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We use a Bayesian method, optimal interpolation, to improve satellite derived irradiance estimates at
city-scales using ground sensor data. Optimal interpolation requires error covariances in the satellite esti-
mates and ground data, which define how information from the sensor locations is distributed across a
large area. We describe three methods to choose such covariances, including a covariance parameteriza-
tion that depends on the relative cloudiness between locations. Results are computed with ground data
from 22 sensors over a 75� 80 km area centered on Tucson, AZ, using two satellite derived irradiance
models. The improvements in standard error metrics for both satellite models indicate that our approach
is applicable to additional satellite derived irradiance models. We also show that optimal interpolation
can nearly eliminate mean bias error and improve the root mean squared error by 50%.

� 2017 Elsevier Ltd. All rights reserved.
1. Introduction

Estimates of global horizontal irradiance (GHI) are essential at
many stages of photovoltaic (PV) system deployment and opera-
tion. A widely used technique is to compute GHI from geostation-
ary satellite images, which are typically available every 15–30 min
and cover large areas of the globe. Such satellite derived estimates
of GHI are commonly used to design and site PV power plants
(Vignola et al., 2013), to forecast the output of a fleet of PV gener-
ators (Kühnert et al., 2013), and to provide real-time estimates of
distributed generation (DG) or ‘‘behind the meter” generation of
rooftop PV systems (Saint-Drenan et al., 2011). Satellite derived
estimates have also been used to detect failures in PV systems
(Drews et al., 2007).

In addition to satellite derived GHI estimates, one may have
access to ground sensors that provide more accurate GHI measure-
ments, but are often sparsely distributed. We present a method
that combines the broad areal coverage of satellite derived GHI
with the accurate point measurements from ground sensors in
order to provide more accurate GHI estimates for city-scale areas.

Similar techniques have used ground measurements to improve
satellite derived irradiance estimates in the context of improving
daily (or longer) irradiance estimates. Much of this work studies
so called site adaptation techniques with the goal of improving
multi-year satellite irradiance estimates using a limited measure-
ment campaign from ground sensors (Polo et al., 2016). A number
of studies use Kriging methods that rely on spatial interpolation of
the ground data along with satellite derived estimates (D’Agostino
and Zelenka, 1992; Journée et al., 2012; Frei et al., 2015). Others
use linear bias corrections (Polo et al., 2015), polynomial bias cor-
rections (Mieslinger et al., 2014), or apply a polynomial to correct
the satellite cumulative distribution function (Schumann et al.,
2011). Ruiz-Arias et al. (2015) used optimal interpolation (OI) with
numerical weather prediction solar radiation data and monthly-
averaged daily GHI values from ground sensors.

OI is a Bayesian technique often used in geophysics, in particu-
lar numerical weather prediction, to combine models and observa-
tions. OI is mathematically equivalent to 3D variational methods,
Kriging, and Gaussian process regression (Low et al., 2015). OI
and 3D variational techniques are often used in the field of mete-
orology, Kriging is used in the context of geostatistics, and one
often encounters Gaussian process regression in the context of
machine learning. Thus, each method seeks a solution with the
approach and quantities, like covariances, appropriate for each
context.

In the context of this study, the satellite derived GHI estimates
represent the model and the ground sensor data are the observa-
tions for OI. We focus on improvements to GHI estimates from a
single satellite image using OI rather than improving the
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multi-year satellite estimates. This single satellite image will be
used to nowcast DG production and to produce forecasts. We also
present a novel method to parameterize the correlation between
satellite pixels using the relative cloudiness between them.

We describe the satellite derived irradiance models and obser-
vation data in Section 2, the OI method in Section 3, and three ways
to estimate covariances between locations in Section 4. These
covariances are critical to the success or failure of OI. A method
to correct for satellite geolocation errors is described in Section 5,
and parameter tuning is detailed in Section 6. We present and dis-
cuss the results of applying OI to Tucson, AZ in Section 7. Finally, a
summary of the work is provided in Section 8.
2. Models and observations

2.1. Satellite derived irradiance models

To investigate how well OI works with different types of prior
information, we use two different models to convert satellite
images to GHI maps. The resulting GHI maps are called the ‘‘back-
ground” or ‘‘prior” in OI and will be denoted by xb. Both models use
images from the GOES-W geostationary satellite that cover the city
of Tucson, AZ (roughly 75� 80 km). An example of a visible albedo
image derived from the visible channel of GOES-W is shown in
Fig. 1.

One of the models is a physical model called the University of
Arizona Solar Irradiance Based on Satellite (UASIBS) model (Kim
et al., 2016). UASIBS uses the visible and infrared images from
the GOES-W satellite to generate a cloud mask. Then, parameter-
ized cloud properties determined from the infrared images are
used in a radiative transfer model to determine the surface GHI.
This GHI estimate has the same resolution as the visible channel
of the GOES-W satellite (approximately 1 km).

The second model is a semi-empirical model, which we refer to
as the SE model. This model is based on the SUNY model which
applies a regression to the visible channel of the GOES-W satellite
(Perez et al., 2002). The only differences between our SE model and
the SUNY model are that the dynamic range is set with the
3 months of data used in this study instead of the recommended
60 day window with seasonal corrections and that the specular
correction factor was neglected.
Fig. 1. Visible albedo image derived from the visible channel of the GOES-W
satellite. Lighter colors indicate cloudier areas. The orange dots represent the
locations of the sensors used in this study which includes both irradiance sensors
and rooftop PV systems as described in Section 2.2. The yellow square in the center
indicates the location of a calibrated GHI sensor on the University of Arizona
campus. The image covers an area of roughly 75� 80 km over Tucson, AZ. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
To remove effects of the diurnal cycle and ease incorporation of
data from rooftop PV systems, all images were converted into
clear-sky index images by dividing the estimated GHI by a clear-
sky GHI estimate. The resulting values of clear-sky index range
from nearly 0 for an overcast sky to 1 for a cloud-free sky. These
conversion algorithms do not take into account image time-
stamp inaccuracies or satellite geolocation errors, but corrections
for those errors will be discussed in Section 5.
2.2. Ground observations

The observation data are collected from 22 sensors including a
calibrated NREL MIDC sensor (Wilcox and Andreas, 2010), custom
irradiance sensors (Lorenzo et al., 2014), and data from rooftop PV
systems. The sensor locations are indicated by orange circles in
Fig. 1.

Irradiance observations were averaged to 5 min to match PV
data that are reported as 5 min averages. This averaging is consis-
tent with the inherent averaging due to the satellite spatial resolu-
tion. We note that all data sources (ground sensors and satellite
images) are available in near real-time so that the OI corrected
GHI images can be used as a basis for forecasts or DG nowcasts.

All data were converted to clear-sky index data using clear-sky
expectations for each sensor. To produce the clear-sky expectation
for one day, the measurements from preceding clear days within
one week are averaged to produce an initial estimate. This initial
estimate is then scaled to match the clear times on the day of inter-
est to account for differences in turbidity or temperature. This
method simplifies the calculation of clear-sky expectations for
the rooftop PV systems because no parameters about the system
(directional response, peak power) are assumed. The clear-sky
expectations and clear-sky index data was inspected manually to
confirm the quality. Note that the ground observation data may
experience cloud enhancement events which lead to clear-sky
indices greater than 1.

We restrict our data and analysis to solar zenith angles less than
60�. At times, we also withhold sensors from the OI routine and use
these sensors to validate how well OI performs for other locations
in the image besides the input sensor locations.
2.3. Data set description

About 1300 satellite images collected over April, May, and June
2014 were converted to irradiance images with the two models
and paired with the corresponding ground observations. We ran-
domly divide the data set into a training set with 437 images
(252 clear and 185 cloudy images) and a verification set of 874
images (504 clear and 370 cloudy images). The training set is used
to tune parameters for OI as described in Section 6. The verification
set is used for error analysis and to draw conclusions about OI.

The distinction between clear and cloudy satellite images will
become important in Section 3 for determining sensor error vari-
ances. Clear times are identified using a combination of the UASIBS
estimates and the ground sensor data. Specifically, if the minimum
value of a UASIBS clear-sky index image is greater than 0.8, the
mean of the image is greater than 0.99, and the second largest
deviation from 1 of any of the ground observations is less than
0.05, then we classify the image as clear. This procedure accurately
identifies times at which no clouds exist in the area of study. Other
methods can also be used to perform this classification (Reno and
Hansen, 2016; Escrig et al., 2013; Ghonima et al., 2012), but our
simple method is sufficient for our purposes.



468 A.T. Lorenzo et al. / Solar Energy 144 (2017) 466–474
3. Optimal interpolation

We now describe the OI method. Under wide assumptions, OI is
optimal in the sense that it is the best linear, unbiased estimator of
a field. Further detail can be found in data assimilation textbooks,
e.g. Kalnay (2003).

The result of the OI routine, known as the analysis, xa, is a vector
that is produced by computing a weighted sum of the background
(or prior information), xb, and a correction vector (or ‘‘innovation”
in OI) that depends on the measurements, y:

xa ¼ xb þWðy �HxbÞ: ð1Þ
As discussed in Section 2.1, the N satellite derived clear-sky

indices from one image are represented as the background vector,
xb. The measurement vector, y, is a vector of length M of clear-sky
indices generated from M ground irradiance sensor and rooftop PV
power data observations as discussed in Section 2.2. The observa-
tion matrix, H, is an M � N matrix that maps points in the back-
ground space to points in the observation space. We construct H
using the nearest neighbor approach of selecting the satellite pixels
that are closest to the observation locations. Another possible
approach is to average the points in the background that are within
a given radius of each sensor location. Furthermore, H can contain
conversion factors to convert the units of xb to the units of y. In our
case however, H is unitless because y and xb are both in units of
clear-sky index. Example background and analysis images for the
UASIBS and SE models are shown in Fig. 2.

The weight matrix, W, is an N �M matrix constructed from the
error covariance matrices of the background, P, and the observa-
tions, R, as
Fig. 2. Example background (top row) and analysis (bottom row) clear-sky index imag
irradiance models applied to the visible satellite image shown in Fig. 1. Note that in this
makes the darker, clear areas even more clear. In this case, the SE model overproduces
W ¼ PHTðR þHPHTÞ�1
: ð2Þ

Choosing these error covariance matrices must be done with
care: they define how information is transferred from sensor loca-
tions to other locations in the satellite image, and how much
weight is given to any one sensor or satellite pixel.

R is defined as the error covariance matrix of the observations
such that

y ¼ yt þ e; e � Nð0;RÞ ð3Þ

where yt is the true value of the observation and e is a random vec-
tor sampled from a multivariate normal distribution with mean 0
and covariance R. On clear days, we assume the true clear-sky index
values are 1.0. We also assume that the measurements are unbiased
and that the correlations in the errors between sensors is negligible,
so R is a diagonal matrix in our case. Thus, we estimate the diagonal
elements (sensor error variances) by computing the variance on a
set of clear days in the training data set for each sensor individually.
Furthermore, we restrict the minimum variance to be 0.001 or
about a 3% clear-sky index RMS error to avoid exact interpolation
at sensor locations. With R calculated from the ground sensor data,
we describe various ways to parameterize P next.
4. Covariance parameterization and correlation structure

Choosing an appropriate background error covariance matrix is
an important step in the OI method for this application and deter-
mines how well OI performs. The background error covariance
matrix, P, defines how information is transferred from sensor
es using the UASIBS (left column) and SE (right column) satellite image to ground
case, UASIBS failed to produce many clouds. OI adds clouds to the analysis and also
clouds. OI reduces the cloud amount while keeping clouds in suitable locations.
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observation locations to locations throughout the background
image. Similar to R; P is defined such that

xb ¼ xt þ g; g � Nð0;PÞ ð4Þ
where xt is the ‘‘true” value of the satellite derived clear-sky index
image and g is a random vector sampled from a multivariate normal
distribution with mean 0 and covariance P.

We will now describe three methods to calculate P:

1. Empirical: P calculated empirically from all of the background
images,

2. Spatial: Pwith correlations parameterized based on the physical
distance between pixels, and

3. Cloudiness: P with correlations parameterized based on the dif-
ference in cloudiness between each pixel.

4.1. Empirical covariance

The empirical P is calculated by assuming that satellite-derived
clear-sky index images are sampled from the same multivariate
normal distribution and then simply computing the covariance
using all images in the training data set. This assumption is likely
invalid given the high probability of clear days leading to a non-
Gaussian distribution. An analysis computed with this type of P
gives non-physical results, as described in Section 7, but is
included for comparison.

4.2. Correlation matrix parameterization

Before describing spatial and cloudiness covariances, it is useful
to decompose P into a diagonal variance matrix, D, and a correla-
tion matrix, C as

P ¼ D1=2CD1=2: ð5Þ
Here, D sets the scale of the errors while C describes how errors and
information spread. We obtain D in a similar manner as we do for R,
we use a number of clear images from the training data set to esti-
mate the variance of each pixel in the background individually. The
errors in xb come mainly from the satellite image to ground irradi-
ance conversion that often exhibits large differences in error
between clear and cloudy images. Thus, we allow for a tunable scal-
ing factor, d, in the construction of D for cloudy images to account
for possible model error differences between clear and cloudy skies
so that

D ¼ dD0 ð6Þ
where D0 is the variance estimated from the clear images.

The correlation matrix C defines how information is transferred
from the sensor locations to other locations in the satellite esti-
mate. C can be parameterized based on the spatial distance
between points in the background as in Ruiz-Arias et al. (2015)
or, as we demonstrate, one might rely on information in the cur-
rent satellite image, such as cloudiness.

To construct the elements of C; cij, we apply a correlation func-
tion, k, to the distance metric r computed between each pixel i and
j

cij ¼ kðrijÞ: ð7Þ
Any number of covariance functions, k, can be chosen; see

Rasmussen and Williams (2005) for a partial list. We chose to
study a piece-wise linear correlation function

kðrÞ ¼ 1� r
l r < l

0 r P l

�
; ð8Þ

an exponential correlation function
kðrÞ ¼ exp � r
l

� �
; ð9Þ

and a square exponential correlation function

kðrÞ ¼ exp � r2

l2

� �
: ð10Þ

For each correlation function, l is a characteristic length that we
tune with a training data set for each choice of k to minimize error
as described later in Section 6.

4.3. Spatial covariance

The distance metric for the spatial correlation parameterization
is the standard Euclidean distance (once locations are mapped to a
two dimensional plane using a map projection),

rij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxi � xjÞ2 þ ðyi � yjÞ2

q
: ð11Þ

Thus, the spatial covariance P is constructed by applying Eqs. (5)–
(7) and (11) with a tuned k; l, and d as described in Section 6.

4.4. Cloudiness covariance

For what we call cloudiness covariance, we parameterize C
based on the difference in cloudiness in the visible satellite image.
This corresponds to only adjusting the cloudy areas with observa-
tions that are experiencing similarly cloudy sky and leaving the
clear areas to be adjusted by observations of the clear sky. This
adjustment is made without consideration of the spatial distance
between pixels. We use the adjusted visible albedo calculated from
the visible satellite image rather than the processed clear-sky
index maps to compute the correlation. This avoids cloud repre-
sentation errors that may arise in the satellite to irradiance conver-
sion; for example, note how UASIBS fails to produce clouds in
many areas of Fig. 2. Also note that because this parameterization
depends on the visible satellite image, C and subsequently P are
calculated for each image individually.

To calculate the adjusted visible albedo, we convert the visible
brightness counts from the satellite, bi, to visible albedo and divide
by the cosine of the solar zenith angle, /, to correct for the time of
day:

v i ¼ bi

255

� �2
,

cosð/iÞ: ð12Þ

An example of this adjusted visible albedo is shown in Fig. 1. We
also remove the constant (over the three months we studied) back-
ground albedo that is due to the land surface. This background is
calculated as the average of the adjusted visible albedo on clear
days in the training set so that

zi ¼ v i � �vclear
i ð13Þ

The distance metric for the cloudiness correlation parameteri-
zation is the absolute value of the difference between pixel values
of the adjusted visible albedo image (with the land surface back-
ground removed):

rij ¼ jzi � zjj: ð14Þ
Thus, the cloudiness covariance P is constructed by applying

Eqs. (5)–(7) and (12)–(14) with a tuned k; l, and d for each individ-
ual satellite image.

4.5. OI summary

In summary, to perform OI, one must first collect background,
xb, and observation, y, data. Then define observation error covari-
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ances, R, from the observation data and define the background
error covariances, P, either empirically or by following the above
procedure after choosing a distance metric r, the correlation func-
tion k, the correlation length l, and the scaling factor d using Eqs.
(5)–(7). Finally, Eqs. (1) and (2) can be used to compute the analy-
sis, xa.
5. Geolocation correction

It is important to consider errors in the tagged location for each
satellite pixel compared to the ground sensors and the time-stamp
of the image. Furthermore, one must take into account the position
of the sun in order to predict the cloud shadow location on the
ground. If this cloud shadow location is inaccurate, the optimal
interpolation routine may perform poorly, or worse, may invert
the cloudy and clear areas of the images. Examples of an inverted
analysis and the corrected analysis once these position adjust-
ments are taken into account are shown in Fig. 3.

The first geolocation issue is called parallax, which is the dis-
crepancy between the actual location and the location tagged by
a satellite due to the satellite viewing the scene at an angle
(Vicente et al., 2010). The GOES-W satellite is located at 135�W
on the equator while Tucson, AZ is at roughly 32�N and 110�W.
The satellite tags the location of each pixel as if it were at the sur-
face. This means, for our region, that a cloud obscures a pixel that is
to the NE of the cloud. Thus, the actual location of the cloud is to
the SW of what the satellite tags the pixel as.

Another source of error is a timing issue that arises because the
satellite tags each image with a single time, however it may take
Fig. 3. An example of a time when errors in geolocation of the satellite image result i
estimate in this case (upper right) agrees well with the visible satellite image (upper le
should be clear according to the visible image and sometimes makes areas that should ha
(lower right) that is consistent with the visible image.
the satellite 30 min to sweep and capture that image. Thus, there
is uncertainty in the time that any part of the image was captured.

Estimating where the cloud shadow falls on the surface due to
solar position effects is the final geolocation issue we take into
account. If the shape and height of the clouds is known, the correc-
tion for both parallax and solar position is a simple geometry prob-
lem. However, cloud shape and height are difficult to determine
with sufficient accuracy, and we rely only on an estimate of the
height of the top of the clouds and ignore the vertical thickness.
We also assume that the cloud height is uniform in one image.

Given these limitations, we use a simple strategy to correct for
geolocation errors. We find a single optimal cloud height by mini-
mizing the mean squared error (MSE) between the OI analysis and
sensors that are not used to perform OI. The sensors not used are
the same cross-validation sensors we will discuss next. We per-
form this correction using a grid search for cloud heights ranging
from 0 to 14 km and we shift the entire background image based
on that height, perform OI, then calculate the MSE. Once the height
that minimizes MSE is found, we perform OI again on the shifted
background image and save the analysis as our result for the given
time. This technique assumes that there is a single cloud layer,
which is not always the case and can be improved in the future.
6. Tuning OI to a specific location

As discussed in Section 4.2, k; l, and d are tunable parameters
that determine how information is spread through the image. In
order to find suitable values of these parameters, we split the
satellite images into a training and a verification set as described
n an analysis that is inconsistent with the actual satellite image. The background
ft). However, after performing OI, the analysis (lower left) has clouds in areas that
ve clouds clear. After shifting the background image slightly, OI produces an analysis
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in Section 2.3, and tuning is only performed with the training set.
Furthermore, we perform a six fold cross-validation over the sen-
sors in order to validate the model at locations not included in
the OI calculation. We then perform a grid search through the
parameter space and define the optimal parameters as those that
give the lowest mean (over the cross-validation sets) MSE of the
withheld sensors. This tuning is performed for both spatial and
Table 1
Optimal parameters for the UASIBS and SE models for both cloudiness and spatial covar
kilometers for spatial covariances.

d

UASIBS Cloudiness 1
Spatial 2

SE Cloudiness 1
Spatial 0

Fig. 4. Scatter plots of predicted versus measured clear-sky index (top row) and GHI (b
campus for both the UASIBS model (left column) and SE model (right column). The ana
Table 1, and the verification data set. Data from the background images is plotted as b
multiplying clear-sky indices and an appropriate clear-sky profile. In each case, we see th
notice that the UASIBS model does not predict clear-sky index values from roughly 0.6 to
of the references to color in this figure legend, the reader is referred to the web version
cloudiness correlation parameterizations and for both the SE and
UASIBS models.

The optimal parameters for theUASIBS and SEmodels using both
cloudiness and spatial covariances computed only using the training
data are presented in Table 1. We note that these parameters are
optimal for Tucson, AZ. Other areas, sensors, or study periods may
require a different parameterization of the error covariances.
iances. l has units of adjusted visible albedo for cloudiness covariances and units of

l k

56 0.2 Linear
25 20 Exp.

.56 0.6 Exp.

.25 100 Exp.

ottom row) for the calibrated NREL MIDC GHI sensor on the University of Arizona
lysis was computed using cloudiness covariance, the optimal parameters listed in
lue �’s and data from the OI analysis is plotted as orange +’s. GHI is computed by
at the analysis values are more tightly scattered around the dashed y ¼ x line. Also
0.8 but that the analysis does move some values into this range. (For interpretation
of this article.)



Table 2
Error statistics for the NREL MIDC sensor on the University of Arizona campus. The
analysis was computed with only the MIDC sensor withheld and averaged over the
verification data set, and cloudiness covariance was used. Both the UASIBS and SE
models show improvements and have a similar analysis RMSE. Units are W/m2.

MBE MAE RMSE

UASIBS analysis 4.16 27.2 71.1
UASIBS background 20.7 38.8 98.8
SE analysis 11.2 36.0 72.7
SE background �86.1 107 140
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In general, the minimum MSE is sensitive to the parameter
choice with the most sensitivity shown for l and least sensitivity
for k. A small change in l (0.1 for cloudiness and 10 km for spatial)
typically degrades the MSE by 10% or more. One exception is the
combination of the SE model and spatial covariance which produce
MSE surfaces that are less sensitive to a range of parameters, for
example a 40 km difference in l only raises the MSE by 10%.

Large d values for the UASIBS model indicate that the estimated
variance from only the clear days is too low. This is because UASIBS
suppresses many clouds or slight variations on clear days. An
example of this on a cloudy day is shown in Fig. 2. A value of
d < 1 for the SE model indicates that the model tends to overesti-
mate the variance on cloudy days as a result of the tendency to
overproduce clouds even at times that should be clear.

Our proposed tuning process is computationally intensive but
manageable; computation for one set of (k; l; d) and one cross-
validation set using 24 cores of two Intel Xeon E5-2690 v3 proces-
sors takes nearly 10 min. Thus, to tune over the six cross-validation
sets, three choices of k, ten choices of both l and d, spatial and
cloudiness correlation parameterizations, and the SE and UASIBS
models would take nearly 7 weeks on a single 24 core machine.
It would take a typical 4 core laptop or desktop nearly a year to
perform the same tuning. To speed up this tuning, the bulk of
the operations were converted to GPU code which decreased the
run-time for a single parameter set over the test data to 5 min
using a single GPU. We used the University of Arizona’s El Gato
supercomputer, which has 140 NVIDIA K20x GPUs, to perform
the tuning in a matter of days. Once tuning is complete, OI can
be computed in under five seconds for each image.
Fig. 5. Clear-sky index cross-validation error statistics for the UASIBS and SE
models before (background) and after (analysis) performing OI using cloudiness
covariance with the optimal parameters listed in Table 1. The error statistics were
computed by averaging over the withheld sensors, the cross-validation runs, and
the verification times. The SE model initially has a large bias that is corrected by the
analysis. After analysis, both the UASIBS and SE models have similar RMSE.

Table 3
Clear-sky index error statistics using the UASIBS and SE models with cloudiness,
spatial, or empirical covariance parameterizations. Errors are calculated by averaging
over the withheld sensors, cross-validation runs, and verification images. OI using any
of the covariance methods improves upon the background for both models. All errors
are in units of clear-sky index.

MBE MAE RMSE

UASIBS model
Cloudiness analysis 0.003 0.039 0.097
Spatial analysis 0.004 0.038 0.099
Empirical analysis 0.000 0.043 0.105
Background 0.022 0.045 0.115

SE model
Cloudiness analysis �0.001 0.050 0.102
Spatial analysis �0.005 0.051 0.105
Empirical analysis �0.001 0.051 0.106
Background �0.132 0.156 0.201
7. Results and discussion

We compute the OI analysis on each of the images in the veri-
fication data set using optimal parameters found in Section 6. First,
we compute the analysis of the verification data by only withhold-
ing the NREL MIDC GHI sensor at the University of Arizona, and
later we calculate errors while performing six fold cross-
validation over the sensors.

Scatter plots of predicted versus measured values at the NREL
MIDC sensor using cloudiness covariance are shown in Fig. 4. In
the clear-sky index scatter plots, we see that the UASIBS model
under-predicts clouds while the SE model over-predicts clouds. It
is interesting to note that the UASIBS model does not predict
clear-sky index values between 0.6 and 0.8, and that OI helps to fill
in this gap. The GHI scatter plots show that the analysis performs
well and is more tightly scattered around the y ¼ x line with min-
imal bias. It is especially striking to note how well OI improves the
GHI estimates for the SE model. Figs. 2 and 4 also demonstrate that
OI is not simply a bias correction applied to the whole background
because the analysis is not a linear (or even polynomial) function
applied to the background values. This is especially evident in
the scatter plot of GHI for the SE model (lower right of Fig. 4).

We compute the mean bias error (MBE), mean absolute error
(MAE), and root mean squared error (RMSE) over the verification
data with 5 min average sensor data and ‘‘instantaneous” satellite
estimates. For RMSE, the square root is computed after all averag-
ing computations. The errors in GHI when only the NREL MIDC sen-
sor was withheld from the OI routine and converting clear-sky
index to GHI using the sensor’s clear-sky profile are shown in
Table 2.

To calculate the errors over the cross-validation sensors in order
to validate OI at locations not included in the algorithm, we aver-
aged over the withheld sensors, the cross-validation runs, and the
verification images. Fig. 5 shows the reduction in errors for the
UASIBS and SE models using cloudiness covariance for the analysis
errors as compared to the background errors. Table 3 presents the
errors for the background and analysis computed with each covari-
ance method for the UASIBS and SE models, respectively. Analyzing
Figs. 4 and 5 and Tables 2 and 3, we see that the SE model initially
has a large bias that is corrected in the analysis. This also leads to
large MAE and RMSE relative improvements of 68% and 50%,
respectively. The analysis using the best covariance parameteriza-
tion for UASIBS had a RMSE relative improvement of 16%.

Furthermore, it is interesting to see that the errors after optimal
interpolation are similar for both the UASIBS and SE models. We
interpret this as evidence that one can use the relatively simple



Fig. 6. Example of OI using empirical, spatial, and cloudiness covariance with the UASIBS model. The upper left shows the visible image taken from the satellite with the
surface albedo removed. The upper right shows the analysis using cloudiness covariance that generally agrees with the visible albedo image. The analysis computed with an
empirical covariance matrix (bottom left) generates clouds in the lower left of the image that are not present in the visible albedo image. The spatial covariance analysis
(bottom right) shows a smoothly varying and thin ‘‘background cloud” that is inconsistent with the visible albedo image.
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semi-empirical model with optimal interpolation and still obtain
irradiance estimates that are comparable in quality to estimates
from more complicated, physics-based models. This also suggests
that the optimal interpolation routine that we have presented is
likely to work with satellite image to irradiance models that were
not studied here.

OI assumes that the background error is unbiased and Gaussian
as described in Eq. (4). However, it is clear from Fig. 5 that the SE
background is biased. From Fig. 4, it also appears that the UASIBS
background is not Gaussian. Thus, we cannot assume that this
application of OI yielded the best linear unbiased estimate, but
we show that OI still produces measurable improvements.

The results in Table 3 indicate that any of the three methods to
compute the background error covariance matrix produce an anal-
ysis that improves upon the background. However, when we sub-
jectively compare the analysis of the covariance models, as in
Fig. 6, we see that analysis using the cloudiness covariance method
better represents the cloud pattern depicted in the visible satellite
image. Clouds produced using the spatial and empirical covariance
methods are physically inconsistent with the clouds depicted in
the visible albedo image. For example, the lower left corner of
the images in Fig. 6 should have no clouds present according to
the visible albedo image, but the empirical covariance analysis
has clouds present in that region. The analysis produced using spa-
tial covariance shows a thin and smoothly varying ‘‘background
cloud” that is simply not observed in the visible albedo image. Fur-
thermore, the cloudiness covariance parameterization is calculated
for each satellite image individually which likely leads to a better
modeling of the spatial heterogeneity of irradiance. Thus, we rec-
ommend the cloudiness covariance parameterization as the
method of choice, but additional verification sensors evenly dis-
tributed throughout the study area may help to better distinguish
the parameterizations through objective measures.
8. Conclusions

We presented an application of optimal interpolation that com-
bines ground irradiance sensor data with a satellite derived esti-
mate of irradiance. We systematically analyzed three methods to
choose an error covariance matrix for the satellite derived GHI esti-
mates. This covariance matrix is critical to the success of OI. We
observed the best results by assigning covariances based on the
differences in cloudiness rather than spatial or empirical covari-
ances. Our implementation of OI was trained and evaluated using
three months of data in Tucson, AZ. We tuned the model parame-
ters over one-third of the data, and presented the results of OI over
the remaining two-thirds.

The results show that OI improves the entire satellite derived
irradiance field with data from only a small number of point loca-
tions. Furthermore, the success of OI with different satellite
derived irradiance models indicates that OI is likely applicable to
satellite derived irradiance models not described in this paper.

In future work, we wish to study if OI is applicable to larger
areas than the city scale studied here. If, for example, clouds form
because of the same physical forcings, OI using cloudiness covari-
ance may be able to use sensors in Tucson to improve irradiance
estimates 100 miles away in Phoenix. Furthermore, OI as described
in this paper can be extended to a Kalman filter with the use of a
cloud advection model. This allows forecasts to be made that also
incorporate previous satellite and ground sensor data instead of
relying on a single snapshot in time.
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