

that i(P ) < s∗ < i(S \ P ), there is an embedding i′ : (G′, S′) → (G∗, S∗)
which extends i such that i′(s′) = s∗.

Furthermore, given any (G′, S′) and s′ ∈ S′ which satisfy (1), (2), we have G = G′,
S′ = P⌢s′⌢(S \ P ), and the embedding i′ in (2) is unique.

The easy proof of this lemma is left to the reader. Iterating the previous two lemmas
routinely implies:

Corollary 2.7. Every model (G,S) of T− has a T -closure, that is, an exten-

sion (G′, S′) to a model of T such that every embedding (G,S) → (G∗, S∗) into a

model of T extends to an embedding (G′, S′) → (G∗, S∗).

We recall some basic definitions about pseudoconvergence in valued abelian groups;
our reference for this material is [2, Section 2.2]. Let (gρ) be a sequence in G indexed
by elements of an infinite well-ordered set without largest element. Then (gρ) is
said to be a pseudocauchy sequence (abbreviated: a pc-sequence) if there is some
index ρ0 such that for all indices τ > σ > ρ > ρ0 we have v(gτ − gσ) > v(gσ − gρ).
Given g ∈ G, we write gρ  g if the sequence

(
v(g− gρ)

)
in S is eventually strictly

increasing. We say that a pc-sequence (gρ) in G is divergent if there is no g ∈ G
with gρ  g. The next lemma is immediate from [2, Lemma 2.3.1].

Lemma 2.8. Let (gρ) be a divergent pc-sequence in G. Then there are an exten-

sion (G′, S′) of (G,S) and some g′ ∈ G′ such that:

(1) gρ  g′, and
(2) given any embedding i : (G,S) → (G∗, S∗) and an element g∗ ∈ G∗ such

that i(gρ) g∗, there is an embedding i′ : (G′, S′) → (G∗, S∗) which extends

i such that i′(g′) = g∗.

Furthermore, given any (G′, S′) and g′ ∈ G′ which satisfy (1), (2), we have G′ =
G ⊕ Fpg

′ (internal direct sum of Fp-vector spaces), S′ = S, and the embedding i′

in (2) is unique.
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We now combine the embedding lemmas above to show:

Proposition 2.9. The L-theory T has QE.

Proof. By Corollary 2.7 and one of the standard QE tests (see, e.g., [2, Corol-
lary B.11.11]), it suffices to show: Let (G,S) ( (G1, S1) be a proper extension
of models of T and (G∗, S∗) be an |G|+-saturated elementary extension of (G,S);
then the natural inclusion (G,S) → (G∗, S∗) extends to an embedding (G′, S′) →
(G∗, S∗) of a substructure (G′, S′) of (G1, S1) properly extending (G,S).

If S 6= S1, pick an arbitrary g1 ∈ G1 with s1 := v(g1) ∈ S1 \ S. Then |G|+-
saturation of (G∗, S∗) yields an element s∗ of S∗ such that for each s ∈ S we
have s < s∗ iff s < s1, and by Lemma 2.6, setting G′ := G⊕Fpg1 and S

′ := S∪{s1}
gives rise to a substructure (G′, S′) of (G1, S1) with the required property.

Now suppose S = S1. Then G 6= G1; pick an arbitrary g1 ∈ G1 \ G. Then [2,
Lemma 2.2.18] yields a divergent pc-sequence (gρ) in G with gρ  g1, and |G|+-
saturation of (G∗, S∗) yields an element g∗ of G∗ with gρ  g∗ (see the proof
of [2, Lemma 2.2.5]). In this case, setting G′ := G⊕ Fpg1 and S′ := S we obtain a
substructure (G′, S′) of (G1, S1) with the required property. �

Corollary 2.10. The L-theory T is complete; it is the model completion of T−.

Hence if (G,S) |= T and G0 is a subgroup of G with v(G0) = S, then (G0, S)
is an elementary substructure of (G,S). In particular, we have (H0,Q) � (H,Q)
where H0 :=

{
h ∈ H : supp(h) finite

}
.

Remark. The previous proposition and its corollary can also be deduced (in a one-
sorted setting) from more general results in [51].

2.3. Indiscernible sequences. Let (G,S) |= T . In the following two lemmas
we prove some properties of nonconstant indiscernible sequences in G. For this
let (gi)i∈I be a sequence in G where I is a nonempty linearly ordered set without
a largest or smallest element. We let I∗ be the set I equipped with the reversed
ordering ≥.

Lemma 2.11. Suppose (gi) is nonconstant and indiscernible. Then exactly one of

the following holds:

(1) v(gi − gj) < v(gj − gk) for all i < j < k in I (we say that (gi) is pseudo-
cauchy); or

(2) v(gi − gj) > v(gj − gk) for all i < j < k in I (so the sequence (gi)i∈I∗ is

pseudocauchy).

Proof. Choose elements 0 < 1 < · · · < p+1 of I and consider the p+1 elements hi :=
gi − gp+1 (i = 0, . . . , p) of G. Let m, n range over {0, . . . , p}. We have three cases
to consider:

Case 1: v(hm) = v(hn) for all m, n. Then by the Hahn axiom, for m ≥ 1 we get
km ∈ {1, . . . , p− 1} such that v(h0− kmbm) > v(h0). By the pigeonhole principle,
there are 1 ≤ m < n such that km = kn. Now note that

v(h0) < v
(
(h0 − kmhm)− (h0 − knhn)

)
=

v
(
km(hn − hm)

)
= v(hn − hm) = v(gn − gm)

and thus
v(gn − gp+1) = v(hn) = v(h0) < v(gn − gm)
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and so we are in case (2), by indiscernibility.

Case 2: There are m < n such that v(hm) < v(hn). Then by indiscernibility we
are in case (1).

Case 3: There are m < n such that v(hm) > v(hn). We will actually show that
this case cannot happen. Note that in this case

v(gm − gn) = v
(
hm − hn

)
= v(hn) = v(gn − gp+1).

Thus by indiscernibility, for all i < j < k < l in I we have

v(gi − gj) = v(gj − gk) = v(gk − gl)

and thus taking an element i < m in I we have

v(hm) = v(gm − gp+1) = v(gi − gm) = v(gm − gn) = v(gn − gp+1) = v(hn),

a contradiction. �

In the rest of this subsection we let A ⊆ G and B ⊆ S.

Lemma 2.12. Suppose (gi) is nonconstant and AB-indiscernible, and let s ∈
v(A) ∪B. Then either

(1) v(gi − gj) > s for all i 6= j, or
(2) v(gi − gj) < s for all i 6= j.

Proof. By Lemma 2.11 we have v(gi − gj) 6= v(gk − gl) for all i < j < k < l, and
with � ∈ {<,=, >}, by s-indiscernibility of (gi): if v(gi−gj)� s for some pair i < j,
then v(gi − gj)� s for all i < j. �

The two lemmas above motivate the following definition:

Definition 2.13. We say that (gi) is pre-AB-indiscernible if

(1) exactly one of the following is true:
(a) (gi)i∈I is pseudocauchy, or
(b) (gi)i∈I∗ is pseudocauchy;

(2) for each s ∈ v(A) ∪B, either
(a) v(gi − gj) > s for all i 6= j, or
(b) v(gi − gj) < s for all i 6= j;

(3) for every a ∈ A, exactly one of the following is true:
(a)

(
v(gi − a)

)
is constant,

(b)
(
v(gi − a)

)
is strictly increasing,

(c)
(
v(gi − a)

)
is strictly decreasing.

If (gi) is nonconstant and AB-indiscernible, then it is pre-AB-indiscernible, by
Lemmas 2.11 and 2.12 and A-indiscernibility of (gi). To show a converse, we first
record some properties of pre-AB-indiscernible sequences. We say that (gi) is a
“pc-sequence” if it is pseudocauchy.

Lemma 2.14. Suppose (gi) is a pre-AB-indiscernible pc-sequence; then for each i
the value si := v(gi − gj), where j > i, does not depend on j, and

(2′) for each s ∈ v(A) ∪B, either

(a) si > s for all i, or
(b) si < s for all i,

(3′) for each a ∈ A, either
(a)

(
v(gi − a)

)
is constant, and si > v(gj − a) for each i, j, or
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(b) si = v(gi − a) for all i.

Proof. The first statement is clear since (gi) is a pc-sequence, and implies (2′) by
property (2) in Definition 2.13. To show (3′), let a ∈ A. Suppose (3)(a) in Defini-
tion 2.13 holds, and let s be the common value of the v(gi− a); then v(gi − gj) ≥ s
for all i < j, and since (si) is strictly increasing and I does not have a smallest
element, we obtain si = v(gi− gj) > s for i < j. If (3)(b) holds, then si = v(gi− a)
for each i. Case (3)(c) does not occur: otherwise, for i < j < k we have

si = v(gi − gj) = v
(
(gi − a) + (a− gj)

)
= v(gj − a)

and similarly si = v(gk − a), which is impossible. This yields (3′). �

We now arrive at our classification of nonconstant indiscernible sequences from G:

Proposition 2.15. Suppose A is a subgroup of G and (gi) is nonconstant. Then

(gi) is AB-indiscernible ⇐⇒ (gi) is pre-AB-indiscernible.

Proof. Suppose (gi) is pre-AB-indiscernible. To show that (gi) is AB-indiscernible
we can assume that (gi) is a pc-sequence; so for each i the value si := v(gi − gj),
where j > i, does not depend on j. For a ∈ A such that

(
v(gi − a)

)
is constant,

denote by sa the common value of the v(gi − a). Let now

t(x1, . . . , xn) = k1x1 + · · ·+ knxn + a (k1, . . . , kn ∈ Z, a ∈ A)

be an LA-term of sort sg. By quantifier elimination (Proposition 2.9) and Lem-
ma 2.14 it is enough to show that

• v
(
t(gi1 , . . . , gin)

)
is constant and contained in v(A) for i1 < · · · < in, or

• there is g ∈ A such that v(gi − a) is constant and v
(
t(gi1 , . . . , gin)

)
= sa

for i1 < · · · < in, or
• there is an m ∈ {1, . . . , n} with v

(
t(gi1 , . . . , gin)

)
= sim for i1 < · · · < in.

For this we can assume km /∈ pZ for some m, since otherwise t(g) = a for all g ∈ G,
and we are done; take m minimal such that km /∈ pZ. Set k := k1 + · · · + kn. We
distinguish two cases:

Case 1: k ∈ pZ. Then

t(h1, . . . , hn) = k1(h1 − hn) + · · ·+ kn−1(hn−1 − hn) + a for all h1, . . . , hn ∈ G.

Let s := va. If statement (2′)(a) in Lemma 2.14 holds, then v
(
t(gi1 , . . . , gin)

)
= s

for i1 < · · · < in in I; if (2′)(b) holds, then m < n, and v
(
t(gi1 , . . . , gin)

)
= sim

for i1 < · · · < in in I.

Case 2: k /∈ pZ. Then we can take g ∈ A such that

t(h1, . . . , hn) = k1(h1−hn)+· · ·+kn−1(hn−1−hn)+k(hn−h) for all h1, . . . , hn ∈ G.

If (3′)(a) holds, then v
(
t(gi1 , . . . , gin)

)
= sa for i1 < · · · < in in I; whereas if (3′)(b)

holds, then v
(
t(gi1 , . . . , gin)

)
= sim for i1 < · · · < in in I. �

Corollary 2.16. T is distal.

Proof. By Corollary 1.26 it suffices to prove that the structure induced on the group
sort sg of models of T is distal. For this, suppose (gi)i∈I as above is indiscernible,
the linearly ordered set I is dense, and 0 is an element of I such that (gi)i∈I 6= is AB-
indiscernible, where I 6= := I \ {0}; by Proposition 1.10, it is enough to show that
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then (gi)i∈I is AB-indiscernible. This is clear if (gi)i∈I is constant; thus we may as-
sume that (gi)i∈I is nonconstant. Replacing A by the subgroup of G generated by A
we can also arrange that A is a subgroup of G, and by Lemma 2.11, that (gi)i∈I is a
pc-sequence. Let si := v(gi−gj) where j > i is arbitrary. Let s ∈ v(A) ∪B; if si > s
for all i ∈ I 6=, then also s0 > s, and similarly with “<” in place of “>”. Together
with Lemma 2.12 applied to (gi)i∈I 6= , this implies that (2) in Definition 2.13 holds.
Similarly, using Lemma 2.14(3′) for (gi)i∈I 6= we see that statement (3) in Defini-
tion 2.13 holds: Let a ∈ A. Suppose

(
v(gi − a)

)
i∈I 6=

is constant and si > v(gj − a)

for all i, j ∈ I 6=; then si > v(gj − a) for all i ∈ I, j ∈ I 6= and thus

v(g0 − a) = v
(
(g0 − gj) + (gj − a)

)
= v(gj − a) for j 6= 0,

hence (3)(a) holds. If si = v(gi − a) for i 6= 0, then

v(g0 − a) = v
(
(g0 − gj) + (gj − a)

)
= s0 for j > 0,

hence (3)(b) holds. This shows that (gi)i∈I is pre-AB-indiscernible, and hence
AB-indiscernible by Proposition 2.15. �

We now use the above to give our promised example of an infinite ring of positive
characteristic interpretable a distal structure.

Example. Suppose R = Fp × H , where H = H(Q,Fp) is as in the beginning of
Section 2.1, equipped with the componentwise addition and multiplication given
by

(k, g) · (l, h) := (kl, kg + lh) for k, l ∈ Fp, g, h ∈ H .

Then R is a commutative ring of characteristic p, with multiplicative identity (1, 0).
Moreover, R is interpretable in the L-structure (H,Q) |= T , which is distal by
Corollary 2.16.

Remark. Distality for a more general class of valued abelian groups and certain
related structures is established in [16], and is used there to demonstrate that in
fact every abelian group (in the pure group language) admits a distal expansion.

In the remainder of this section we point out a consequence of Fact 2.1 for henselian
valued fields with a distal expansion.

2.4. NIP in henselian valued fields. In this subsection K is a henselian valued

field with value group Γ and residue field k. We view K as a model-theoretic
structure (K,O), where O is the valuation ring of K. We recall the following facts;
the proofs below are courtesy of Franziska Jahnke.

Fact 2.17. Suppose K is finitely ramified and k is NIP and perfect; then (K,O)
is NIP.

Proof. In the case chark = 0 this follows from Delon [22] (using also [35]), and
for chark > 0 and unramified K this was shown by Bélair [5]. We reduce the
finitely ramified case with chark = p > 0 to these cases. We use the notation
and terminology of [2, Section 3.4]. First, after passing to an elementary extension
we can assume that (K,O) is ℵ1-saturated. Let ∆ := ∆0 be the smallest convex

subgroup of Γ containing vp, and let K̇ be the corresponding specialization of K.
Then K̇ has characteristic zero, cyclic value group ∆0, and residue field isomorphic
to k; saturation implies that K̇ is complete. It is well-known (see, e.g. [69, Theo-

rem 22.7]) that therefore K̇ is a finite extension of a complete unramified discretely
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valued subfield L with the same residue field k as K̇. By [5], (L,OL) is NIP, hence

so is (K̇,OK̇). Now the ∆-coarsening (K, Ȯ) of K has residue field K̇, and hence

is NIP by [22]. The valuation ring of K̇ is definable in the pure field K̇ [50, Lem-

ma 3.6]. Hence O is definable in (K, Ȯ), and thus (K,O) is NIP. �

See Corollaries 5.18 and 5.23 below for versions of the preceding fact where k and Γ
are permitted to have additional structure. Here is a partial converse of Fact 2.17:

Fact 2.18. Suppose (K,O) is NIP and k is finite; then K is finitely ramified.

Proof. We may assume that (K,O) is ℵ0-saturated. This time, we let ∆ be the

biggest convex subgroup of Γ not containing vp, and let K̇ be the corresponding
specialization of K. Then K̇ has characteristic p, value group ∆, and residue field
isomorphic to k. The Shelah expansion of (K,O) interprets every convex subgroup

of Γ, and hence also the valued field (K̇,OK̇); in particular, (K̇,OK̇) is NIP, by
Fact 1.29(1). Now [48, Proposition 5.3] implies that ∆ = {0}, since k is finite.
Hence for every γ > 0 in Γ there is some n such that nγ ≥ vp. Saturation yields
some n such that for every γ > 0 in Γ we have nγ ≥ vp; hence K is finitely
ramified. �

Combining 2.1 and 1.15 with 2.18 implies:

Corollary 2.19. If (K,O) has a distal expansion, then K is finitely ramified and k

has characteristic zero or is finite.

Remark 2.20. If K is finitely ramified and k is finite, p = chark, then K has a
specialization which is p-adically closed of finite p-rank. (Let ∆ = ∆0 be as in the

proof of Fact 2.17 and let K̇ be the ∆-specialization of K; then K̇ is henselian of
mixed characteristic (0, p) with cyclic value group and finite residue field k, hence
is p-adically closed of finite p-rank [55, Theorem 3.1].)

See [1, Section 5.1] for a conjectural characterization of all NIP henselian valued
fields.

3. Distality in Ordered Abelian Groups

In 1984, Gurevich and Schmitt [35] showed that every ordered abelian group is NIP.
In this section, we investigate distality for ordered abelian groups; the main result
is Theorem 3.13 below. As a warmup, in Section 3.1 we characterize distality for
those ordered abelian groups which have quantifier elimination in the Presburger
language (see Theorem 3.2). This already applies to a variety of familiar ordered
abelian groups since it includes every ordered abelian group which is elementarily
equivalent to an archimedean one. In the rest of this section we assume m,n ≥ 1,
and we let p, q range over the set of prime numbers.

An ordered abelian group G is said to be non-singular if G/pG is finite for every p.
The following fact from [45, Proposition 5.1] will be used several times:

Fact 3.1. An ordered abelian group is dp-minimal if and only if it is non-singular.
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3.1. The case of QE in LPres. In this subsection we consider ordered abelian
groups in the Presburger language

LPres =
{
0, 1, +, −, <, (≡m)

}
.

We naturally construe a given ordered abelian group G as an LPres-structure: the
symbols 0, +, −, < have their usual interpretations; the constant symbol 1 is inter-
preted by the least positive element of G, provided G has one, and by 0 otherwise;
and for each m, the binary relation symbol ≡m is interpreted as equivalence mod-
ulo m, i.e., for g, h ∈ G,

g ≡m h :⇐⇒ g − h ∈ mG.

In the rest of this subsection G is an ordered abelian group, and all ordered abelian

groups will be construed as LPres-structures. Recall that an ordered abelian group
is regular if it is elementarily equivalent to an archimedean ordered abelian group;
moreover, G is regular if either |G/nG| = n for each n ≥ 1, or nG is dense in G
for each n ≥ 1. In the first case, G is elementarily equivalent to (Z; +, <), whereas
any two dense regular ordered abelian groups G, H are elementarily equivalent iff
for each p either G/pG and H/pH are infinite or |G/pG| = |H/pH |. (See [59, 73].)
In this subsection we show the following.

Theorem 3.2. Suppose G is regular; then the following are equivalent:

(1) G is distal;

(2) G is dp-minimal;

(3) G is non-singular.

Theorem 3.2 applies to archimedean G, so the ordered abelian groups (Z; +, <),
(Q; +, <), and (Z(2); +, <) are distal, whereas (Q>0; · , <) is not.

The rest of this subsection is devoted to proving Theorem 3.2. We rely on the
following:

Fact 3.3 (Weispfenning, [71]). An ordered abelian group is regular if and only if it

has QE in LPres.

We first note that the direction (2)⇒ (1) in Theorem 3.2 holds by Fact 1.5. Further-
more, the equivalence (2) ⇔ (3) is Fact 3.1. Thus it suffices to establish (1)⇒ (3).
We will actually prove the contrapositive. For the rest of the subsection we thus
fix some p and assume:

(1) G is regular;
(2) G/pG is infinite;
(3) G is sufficiently saturated.

We shall prove that under these assumptions, G is not distal. By QE in LPres, we
can easily describe indiscernible sequences in a single variable:

Lemma 3.4. A sequence (ai)i∈I in G is indiscernible iff for all i1 < · · · < in
and j1 < · · · < jn from I, k, k1, . . . , kn ∈ Z, and m ≥ 2 we have

(1) k · 1 +
∑

l klail > 0 ⇐⇒ k · 1 +
∑

l klajl > 0;
(2) k · 1 +

∑
l klail = 0 ⇐⇒ k · 1 +

∑
l klajl = 0; and

(3) k · 1 +
∑

l klail ≡m 0 ⇐⇒ k · 1 +
∑

l klajl ≡m 0.

We think of (1) and (2) in Lemma 3.4 as geometric conditions and of (3) as algebraic
conditions. It is easy to prescribe a certain choice of geometric conditions in a
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rapidly increasing sequence; here we say that a sequence (ai)i∈I in G is rapidly

increasing if for all i < j from I and m, n,

0 ≤ m1 < nai < aj .

(That is, ai > 1 for all i, and the ai and 1 lie in distinct archimedean classes.)

Lemma 3.5. Suppose (ai)i∈I is a rapidly increasing sequence in G. Then for

all i1 < · · · < in and j1 < · · · < jn from I and all k, k1, . . . , kn ∈ Z, we have

(1) k ·1+
∑
l klail > 0 ⇔ k ·1+

∑
l klajl > 0 ⇔ (kn, . . . , k1, k) >lex (0, . . . , 0),

and

(2) k · 1 +
∑

l klail = 0 ⇔ k · 1 +
∑

l klajl = 0 ⇔ k = k1 = · · · = kn = 0.

In general, it is more difficult to prescribe all of the algebraic conditions which hold
in an indiscernible sequence, but once we have an indiscernible sequence in G we
can use the following:

Lemma 3.6. Suppose (ai)i∈I is an indiscernible sequence in G. Then for all

distinct i1, . . . , in and distinct j1, . . . , jn from I, all k, k1, . . . , kn ∈ Z and m ≥ 2,
we have

(1) k · 1 +
∑

l klail = 0 ⇐⇒ k · 1 +
∑

l klajl = 0, and
(2) k · 1 +

∑
l klail ≡m 0 ⇐⇒ k · 1 +

∑
l klajl ≡m 0.

Proof. The sequence (ai) is indiscernible in the
{
0, 1,+,−, (≡m)

}
-reduct of G.

However, this reduct is just (an expansion by definitions and constants of) the
underlying abelian group of G, which is stable. Thus the sequence (ai) in this
reduct is totally indiscernible, which implies the conclusion of the lemma. �

Proposition 3.7. G is not distal.

Proof. First, Ramsey yields a rapidly increasing indiscernible sequence (bi)i∈(−1,1)
in G such that bi 6≡p bj for all i < j from (−1, 1). The argument uses that G/pG
is infinite and that each coset of pG is cofinal in G. We will use (bi) to obtain our
counterexample to distality. For this, consider the collection Φ(x) of LPres-formulas,
with x = (xi)i∈(−1,1], consisting exactly of the following formulas:

(Φ1) for every i < j from (−1, 1] and every m, n, the formula

0 ≤ m1 < nxi < xj ,

(Φ2) for every i1 < · · · < in from (−1, 1) and k, k1 . . . , kn ∈ Z, if G |= k · 1 +∑
l klbil ≡m 0, the formulas

k · 1 +
∑

l klxil ≡m 0 and
(
k · 1 +

∑
l klxil ≡m 0

)
[x1/x0],

and otherwise the formulas

k · 1 +
∑

l klxil 6≡m 0 and
(
k · 1 +

∑
l klxil 6≡m 0

)
[x1/x0],

where [x1/x0] denotes replacing each occurrence of x0 in the preceding
expression by x1, and

(Φ3) the formula x0 ≡p x1.

Thus Φ(x) expresses that the sequence (xi)i∈(−1,1] is rapidly increasing and satisfies
the same algebraic conditions as (bi), x0 and x1 have the same algebraic relations
with (xi)i∈(−1,1)\{0}, however x1 and x0 are congruent modulo p.

Claim 3.8. Φ(x) is finitely satisfiable in G.
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Proof of Claim. Let Φ0 ⊆ Φ be finite. Set b∗i := bi for i ∈ (−1, 1); clearly (b∗i )i∈(−1,1)
satisfies all formulas from (Φ1), (Φ2), and (Φ3) which do not involve x1. We claim
that we can choose b∗1 ∈ G so that (b∗i )i∈(−1,1] satisfies Φ0. To see this let N be
the product of all moduli occurring in Φ0, and pick b∗1 to be a sufficiently large
member of the coset b0 + pNG. The “sufficiently large” ensures that all formulas
in Φ0 coming from (Φ1) are satisfied, the choice of N ensures that b0 ≡m b∗1 for all
relevant m, and thus all formulas from (Φ2) are satisfied, and clearly b0 ≡p b∗1. �

By the claim and after replacing our original sequence (bi)i∈(−1,1), we can as-
sume that we have some b1 ∈ G such that (bi)i∈(−1,1] realizes Φ(x). It is clear
that (bi)i∈(−1,1) is indiscernible, and that (bi)i∈(−1,1) is not b1-indiscernible. It
remains to establish:

Claim 3.9. (bi)i∈(−1,1)\{0} is b1-indiscernible.

Proof of Claim. It is sufficient to show that (bi)i∈(−1,1]\{0} is indiscernible. By (Φ1)
this sequence is rapidly increasing, thus by Lemma 3.5 the geometric conditions (1)
and (2) of Lemma 3.4 hold. It suffices to check condition (3) from Lemma 3.4.
Let i1 < · · · < in−1 < in = 1 from (−1, 0) ∪ (0, 1] and j1 < · · · < jn from (−1, 1),
and let k, k1, . . . , kn ∈ Z; it is sufficient to show that then

k · 1 +
∑

l klbil ≡m 0 ⇐⇒ k · 1 +
∑

l klbjl ≡m 0.

Now

k · 1 +
∑

l klbil ≡m 0 ⇐⇒
(
k · 1 +

∑
l klbil ≡m 0

)
[b0/b1]

by (Φ2), and
(
k · 1 +

∑
l klbil ≡m 0

)
[b0/b1] ⇐⇒ k · 1 +

∑
l klbjl ≡m 0,

by Lemma 3.6 and the fact that (bi)i∈(−1,1) is indiscernible. �

This concludes the proof of the proposition. �

3.2. A review of the Cluckers-Halupczok language. In the rest of the section,
we consider ordered abelian groups which do not in general have QE in LPres. We
use the language Lqe introduced by Cluckers and Halupczok [19] (see also [39])
for their (relative) quantifier elimination result for ordered abelian groups. This
language is similar in spirit to one introduced by Gurevich and Schmitt [35], however
it is more in line with our modern paradigm of many-sorted languages and perhaps
a little more intuitive.

The rest of the subsection is taken essentially from [19]. In what follows G is an
ordered abelian group and we use the notation H ⋐ G to denote that H is a convex
subgroup of G. We introduce Lqe and at the same time describe how G is viewed
as an Lqe-structure G. We begin by listing the sorts of Lqe: besides the main
sort G whose underlying set is that of the ordered abelian group G, these are the
auxiliary sorts Sp, Tp, T +

p (one for each p) associated with G. Here is how they
are interpreted in G:

Definition 3.10.

(1) For a ∈ G\pG, let Gp(a) be the largest convex subgroup of G such that a /∈
Gp(a) + pG, and for a ∈ pG let Gp(a) := {0}; then the underlying set of
sort Sp is

{
Gp(a) : a ∈ G

}
;
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(2) for b ∈ G, set

G−p (b) :=
⋃{

Gp(a) : a ∈ G, b /∈ Gp(a)
}
,

where the union over the empty set is declared to be {0}; then the under-
lying set of sort Tp is

{
G−p (b) : b ∈ G

}
;

(3) For b ∈ G, define

G+
p (b) :=

⋂{
Gp(a) : a ∈ G, b ∈ Gp(a)

}
,

where the intersection over the empty set is G; then the underlying set of
sort T +

p is
{
G+
p (b) : b ∈ G

}
.

Below we don’t distinguish notationally between the sort Sp and its underlying set
(so we can write Sp =

{
Gp(a) : a ∈ G

}
), and similar for the other auxiliary sorts.

We let α range over (the underlying sets of) the auxiliary sorts. In each case, α is
a convex subgroup of G; if we want to stress this role of α as a convex subgroup
of G (rather than as an abstract element of the underlying set of a certain sort of
the structure G), we denote it by Gα, and we let πα : G ։ G/Gα be the natural
surjection. We let 1α denote the minimal positive element of G/Gα if the ordered
abelian group G/Gα is discrete, and set 1α := 0 ∈ G/Gα otherwise; for k ∈ Z we
let kα := k · 1α. For a, b ∈ G and ⋄ denoting one of the relation symbols =, <,
or ≡m we also write a ⋄α b + kα if πα(a) ⋄ πα(b) + kα holds in the ordered abelian
group G/Gα. We also set

G[m]
α :=

⋂

Gα(H⋐G

(H +mG)

and
a ≡[m]

n,α b :⇐⇒ a− b ∈ G[m]
α + nG (a, b ∈ G).

We now describe the primitives of the Lqe-structure G; these are:

(G1) on the main sort G, the usual primitives 0, +, −, ≤ of the language of
ordered abelian groups;

(G2) binary relations “α ≤ α′” on
(
Sp
·
∪ Tp

·
∪ T +

p

)
×
(
Sq
·
∪ Tq

·
∪ T +

q

)
, interpreted

as Gα ⊆ Gα′ (each pair (p, q) giving rise to nine separate binary relations);
(G3) predicates for the relations a ⋄α b+ kα, where ⋄ ∈

{
=, <, (≡m)

}
and k ∈ Z

(each of these being ternary relations onG×G×X where X ∈ {Sp, Tp, T +
p });

(G4) for m ≥ n, the ternary relation x ≡
[qm]
qn,α y on G×G× Sp;

(G5) a unary predicate discr of sort Sp which holds of α if and only if G/Gα is
discrete;

(G6) for d ∈ N and n, two unary predicates of sort Sp defining the sets
{
α ∈ Sp : dimFp

(
G[pn]
α + pG

)/(
G[pn+1]
α + pG

)
= d
}
and

{
α ∈ Sp : dimFp

(
G[pn]
α + pG

)/
(Gα + pG) = d

}
.

We letA be the set of auxiliary sorts associated toG, and let LAqe be the sublanguage
of Lqe with sorts A and primitives listed in (G2), (G5), (G6).

Definition 3.11. Let φ(x, η) be an Lqe-formula, where x and η are multivariables
of sort G and A, respectively. We say that φ(x, η) is in family union form if

φ(x, η) =

n∨

i=1

∃θ
(
ξi(η, θ) ∧ ψi(x, θ)

)
,
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where θ is a multivariable of sort A, ξi(η, θ) are LAqe-formulas, each ψi(x, θ) is
a conjunction of basic formulas (i.e., atomic or negated atomic formulas), and
for each ordered abelian group G, viewed as an Lqe-structure G as above, the
formulas ξi(η, α) ∧ψi(x, α), with i ranging over {1, . . . , n} and α over tuples of the
appropriate sorts in G, are pairwise inconsistent.

The following is the main result from [19]:

Fact 3.12. In the theory of ordered abelian groups, each Lqe-formula is equivalent

to an Lqe-formula in family union form.

3.3. The case where all Sp are finite. The main result of this section is the
following.

Theorem 3.13. Suppose that Sp is finite for all p. Then G is distal iff G is

non-singular.

The hypothesis of the theorem holds if G is strongly dependent, by [12, 25, 30, 37].
The proof of Theorem 3.13, which we now outline, is a generalization of the proof
of Theorem 3.2, using Fact 3.12.

For the rest of this section, G is an ordered abelian group such that for each p the

underlying set of sort Sp is finite. Note that then the underlying sets of sorts Tp
and T +

p are also finite, for each p. It suffices to show that if G/pG is infinite for
some p, then G is not distal. Here we construe G as an Lqe-structure, together
with constants which name all of A; since each Sp is finite, the underlying sets
of auxiliary sorts will not grow when we pass to an elementary extension of G.
Thus we can also assume that G is sufficiently saturated. In this setting, Fact 3.12
specializes as follows:

Proposition 3.14. In G, each Lqe-formula φ(x), where x is a multivariable of

sort G, is equivalent to a finite boolean combination of atomic formulas in which

the only occurring predicates are those from (G3).

Proof. In Fact 3.12, the quantifier “∃θ” can be replaced by a finite disjunction over
all possible tuples of constants of the same sort as θ. Upon substitution of these
constants, each “ξi(θ)” becomes a sentence, so in the theory of G, it is equivalent
to ⊥ or ⊤. Likewise for the unary relation discr(α), the unary “dimension” rela-
tions applied to α, and the binary relations α ≤ α′. Finally, as each Sp is finite,

the ternary relations x ≡
[qm]
qn,α y from (G4) are already taken care of by the rela-

tions x ≡qn,α′ y: by [19, Lemma 2.4(2)] we have G
[qm]
α = Gα′ +qmG where α′ is the

successor of α in Sqm with respect to the linear ordering ≤ of Sqm from (G2). �

Proposition 3.14 should be viewed as saying that G has QE in a language which is
essentially a union of countably many copies of the Presburger language, one for
each of the quotient groups G/Gα. With this point of view, it is fairly straight-
forward to generalize everything in Section 3.1 by including “for every α” in many
places. For instance, we have the following generalization of Lemma 3.4:
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Lemma 3.15. A sequence (ai)i∈I in G is indiscernible iff for all i1 < · · · < in
and j1 < · · · < jn from I, all k, k1, . . . , kn ∈ Z, all α, and m ≥ 2, we have

(1)
∑

l klail >α kα ⇐⇒
∑
l klajl >α kα;

(2)
∑

l klail =α kα ⇐⇒
∑
l klajl =α kα; and

(3)
∑

l klail ≡m,α kα ⇐⇒
∑
l klajl ≡m,α kα.

Next, following the proof of Theorem 3.2, the “rapidly increasing sequence” we
construct here is a sequence (ai)i∈I in G such that for all i < j from I, all m, n,
and all α,

0 ≤α m · 1α <α n · ai <α aj .

That is, the sequence (ai) is a rapidly increasing sequence in each of the count-
ably many quotients G/Gα. This gives rise to an appropriate generalization of
Lemma 3.5. We also use the fact that the (unordered) abelian group reducts of the
quotients G/Gα are all stable, to get a generalization of Lemma 3.6. Finally, the
proof of Proposition 3.7 generalizes to conclude our proof of Theorem 3.13.

We conclude this section with the following conjecture.

Conjecture 3.16. Every ordered abelian group admits a distal expansion.

There are some partial results towards this conjecture, but the general case remains
open.

4. Distality and Short Exact Sequences of Abelian Groups

In this section we prove a general quantifier elimination theorem for certain short
exact sequences of abelian groups, and analyze distality in this setting. These
results are used in Sections 5 and 6 below. In Section 4.1 we show our main
elimination result. The remaining subsections of this section discuss an application
to the preservation of distality as well as variants and refinements.

4.1. Quantifier elimination for pure short exact sequences. Let

0 → A
ι

−−→ B
ν

−−→ C → 0

be a short exact sequence of morphisms of abelian groups which is pure, which
means that ι(A) is a pure subgroup of B. (For example, this always holds if C is
torsion-free.) We treat such a pure short exact sequence as a three-sorted struc-
ture (A,B,C) consisting of three abelian groups, with the two maps ι : A → B
and ν : B → C added as primitives. If A is ℵ1-saturated, then the short exact
sequence splits, i.e., B is the direct sum of A and C, with ι and ν being the nat-
ural embedding and projection, respectively. (See, e.g., [2, Corollary 3.3.38].) So
the complete theory of (A,B,C) is uniquely determined by the theory of A and
the theory of C. Moreover, if (A,C,R0, R1, . . . ) is an arbitrary expansion of the
pair (A,C), then the theory of (A,B,C,R0, R1, . . . ) is determined by the theory
of (A,C,R0, R1, . . . ). For a syntactical formulation of this observation let us fix the
languages involved:

• Lac = {0a,+a,−a, 0c,+c,−c}, the language of the pair (A,C) of abelian
groups;

• Lb = {0b,+b,−b}, the language of abelian groups on B;
• Labc = Lac∪Lb∪{ι, ν}, the language of the three-sorted structure (A,B,C);
• L∗ac, the language of an expansion (A,C,R0, R1, . . . ) of (A,C);
• L∗abc = Labc ∪ L∗ac, the language of (A,B,C,R0, R1, . . . ).
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Let Tabc be the Labc-theory of all structures arising from pure exact sequences
as above. Viewing Tabc as a set of sentences in the expanded language L∗abc, the
observation above then reads as follows:

Corollary 4.1. Every L∗abc-sentence is equivalent in Tabc to an L∗ac-sentence.

This is also a consequence of the quantifier elimination theorem to be proved in
this section. For its formulation we note that for each n, our short exact sequence
fits into a commutative diagram of group morphisms

0

��

0

��

0

��

0 // nA //

⊆
��

nB //

⊆
��

nC //

⊆
��

0

0 // A
ι

//

πn

��

B
ν

//

��

C //

��

0

0 // A/nA //

��

B/nB //

��

C/nC //

��

0

0 0 0

with exact rows and columns. We now expand (A,B,C) by new sorts with under-
lying sets A/nA together with two unary functions: the natural surjection πn : A→
A/nA and a function ρn : B → A/nA, which, on ν−1(nC), is the composition of
the group morphisms

ν−1(nC) = nB + ι(A) →
(
nB + ι(A)

)
/nB

∼
−→ ι(A)/

(
nB ∩ ι(A)

) ∼
−→ A/nA,

and zero outside ν−1(nC). Note that ρ0 : B → A agrees with the inverse of ι : A
∼
−→

ι(A) on ι(A) = ν−1(0) and is zero on B \ ι(A). (We identify A with A/0A in the
natural way.) Note also that πn = ρn ◦ ι. Moreover, if our short exact sequence
splits, and π′ : B → A is a left inverse of ι, then ρn agrees with πn ◦π

′ on ν−1(nC).

We denote the language of this expansion of the Labc-structure (A,B,C) by

Labcq = Labc ∪ {ρ0, ρ1, . . . , π0, π1, . . . },

and we let Tabcq be the Labcq-theory of all these structures arising from a pure
exact sequence as above. We also let

Lacq = Lac ∪ {π0, π1, . . . },

a sublanguage of Labcq. Note that the group operations on A/nA are 0-definable in
the reduct of Tabcq to the two-sorted language La∪{πn}, where La = {0a,+a,−a} is
the language of the abelian group A. Note also that πn, ρn are interpretable in the
Labc-reduct of Tabcq; in particular, if M = (A,B,C, . . . ) and M ′ = (A′, B′, C′, . . . )
are models of Tabcq, then every isomorphism between the Labc-reducts of M , M ′

extends uniquely to an Labcq-isomorphism M → M ′.

Let the multivariables xa, xb, xc be of sort A, B and C, respectively. The Labcq-
terms of the form ρn

(
t(xb)

)
or ν

(
t(xb)

)
, for an Lb-term t(xb), are called special.



30 ASCHENBRENNER, CHERNIKOV, GEHRET, AND ZIEGLER

Theorem 4.2. In Tabcq every Labc-formula φ(xa, xb, xc) is equivalent to a formula

φacq
(
xa, σ1(xb), . . . , σm(xb), xc

)

where the σi are special terms and φacq is a suitable Lacq-formula.

For example, the formula xb = 0b is equivalent to ρ0(xb) = 0a ∧ ν(xb) = 0c. Also,
xb is divisible by n if and only if ρn(xb) = πn(0a) and ν(xb) is divisible by n.

Proof. Let σ0, σ1, . . . list all special terms. Given a tuple b in a model of Tabcq
of the same sort as xb, let us write σ(b) for the tuple σ0(b), σ1(b), . . . . Assume
that we have two models M = (A,B,C, . . . ) and M ′ = (A′, B′, C′, . . . ) of Tabcq.
We let a, b, c range over tuples in M of the same sort as xa, xb, xc, respectively,
and similarly with the tuples a′, b′, c′ in M ′. Suppose we are given a, b, c in M

and a′, b′, c′ in M ′ such that the type of aσ(b)c in the Lacq-reduct Macq of M is
the same as the type of a′σ(b′)c′ in the Lacq-reduct M ′

acq of M ′. It is enough to
show that then abc and a′b′c′ have the same type in M and in M ′, respectively.

For this, after replacing M , M ′ by suitably saturated elementary extensions, we

may assume that there is an isomorphism Macq

∼=
−→ M ′

acq with aσ(b)c 7→ a′σ(b′)c′.
We can then also assume that the short exact sequences underlying M and M ′

split. Thus this isomorphism extends to an isomorphism M
∼=−→ M ′. Hence we may

assume that M = M ′, a = a′, c = c′ and σ(b) = σ(b′), and it suffices to show that
there is an automorphism of M which is the identity on A and C and maps b to b′.

Let B0 denote the subgroup of B generated by b and B′0 the subgroup of B′

generated by b′. Since for each Lb-term t(xb) we have t(b) = 0 iff t(b′) = 0,
we obtain an isomorphism f0 : B0 → B′0 such that f0(t(b)) = t(b′) for all Lb-
terms t(xb); in particular, we have f0(b) = b′. Furthermore we have ρn(b0) =
ρn(f0(b0)) and ν(b0) = ν(f0(b0)) for all b0 ∈ B0. Set

A0 := B0 ∩ ι(A) = B′0 ∩ ι(A), C0 := ν(B0) = ν(B′0).

The map b0 7→ ι−1
(
f0(b0) − b0

)
is a group morphism B0 → A. Since f0 fixes all

elements of A0, the image of b0 ∈ B0 under this morphism only depends on ν(b0).
So f0 induces a group morphism h0 : C0 → A satisfying

f0(b0) = b0 + ι
(
h0(ν(b0))

)
for all b0 ∈ B0.

We show now that h0 is a partial morphism C → A in the sense of [74, p. 159], that
is, h0(nC ∩C0) ⊆ nA for each n: given c ∈ nC ∩C0, choose b0 ∈ B0 with ν(b0) = c;
since ρn is a group morphism on ν−1(nC), we then have

πn
(
h0(c)

)
= ρn

(
ι(h0(c))

)
= ρn

(
f0(b0)− b0

)
= ρn

(
f0(b0)

)
− ρn(b0) = 0,

from which we conclude that h0(c) ∈ nA.
Finally we may assume that A is pure injective. Then the partial morphism h0

extends to a group morphism h : C → A [74, Corollary 3.3]. The formula

b 7→ b+ ι
(
h(ν(b))

)

defines an automorphism of B which together with the identity on all other sorts
is an automorphism of M which maps b to b′, as required. �

The following corollary generalizes Corollary 4.1; here we view Tabcq as a set of
L∗abcq-sentences.
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Corollary 4.3. In Tabcq every L∗abc-formula φ∗(xa, xb, xc) is equivalent to a for-

mula

φ∗acq
(
xa, σ1(xb), . . . , σm(xb), xc

)

where the σi are special terms and φ∗acq is a suitable formula in the language L∗acq :=
Lacq ∪ L∗ac.

Proof. This has exactly the same proof as Theorem 4.2. We show instead that
the corollary follows directly from the theorem itself. It is clear that the collection
of all formulas equivalent in Tabcq to one having the form in the statement of the
corollary contains all atomic formulas, is closed under boolean combinations and
under quantification over A and over C. It remains to show that this collection of
formulas is also closed under quantification over B. Let yb be a multivariable of
sort B disjoint from xb, and consider the formula

φ∗(xa, xb, xc) = ∃ yb ψ
∗
(
xa, σ1(xb, yb), . . . , σm(xb, yb), xc

)

with special terms σi and a suitable L∗acq-formula ψ∗. We may assume that we
have k ∈ {0, . . . ,m} and n1, . . . , nk ∈ N such that σi is of sort A/niA for i = 1, . . . , k
and of sort C for i = k + 1, . . . ,m. Theorem 4.2 implies that for distinct vari-
ables z1, . . . , zk of sort A and zk+1, . . . , zm of sort C, the Labcq-formula

∃ yb

(
k∧

i=1

πni
(zi) = σi(xb, yb) ∧

m∧

i=k+1

zi = σi(xb, yb)

)

is equivalent in Tabcq to a formula

χ
(
z1, . . . , zm, τ1(xb), . . . , τn(xb)

)

where the τj are special terms and χ is a suitable Lacq-formula. Then φ∗ is equiv-
alent to

∃z1 · · · ∃zm
(
χ
(
z1, . . . , zm, τ1(xb), . . . , τn(xb)

)
∧

ψ∗
(
xa, πn1

(z1), . . . , πnk
(zk), zk+1, . . . , zm, xc

))
,

which has the desired form. �

Remark. Corollary 4.3 implies the quantifier elimination result in [15]: when all
quotients A/nA are finite, the maps ρn are quantifier-free definable in the language
used there.

4.2. Preservation of distality. In this section we prove a result on preservation
of distality in pure short exact sequences. Let

0 → A
ι

−−→ B
ν

−−→ C → 0

be a pure short exact sequence of morphisms of abelian groups. We allow here A
and C to be equipped with arbitrary additional structure, and denote the respective
languages of these expansions by L∗a and L∗c . We also let

M =
(
A, (A/nA)n≥0, B, C; . . .

)

be the corresponding L∗abcq-structure as in Section 4.1. In this situation we have:

Remark 4.4.

(1) The L∗abcq-structure M and its L∗abc-reduct (A,B,C) are bi-interpretable.
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(2) The collection of the sorts A and A/nA (n ≥ 0) is fully stably embedded
in M (by the QE result in the previous section), and the full structure
induced on it is bi-interpretable with A.

(3) Similarly, the sort C is fully stably embedded in M .

Lemma 4.5. M is NIP iff both the L∗a-structure A and the L∗c -structure C are NIP.

Proof. The forward direction is clear. Suppose A and C are NIP. To show the M

is NIP we may assume that it is a monster model of its theory. Adding a function
symbol for a right-inverse of ν to the language L∗abcq, we obtain a structure that
is bi-interpretable with a two-sorted structure consisting of two sorts given by A
and C with their full induced structure; this implies that M is NIP, as a reduct of
a NIP structure. �

Theorem 4.6. M is distal if and only if both A and C are distal.

Proof. The forward implication is immediate by Lemma 1.15 and Remark 4.4; we
prove the converse. Suppose A and C are distal; again, we may assume that M

is a monster model of its theory, and by Lemma 4.5, M is NIP. Assume towards
contradiction that M is not distal; then by Remark 4.4(1), its L∗abc-reduct is also
not distal, and hence satisfies condition (3) in Corollary 1.11. Thus, also using Re-
mark 1.13, we obtain a partitioned L∗abc-formula ϕ(x; y), where |x| = 1, as well
as an indiscernible sequence (bi)i∈Q∞

of the same sort as x and some tuple d
of the same sort as the multivariable y such that (bi)i∈Q∞\{0} is d-indiscernible
and M |= ϕ(bi; d) ⇔ i 6= 0. By assumption, Remark 4.4 and Lemma 1.16, the vari-
able x is necessarily of sort B. We say that a tuple is contained in d if all its
components appear as components of d.

It is easy to see from the QE (Corollary 4.3) that the formula ϕ(x; d) is equivalent
to a positive boolean combination of formulas of the form:

(1) ψ∗
(
ν(t1(x, b

′)), . . . , ν(tm(x, b′)), c
)
where b′ is a tuple of sort B, c is a tuple

of sort C, both contained in d, the tk are Lb-terms, and ψ∗ is an L∗c -formula.
(2) θ∗

(
a, ρn1

(t1(x, b
′)), . . . , ρnm

(tm(x, b′))
)
where a is a tuple in A, b′ is a tuple

in B, both contained in d, the tk are Lb-terms, nk ∈ N, and θ∗ is an
L∗aq-formula, where L∗aq = L∗a ∪ {π0, π1, . . . }.

By Remarks 1.12 and 1.13, it is enough to show that ϕ(x; y) cannot be of any of
these forms. Below we let i, j range over Q∞ and k over {1, . . . ,m}.

Suppose first that (1) holds. As ν is a group morphism,

ψ∗
(
ν(t1(x, b

′)), . . . , ν(tm(x, b′)), c
)

is equivalent to a formula of the form ψ∗1
(
ν(x), c′

)
where c′ is a d-definable tuple

of sort C and ψ∗1 is an L∗c -formula. By choice of (bi), the sequence
(
ν(bi)

)
in C is

indiscernible,
(
ν(bi)

)
i6=0

is c′-indiscernible, and

M |= ψ∗1(ν(bi), c
′) ⇐⇒ M |= ϕ(bi, d) ⇐⇒ i 6= 0.

This contradicts distality of the structure induced on C.

Now suppose that we are in case (2). We may assume that for each k we have rk ∈ Z
and a d-definable b′k ∈ B with tk(bi, b

′) = rkbi−b′k for each i. Set Bnk
= ν−1(nkC).

By Case (1) applied to the Lc-formulas defining nkC and its complement, the truth
value of the condition “rkbi− b

′
k ∈ Bnk

” doesn’t depend on i. If rkbi− b
′
k /∈ Bnk

for
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some/all i, then ρnk
(rkbi−b′k) = 0 = ρnk

(0b) for all i by definition. Thus, replacing
the term tk by 0b, we still have

M |= θ∗
(
a, ρn1

(t1(bi, b
′)), . . . , ρnm

(tm(bi, b
′))
)

⇐⇒ i 6= 0.

Hence we may assume that rkbi − b′k ∈ Bnk
for all i. Repeating this argument for

each k one by one, we may reduce to the case that rkbi − b′k ∈ Bnk
for all i, k.

As Bnk
is a subgroup of B, we have

rkbi − rkbj = (rkbi − b′k)− (rkbj − b′k) ∈ Bnk
for all i, j.

Let bki := rkbi − rkb∞ ∈ Bnk
and bk := b′k − rkb∞. Note that

bki − bk = rkbi − rkb∞ − (b′k − rkb∞) = rkbi − b′k ∈ Bnk

and hence bk ∈ Bnk
. As ρnk

restricts to a group morphism Bnk
→ A/nkA, we have

ρnk
(rkbi − b′k) = ρnk

(bki − bk) = ρnk
(bki )− ρnk

(bk) for all i.

Let βi := (β1
i , . . . , β

m
i ) and β := (β1, . . . , βm) where βki := ρnk

(bki ), β
k := ρnk

(bk),
and let x1, . . . , xm be distinct variables with xk of sort A/nkA. Consider the L∗aq-
formula

θ∗1(x1, . . . , xm, a, β) := θ∗(a, x1 − β1, . . . , xm − βm).

We then have:

• (βi)i∈Q is indiscernible (by construction, as (bi)i∈Q is b∞-indiscernible),
• (βi)i∈Q\{0} is aγ-indiscernible (again by construction, since (bi)i∈Q\{0} is
ab∞b

′
1 . . . b

′
m-indiscernible),

and, unwinding, for every i ∈ Q, in M we have

|= θ∗1(βi, a, β) ⇐⇒ |= θ∗
(
a, β1

i − β1, . . . , βmi − βm
)

⇐⇒ |= θ∗
(
a, ρn1

(b1i )− ρn1
(b1), . . . , ρnm

(bmi )− ρnm
(bm)

)

⇐⇒ |= θ∗
(
a, ρn1

(r1bi − b′1), . . . , ρnm
(rmbi − b′m)

)

⇐⇒ i 6= 0.

This contradicts distality of the L∗aq-structure A. �

Remark. In this subsection we assumed that the L∗ac-structure (A,C,R0, R1, . . . )
expanding the Lac-structure (A,C) is obtained by combining separate expansions
of the La-structure A and of the Lc-structure C. Let now (A,C)◦ be an arbitrary
expansion of (A,C), and denote its language by L◦ac and the corresponding L◦abcq-
structure by M◦. A straightforward adaption of the proofs shows that Lemma 4.5
and Theorem 4.6 remain true: M◦ is NIP (distal) iff (A,C)◦ is NIP (distal, respec-
tively).

4.3. A variant for abelian monoids. For later use, we now consider a slight
variant of Corollary 4.3 for abelian groups augmented by absorbing elements. For
this, let (A, 0,+) be an abelian monoid. An element ∞ of A is said to be absorbing
if ∞ + a = ∞ for all a ∈ A. (Clearly there is at most one absorbing element.)
For example, if R is a commutative ring, then (R, 1, · ) is an abelian monoid with
absorbing element 0. If A is an abelian group and ∞ /∈ A is a new element,
then A∞ := A ∪ {∞} with the group operation + of A extended to a binary
operation on A∞ such that

a+∞ = ∞+ a = ∞ for all a ∈ A∞
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is an abelian monoid with absorbing element ∞. In this case we also extend a 7→
−a : A→ A to a map A∞ → A∞ by setting −∞ := ∞. Every morphism f : A→ B
of abelian groups extends uniquely to a monoid morphism f∞ : A∞ → B∞. Here
is a special case of this construction:

Notation. Given a commutative ring R and a subgroup G of the multiplicative
group R× of units of R we let R/G := (R×/G)∞. In this case we always denote
the absorbing element of R/G by 0, so the residue morphism R× → R×/G extends
to a surjective monoid morphism R→ R/G which maps 0 ∈ R to 0 ∈ R/G.

Let now
0 → A

ι
−−→ B

ν
−−→ C → 0

be a pure short exact sequence of abelian groups. We redefine the languages intro-
duced at the beginning of this section as follows:

• Lac = {0a,+a,−a,∞a, 0c,+c,−c,∞c}, the language of the pair (A∞, C∞);
• Lb = {0b,+b,−b,∞b}, the language of B∞;
• Labc = Lac ∪ Lb ∪ {ι∞, ν∞}, the language of the three-sorted structure
(A∞, B∞, C∞).

We denote the extension of πn : A → A/nA to a morphism A∞ → (A/nA)∞
also by πn, and now introduce ρn : B∞ → (A/nA)∞ by defining ρn(b) ∈ A/nA
for b ∈ ν−1(nC) as before and declaring ρn(b) := ∞ for b ∈ B∞ \ ν−1(nC). Thus
the map ρ0 : B∞ → A∞ agrees with the inverse of ι on ι(A) and is constant ∞
on B∞ \ ι(A). We let

Labcq = Labc ∪ {ρ0, ρ1, . . . , π0, π1, . . . }, Lacq = Lac ∪ {π0, π1, . . . },

and we let T∞abcq be the theory of all Labcq-structures arising from a pure exact

sequence of abelian groups as above. The Labcq-terms of the form ρn
(
t(xb)

)

or ν
(
t(xb)

)
, for a term t(xb) in the sublanguage {0b,+b,−b} of Lb, are called

special.

Proposition 4.7. In T∞abcq every Labc-formula φ(xa, xb, xc) is equivalent to a for-

mula

φacq
(
xa, σ1(xb), . . . , σm(xb), xc

)

where the σi are special terms and φacq is a suitable Lacq-formula.

Mutatis mutandis, the proof of this proposition is similar to that of Theorem 4.2.
(Main change: B0 is the subgroup of B generated by those entries of b which do
not equal ∞, and similarly for B′0.) Next, let L∗ac be the language of an expan-
sion (A∞, C∞, R0, R1, . . . ) of the Lac-structure (A∞, C∞), let L∗abc = Labc∪L∗ac be
the language of (A∞, B∞, C∞, R0, R1, . . . ), and L∗acq = Lacq ∪L∗ac. As in the proof
of Corollary 4.3, the preceding proposition implies:

Corollary 4.8. In T∞abcq every L∗abc-formula φ∗(xa, xb, xc) is equivalent to a for-

mula

φ∗acq
(
xa, σ1(xb), . . . , σm(xb), xc

)

where the σi are special terms and φ∗acq is a suitable L∗acq-formula.

Remark 4.9. In the previous corollary one may assume that no special terms of the
form ρ1

(
t(xb)

)
appear among the σj . Since ρn(b− b′) = ρn

(
b+(n− 1)b′

)
for n ≥ 2

and b, b′ ∈ B∞, we can also arrange that the terms ρn
(
t(xb)

)
, n ≥ 2 appearing

among the σj do not involve the function symbol −b. Moreover, since ν is a group
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morphism on its proper domain of definition, we can achieve that none of the terms
of the form ν

(
t(xb)

)
appearing as some σj involve −b.

4.4. Weakly pure exact sequences. Consider a sequence

(4.1) 0 → A
ι

−−→ B
ν

−−→ C → 0

of morphisms of abelian groups where ι is injective, ν is surjective, and ker ν ⊆ im ι,
and let δ := ν ◦ ι : A → C. Note that with ν denoting the composition of ν with
the natural surjection

c 7→ c := c+ im δ : C → C := C/ im δ,

we obtain a short exact sequence

0 → A
ι

−−→ B
ν

−−→ C → 0,

which we call the short exact sequence associated to our given sequence (4.1).

Lemma 4.10. Suppose the short exact sequence associated to (4.1) as well as the

short exact sequence

0 → kerA
⊆

−−→ A
δ

−−→ im δ → 0

both split. Then with A1 := ker δ, B1 := im δ and C1 := coker δ = C, we have a

commutative diagram

0 // A
ι

//

fA∼=

��

B
ν

//

fB∼=

��

C //

fC∼=

��

0

0 // A1 ⊕B1
// A1 ⊕B1 ⊕ C1

// B1 ⊕ C1
// 0

where the second arrow on the bottom row is the natural inclusion and the third

arrow the natural projection.

Proof. Take group morphisms s : B1 → A and t : C1 → B such that δ ◦ s = idB1

and ν◦t = idC1
. Since ν induces an isomorphismB/ im ι→ C/ im δ, we have g(b) :=

b− t(ν(b)) ∈ im ι. One checks that fA, fB, fC defined by

fA(a) =
(
a− s(δ(a))

)
+ δ(a),

fB(b) = fA
(
ι−1(g(b))

)
+ ν(b),

fC(c) =
(
c− ν(t(c))

)
+ c (a ∈ A, b ∈ B, c ∈ C)

have the required properties. �

We say that (4.1) is weakly pure exact if im ι is a pure subgroup of B and ker ν is
a pure subgroup of im ι. Thus every pure short exact sequence is weakly pure exact;
moreover, if (4.1) is weakly pure exact, then its associated short exact sequence is
pure.

Lemma 4.11. Suppose C = C/ im δ and im δ are both torsion-free; then (4.1) is

weakly pure exact.

Proof. Let b ∈ B and n ≥ 1 with nb ∈ im ι. Take a ∈ A with ι(a) = nb;
then nν(b) = δ(a) ∈ im δ and hence ν(b) ∈ im δ (since C is torsion-free), so ν(b) =
ν(ι(a′)) where a′ ∈ A; then b− ι(a′) ∈ ker ν ⊆ im ι and hence b ∈ im ι. This shows
that im ι is a pure subgroup of B. Next, let a ∈ A and n ≥ 1 with nι(a) ∈ ker ν;
then nδ(a) = 0 and thus δ(a) = 0 (since im δ is torsion-free), that is, ι(a) ∈ ker ν.
Therefore ker ν is a pure subgroup of im ι. �
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A variant of Theorem 4.2 holds for weakly pure exact sequences. To make this pre-
cise, view each weakly pure exact sequence (4.1) as an Labc-structure in the natural
way. For each n let πn : A→ A/nA be the natural surjection, define ρn : B → A/nA
according to the pure exact sequence associated to (4.1), and expand the Labc-
structure (4.1) to a structure in the language Labcd := Labcq ∪ {δ} in the natural
way. Let Tabcd be the theory of Labcd-structures

(A,B,C, π0, π1, . . . , ρ0, ρ1, . . . , δ)

which arise from a weakly pure exact sequence (4.1) in this way. Let Lacd be the
sublanguage Lacq ∪ {δ} of Labcd. We then have:

Theorem 4.12. In Tabcd every Labc-formula φ(xa, xb, xc) is equivalent to a for-

mula

φacd
(
xa, σ1(xb), . . . , σm(xb), xc

)

where the σi are special terms and φacd is a suitable Lacd-formula.

Proof. The proof is similar to the proof of Theorem 4.2 with the following modi-
fications. Let M = (A,B,C, . . . ) and M ′ = (A′, B′, C′, . . . ) be models of Tabcd,
and with the same notational conventions as in the proof of Theorem 4.2, assume
that we are given a, b, c in M and a′, b′, c′ in M ′ such that the type of aσ(b)c in
the Lacd-reduct Macd = (A,C, δ) of M is the same as the type of a′σ(b′)c′ in the
Lacd-reduct M ′

acd = (A′, C′, δ′) of M ′; we need to show that then abc and a′b′c′

have the same type in M and in M ′, respectively.
Assuming, as we may, that M , M ′ are sufficiently saturated, we first show that

a given isomorphism Macd → M ′
acd extends to an isomorphism M → M ′. For

this, by Lemma 4.10 we may assume that B = A1 ⊕B1 ⊕ C1 where A = A1 ⊕B1,
C = B1 ⊕ C1, and ι and ν are the natural injection and the natural projection;
then δ(a1 + b1) = b1 for a1 ∈ A1, b ∈ B1. Similarly with A′, B′, C′, etc. in place
of A, B, C, etc. If the isomorphisms fA : A→ A′ and fC : C → C′ are compatible
with δ, δ′, then they have the form

fA(a1 + b1) = f(a1 + b1) + g(b1)

fC(b1 + c1) =
(
g(b1) + h1(c1)

)
+ h2(c1) (a1 ∈ A1, b1 ∈ B1, c1 ∈ C1)

for group morphims f : A → A′1, g : B1 → B′1, h1 : C1 → B′1, and h2 : C1 → C′1.
Then

(a1+b1+c1) 7→ f(a1+b1)+
(
g(b1)+h1(c1)

)
+h2(c1) (a1 ∈ A1, b1 ∈ B1, c1 ∈ C1)

is a group isomorphism fB : B → B′, and (fA, fB, fC) is an isomorphism between
the Labc-reducts of M and M ′, which gives rise to an isomorphism M → M ′ of
Labcd-structures as required.

Therefore, as in the proof of Theorem 4.2 we can assume M = M ′, a = a′,
c = c′, σ(b) = σ(b′), and it suffices to show that there is an automorphism of M
which is the identity on A and C and sends b to b′. Let B0, B

′
0 and the group

isomorphism f0 : B0 → B′0 be as in the proof of Theorem 4.2. Identifying C =
coker δ with C1 in the natural way, the short exact sequence associated to our given
weakly pure exact sequence is

0 → A = A1 ⊕B1
ι

−−→ B = A1 ⊕B1 ⊕ C1
ν

−−→ C1 → 0
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where ι is the natural inclusion and ν the natural projection. In particular A1 =
ker ν, and since ν(b0) = ν(f0(b0)), we have f0(b0)− b0 ∈ A1 for each b0 ∈ B0. Set

A0 := B0 ∩ A = B′0 ∩ A, C0 := ν(B0) = ν(B′0) ⊆ C1.

As in the proof of Theorem 4.2 we see that we have a morphism h0 : C0 → A1

satisfying

f0(b0) = b0 + h0
(
ν(b0)

)
for all b0 ∈ B0.

Now h0 is a partial morphism C1 → A, and thus also a partial morphism C1 → A1

since A1 is pure in A. Extend h0 to a group morphism h : C1 → A; then b 7→
b + h(ν(b)) defines an automorphism of B which, together with the identity on
all other sorts, is an automorphism of M fixing A and C and mapping b to b′ as
desired. �

The theorem above yields a quantifier elimination result for arbitrary expansions
of Lacd just as in Corollary 4.3. We also have a version of Theorem 4.12 for abelian
monoids, just like Proposition 4.7. To formulate this, redefine the languages Lac, Lb,
and Labc as in Section 4.3. Given a weakly pure exact sequence (4.1), denote
the extension of πn : A → A/nA to a morphism A∞ → (A/nA)∞ by πn. We
modify ρn : B∞ → (A/nA)∞ by defining ρn(b) ∈ A/nA for b ∈ ν−1(nC) = nB +
ι(A) as before and ρn(b) := ∞ for b ∈ B∞ \

(
nB + ι(A)

)
. With Labcd, Lacd as

before, let T∞abcd be the theory of all Labcd-structures which arise this way from a
weakly pure exact sequence (4.1). Then Theorem 4.12 goes through, with a similar
proof, and implies a version with additional structure on the Lac-structure (A,C)
as in Corollary 4.8.

4.5. Connection to abelian structures. In this subsection we generalize The-
orems 4.2 and 4.12 to pure exact sequences of abelian structures in the sense of
Fisher [31]; for this we use a well-known generalization of the Baur-Monk quan-
tifier simplification for modules to the case of abelian structures. (This is not
used later in the paper.) Recall that an abelian structure is an S-sorted struc-
ture A =

(
(As); (Ri), (fj)

)
where for each sort s ∈ S, among the primitives of A

are distinguished a constant 0s ∈ As, a unary function −s : As → As, and a binary
function +s : As ×As → As, such that the (one-sorted) structure (As; 0s,−s,+s)
is an abelian group, and all other relations Ri ⊆ As1 ×· · ·×Asm are subgroups and
all functions fj : As1 × · · ·×Asn → As are group morphisms. Also recall that given
a language L, the set of positive primitive (p.p.) L-formulas is the closure of the set
of atomic L-formulas under conjunction and existential quantification. Let now L
be the language of an abelian structure A as above. For each p.p. L-formula φ(x),

φA =
{
a ∈ Ax : A |= φ(a)

}

is a subgroup of Ax. Given two p.p. L-formulas φ(x), ψ(x) where x is a single
variable of sort s ∈ S, we set

dim≥nφ,ψ := ∃x1 · · · ∃xn



∧

1≤i≤n

φ(xi) ∧
∧

1≤i<j≤n

¬ψ(xi − xj)


 ,

so A |= dim≥nφ,ψ iff |φA/(φ ∧ ψ)A| ≥ n; the L-sentences dim≥nφ,ψ are called dimen-

sion sentences. The following is a version of the Baur-Monk Theorem for abelian
structures [70].
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Proposition 4.13. Each L-formula is equivalent, in the theory of abelian L-
structures, to a boolean combination of p.p. L-formulas and dimension sentences.

We call a family of p.p. L-formulas fundamental (for A) if every p.p. L-formula is
equivalent in A to a conjunction of formulas φ(t(x)) where φ is fundamental and t
is a tuple of L-terms. For example, it is well-known that if A is just an abelian
group, then the formulas of the form n|x for n = 0, 2, 3, . . . comprise a fundamental
family [40, A.2.1].

Let now A, B, C be abelian L-structures. Let ι : A → B be a morphism of L-
structures. Recall that ι is said to be an embedding if ι is injective and for each
relation symbol R of L we have RA = ι−1(RB); as a consequence, φA ⊆ ι−1(φB)
for each p.p. L-formula φ(x). We say that such an embedding ι is pure if φA =
ι−1(φB) for each p.p. L-formula φ(x). If A is a substructure of B and the natural
inclusion A → B is a pure embedding, then A is said to be a pure substructure
ofB. A morphism ν : B → C is said to be a projection if ν is surjective and RC =
ν(RB) for every relation symbol R of L, and such a projection ν is said to be pure
if φC = ν(φB) for each p.p. L-formula φ(x).

In the following, we assume for notational simplicity that our language L is one-
sorted, and we denote the structures A, B, C by A, B, C, respectively.

Lemma 4.14. Let 0 → A
ι

−−→ B
ν

−−→ C → 0 be a short exact sequence of mor-

phisms of L-structures, where ι is an embedding and ν is a projection. Then ι is
pure iff ν is pure.

Proof. First assume that ι is pure. Consider a p.p. L-formula

φ(x) = ∃x′
n∧

i=1

Ri
(
ti(x, x

′)
)
,

where each ti is a tuple of L-terms and each Ri is a relation symbol of L or an
equation between components of ti, and let c ∈ Cx with C |= φ(c). Take c′ ∈ Cx′

such that C |=
∧
iRi

(
ti(c, c

′)
)
, and let b, b′ be preimages of c, c′, respectively,

under ν. Since ν is a projection, we can take appropriate tuples ai in A such
that B |=

∧
iRi

(
ti(b, b

′) + ι(ai)
)
. Since ι is pure, there are a ∈ Ax, a

′ ∈ Ax′ such

that A |=
∧
iRi

(
ti(a, a

′) + ai
)
. This implies

B |=
∧

i

Ri
(
ti(b − ι(a), b′ − ι(a′))

)
.

So b− ι(a) is a preimage of c under ν satisfying φ. This shows that ν is pure.
For the converse assume that ν is pure, and let a ∈ Ax where ι(a) satisfies a

p.p.-formula φ(x) as above. So there is b′ ∈ Bx′ such that

B |=
∧

i

Ri
(
ti(ι(a), b

′)
)
.

Therefore C |=
∧
iRi

(
ti(0, ν(b

′)
)
, and by assumption we get a′ ∈ Ax′ such that

B |=
∧

i

Ri
(
ti(0, b

′ − ι(a′)
)
.

This implies B |=
∧
iRi

(
ti(ι(a, a

′))
)
. So A |=

∧
iRi

(
ti(a, a

′)
)
since ι is an embed-

ding, and a satisfies φ. �
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A short exact sequence 0 → A
ι

−−→ B
ν

−−→ C → 0 of morphisms of L-structures
where ι is a pure embedding and ν is a pure projection is called pure.

Remark. If B is the direct sum of the abelian L-structures A and C (defined in

the obvious way), then the resulting sequence A
ι
−→ B

ν
−→ C is pure exact. All pure

exact sequences where A is |L|+-saturated are of this form.

Lemma 4.15. Let ν : B → C be a pure projection, φ(x, x′) be a p.p. L-formula,

b ∈ Bx, and c
′ ∈ Cx′ . Then the following are equivalent:

(1) There is b′ ∈ Bx′ such that B |= φ(b, b′) and ν(b′) = c′;
(2) B |= ∃x′φ(b, x′) and C |= φ

(
ν(b), c′

)
.

Proof. The direction (1) ⇒ (2) is clear; we only use that ν is morphism. For the
converse assume (2). Take b′0 ∈ Bx′ such that B |= φ(b, b′0). Since ν is a pure
projection, there are b1 ∈ Bx and b′1 ∈ Bx′ such hat ν(b1) = ν(b), ν(b′1) = c′

and B |= φ(b1, b
′
1). So B |= φ(b − b1, b

′
0 − b′1). By the last lemma, A := ker ν is

(the underlying set of) a pure substructure of B. Since b − b1 ∈ A, purity gives
an a′ ∈ Ax′ such that B |= φ(b − b1, a

′). So we have B |= φ(b, b′) for b′ = b′1 + a′.
We see now that ν(b′) = c′, and (1) holds. �

We now consider a sequence

(4.2) 0 → A
ι

−−→ B
ν

−−→ C → 0

of morphisms of abelian L-structures. We let La, Lb, Lc be pairwise disjoint copies
of L (for A, B, C, respectively), introduce a three-sorted language Labc = La∪Lb∪
Lc ∪ {ι, ν}, and view (A,B,C) as an Labc-structure in the natural way. This Labc-
structure (A,B,C) is also abelian, hence Proposition 4.13 applies to (A,B,C). (As
a consequence, (A,B,C) is stable [40, A.1.13].) Let the multivariables xa, xb, xc
be of sort A, B and C, respectively, and similarly with y in place of x.

4.5.1. Pure exact sequences. In this subsection we assume that the sequence (4.2)
is pure exact. Furthermore we consider an arbitrary expansion (A,C)∗ of the re-
duct (A,C) of (A,B,C) with language L∗ac, and we let L∗abc := L∗ac ∪ Lb. Unless
mentioned otherwise, in the following, “equivalent” means “equivalent in the L∗abc-
structure (A,B,C)”. By an ac-existential quantification of an L∗abc-formula ψ
we mean a formula of the form ∃xa∃xc ψ, for some multivariables xa, xc.

Lemma 4.16. Every p.p. L∗abc-formula φ∗abc(xa, xb, xc) is equivalent to an ac-

existential quantification of a formula

φb
(
ι(xa), xb

)
∧ φ∗ac

(
xa, ν(xb), xc

)
,

where φb is a p.p. Lb-formula and φ∗ac is a p.p. L∗ac-formula.

Proof. Recall that each p.p. formula is equivalent to an existential quantification
of a basic formula, i.e., a conjunction of atomic formulas. Since ν is a morphism of
L-structures and ν ◦ι = 0, every term ν(t) can be replaced by a sum of terms ν(xb).
So every basic formula is equivalent to a formula

ψb

(
ι(t), xb

)
∧ ψ∗ac

(
xa, ν(xb), xc

)
,

where ψb is a basic Lb-formula, ψ∗ac is a basic L∗ac-formula, and t is a tuple of
L∗ac-terms in xa, ν(xb), and xc. We can replace t by existentially quantified mul-
tivariables x′a of sort A and add the equations x′a = t. Thus we may assume that
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our p.p. formula has the form

∃yb
(
ψb(ι(xa), xb, yb) ∧ ψ

∗
ac(xa, ν(xb), ν(yb), xc)

)
.

This formula in turn is equivalent to

∃yc
(
θ(xa, xb, yc) ∧ ψ

∗
ac(xa, ν(xb), yc, xc)

)

where θ := ∃yb
(
ψb(ι(xa), xb, yb) ∧ ν(yb) = yc

)
,

and by Lemma 4.15, θ is equivalent to

∃ybψb

(
ι(xa), xb, yb

)
∧ ψc

(
0, ν(xb), yc

)
,

where ψc is the Lc-copy of ψb. �

For a p.p. L-formula φ(x) let Aφ be the quotient group Ax/φ
A and πφ : Ax → Aφ be

the natural surjection. Define the map ρφ : Bx → Aφ on ν−1(φC) as the composition
of the maps

ν−1(φC) = φB + ι(Ax) →
(
φB + ι(Ax)

)
/φB

∼
−−→ ι(Ax)/

(
φB ∩ ι(Ax)

) ∼
−−→ Aφ,

and identically zero outside ν−1(φC). The following lemma is clear from the defi-
nitions.

Lemma 4.17. Let a ∈ Ax, b ∈ Bx. Then

ι(a) + b ∈ φB ⇐⇒ πφ(a) + ρφ(b) = 0 and ν(b) ∈ φC .

We now fix a family of p.p. L-formulas which is fundamental for B. We ex-
pand (A,C)∗ by a new sort Aφ together with the corresponding projection map πφ,
for every fundamental L-formula φ. Let

L∗acq := L∗ac ∪ {πφ : φ fundamental}

be the language of this expansion. We call terms of the form ρφ
(
t(xb)

)
or ν(xb)

for a fundamental φ and a tuple t of Lb-terms special.

Lemma 4.18. Every p.p. L∗abc-formula φ∗abc(xa, xb, xc) is equivalent to a formula

φ∗acq
(
xa, σ1(xb), . . . , σm(xb), xc

)

where the σi are special terms and φ∗acq is a suitable p.p. L∗acq-formula.

Proof. By Lemma 4.16 it suffices to prove this for formulas

φ∗abc(xa, xb) = φb
(
tb(ι(xa), xb)

)

where φb is fundamental and tb is a tuple of Lb-terms. We may arrange that

tb
(
ι(xa), xb

)
= ι
(
ra(xa)

)
+ sb(xb)

for a tuple ra of La-terms and a tuple sb of Lb-terms. Let φc and sc be the Lc-copies
of φb and sb, respectively; then by Lemma 4.17, φ∗abc(xa, xb) is equivalent to

πφ
(
ra(xa)

)
+ ρφ

(
sb(xb)

)
= 0 ∧ φc

(
sc(ν(xb))

)
. �

We now obtain versions of Theorem 4.2 and Corollary 4.3 for our pure exact se-
quence (4.2):

Theorem 4.19. Every Labc-formula φ(xa, xb, xc) is equivalent to a formula

φacq
(
xa, σ1(xb), . . . , σm(xb), xc

)

where the σi are special terms and φacq is a suitable Lacq-formula.
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Proof. By Proposition 4.13, every Labc-formula is equivalent to a boolean com-
bination of p.p. Labc-formulas. Now apply Lemma 4.18 to the trivial expansion
of (A,C). �

Corollary 4.20. Every L∗abc-formula φ∗(xa, xb, xc) is equivalent to a formula

φ∗acq
(
xa, σ1(xb), . . . , σm(xb), xc

)

where the σi are special terms and φ∗acq a suitable L∗acq-formula.

Proof. This follows from the theorem above like Corollary 4.3 follows from Theo-
rem 4.2. �

Remark 4.21. For simplicity we assumed above that the multivariable xa is of
sort A. The preceding theorem and its corollary generalize naturally to the case
where φ is an Labcq-formula and φ∗ is an L∗abcq-formula, respectively, and the

multivariable xa is now allowed to also have components of sort Aφ (for varying
fundamental L-formulas φ). We leave the details to the interested reader.

4.5.2. Weakly pure exact sequences. In this subsection we assume that (4.2) is
weakly pure exact, i.e., ι a pure embedding, ν a pure projection, and im ι ⊆
ker ν. As in Section 4.4 let δ := ν ◦ ι. The pair (A,C) is then an abelian Lacd-
structure, where Lacd = Lac ∪ {δ}. Let (A,C)∗ be an expansion of (A,C) with
language L∗acd, let L

∗
abcd := L∗acd ∪ Lb. “Equivalent” now means “equivalent in the

L∗abcd-structure (A,B,C)”, and we define ac-existential quantifications as in the
previous subsection. We have then the following generalization of Lemma 4.16:

Lemma 4.22. Every p.p. L∗abcd-formula φ∗abcd(xa, xb, xc) is equivalent to an ac-

existential quantification of a formula

φb
(
ι(xa), xb

)
∧ φ∗acd

(
xa, ν(xb), xc

)
,

where φb is a p.p. Lb-formula and φ∗acd is a p.p. L∗acd-formula.

Proof. The proof is the same as the proof of Lemma 4.16, except that terms ν(ι(t))
are not replaced by 0 but by δ(t). Note that we use here, in Lemma 4.15, that ν is
a pure projection. �

Let C := coker δ = C/ im δ equipped with its induced structure under the natural
surjection c 7→ c : C → C. This surjection c 7→ c is a pure projection; composition
with ν yields a pure projection ν : B → C as in Section 4.4. The natural inclu-
sion ker δ → A is a pure embedding. Moreover, ker ν = A, and the short exact
sequence

0 → A
ι

−−→ B
ν

−−→ ν → 0

of morphisms of L-structures associated to (4.2) is pure exact. We define for ev-
ery p.p. L-formula φ(x) the map ρφ : Bx → Aφ = Ax/φ

A as in the last subsec-
tion but according to the pure exact sequence associated to (4.2) displayed above.
Lemma 4.17 then becomes:

Lemma 4.23. Let a ∈ Ax, b ∈ Bx; then

ι(a) + b ∈ φB ⇐⇒ πφ(a) + ρφ(b) = 0 and δ(a) + ν(b) ∈ φC .

Proof. The implication ⇒ is clear since ι(a)+ b ∈ φB implies ν(ι(a)+ b) ∈ φC . The

converse follows from Lemma 4.17 since δ(a) + ν(b) ∈ φC implies ν(b) ∈ φC . �
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As in the last subsection we fix now a family of p.p. L-formulas which is fundamental
for B and expand (A,C)∗ by the new sorts Aφ for every fundamental φ together
with the projection map πφ. Let L∗acdq be the language of the resulting expansion.
Lemma 4.18 is now:

Lemma 4.24. Every p.p. L∗abcd-formula φ∗abcd(xa, xb, xc) is equivalent to a formula

φ∗acdq
(
xa, σ1(xb), . . . , σm(xb), xc

)

where the σi are special terms and φ∗acdq is a suitable p.p. L∗acdq-formula.

Proof. As the proof Lemma 4.18, except that φb(tb(ι(xa), xb)) is equivalent to

πφ
(
ra(xa)

)
+ ρφ

(
sb(xb)

)
= 0 ∧ φc

(
δ(ra(xa)) + sc(ν(xb))

)
. �

As in the last subsection we can conclude:

Corollary 4.25. Every L∗abcd-formula φ∗(xa, xb, xc) is equivalent to a formula

φ∗acdq
(
xa, σ1(xb), . . . , σm(xb), xc

)

where the σi are special terms and φ∗acdq a suitable L∗acdq-formula.

Remarks.

(1) There is always a fundamental family of p.p. L-formulas, namely the set
of all p.p. L-formulas. So, by the previous corollary and following the
proofs of Lemma 4.5 and Theorem 4.6, we see that a weakly pure ex-
act sequence (A,B,C) of abelian L-structures with an expansion (A,C)∗

of (A,C, δ) is NIP (or distal) if and only if (A,C)∗ is NIP (or distal).
(2) If (A,C, δ) comes from a weakly pure exact sequence, then δ : A → im δ is

a pure projection and the natural inclusion im δ → C a pure embedding.
The converse may be true, but we know it only if ker δ is a direct summand
of A or im δ is a direct summand of C.

5. Eliminating Field Quantifiers in Henselian Valued Fields

In this section we discuss two frameworks for elimination of field quantifiers in
henselian valued fields of characteristic zero construed as multi-sorted structures.
The first one is the familiar RV (leading term) setting, for which we use [32] as our
reference. Here the additional sorts are quotients of the multiplicative group of the
underlying field by groups of higher 1-units. (See Sections 5.1–5.3.) In our second
context we instead use, besides the value group, certain imaginary sorts obtained
from quotient rings of the valuation ring, and employ the results of Section 4 to
prove the relevant elimination theorems. In the equicharacteristic zero case, which
we treat first, this setting simplifies even more, to quotients of the multiplicative
group of the residue field; see Section 5.4 below. Each of these various settings has
advantages that make it more convenient for some tasks rather than others; in this
spirit, the elimination theorems from the present section are applied in combination
to prove our main theorem in the next section.
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5.1. Quantifier elimination in henselian valued fields. Throughout this sec-

tion we fix a valued field K of characteristic zero. We let v : K× → Γ = v(K×)
be the valuation of K, and O its valuation ring. As in Section 4.3 we consider the
abelian monoid Γ∞ := Γ ∪ {∞} with absorbing element ∞ /∈ Γ, and extend the
ordering of Γ to a total ordering on Γ∞ with γ < ∞ for all γ ∈ Γ; as usual we
denote the extension of v to a monoid morphism K → Γ∞ also by v. Let γ, δ range
over Γ≥0. Let

mδ := {x ∈ K : vx > δ},

so mδ is an ideal of O with mγ ⊆ mδ if γ ≥ δ. The maximal ideal of O is m := m0,
and its residue field is k := O/m. Let also

RVδ := K/(1 + mδ), RV×δ := RVδ \{0},

with residue morphism rvδ : K → RVδ. Thus rvδ(a) = a(1+mδ) ∈ RV×δ for a ∈ K×,
and rvδ sends 0 ∈ K to the absorbing element 0 of RVδ. We write

RV := RV0 = K/(1 +m), rv := rv0 .

For a ∈ O\m, the element a(1+m) of RV× only depends on the coset a+m, and we
hence obtain a group embedding k× → RV× which sends the element a+m of k×

to a(1 + m) ∈ RV×. Together with the group morphism vrv : RV× → Γ induced
by the valuation v : K× → Γ, this group embedding fits into a pure short exact
sequence

1 → k× → RV×
vrv−−−→ Γ → 0.

We denote the extension of vrv to a morphism RV → Γ∞ of monoids by the same
symbol. Besides the induced multiplication, RVδ also inherits a partially defined
addition from K via the ternary relation

(5.1) ⊕δ(r, s, t) ⇐⇒ ∃x, y, z ∈ K
(
r = rvδ(x)∧s = rvδ(y)∧t = rvδ(z)∧x+y = z

)
.

For γ ≥ δ we also have a natural surjective monoid morphism rvγ→δ : RVγ → RVδ.

It turns out that for what follows, not all of the RVδ’s will be needed. Therefore,
from now on we let γ and δ (possibly with decorations) range over {0} if chark = 0,
and over the set v(pN) :=

{
v(pn) : n ≥ 0

}
if chark = p > 0. We introduce a many-

sorted structureK whose sorts areK and the sets RVδ, equipped with the following
primitives:

(K1) the ring primitives on K;
(K2) on each sort RVδ, the monoid primitives and the partial addition relation

⊕δ defined above;
(K3) for each δ, the map rvδ : K → RVδ; and
(K4) for each γ ≥ δ, the maps rvγ→δ : RVγ → RVδ.

We also denote by RV∗ the structure with underlying sorts RVδ and primitives
listed under (K2) and (K4) above, with associated language LRV∗

.

Remark 5.1. The relation vrv(x) ≤ vrv(y) on RV is definable in RV∗ [32, Proposi-
tion 2.8(1)]. Namely,

vrv(x) ≤ 0 ⇐⇒ ¬⊕0 (x, 1, 1),

vrv(x) = 0 ⇐⇒ vrv(x) ≤ 0 ∧ ∃y
(
x · y = 1 ∧ vrv(y) ≤ 0

)
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and hence

vrv(x) = vrv(y) ⇐⇒ ∃z
(
vrv(z) = 0 ∧ x = y · z

)
,

vrv(x) < vrv(y) ⇐⇒ x 6= 0 ∧ ⊕0(x, y, x).

Hence the multiplicative group ker vrv ∼= k× is definable in RV∗. As a consequence
the ordered abelian group Γ = v(K×) is interpretable in RV∗, and using ⊕0 it
follows that the field k is also interpretable in RV∗.

Remark 5.2. Our valued field viewed as a structure (K,O) in the language of rings
expanded by a unary predicate for the valuation ring O of K is bi-interpretable
with K (regardless of the characteristic of k). Hence (K,O) is distal, respectively
has a distal expansion, iff K has the corresponding property, by Fact 1.14(1).

Fact 5.3 (Flenner [32, Propositions 4.3 and 5.1]). Suppose K is henselian.

(1) If S ⊆ K is A-definable in K, for some parameter set A in K, then there

are a1, . . . , am ∈ K∩acl(A) and an acl(A)-definable D ⊆ RVδ1 × · · ·×RVδm ,

for some δ1, . . . , δm, such that

S =
{
x ∈ K :

(
rvδ1(x− a1), . . . , rvδm(x− am)

)
∈ D

}
.

(2) RV∗ is fully stably embedded (i.e., the structure on RV∗ induced from K,

with parameters, is precisely the one described above).

Fact 5.3 is uniform in K; moreover, it continues to hold if we add arbitrary addi-
tional structure on RV∗; see the discussion before [32, Proposition 4.3].

Remarks 5.4.

(1) Among the primitives of RV∗ we have the projections rvγ→δ (γ ≥ δ); thus in
Fact 5.3 we may assume that δ1 = · · · = δm = δ, after possibly modifying D
and taking δ := max{δ1, . . . , δm}.

(2) Note that for any x ∈ K, y ∈ K×, we have rvδ(x) = rvδ(y) iff v(x − y) >
vy + δ; hence for any z ∈ K and x, y ∈ K \ {z}, rvδ(x − z) = rvδ(y − z)
iff v(x− y) > v(y − z) + δ.

5.2. The finitely ramified case. For later use we analyze the kernels of the group
morphisms

rvγ→δ : RV×γ → RV×δ (γ ≥ δ).

In the following well-known lemma and its corollary we assume that we have a
generator π for the maximal ideal: πO = m.

Lemma 5.5. Suppose n ≥ 1. Then the map

ϕ : 1 + πnO → O/πO = k, ϕ(1 + πna) := a+ πO for a ∈ O

is a surjective group morphism from the multiplicative abelian group 1+πnO to the

additive abelian group k with kernel 1 + πn+1O. Thus, as abelian groups:

(1 + πnO)/(1 + πn+1O) ∼= k.

We leave the proof of Lemma 5.5 to the reader; an easy induction on r based on
this lemma yields:

Corollary 5.6. Suppose k is finite. Then |(1 + πnO)/(1 + πn+rO)| = |k|r for

each n ≥ 1 and r ∈ N.

We now obtain our desired result:
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Lemma 5.7. Suppose K is finitely ramified with finite residue field k = O/m of

characteristic p. Then for each n, the kernel of the group morphism

rvv(pn+1)→v(pn) : RV×v(pn+1) → RV×v(pn)

is finite.

Proof. Take π ∈ O with m = πO; then p = πeu where e ∈ N, e ≥ 1, u ∈ O×. By
Corollary 5.6,

(1 + pnm)/(1 + pn+1m) = (1 + πen+1O)/(1 + π(en+1)+eO)

is finite, as required. �

We also need additive versions of the results above. In the following lemma and its
corollary, we again assume that π satisfies πO = m:

Lemma 5.8. The map

πna 7→ a+ πO : πnO → O/πO = k

is a surjective group morphism from the additive abelian group πnO to the additive

abelian group k with kernel πn+1O. Thus πnO/πn+1O ∼= k.

Corollary 5.9. Suppose k is finite. Then |πnO/πn+rO| = |k|r for each r ∈ N.

Now given a prime p and some n we let Rpn := O/pnm (so Rp0 = k). In the same
way as Corollary 5.6 gave rise to Lemma 5.7, from the previous corollary we obtain:

Lemma 5.10. Suppose K is finitely ramified with finite residue field of char-

acteristic p. Then for each n, the kernel of the natural surjective group mor-

phism Rpn+1 → Rpn is finite. (Hence Rpn is finite for each n.)

5.3. NIP for RV∗. In this subsection K is henselian, and the structure K and its

reduct RV∗ are as introduced in Section 5.1. We allow RV∗ to be equipped with
additional structure, and equip its expansion K with the corresponding additional
structure. Recall that then, by part (2) of Fact 5.3 and the remark following it,
RV∗ is fully stably embedded in K. As a warm-up to the proof of Proposition 6.1
below, we show a version of Fact 2.17:

Proposition 5.11. Suppose k is finite or of characteristic zero. Then K is NIP

if and only if K is finitely ramified and RV∗ is NIP.

Here the forward direction is obvious by Remark 5.2, Fact 2.18, and the fact that
NIP is preserved under reducts. The proof of the converse relies on an analysis of
indiscernible sequences in valued fields, with the distinction of cases similar to [15]
or [10, Section 7.2]. (A similar case distinction is at the heart of the proof of
Proposition 6.1.) Given a linearly ordered set I we let I∞ := I ∪ {∞} where ∞
is a new element, equipped with the extension of the ordering ≤ of I to the linear
ordering on I∞, also denoted by ≤, such that i < ∞ for all i ∈ I. Recall that I∗

denotes the set I equipped with the reversed ordering ≥. In the two lemmas and
their corollary below we let (ai)i∈I be an indiscernible sequence of elements of the
field sort in K where I does not have a largest or smallest element. For the first
lemma see [9]. (Also compare with Lemma 2.11 above.)

Lemma 5.12. Exactly one of the following cases occurs:

(1) v(ai − aj) < v(aj − ak) for all i < j < k in I (we say that (ai) is pseudo-
cauchy);
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(2) v(ai − aj) > v(aj − ak) for all i < j < k in I (so the sequence (ai)i∈I∗ is

pseudocauchy); or
(3) v(ai−aj) = v(aj−ak) for all i < j < k in I (we refer to such a sequence (ai)

as a fan).

Note that if (ai)i∈I is pseudocauchy and a∞ ∈ K is such that (ai)i∈I∞ is indis-
cernible, then (ai)i∈I∞ is also pseudocauchy, and similarly with “fan” in place of
“pseudocauchy”.

Lemma 5.13. Suppose (ai)i∈I is pseudocauchy, and let a∞ ∈ K such that (ai)i∈I∞
is indiscernible. Then the sequence i 7→ v(a∞ − ai) is strictly increasing.

Proof. Since (ai)i∈I∞ remains pseudocauchy, if i < j are in I, then v(aj − ai) <
v(a∞ − aj) and so

v(a∞ − ai) = v
(
a∞ − aj + (aj − ai)

)
= v(aj − ai) < v(a∞ − aj). �

Corollary 5.14. Suppose K is finitely ramified. Then with (ai)i∈I and a∞ as in

Lemma 5.13,

(5.2) v(a∞ − ai) > v(a∞ − aj) + δ for all δ and i > j in I.

Proof. Assume that we have some δ such that

v(a∞ − ai) ≤ v(a∞ − aj) + δ for some i > j in I;

then by δ-indiscernibility (as δ ∈ dcl(∅)),

v(a∞ − ai) ≤ v(a∞ − aj) + δ for all i > j in I,

so for each j the interval
[
v(a∞− aj), v(a∞− aj)+ δ

]
in Γ is infinite, contradicting

finite ramification. �

Now suppose k is finite or of characteristic zero, K is finitely ramified, and RV∗ is
NIP. To show thatK is NIP we may assume thatK is a monster model of its theory.
Suppose K is not NIP. Then there are an indiscernible sequence (ai)i∈Z of elements
of the field sort of K and a definable S ⊆ K such that i ∈ Z is even iff ai ∈ S. By
Fact 5.3 and the remark following it we may choose b = (b1, . . . , bm) ∈ Km, some δ,
as well as a definable subset D of RVmδ , such that for a ∈ K:

a ∈ S ⇐⇒
(
rvδ(a− b1), . . . , rvδ(a− bm)

)
∈ D.

By Lemma 5.12, one of the following three cases occurs.

Case 1: (ai)i∈Z is pseudocauchy. Using saturation take some a∞ ∈ K such
that (ai)i∈Z∞

is indiscernible. Let i, j range over Z, and let k ∈ {1, . . . ,m}.
Suppose first that v(bk − a∞) > v(a∞ − aj) for all j. Using (5.2) we then ob-
tain v(bk − a∞) > v(a∞ − aj) + δ and hence rvδ(bk − aj) = rvδ(a∞ − aj), for all j.
Now suppose v(bk−a∞) ≤ v(a∞−aj) for some j; then v(bk−a∞)+δ < v(a∞−ai)
for all i > j, and hence rvδ(bk − ai) = rvδ(bk − a∞) for i > j. Permuting the
components of b, we can thus arrange that we have some l ∈ {1, . . . ,m + 1} and
some j such that for i > j and k = 1, . . . ,m we have

rvδ(bk − ai) =

{
rvδ(a∞ − ai) if k < l

rvδ(bk − a∞) otherwise.
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Put ri := rvδ(ai − a∞) for i > j and sk := rvδ(a∞ − bk) for k = l, . . . ,m. The
sequence (ri)i>j is indiscernible, and for i > j we have

(ri, . . . , ri, sl, . . . , sm) ∈ D ⇐⇒ i is even,

in contradiction with RV∗ being NIP.

Case 2: (ai)i∈Z∗ is pseudocauchy. Then we apply Case 1 to the sequence (a−i)i∈Z
in place of (ai)i∈Z.

Case 3: (ai)i∈Z is a fan. Note that then k necessarily is infinite, hence chark = 0
by hypothesis, so δ = 0. Let i, j range over Z and k over {1, . . . ,m}, and let γ
be the common value of v(ai − aj) for all i 6= j. Let c ∈ K and j be given;
if γ < v(c − aj), then γ = v(c − ai) for all i 6= j, whereas if γ > v(c − aj),
then v(c− ai) = v(c− aj) < γ for each i 6= j. Hence we can choose an even j such
that for each k we either have γ > v(bk − ai) for all i ≥ j or γ = v(bk − ai) for
all i ≥ j. Now if γ > v(bk − aj), then rv(bk − ai) = rv(bk − aj) for i > j, whereas
if γ = v(bk − aj), then rv(bk − ai) = rv(bk − aj) ⊕ rv(aj − ai) for i > j. Hence by
reindexing the components of b we can arrange that we have some l ∈ {1, . . . ,m+1}
such that with ri := rv(ai − aj) for i > 0 and sk := rv(aj − bk) for k = 1, . . . ,m,
for i > j and k = 1, . . . ,m:

rv(ai − bk) =

{
ri ⊕ sk if k < l

sk otherwise.

The sequence (ri)i>j is indiscernible, and for i > j we have

(ri ⊕ s1, . . . , ri ⊕ sl−1, sl, . . . , sm) ∈ D ⇐⇒ i is even,

in contradiction with RV∗ being NIP. �

5.4. A quantifier elimination in equicharacteristic zero. We use the quan-
tifier elimination result for pure short exact sequences from Section 4 to prove a
variant of the QE result of Flenner, already used earlier, in the equicharacteris-
tic zero case. As above we extend the valuation v : K× → Γ to a monoid mor-
phism K → Γ∞, also denoted by v, with v(0) = ∞. Recall that Γ∞ = Γ ∪ {∞}
where γ <∞ for all γ ∈ Γ and γ+∞ = ∞+γ = ∞ for all γ ∈ Γ∞. We also extend
the residue morphism

a 7→ res(a) := a+m : O → k = O/m

to K by setting res(a) := 0 for a ∈ K \ O. In the rest of this subsection k has

characteristic zero.

We consider K as a three-sorted structure with sorts k, K, Γ∞ in the language

Lrkg = Lr ∪ Lk ∪ Lg ∪ {v, res}

where

Lr = {0r, 1r,+r,−r, ·r}, Lk = {0k, 1k,+k,−k, ·k}, Lg = {0g,+g, <,∞}.

For our quantifier elimination result we expand (k,Γ∞) by a new sort k/(k×)n for
every n ≥ 2, together with the natural surjections πn : k → k/(k×)n. Let

Lrgq = Lr ∪ Lg ∪ {π2, π3, . . . }

be the language of this expansion.
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Define, for every n, a map resn : K → k/(k×)n in the following way: If v(a) /∈ nΓ,
set resn(a) := 0. Otherwise, let b be any element of K with nv(b) = v(a) and
set resn(a) := πn res(a ·b−n). This does not depend on the choice of b since nv(c) =
v(a) implies that b · c−1 has value 0, so is a unit in O and res(a · c−n) = res(a · b−n) ·
res(b · c−1)n. One verifies easily that the restriction of resn to v−1(nΓ) is a group
morphism v−1(nΓ) → k×/(k×)n. We identify k with k/(k×)0 in the natural way,
so res = res0. We also extend the multiplicative inverse function

a 7→ a−1 : K× → K×

to a function K → K by setting 0−1 := 0, and let

Lrkgq := Lrkg ∪ {−1, π2, π3, . . . , res2, res3, . . . }.

Let the multivariables xr, xk, xg be of sort k, K, and Γ∞, respectively. We call
Lrkgq-terms of the form v

(
p(xk)

)
, res

(
p(xk)q(xk)

−1
)
or resn

(
p(xk)

)
(where n ≥ 2),

for polynomials p, q with integer coefficients, special. We have the following ana-
logue of Theorem 4.2:

Theorem 5.15. In the theory of henselian valued fields with residue field of char-

acteristic zero, viewed as Lrkgq-structures in the natural way, every Lrkg-formu-

la φ(xr, xk, xg) is equivalent to a formula

φrgq
(
xr, σ1(xk), . . . , σm(xk), xg

)

where the σi are special terms and φrgq is a suitable Lrgq-formula.

In the proof we make use of Flenner’s quantifier elimination theorem, already stated
in Section 5.1 above. For convenience let us slightly paraphrase this result, in the
case of equicharacteristic zero. Recall that in this case the structure RV∗ has a
single new (interpretable) sort

RV = K/(1 +m),

which comes equipped with the binary operation ·rv which gives RV the structure
of an abelian monoid and makes the natural projection rv : K → RV a monoid
morphism. Note that 0RV := rv(0) is an absorbing element of RV and

RV× := RV \ {0RV} = K×/(1 +m)

is a group. The projection rv and the valuation v : K → Γ∞ also induce mor-
phisms ι : k → RV and ν : RV → Γ∞ of abelian monoids, which give rise to a pure
short exact sequence

(5.3) 1 → k× → RV× → Γ → 0

of abelian groups. Let

Lrv = Lr ∪ Lg ∪ {·rv, ι, ν}

be the language of the structure (k,RV,Γ∞), and let

Lrkg,rv := Lrkg ∪ {rv, ·rv, ι, ν} = Lr ∪ Lk ∪ Lg ∪ {v, res, rv, ·rv, ι, ν}.

Now Flenner’s result [32, Proposition 4.3] is:

Fact 5.16. In the theory of henselian valued fields with residue field of character-

istic zero, formulated in the language Lrkg,rv, every Lrkg-formula φ(xr, xk, xg) is

equivalent to a formula

φrv
(
xr, rv(q1(xk)), . . . , rv(qk(xk)), xg

)
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where the qi are polynomials with integer coefficients and φrv is a suitable Lrv-

formula.

Actually, Flenner’s theorem is a bit stronger, allowing variables ranging over the
RV-sort; in addition, Fact 5.16 also works for arbitrary expansions of the Lrv-
structure (k,RV,Γ∞). (See the discussion preceding [32, Proposition 4.3].)

We now apply the material of Section 4.3 to the short exact sequence (5.3). For
this, let φ(xr, xk, xg) be an Lrkg-formula and take q1, . . . , qk and φrv as in Fact 5.16.
Corollary 4.8 and Remark 4.9 applied to φrv show that φ(xr, xk, xg) is equivalent
to a formula

φrgq
(
xr, σ1(xk), . . . , σm(xk), xg

)

where the σj are terms of the form

ρ0
(
rv(q1(xk))

e1 · · · rv(qk(xk))
ek
)

(e1, . . . , ek ∈ Z)

or
ρn
(
rv(q1(xk))

e1 · · · rv(qk(xk))
ek
)

(e1, . . . , ek ∈ N, n ≥ 2)

or
ν
(
rv(q1(xk))

e1 · · · rv(qk(xk))
ek
)

(e1, . . . , ek ∈ N),

and φrgq is a suitable Lrgq-formula. Here the maps ρn : RV → k/(k×)n are as
defined in Section 4.3. Since rv is a monoid morphism, for each appropriate tuple a
of the field sort and e1, . . . , ek ∈ Z we have

rv(q1(a))
e1 · · · rv(qk(a))

ek = rv
(
p(a)q(a)−1

)
where p =

∏

ej≥0

q
ej
j and q =

∏

ej<0

q
−ej
j .

We have ν◦rv = v. Recall that ρn is identically zero outside ν−1(nΓ), hence ρn◦rv =
resn. Thus each term σj is special. This finishes the proof of Theorem 5.15. �

Remarks.

(1) Suppose Krgq is equipped with additional structure, and we equip its ex-
pansion to an Lrkgq-structure with the corresponding additional structure.
The theorem above then remains true in this setting; this is shown just as
in Corollary 4.8. As a consequence, Krgq is fully stably embedded in the
Lrkgq-structure K, and the induced structure on Krgq is the given one.

(2) Suppose now that k and Γ∞ come equipped with additional structure,
and the Lrkgq-structure K is expanded by these structures on its sorts k

and Γ∞; then the sorts k, Γ∞ are fully stably embedded in K, with the
induced structure on these sorts just the given ones.

We finish this subsection with observing that the structure RV∗ introduced in Sec-
tion 5.1 is only ostensibly richer than the structure (k,RV,Γ∞) of RV viewed as
pure short exact sequence:

Lemma 5.17. The Lrv-structure (k,RV,Γ∞) and the LRV∗
-structure RV∗ are bi-

interpretable.

To see this note that the relation ⊕ = ⊕0 on RV introduced in (5.1) is definable
in (k,RV,Γ∞): for a, b, c ∈ RV× we have

⊕(a, b, c) ⇐⇒
[
ν(a) = ν(b) & ∃y ∈ k

(
ι(y) ·rv a = b & ι(1 + y) ·rv a = c

)]
∨

[
ν(a) > ν(b) & b = c

]
∨
[
ν(b) > ν(a) & a = c

]
.
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Conversely, Remark 5.1 shows that k, Γ∞ and the morphisms ι, ν are interpretable
in RV∗. Note that in this lemma we may allow k and Γ∞ to be equipped with
additional structure, and RV∗ with the corresponding structure, that is, by all
relations S ⊆ RVm where S ⊆ (ker vrv)

m = (k×)m is definable in k or S =
v−1rv (vrv(S)) where vrv(S) ⊆ Γm is definable in Γ∞.

Corollary 5.18. Suppose that k and Γ∞ are equipped with additional structure;

then K is NIP iff both k and Γ∞ are NIP.

Proof. By Proposition 5.11 and the remark preceding the corollary, K is NIP
iff (k,RV,Γ∞) is NIP, and by Lemma 4.5, the latter is equivalent to k and Γ∞
being NIP. �

5.5. A generalization. In this subsection we put the QE result for weakly pure
exact sequences from Section 4.4 to work by proving a version of Theorem 5.15
for henselian valued fields of characteristic zero with arbitrary residue field. Only
Corollary 5.23 from this subsection is used later. Throughout this subsection we
assume that K is henselian, and we let M , N range over N≥1.

Let RN be the ring O/Nm, and extend the residue morphism

x 7→ resN (x) := x+Nm : O → RN

to a map K → RN , also denoted by resN , by setting resN (x) := 0 for x ∈ K \ O.
The valuation v : K → Γ∞ induces a map vN : RN → Γ∞ with

vN (r) =

{
v(x) if r = resN (x) 6= 0,

∞ if r = 0.

Note that 0 ≤ vN (r) ≤ v(N) for all r ∈ RN \ {0}. We have R1 = k. If chark = 0,
then RN = k and vN (RN ) = {0,∞} for all N . If chark = p > 0, then RM = RN
if M and N are divisible by the same powers of p. If N divides M , let

resMN : RM → RN

be the natural surjection; its kernel is

resM (Nm) =
{
r ∈ RM : vN (r) > v(N)

}
,

and

vN
(
resMN (r)

)
= vM (r) for r ∈ RM with resMN (r) 6= 0.

Let

Lrng =
{
+N , ·N , vN , res

M
N : N divides M

}
∪ Lg

be the language of the multi-sorted structure Krng = (R1, R2, . . . ,Γ∞). The family
of rings (RN ) and the family of morphisms (resMN )N |M forms an inverse system;
let lim
←−

RN denote its inverse limit. The morphisms resN : O → RN induce a ring

morphism O → lim
←−

RN whose kernel is

ṁ :=
⋂

N

Nm =
{
x ∈ K : v(x) > v(N) for every N

}
,

and hence induces an embedding ϕ : O/ṁ → lim
←−

RN . Clearly we have:

Lemma 5.19. Suppose Krng is ℵ1-saturated; then ϕ is an isomorphism.
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We now consider K as a many-sorted structure (K,R1, R2, . . . ,Γ∞) in the language

Lrkng = Lk ∪ Lrng ∪ {v, res1, res2, . . . }.

Lemma 5.20. Suppose n2 divides N , and for i = 1, 2 let xi ∈ K with v(xi) +
2v(n) ≤ v(N). Then with ri = resN (xi), the following are equivalent:

(1) x1 · x
−1
2 ∈ (K×)n;

(2) r1r
n = r2 or r1 = r2r

n for some r ∈ RN .

Proof. Suppose x1 · x−12 ∈ (K×)n, and say v(x1) ≤ v(x2); then x1z
n = x2 for

some z ∈ O, so r1r
n = r2 for r = resN (z). Conversely, suppose r1r

n = r2 where r ∈
RN . Take y ∈ O with v(x1y

n − x2) > v(N); then

v(x1x
−1
2 yn − 1) > v(N)− v(x2) ≥ 2v(n).

Hensel’s Lemma (in the Newton formulation) applied to the polynomial x1x
−1
2 yn−

Xn ∈ O[X ] yields an x ∈ K such that x1x
−1
2 yn − xn = 0, so x1x

−1
2 ∈ (K×)n. �

From Lemma 5.20 we see that for N , n as in the lemma,

r1 ∼nN r2 :⇐⇒ ∃s (r1s
n = r2 ∨ r1 = r2s

n)

defines an equivalence relation on the subset

RnN =
{
r ∈ RN : vN (r) + 2v(n) ≤ v(N)

}

of RN . For such N , n we introduce a new sort

SnN := (RnN/∼
n
N) ∪ {0}

together with the map πnN : RN → SnN which agrees with the quotient map RnN →
RnN/∼

n
N on RnN and is 0 on RN \RnN . Let

Lrngq = Lrng ∪ {πnN : n2 divides N}

be the language of the expansion (Krng, S
n
N ) of Krng. Note that (Krng, S

n
N ) is

interpretable in Krng.

Finally, we define, for every n such that n2 divides N , the following map resnN : K →
SnN : If there is some γ ∈ Γ such that 0 ≤ v(x)− nγ ≤ v(N)− 2v(n), choose y ∈ K
with v(y) = γ and set

resnN (x) = πnN
(
resN (x · y−n)

)
;

one verifies easily that this does not depend on the choice of γ and y. If there is no
such γ, set resnN (x) := 0. We view each henselian valued field of characteristic zero
in the natural way as an Lkrngq-structure where

Lrkngq := Lrkng ∪ {resnN : n2 divides N}.

Let the multivariables xr, xk, xg be of sort R1, R2, . . ., K, and Γ∞, respectively.
We call Lrkngq-terms of the form v

(
p(xk)

)
, res0N

(
p(xk)q(xk)

−1
)
or resnN

(
p(xk)

)

(where n ≥ 1), for polynomials p, q with integer coefficients, special. We then
have the following theorem.

Theorem 5.21. In the Lrkngq-theory of characteristic zero henselian valued fields,

every Lrkng-formula φ(xr, xk, xg) is equivalent to a formula

φrngq
(
xr, σ1(xk), . . . , σm(xk), xg

)

where the σi are special terms and φrngq is a suitable Lrngq-formula.
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For the proof of this theorem, suppose our valued field K (as always, of char-
acteristic zero) is henselian. Let r, a, γ be finite tuples in K of the same sort
as xr, xk, xg, respectively. Let σ0, σ1, . . . list all special terms, and let σ(a) denote
the tuple σ0(a), σ1(a), . . . . We have to show that the type of

(
r, σ(a), γ

)
in Krng

determines the type of (r, a, γ) in the Lrkngq-structure K. For this we may assume
that K is special of some suitable cardinality κ, e.g., κ = iω(ω) (see [40, Theo-
rem 10.4.2(c)]). The following claim is then clear (see [40, Theorems 10.4.4 and
10.4.5 (a)]:

Claim 1. The type of
(
r, σ(a), γ

)
in Krng determines the isomorphism type of the

structure
(
Krng, r, σ(a), γ

)
.

In the following we use the notation and terminology of [2, Section 3.4]. Let ∆ be the

smallest convex subgroup of Γ containing all v(N). Let v̇ : K× → Γ̇ := Γ/∆ be the

coarsening of v by ∆, with residue field K̇ of characteristic zero, and let v : K̇× → ∆
be the corresponding specialization of v. The valuation ring of the valuation v on K̇
is OK̇ := O/ṁ, where

ṁ :=
{
x ∈ K : v(x) > v(N) for all N

}

is the maximal ideal of the valuation ring

Ȯ :=
{
x ∈ K : v(x) > −v(N) for some N

}

of v̇, and the maximal ideal ofOK̇ is mK̇ := m/ṁ. The valued field K̇ is henselian [2,

Lemma 3.4.2]. (In fact, even better: K̇ is complete with archimedean value group;

cf. the proof of Claim 2 below.) We view K̇ as the two-sorted structure
(
K̇,Γ∞, v

)
,

with the ring structure on K̇ and the ordered group structure on Γ, and the val-
uation v : K̇× → ∆ ⊆ Γ extended to a map K̇ → Γ̇∞ as usual. The natural
surjection O → OK̇ induces an isomorphism

RN = O/Nm → OK̇/NmK̇ = (O/ṁ)/(Nm/ṁ),

and we identify RN with its image; note that then RN is interpretable in K̇, and
we may view r as a tuple of elements in K̇eq. The maps ˙resn : K → K̇/(K̇×)n are
defined as before Theorem 5.15, for the valuation v̇ in place of v. Now let θ(a) be a
sequence enumerating all terms of the form ˙resn

(
q(a)

)
or v

(
q(a)

)
for polynomials q

with integer coefficients.

Claim 2. The isomorphism type of the structure
(
Krng, r, σ(a), γ

)
determines that

of
(
K̇, r, θ(a), γ

)
.

Proof. By Lemma 5.19, since Krng is ℵ1-saturated, we have an isomorphism

OK̇ = O/ṁ
∼=
−→ lim
←−

RN ,

and K̇ is the fraction field of OK̇ . It remains to show that σ(a) determines each
value ˙resn(b) where b = q(a) for some polynomial q with integer coefficients. For

this we may assume v̇(b) ∈ nΓ̇. Take c ∈ K with nv̇(c) = v̇(b), so bc−n ∈ Ȯ; then

with y := ˙res(bc−n) ∈ K̇× we have

˙resn(b) = y · (K̇×)n ∈ (K̇×)/(K̇×)n,

where ˙res: Ȯ → K̇ is the natural surjection. If necessary replacing b, c, y by their
respective inverses, we can arrange that 0 ≤ v(b) − nv(c) ≤ v(M) for some M .
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Set N := n2M ; then resnN (b) ∈ SnN is the equivalence class of ˙resN (y) ∈ RN ;
here ˙resN : OK̇ → RN is the natural surjection. Now suppose σ(a) = σ(a′) where a′

is a tuple in K of the same sort as a, and let b′ := q(a′). Then v(b) = v(b′),
so nv̇(c) = v̇(b′) and 0 ≤ v(b′) − nv(c) ≤ v(M). Thus setting y′ := ˙res(b′c−n), we
have

˙resn(b′) = y′ · (K̇×)n ∈ (K̇×)/(K̇×)n.

By hypothesis we have resnN (b) = resnN (b′) and hence ˙resN (y) ∼nN ˙resN (y′). By

Lemma 5.20 applied to K̇ in place of K we therefore obtain y/y′ ∈ (K̇×)n and
thus ˙resn(b) = ˙resn(b′) as required. �

Let ṘV := K/(1 + ṁ) be the abelian monoid introduced in Section 5.4, with v̇ in

place of v, and let ṙv : K → ṘV be the natural surjection. Note that since ṁ ⊆ m,
we have a natural surjective monoid morphism ṘV → RV = K/(1 + m), and we
hence obtain a sequence

(5.4) 1 → K̇×
ι

−−→ ṘV×
ν

−−→ Γ → 0

of morphisms of abelian groups where ι is injective, ν is surjective, and ker ν ⊆ im ι;
since ∆ = im(ν ◦ ι) and Γ/∆ are both torsion-free, this sequence is weakly pure

exact, by Lemma 4.11. We consider now the structure (K̇, ṘV,Γ∞) in the three-

sorted language Lrv (see Section 5.4), which comprises of the field K̇, the abelian

monoid structures on Γ∞ and ṘV, and the maps ι, ν. Let τ(a) be an enumeration
of all terms ṙv

(
q(a)

)
, where q ranges over polynomials with integer coefficients.

Claim 3. The type of
(
r, θ(a), γ

)
in K̇ determines the type of

(
r, τ(a), γ

)
in the

structure (K̇, ṘV,Γ∞).

Proof. This claim follows from Theorem 4.12 applied to the weakly pure exact
sequence (5.4) as in the proof of Theorem 5.15. �

Claim 4. The type of
(
r, τ(a), γ

)
in (K̇, ṘV,Γ∞) determines the type of (r, a, γ)

in the Lrkngq-structure K.

Proof. This follows from Flenner’s QE (Fact 5.16). To see this, let (K̇, ṘV, Γ̇∞) be
the Lrv-structure associated to the ∆-coarsening of the valued field K, as in Sec-
tion 5.4: that is, (K̇, ṘV, Γ̇∞) consists of the field K̇, the abelian monoids Γ̇∞, ṘV,

the map ι : K̇ → ṘV from above, and the composition ν̇ : ṘV → Γ̇∞ of ν with
the natural surjection π : Γ∞ → Γ̇∞. Expand this structure by a sort for Γ∞ as
well as the primitives ν, π. Note that Γ̇ = Γ/ν(ι(K̇×)) and ν̇ = π ◦ ν. Hence

the type of
(
r, τ(a), γ

)
in (K̇, ṘV,Γ∞) determines the type of

(
r, τ(a), γ

)
in this

expanded structure (K̇, ṘV, Γ̇∞). Now by Fact 5.16 and the remark following

it, the type of
(
r, τ(a), γ

)
in (K̇, ṘV, Γ̇∞) implies the type of (r, a, γ) in the ∆-

coarsening of K, viewed as Lrkg,rv-structure in the natural way, and expanded by a
sort for Γ∞ and the primitives ν, π. This Lrkg,rv-structure defines the valuation v
on K (as v = ν ◦ ṙv), and hence interprets K viewed as Lrkngq-structure. This
yields the claim. �

The combinations of the four claims above completes the proof of Theorem 5.21.

Remark 5.22. Theorem 5.21 implies a quantifier elimination result for arbitrary
expansions of Lrngq just as in Corollary 4.8.
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In the following corollary we assume that Γ∞ comes equipped with additional struc-
ture, and the Lkrng-structure K is expanded by this structure on its sort Γ∞; by
Remark 5.22, Γ∞ is then stably embedded in K, and the structure induced on Γ∞
is the given one.

Corollary 5.23. Suppose k is finite. Then K is NIP iff K is finitely ramified

and Γ∞ is NIP.

Proof. The forward direction is clear by earlier results. For the converse, supposeK
is finitely ramified but not NIP. We may assume that K is a monster model of its
theory. Then there is an indiscernible sequence (ai)i∈N of elements of the field
sort and a definable subset S ⊆ K such that for all i, we have ai ∈ S iff i is
even. By Theorem 5.21 there are special terms σ1(xk), . . . , σm(xk) and a suitable
Lrngq-formula ψ (possibly involving parameters) such that for a ∈ K:

a ∈ S ⇐⇒ K |= ψ
(
σ1(a), . . . , σm(a)

)
.

In particular,
K |= ψ

(
σ1(ai), . . . , σm(ai)

)
⇐⇒ i is even.

Since k is finite, so are RN and hence all SnN , by Lemma 5.10. Hence after mod-
ifying ψ and the σj suitably, we can assume that each σj has the form σj(xk) =
v
(
qj(xk)

)
for some polynomial qj(xk) with integer coefficients. From [63, Lem-

ma A.18] we obtain γ1, . . . , γm ∈ Γ, r1, . . . , rm ∈ N, and an indiscernible se-
quence (αi) of elements of Γ such that

v
(
qj(ai)

)
= γj + rjαi for sufficiently large i.

With xg a variable of sort Γ∞ and

ψg(xg) := ψ
(
γ1 + r1xg, . . . , γm + rmxg

)
,

for sufficiently large i we then have

K |= ψg(αi) ⇐⇒ i is even,

showing that Γ∞ has IP. �

6. Distality in Henselian Valued Fields

The main aim of this section is to prove the theorem stated in the introduction.
In Section 6.3 we consider when naming a henselian valuation on a distal field
preserves distality. After some valuation-theoretic preliminaries in Section 6.4, we
investigate the structure of fields with a distal expansion in Section 6.5. Using work
of Johnson [46], we obtain some consequences in the dp-minimal case in Section 6.6.

6.1. Reduction to RV∗. In this subsection K is a henselian valued field of char-

acteristic zero, and the structure K and its reduct RV∗ are as introduced in Sec-

tion 5.1, where RV∗ may carry additional structure. The aim of the present sub-
section is to prove the following:

Proposition 6.1. K is distal if and only if K is finitely ramified and RV∗ is distal.

The “only if” part is straightforward by Lemma 1.15, full stable embeddedness
of RV∗ in K (see Fact 5.3(2)), and Corollary 2.19. In the rest of this subsection we
assume that K is finitely ramified and RV∗ is distal, and show that then K is also
distal. We may assume that K is a monster model of Th(K). Note that K is auto-
matically NIP by Fact 2.1 and Proposition 5.11. Suppose towards a contradiction
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that K is not distal. By Corollary 1.11 there are an indiscernible sequence (ai)i∈Q
with ai ∈ K and finite tuples b = (b1, . . . , bn) in K and c in RV∗, as well as
a formula φ(x, b, c), such that (ai)i∈Q6= is bc-indiscernible, where Q 6= := Q \ {0},
but |= φ(ai, b, c) iff i 6= 0. By Fact 5.3 and Remark 5.4(1), φ(x, b, c) is equivalent to
a formula of the form

(6.1) ψ
(
rvδ(x− b′1), . . . , rvδ(x− b′m), c′

)

for some δ, some m and b′ = (b′1, . . . , b
′
m) ∈ Km, some tuple c′ from RV∗, and an

LRV∗
-formula ψ, where in addition b′1, . . . , b

′
m, c

′ ∈ acl(bc). In particular, (ai)i∈Q6=

is b′c′-indiscernible, hence after replacing our original formula with this new one,
we can assume that φ(x, b, c) itself is of the form (6.1) with b = b′. So for i ∈ Q:

(6.2) |= ψ
(
rvδ(ai − b1), . . . , rvδ(ai − bn), c

)
⇐⇒ i 6= 0.

As the structure induced on RV∗ is distal by Fact 5.3 andKKK is NIP, Proposition 1.17
implies that (ai)i∈Q is c-indiscernible. By Lemma 5.12, the following three cases
exhaust all the possibilities.

Case 1: (ai)i∈Q is pseudocauchy. Take a∞ ∈ K such that (ai)i∈Q6=
∞

is bc-indis-

cernible and (ai)i∈Q∞
is c-indiscernible. (Such an a∞ exists by assumption and

saturation.) Then the sequence
(
v(a∞ − ai)

)
i∈Q

is strictly increasing. Now for

each k ∈ {1, . . . , n}, one of the following must occur.

(a) v(bk − a∞) > v(a∞ − ai) for all i ∈ Q. As the sequence (ai)i∈Q is endless,
in view of (5.2) we then have

v(bk − a∞) > v(a∞ − ai) + δ

and hence rvδ(bk − ai) = rvδ(a∞ − ai) for all i ∈ Q.
(b) v(bk − a∞) < v(a∞ − ai) for each i ∈ Q. As in (a), this implies that

v(bk − a∞) + δ < v(a∞ − ai)

and hence rvδ(bk − ai) = rvδ(bk − a∞) for all i ∈ Q.
(c) There are i > j in Q such that v(a∞ − ai) ≥ v(bk − a∞) ≥ v(a∞ − aj).

After increasing i or decreasing j if necessary we can assume that i, j 6= 0.
As the relation v(x) ≤ v(y) is ∅-definable, we obtain a contradiction with
br-indiscernibility of (ai)i∈Q6=

∞
.

Permuting the components of b, we can thus arrange to have an l ∈ {1, . . . , n+ 1}
such that for each i ∈ Q and k = 1, . . . , n we have

rvδ(ai − bk) =

{
rvδ(ai − a∞) if k < l

rvδ(a∞ − bk) otherwise.

Set ri := rvδ(ai − a∞) for i ∈ Q as well as sk := rvδ(a∞ − bk) for k = l, . . . , n,
and r := (rl, . . . , rn). Now the sequence (ri)i∈Q is indiscernible, and (ri)i∈Q6= is sc-
indiscernible (as (ai)i∈Q6=

∞
is bc-indiscernible). As RV∗ is distal, by Proposition 1.10

this implies that (ri)i∈Q is also sc-indiscernible. But then

|= ψ
(
rvδ (a1 − b1) , . . . , rvδ (a1 − bn) , c

)

⇐⇒ |= ψ(r1, . . . , r1, s, c)

⇐⇒ |= ψ(r0, . . . , r0, s, c)

⇐⇒ |= ψ
(
rvδ(a0 − b1), . . . , rvδ(a0 − bn), c

)
,

contradicting (6.2).
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Case 2: (ai)i∈Q∗ is pseudocauchy. Then we apply Case 1 to the sequence (a−i)i∈Q
in place of (ai)i∈Q.

Case 3: (ai)i∈Q is a fan. Note again that then k is infinite, hence chark = 0 by
Fact 2.1, and thus δ = 0. Take some a∞ as in Case 1, and let γ be the common
value of v(ai−aj) for all i 6= j in Q∞. Let k ∈ {1, . . . , n}; then one of the following
must occur.

(a) v(bk − a∞) < γ. Then rv(bk − ai) = rv(bk − a∞) for all i ∈ Q.
(b) v(bk − ai) > γ for some i ∈ Q 6=. Then for each j ∈ Q \ {0, i} we have

v(bk − ai) > v(a∞ − ai) and v(bk − aj) ≤ v(a∞ − aj),

contradicting bk-indiscernibility of (ai)i∈Q6=
∞
.

(c) v(bk − a0) > γ. Then rv(a0 − a∞) = rv(bk − a∞). Note that the se-
quence

(
rv(ai−a∞)

)
i∈Q

is indiscernible, and hence not totally indiscernible,

by distality and stable embeddedness of RV∗. So
(
rv(ai − a∞)

)
i∈Q6= is not

indiscernible over rv(a0 − a∞) = rv(bk − a∞) by Corollary 1.6. But this
again contradicts the bk-indiscernibility of (ai)i∈Q6=

∞
.

(d) v(bk − ai) = γ for all i ∈ Q. Then rv(bk − a∞) = γ and thus

rv(bk − ai) = rv(bk − a∞)⊕ rv(a∞ − ai) for all i ∈ Q.

Reindexing the components of b, we can thus arrange to have some l ∈ {1, . . . , n+1}
such that for i ∈ Q and k = 1, . . . , n, with ri := rv(ai− a∞) and sk := rv(a∞− bk):

rv(ai − bk) =

{
ri ⊕ sk if k < l

sk otherwise.

Let s := (s1, . . . , sn). Then (ri)i∈Q is indiscernible and (ri)i∈Q6= is sc-indiscernible,
since (ai)i∈Q∞

is indiscernible and (ai)i∈Q6=
∞

is bc-indiscernible. Hence (ri)i∈Q is

sc-indiscernible by Proposition 1.10, as RV∗ is distal. But then

|= ψ
(
rv(a1 − b1), . . . , rv(a1 − bn), c

)

⇐⇒ |= ψ(r1 ⊕ s1, . . . , r1 ⊕ sl−1, sl, . . . , sn, c)

⇐⇒ |= ψ(r0 ⊕ s1, . . . , r0 ⊕ sl−1, sl, . . . , sn, c)

⇐⇒ |= ψ
(
rv(a0 − b1), . . . , rv(a0 − bn), c

)
,

contradicting (6.2). This finishes the proof of Proposition 6.1. �

6.2. Reduction of distality from RV∗ to k and Γ. In this subsection we assume

that the structure on RV∗ is obtained from structures on k, Γ∞ by expanding RV∗
by all relations S ⊆ RVm where S ⊆ (ker vrv)

m = (k×)m is definable in k or S =
v−1rv (vrv(S)) and vrv(S) ⊆ Γm is definable in Γ.

Proposition 6.2. Suppose K is finitely ramified. Then RV∗ is distal if and only

if both k and Γ are.

For the proof, it is natural to distinguish two cases.
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6.2.1. chark > 0. Here we may assume that k is finite, by Fact 2.1. The structure
induced on Γ is the given one; see the remarks preceding Corollaries 5.23. The
forward direction now follows from Lemma 1.15. For the converse, suppose Γ is
distal; then Γ is NIP and hence so is the structure RV∗ interpretable in K, by
Corollary 5.23. By Lemma 5.7, the group morphisms

rvγ→0 : RV×γ → RV×0 = RV×

have finite fibers; moreover, since vrv : RV× → Γ has kernel k×, this group mor-
phism also has finite fibers. Hence each element of RV∗ is algebraic over Γ. As Γ
is distal, applying Corollary 1.26 we conclude that RV∗ is distal.

6.2.2. chark = 0. In this case, we note that RV∗ is bi-interpretable with the pure
short exact sequence

1 → k× → RV× → Γ → 0,

in the sense of Section 4.1, where k, Γ carry the given additional structure. But
then the conclusion holds by Theorem 4.6. �

Combining Propositions 6.1 and 6.2 with Remark 5.2 finishes the proof of the main
theorem.

6.3. When naming a henselian valuation preserves distality. Let (K,O)
be a henselian valued field with residue field k and value group Γ. The following
is [42, Theorem A]:

Fact 6.3. If k is not separably closed, then O is definable in the Shelah expan-

sion KSh of the field K.

Together with Lemma 1.30 this immediately implies:

Corollary 6.4. If the field K has a distal expansion and k is not separably closed,

then the valued field (K,O) has a distal expansion.

Our main theorem allows us to treat the case of separably closed residue field:

Corollary 6.5. Suppose k is separably closed. Then the valued field (K,O) has a

distal expansion if and only if Γ has a distal expansion and k has characteristic zero.

Proof. Note that k is necessarily infinite, and if k has characteristic zero, then k is
algebraically closed, hence has distal expansion: just add a predicate for a maximal
proper subfield of k. Now the claim follows from our main theorem. �

In view of Conjecture 3.16 we expect that in order for (K,O) to have a distal
expansion, we only need to require that k has a distal expansion. Before we turn
to discussing our conjectural classification of fields with distal expansion, we recall
some definitions and basic facts about canonical valuations.

6.4. Canonical valuations. In this subsection we let K be a field. We collect
some notions and basic facts used in the next subsection. Let O1, O2 be valuation
rings of K. One says that O2 is coarser than O1, and that O1 is finer than O2,
if O1 ⊆ O2, that is, if O2 is the valuation ring of a coarsening of (K,O1).

Let nowH be the set of henselian valuation rings ofK, and letHc be the subset ofH
consisting of those valuation rings with separably closed residue field. Then H \Hc

is linearly ordered by inclusion. If Hc 6= ∅, then Hc contains a coarsest valuation
ringOc ofK; this valuation ring is (strictly) finer than every valuation ring inH\Hc.
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If Hc = ∅, then there is a finest henselian valuation ring of K, which we also denote
by Oc. We refer to [28, Theorem 4.4.2] for these facts. The valuation ring Oc is
called the canonical henselian valuation ring of the field K.

Let now p be a prime. We denote by K(p) the compositum of all finite normal field
extensions L|K of p-power degree. If K(p) = K, then K is called p-closed.

Lemma 6.6. Suppose K is separably closed and p 6= charK; then K is p-closed.

Proof. If charK = 0, then K is algebraically closed, and if charK = q > 0 then
the degree of each finite field extension of K is a power of q. �

Following [47, Section 9.5] we say that K is p-corrupted if no finite extension
of K is p-closed; as a consequence of a theorem of Becker [4], one has (see [47,
Lemma 9.5.2]):

Lemma 6.7 (Johnson). Every perfect field which is neither algebraically closed nor

real closed has a finite p-corrupted extension.

A valuation ring O of K is said to be p-henselian if only one valuation ring of K(p)
lies over O. Let Hp be the set of p-henselian valuation rings of K, and let Hp

c

be the subset of Hp consisting of those valuation rings with p-closed residue field.
As before, Hp \Hp

c is linearly ordered by inclusion. If Hp
c 6= ∅, then Hp

c contains
a coarsest valuation ring Op

c of K, which is then finer than every valuation ring
in Hp \ Hp

c . If Hp
c = ∅, then there is a finest p-henselian valuation ring of K,

also denoted by Op
c . One calls Op

c the canonical p-henselian valuation ring of K.
See [44], which also contains a proof of the following fact:

Proposition 6.8 (Jahnke-Koenigsmann). If K is not orderable and contains all

pth roots of unity, then Op
c is ∅-definable in K.

Here we recall that K is said to be orderable if there is an ordering on K making K
an ordered field.

6.5. Distal fields. In this subsection K is a field. The following is commonly
attributed to Shelah:

Conjecture 6.9. If K is NIP, then K is finite, separably closed, real closed, or

admits a non-trivial henselian valuation.

This conjecture has numerous consequences; for example, by [38, Proposition 6.3], it
implies that every NIP valued field is henselian. In [42, Theorem B] it is shown that
if K is NIP and O is a henselian valuation ring of K, then the valued field (K,O)
is also NIP. Hence if Conjecture 6.9 holds, then every valuation ring on a NIP
field is henselian, and its residue field is NIP. Moreover, under Conjecture 6.9,
any two (externally) definable valuation rings on a NIP field are comparable [38,
Corollary 5.4]. In Theorem 6.12 below we show that Conjecture 6.9 also gives rise
to a classification of all fields admitting a distal expansion. We first note that the
non-trivial henselian valuation stipulated in Conjecture 6.9 may be taken to be
∅-definable, by results in [42, 43] (see also [38, Corollary 7.6]):

Lemma 6.10. Suppose Conjecture 6.9 holds, and suppose K is infinite and NIP;

then K is separably closed or real closed, or K has an ∅-definable non-trivial

henselian valuation ring.
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Proof. Suppose K is neither separably closed nor real closed; so according to Con-
jecture 6.9, K has a non-trivial henselian valuation. If K has such a valuation with
residue field which is separably closed or real closed, then by [43, Theorem 3.10 and
Corollary 3.11, respectively], there is an ∅-definable non-trivial henselian valuation
ring of K. Hence we may assume that the residue field of each henselian valua-
tion on K is not separably closed and not real closed. In particular, the residue
field k of O := Oc is neither separably closed nor real closed. Hence O is the finest
henselian valuation ring of K; in particular, k does not have a non-trivial henselian
valuation. Now k is NIP, and so by Conjecture 6.9 applied to k, this field is finite.
Its absolute Galois group is non-universal, so O is ∅-definable by [43, Theorem 3.15
and Observation 3.16]. �

Recall that every infinite field with a distal expansion has characteristic zero.

Corollary 6.11. Suppose Conjecture 6.9 holds, and K is infinite and has a distal

expansion. Then K is algebraically closed or real closed, or K has an ∅-definable
non-trivial henselian valuation ring O whose residue field

(1) is finite, or

(2) is a field of characteristic zero with a distal expansion.

Proof. Suppose K is neither algebraically closed nor real closed; then by Lem-
ma 6.10 we can take an ∅-definable non-trivial henselian valuation ring O of K.
Let k be the residue field of O; then k also has a distal expansion by the forward
direction in our main theorem; in particular, if chark > 0, then k is finite. �

In connection with option (1) in Corollary 6.11 recall that if (K,O) is an infinite
NIP henselian valued field of characteristic zero with finite residue field, then (K,O)
has a specialization which is p-adically closed of finite p-rank, for some prime p.
(Remark 2.20.) We do not know whether we can upgrade (2) in this corollary to “is
algebraically closed of characteristic zero, or real closed” (even while simultaneously
weakening the condition that O be ∅-definable in K to O being externally definable,
say). Instead we show:

Theorem 6.12. Suppose Conjecture 6.9 holds, and K is NIP and does not define

a valuation ring whose residue field is infinite of positive characteristic; then K has

a henselian valuation ring, type-definable over the empty set, whose residue field is

algebraically closed of characteristic zero, real closed, or finite.

Before we give the proof of Theorem 6.12, we establish analogues of two results
from [47] (9.5.4 and 9.5.7, respectively):

Lemma 6.13. Suppose Conjecture 6.9 holds and K is NIP, non-orderable, and

contains all p-th roots of unity, where p is a prime. Let O = Op
c be the canonical

p-henselian valuation ring of K; then O is ∅-definable, and its residue field is finite,

has characteristic p, or is p-closed.

Proof. Proposition 6.8 yields the ∅-definability of O. Suppose the residue field k

of O is infinite, has characteristic 6= p, and is not p-closed. Then by Lemma 6.6,
k cannot be separably closed; since K is non-orderable, k is also not real closed.
Hence by Conjecture 6.9 we may equip k with a non-trivial henselian valuation ring;
let k → k1 be the corresponding place. Composition of the places K → k → k1

then gives rise to a henselian valuation ring O1 of K with residue field k1 such
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that k is a specialization of (K,O1), and then O1 is a strictly finer p-henselian
valuation ring than O, a contradiction. �

Lemma 6.14. Suppose Conjecture 6.9 holds, and suppose K is infinite NIP, and

the residue field of each ∅-definable valuation ring of K has characteristic zero.

Let O∞ be the intersection of all ∅-definable valuation rings of K. Then O∞ is a

valuation ring of K whose residue field is algebraically closed of characteristic zero

or real closed.

Proof. The hypothesis and the remarks following Conjecture 6.9 yield that the set
of all valuation rings of K is linearly ordered by inclusion; in particular, O∞ is a
valuation ring of K. As in the proof of [47, Theorem 9.5.7(2)] one also sees that O∞
equals the intersection of all definable valuation rings of K. Let k∞ be the residue
field of O∞. We have chark∞ = 0, since otherwise some ∅-definable valuation
ring O ⊇ O∞ of K would have residue field k with chark = chark∞ > 0 [47,
Remark 9.5.6]. Towards a contradiction suppose that k∞ is neither algebraically
closed nor real closed. By Lemma 6.7 we then obtain a prime p and a finite p-
corrupted extension l of k∞. Let v∞ : K× → Γ∞ denote the valuation associated
to O∞. Choose a finite field extension L of K which contains all 4p-th roots of
unity and such that the residue field of the unique valuation w∞ on L extending v∞
contains l, and hence is not p-closed. Lemma 6.13 yields a valuation w on L which
is ∅-definable (that is, its valuation ring is ∅-definable in the field L) and not a
coarsening of w∞. Let v be the restriction of w to a valuation on K; then v is
definable, hence a coarsening of v∞, say v = (v∞)∆ where ∆ is a convex subgroup
of Γ∞. Let ∆L be the convex hull of ∆ in the value group of w∞. The restriction
of the ∆L-coarsening (w∞)∆L

of w∞ to K is v. But v is henselian, so w = (w∞)∆L

is a coarsening of w∞, a contradiction. �

Now Theorem 6.12 follows easily: If K has an ∅-definable valuation ring with
residue field of positive characteristic, then this residue field is finite by hypothesis,
and we are done. Thus we may assume that the residue field of every ∅-definable
valuation ring of K has characteristic zero. Then Lemma 6.14 yields a henselian
valuation ring O∞, type-definable over ∅, whose residue field is algebraically closed
of characteristic zero, or real closed. �

Corollary 6.15. Suppose Conjectures 3.16 and 6.9 hold, and K is NIP; then the

following are equivalent:

(1) K has a distal expansion;

(2) K does not interpret an infinite field of positive characteristic;

(3) K does not define a valuation ring whose residue field is infinite of positive

characteristic;

(4) K has a henselian valuation ring whose residue field is algebraically closed

of characteristic zero, real closed, or finite.

Proof. The implications (1) ⇒ (2) ⇒ (3) are clear (using Fact 2.1), and (3) ⇒ (4)
follows from Theorem 6.12. To show (4) ⇒ (1), suppose K has characteristic zero.
If O is a henselian valuation ring of K whose residue field k is algebraically closed
of characteristic zero, real closed, or finite, then k has a distal expansion, and
after choosing a distal expansion of the value group of O, our main theorem yields
that (K,O) has a distal expansion, which is also a distal expansion of K. �
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We also note a consequence of Theorem 6.12 for ordered fields. In [23], a field is
defined to be almost real closed if it has a henselian valuation ring with real closed
residue field.

Corollary 6.16. Suppose Conjecture 6.9 holds, and K is orderable and has a distal

expansion; then K is almost real closed.

Proof. Equip K with an ordering making it an ordered field; it is well-known that
then every henselian valuation ring of K is convex, and hence its residue field is
orderable. Now use Theorem 6.12. �

Based on Theorem 6.12 we conjecture:

Conjecture 6.17. Suppose K has a distal expansion; then K has a henselian

valuation ring whose residue field is algebraically closed of characteristic zero, real

closed, or finite.

6.6. Distality in the dp-minimal case. In this subsection we show that for
dp-minimal K, the conclusion of Corollary 6.15 holds even without assuming Con-
jectures 3.16 and 6.9; this relies again on work of Johnson [47]. We first recall a few
facts about dp-minimal fields and related structures. (For (1) see Fact 1.5; part (2)
follows from [45, 46].)

Fact 6.18.

(1) Every dp-minimal expansion of an ordered abelian group is distal.

(2) Every dp-minimal valued field is henselian.

Combining Fact 6.18 and the main theorem of this paper, we get:

Corollary 6.19. A dp-minimal valued field is distal (has a distal expansion) if

and only if its residue field is distal (respectively, has a distal expansion).

A dp-minimal (pure) field can fail to admit a distal expansion only in the most
obvious way:

Corollary 6.20. Let K be an infinite dp-minimal field; then the following are

equivalent:

(1) K has a distal expansion;

(2) K does not interpret an infinite field of positive characteristic;

(3) K does not define a valuation ring whose residue field is infinite of positive

characteristic;

(4) K has a henselian valuation ring whose residue field is algebraically closed

of characteristic zero, real closed, or finite.

Proof. As in the proof of Corollary 6.15, the implications (1) ⇒ (2) ⇒ (3) are
clear. For (3) ⇒ (4), we argue as in the proof of the corresponding implication
in Theorem 6.12: If K has an ∅-definable valuation ring with residue field of pos-
itive characteristic, then (4) holds. Otherwise, let O∞ be the intersection of all
∅-definable valuation rings of K; by [47, Theorem 9.1.4], O∞ is a henselian valu-
ation ring of K (with O∞ = K if K admits no ∅-definable non-trivial valuations)
whose residue field k∞ is algebraically closed, real closed, or finite. Moreover,
chark∞ = 0 by [47, Theorem 9.4.18(3), Remark 9.5.6]. Finally, (4) ⇒ (1) is shown
as in the proof of (4) ⇒ (1) in Corollary 6.15, using Facts 3.1 and 6.18 in place of
Conjecture 3.16. �
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Note that there are indeed dp-minimal fields of characteristic zero without distal
expansions.

Example. Let Qunr
p be the maximal unramified extension of the valued field Qp. Its

value group is Z and its residue field is the algebraic closure Fa
p of Fp. Let OK be

the unique valuation ring of

K = Qunr
p

(
p1/p, p1/p

2

, . . .
)

lying over that of Qunr
p . Its value group

⋃
n

1
pnZ is archimedean (hence regular) but

non-divisible, and (K,OK) is henselian; so it follows from [41, Theorem 5] that OK

is ∅-definable in the field K. Hence K is a field of characteristic zero which is dp-
minimal by [47, Theorem 9.1.5, 1(c)] but has no distal expansion since it interprets
an infinite field of characteristic p.

7. Distality in Expansions of Fields by Operators

In this section we use a “forgetful functor” approach to show that various expansions
of distal fields by operators remain distal. Most of the results of this section were
obtained and circulated in 2014. We have learned that recently some of them were
observed independently in [21].

7.1. An abstract distality criterion. We fix a language L and a complete L-
theory T = Th(M). As usual all variables here are assumed to be (finite) multi-
variables. Recall that by Fact 1.8, T is distal if and only if every partitioned L-
formula ϕ(x; y) has a strong honest definition in T , i.e., a formula ψ(x; y1, . . . , yN ),
where y1, . . . , yN are disjoint multivariables (for some N ∈ N), each of the same
sort as y, such that for all a ∈ Mx and finite subsets B of My with |B| ≥ 2, there
are b1, . . . , bN ∈ B such that ψ(x; b1, . . . , bn) isolates tpϕ(a|B):

(1) a ∈ ψ(Mx; b1, . . . , bN); and
(2) for all b ∈ B, either

ψ(Mx; b1, . . . , bN ) ⊆ ϕ(Mx; b) or ψ(Mx; b1, . . . , bN) ∩ ϕ(Mx; b) = ∅.

We also consider an extension L(F) of the language L by a set F of new function
symbols. We assume that L(F) has the same sorts as L, and we consider F itself as
a language by declaring the sorts of F to be those of L. Finally, we let T (F) be a
complete L(F)-theory extending T .

Proposition 7.1. Suppose T is distal and the following conditions hold:

(1) T (F) has quantifier elimination;

(2) all function symbols in F are unary; and

(3) for every L(F)-term t(x) there are an L-term s in n variables of the appro-

priate sorts and F-terms t1(x), . . . , tn(x) such that

T |= t(x) = s
(
t1(x), . . . , tn(x)

)
.

Then T (F) is distal.

Proof. Fix a model M of T (F), and let ϕ(x; y) be a partitioned L(F)-formula; we
show that ϕ(x; y) has a strong honest definition in T (F). By assumption (1), we
may assume that ϕ(x; y) is quantifier-free. Then by assumptions (2) and (3) there
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are an L-formula ϕ′(x′; y′) as well as F-terms s1(x), . . . , sm(x) and t1(y), . . . , tn(y),
such that for all a ∈Mx, b ∈My we have

M |= ϕ(a, b) ⇐⇒ M |= ϕ′
(
s(a), t(b)

)
,

where

s(a) :=
(
s1(a), . . . , sm(a)

)
and t(b) :=

(
t1(b), . . . , tn(b)

)
.

Suppose y = (y1, . . . , yk) where k = |y|; we can assume that the terms t1, . . . , tn
contain the terms y1, . . . , yk; thus b 7→ t(b) : My →My′ is injectve. By distality of T ,
take a strong honest definition ψ′(x′; y′1, . . . , y

′
N) for ϕ

′(x′; y′) in T , where y′1, . . . , y
′
N

are disjoint new multivariables of the same sort as y′; thus for all a′ ∈Mx′ and any
finite subset B′ of My′ with |B′| ≥ 2, there are b′1, . . . , b

′
N ∈ B′ such that

(1) M |= ψ′(a′; b′1, . . . , b
′
N); and

(2) for all b′ ∈ B′, either

ψ′(Mx′ ; b′1, . . . , b
′
N ) ⊆ ϕ′(Mx′ ; b′) or ψ′(Mx′ ; b′1, . . . , b

′
N ) ∩ ϕ′(Mx′ ; b′) = ∅.

We claim that

ψ(x; y1, . . . , yN) := ψ′
(
s(x); t(y1), . . . , t(yN)

)

where y1, . . . , yN are disjoint new multivariables of the same sort as y, is a strong
honest definition for ϕ(x; y) in T (F). To see this, let a ∈ Mx and B ⊆ My be
finite with |B| ≥ 2. Set a′ := s(a) and B′ := t(B) ⊆ My′ (so |B′| = |B| ≥ 2), and
take b1, . . . , bN ∈ B such that (1) and (2) above hold with b′i := t(bi) (i = 1, . . . , N).
ThenM |= ψ(a; b1, . . . , bN), and ψ(x; b1, . . . , bN ) isolates tpϕ(a|B), as required. �

In a similar way as the preceding proposition, one shows:

Lemma 7.2. Suppose T is distal and for every partitioned L(F)-formula ϕ(x; y),
where |x| = 1, there is a partitioned L-formula ϕ′(x; z) and a tuple of L(F)-
terms t(y) of length |z| such that

T ⊢ ϕ(x; y) ↔ ϕ′
(
x; t(y)

)
.

Then T (F) is distal.

Proof. Let ϕ(x; y) be a partitioned L(F)-formula, where |x| = 1; by Proposition 1.9
it is enough to show that ϕ(x; y) has a strong honest definition in T (F). By our
hypothesis we can assume ϕ(x; y) = ϕ′

(
x; t(y)

)
where ϕ′(x; y′) is an L-formula

and t(y) =
(
t1(y), . . . , tn(y)

)
is an appropriate tuple of L(F)-terms whose compo-

nents contain the terms y1, . . . , yk for y = (y1, . . . , yk). Distality of T yields a strong
honest definition ψ′(x; y′1, . . . , y

′
N) for ϕ′(x; y′) in T , where y′1, . . . , y

′
N are disjoint

new multivariables of the same sort as y′. Then

ψ(x; y1, . . . , yN ) := ψ′
(
x; t(y1), . . . , t(yN )

)

is a strong honest definition for ϕ(x; y) in T (F). �

In practice, condition (3) in Proposition 7.1 is easily verified whenever T is a rela-
tional expansion of the theory of fields, and the functions symbols in F are inter-
preted as derivations in models of T (F). We now give several applications of these
criteria.
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7.2. Transseries. In this subsection we assume that the reader is familiar with [2,
Chapter 16]. Consider the language

LΛΩ = {0, 1, +, −, · , ∂, ι, ≤, 4, Λ, Ω}

introduced there. The LΛΩ-theory T
nl of ω-free newtonian Liouville closed H-fields

eliminates quantifiers [2, Theorem 16.0.1] and has two completions: T nl
small, of which

the differential field T of logarithmic-exponential transseries is a model, and T nl
large.

Both completions are distal:

Corollary 7.3. The LΛΩ-theories T
nl
small and T

nl
large are distal.

Proof. Let L := LΛΩ \ {∂} (so L(∂) = LΛΩ), let T (∂) = T nl
small, and let T be the L-

theory of T. Each model of T is a real closed ordered field K, viewed as a structure
in the language {0, 1,+,−, · , ι,≤} in the natural way, equipped with a convex
dominance relation 4 and interpretations of the unary relation symbols Λ and Ω as
certain convex subsets of K. By Baisalov-Poizat [3], the theory of each expansion
of an o-minimal structure by convex subsets of its domain is weakly o-minimal,
hence distal; in particular, T is distal. (Alternatively, we could use Fact 1.29.)
Proposition 7.1 (and the quotient rule for derivations) implies that T nl

small = T (∂) is
distal. The argument for T nl

large is similar. �

Combining Fact 2.1 with the preceding corollary shows that no infinite field of
positive characteristic is interpretable in T. We venture the following:

Conjecture 7.4. The only infinite fields interpretable in T are T, R, and their

respective algebraic closures T[i], C = R[i].

7.3. Other distal differential fields. Proposition 7.1 can be used to show that
many other theories of interest are distal as well. In general, whenever T is the
theory of an expansion of a differential field (perhaps with several derivations) by
relations and constants, and we know that

(1) T has QE, and
(2) the reduct of T to the language without derivations is distal,

then Proposition 7.1 implies that T itself is distal. In the literature, one finds many
theories which satisfy these conditions. For instance:

Corollary 7.5. The following theories are distal:

(1) CODF, the model completion of the theory of ordered differential fields

from [65];
(2) CODFm, the model completion of the theory of ordered differential fields

with m commuting derivations from [58, 67];
(3) pCDFd,m, the model completion of the theory of p-valued fields of p-rank d

with m commuting derivations from [67].

The fact that CODF is NIP was first shown (also using the “forgetful functor”)
in [53], and generalized to CODFm in [36]. The paper [33] considers a generaliza-
tion of CODFm: Given a complete, model complete o-minimal theory T expand-
ing the theory of real closed ordered fields, the theory whose models are models
of T equipped with m commuting derivations which satisfy the Chain Rule with
respect to the continuously differentiable definable functions in T has a model
completion Tm, and if T has quantifier elimination and a universal axiomatization,
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then Tm has quantifier elimination [33, Theorem 6.8]. (Note that the latter hypoth-
esis on T can always be achieved by expanding the language by function symbols
for all ∅-definable functions and expanding T accordingly.) Our criterion implies
that then Tm is distal; this has also been observed in [33, Proposition 6.10].

The topological fields with generic valuations considered in [36] are also distal.
For example, let L = {0, 1,+,−, · ,≤,4} and let OVF be the L-theory of ordered
fields equipped with a non-trivial convex dominance relation; its model completion
is RCVF, the theory of real closed valued fields (see [2, Section 3.6]). By [36,
Corollary 6.4], the L(∂)-theory whose models are the expansions of models of OVF
by a derivation ∂, has a model completion; this model completion is distal because
RCVF is weakly o-minimal. In [56] it is shown that the L-theory of pre-H-fields
with gap 0 has a model completion. Here, a pre-H-field is a model of the universal
part of the theory T nl from Section 7.2, and such a pre-H-field has gap 0 if it
satisfies the L-sentence ∀y(y′ 4 y → y 4 1). This model completion has quantifier
elimination [56, Theorem 7.2, Corollary 7.4], and its distality follows in the same
way as above from distality of RCVF. (In [56, Theorem 7.6] it is already shown
that this model completion is NIP.)

As pointed out in the introduction, definable relations in a theory which has a
distal expansion satisfy strong combinatorial bounds [11, 18]. This is often used in
incidence combinatorics in a more explicit form, e.g., the proof of the Szemerédi-
Trotter Theorem over the field of complex numbers (which is a stable structure)
relies on interpreting the field C in the distal field of reals in the usual way [66,
72]. Corollary 7.5 implies a qualitative analog for the stable theories DCF0,m of
differentially closed fields of characteristic 0 with m commuting derivations. For
this we need the following facts [64, 68]:

Fact 7.6. If K |= CODF, then the differential field extension K[i] of K (where
i
2 = −1) is a differentially closed field of characteristic 0, i.e., K[i] |= DCF0. More

generally, if K |= CODFm, then K[i] |= DCF0,m.

This immediately yields (see Lemma 1.28):

Corollary 7.7. The theory DCF0,m has a distal expansion.

Problem 7.8. By [8, Lemma 4.5.9], the theory CODF is not strongly dependent.
Does DCF0 admit a strongly dependent distal expansion?

7.4. Henselian valued fields with analytic structure. We finish by showing
that the forgetful functor argument (in the form of Lemma 7.2) also allows us to ex-
tend the main theorem from the introduction to the analytic expansions of henselian
valued fields introduced in [20]; for this we rely on some arguments from [57, Sec-
tion 5]. We need to recall the relevant definitions from [20].

We fix a noetherian commutative ring A and an ideal I 6= A of A such that A is
separated and complete for its I-adic topology. Let A〈X〉 = A〈X1, . . . , Xm〉 be the
ring of power series in the distinct indeterminates X1, . . . , Xm with coefficients in A
whose coefficients I-adically converge to 0, and set Am,n := A〈X〉[[Y ]] where X =
(X1, . . . , Xm) and Y = (Y1, . . . , Yn) are disjoint tuples of distinct indeterminates
over A. We expand the (one-sorted) language of valued fields to a language LA by
introducing a unary function symbol ι as well as an (m + n)-ary function symbol
for each element of Am,n (which we denote by the same symbol). We let TA be the
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LA-theory whose models are the LA-structures expanding a valued field (K,O) of
characteristic zero, such that with m = maximal ideal of O:

(A1) ι is interpreted by the map K → K with a 7→ 1/a if a 6= 0 and 0 7→ 0;
(A2) each function symbol f ∈ Am,n is interpreted by a function

fK : Km ×Kn → K

which is identically zero outside ofOm×mn and satisfies fK(Om×mn) ⊆ O;
(A3) the map f 7→ fK is a ring morphism from Am+n to the ring of func-

tions Km ×Kn → K;
(A4) each f ∈ Am,n, viewed as an element of Am,n+1 under the natural in-

clusion Am,n ⊆ Am,n+1, is interpreted as a function Km × Kn+1 → K
which does not depend on the last coordinate, and similarly for the inclu-
sion Am,n ⊆ Am+1,n;

(A5) each a ∈ I ⊆ A = A0,0 is interpreted by a constant function with value
in m;

(A6) for a = (a1, . . . , am) ∈ Om and b = (b1, . . . , bn) ∈ mn we haveXK
i (a, b) = ai

(i = 1, . . . ,m) and Y Kj (a, b) = bj (j = 1, . . . , n).

The valued field underlying each model of TA is automatically henselian; see [57,
Proposition 3.5].

Let now K |= TA, and as in Section 5.1 expand K to a multi-sorted structure K

whose sorts areK (called the field sort below) and the sets RVδ (called the RV-sorts
below), with the primitives specified in (K1)–(K4). Let K∗ be an expansion of K
obtained by imposing additional structure on the reduct RV∗ of K, including,

(A7) for each u ∈ Am+n, the function uKδ : RVm+n
δ → RVδ satisfying

uKδ
(
rvδ(a)

)
= rvδ

(
uK(a)

)
for a ∈ Km+n.

(See [57, Corollary 3.9].) Let also L be the reduct of the language L∗ of K∗
obtained by removing all symbols listed under (A1)–(A7) above. The following is
a consequence of [57, Corollary 5.5] (a generalization of a theorem in [26]):

Proposition 7.9. Let ϕ(x, y, r) be an L∗-formula where the multivariables x, y,
are of the field sort with |x| = 1, and r is of the RV-sort. Then there exists an

L-formula ϕ′(x, z, r) and an appropriate tuple of LA-terms t(y) such that

K∗ |= ϕ(x, y, r) ↔ ϕ′
(
x, t(y), r

)
.

We now use this result to show a variant of our main theorem:

Corollary 7.10. Let K |= TA; if the valued field underlying K is distal (has a distal

expansion), then the LA-structure K is distal (has a distal expansion, respectively).

Proof. Suppose first that the valued field underlying K has a distal expansion; by
the forward direction of our main theorem, this valued field is finitely ramified,
and its value group Γ and residue field k have a distal expansion. Consider now
the structure K∗ introduced before Proposition 7.9, where we equip RV∗ with the
functions (A7) as well as the structure coming from the distal expansions of Γ
and k as explained at the beginning of Section 6.2. By Propositions 6.1 and 6.2,
the L-reduct K of K∗ is distal. Now Lemma 7.2 and Proposition 7.9 yield that the
expansion K∗ of K is distal. This shows that if the valued field underlying K has
a distal expansion, then so does K. Note that if we follow this argument when the
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valued field underlying K itself is distal, then the distal structure K∗ we obtain in
this way is bi-interpretable with the LA-structure K. �

Example. Let k be a distal field of characteristic zero and A = Z[[t]], I = tA. Then
the valued field K = k((t)) of Laurent series with coefficients in k can be expanded
to a model of TA in a unique way such that t ∈ A is interpreted by t ∈ K; by the
previous corollary, this LA-structure K is distal.
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[52] T. Y. Lam, A First Course in Noncommutative Rings, Second, Graduate Texts in Mathe-

matics, vol. 131, Springer-Verlag, New York, 2001. MR1838439
[53] C. Michaux and C. Rivière, Quelques remarques concernant la théorie des corps ordonnés
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