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Isogeny Classes of Abelian Varieties over Finite Fields in the

LMFDB

Taylor Dupuy, Kiran Kedlaya, David Roe, Christelle Vincent

September 22, 2020

Abstract

This document is intended to summarize the theory and methods behind fq_isog collection
inside the ab_var database in the LMFDB as well as some observations gleaned from these
databases. This collection consists of tables of Weil q-polynomials, which by the Honda-Tate
theorem are in bijection with isogeny classes of abelian varieties over finite fields.
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1 Introduction

The LMFDB (L-Functions and Modular Forms Database) includes a database of isogeny classes
of abelian varieties defined over finite fields. This database can be accessed at https://www.

lmfdb.org/Variety/Abelian/Fq/. The purposes of this paper are on the one hand to document
the theoretical results on which these methods depend (§2) and some of the algorithms used to
compile the data (§3); and on the other hand to extract some observations from the compiled data,
including comparison of some statistical data with relevant heuristics (§4) and collecting some
examples pertaining to theorems and conjectures in the literature (§5).

For small dimension g and prime power q = pr, the database contains searchable lists of complete
sets of isogeny classes of abelian varieties of dimension g over Fq. Table 1 shows the range of g and
q covered by the database as well as the total number of isogeny classes of a given dimension.

We note that by “Bound on q” we mean that the set of isogeny classes of abelian varieties over
Fq has been computed for every prime power less than or equal to q. In dimensions g = 1 and
2, isogeny classes of abelian varieties defined over Fq for powers of 2, 3, 5, and 7 up to 1024 have
also been included. The isogeny class count is the total count of isogeny classes in the database,
including for q a power of 2, 3, 5, and 7 up to 1024 in dimensions 1 and 2.

For each isogeny class, we report a variety of invariants including the following:

• L-polynomial;

• Newton polygon (and hence p-rank and ordinarity);
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Dimension Bound on q Isogeny class count

1 499 6184
2 211 1253897
3 25 1055307
4 5 183607
5 3 281790
6 2 164937

Table 1: The number of isogeny classes for each dimension.

• endomorphism algebra;

• Frobenius angles and angle rank;

• whether the isogeny class contains a principally polarized abelian variety or even a Jacobian
(when known);

• whether the isogeny class is simple;

• when it is simple, the number field defined by the L-polynomial, and the Galois group of its
splitting field;

• when it is not simple, the simple isogeny factors appearing in its decomposition;

• whether the isogeny class is geometrically simple;

• the point counts over small extensions of the base field;

• if the isogeny class contains a Jacobian, the point counts for its curve over small extensions of
the base field (if the isogeny class is not known to contain a Jacobian, the same computation
is performed and referred to as the point counts of the “virtual curve” associated to this
isogeny class);

• whether the isogeny class is a base change of an isogeny class defined over a smaller field (i.e.,
whether the isogeny class is primitive), and if it is not primitive, the primitive isogeny classes
for which it is a base change;

• the twists of the isogeny class: the isogeny classes to which it becomes isogenous after a base
change.

Some of the questions we kept in mind in our analysis of the data are:

• How does the number of objects in the database vary with g and q?

• How are these objects distributed if we sort with respect to the Galois group, Newton polygon,
or angle rank?

• How is the number of points on the abelian variety distributed? Does this change if we fix
other invariants?
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• What are the extreme values of the number of points?

There are, of course, many more questions one can ask, but some would require further data
compilation; this is especially true for questions regarding the distinction between Jacobians of
curves and more general abelian varieties. We discuss possible future directions of inquiry at the
very end of the paper (§6).

We conclude this introduction by directing the reader to some of the highights of the paper.

• A tabulation of Galois groups of Weil polynomials (§4.2). We attempt to explain the results
using Malle’s heuristics on the distribution of Galois groups of number fields, but the constants
appearing in this method do not fit well with the data.

• Verification of some cases of a conjecture by Pries on the existence of abelian varieties over
Fp with prescribed p-ranks (Problem 4.5).

• A list of possible combinations of p-rank, angle rank and Galois groups for a fixed p-rank
(§4.4). This is closely related to the Tate conjecture for abelian varieties, as in the work of
Lenstra and Zarhin [LZ93].

• Some analysis of the endomorphisms algebras for abelian varieties over Fq for small g and q,
in line with a question of Oort (§4.5).

• An analysis of point counts on abelian varieties on average over isogeny classes, rather than
over isomorphism classes (§4.6). The data suggests a fit not to the Sato-Tate distribution, but
an alternate distribution which we have not found in the literature (called herein the isogeny
Sato-Tate distribution).

• A characterization of maximal and minimal abelian varieties, including an explanation of how
they are unrelated to maximality and minimality of curves, as well as some open questions
regarding simple abelian varieties (§4.7).

• An example of a supersingular curve of genus 5 in characteristic 3, whose existence we were
unable to infer from any general constructions (Example 5.11).

• Some counterexamples against a conjecture by Ahmadi-Sparlinski concerning the angle rank
of ordinary Jacobians (Example 5.15).
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2 Background

In this section, we recall various standard facts about abelian varieties and their zeta functions.

2.1 Weil Numbers, Characteristic Polynomials of Frobenius, and Zeta Func-
tions

Here we follow [FO08, pg. 9] (up to a sign convention). Let Qalg be an algebraic closure of Q, Zalg

be the ring of algebraic integers in Qalg, and w ∈ Z. A Weil q-number of weight w is an element
α ∈ Qalg satisfying:

1. there exists i ∈ N such that qiα ∈ Zalg; and

2. for any embedding ψ : Qalg → C, |ψ(α)| = qw/2.

Hereafter we only consider Weil q-numbers which are effective, meaning that α ∈ Zalg (and hence
w ≥ 0).

Such numbers arise from the zeta functions of varieties over finite fields as follows: Let X be a
variety over Fq, a finite field of cardinality q and characteristic p. Then we define

Z(X/Fq, T ) := exp

∑
n≥1

#X(Fqn)
Tn

n

 .

For any Weil cohomology theoryX 7→ Hw(X) (e.g., `-adic étale cohomology for ` 6= p, or Berthelot’s
p-adic rigid cohomology), we have

Z(X/Fq, T ) =

2 dim(X)∏
w=0

Lw(T )(−1)
1+w

, Lw(T ) := det(1− FT |Hw(X)),

where F : X → X denotes the action of Frobenius.
If X is smooth and proper of dimension n, then the eigenvalues of F on Hw(X) are Weil

q-numbers of weight w; for étale cohomology this is Deligne’s theorem [Del74], while for rigid
cohomology it follows from Deligne’s theorem by a result of Katz–Messing [KM74]. Also, if we
define ζ(X, s) := Z(X/Fq, q

−s), then we have a functional equation

ζ(X,n− s) = ±(qn/2q−s)χtopζ(X, s)

which follows from Poincaré duality (see [FK88, §II.1] for the étale case and [Ked06a] for the p-
adic case). In the displayed formula above, χtop is the topological Euler characteristic; if X is the
reduction of a variety over a number field then χtop is the alternating sum of the Betti numbers
of the cohomology of the complex manifold obtained by taking the C-points of the variety in
characteristic zero.
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In the special case where X = A is an abelian variety of dimension g, dimH1(A) = 2g and
Hw(A) = ∧wH1(A) for w = 0, . . . , 2g. We summarize this second relation by saying that Lw(T ) =
∧wL1(T ). We refer to L1(T ) as the L-polynomial of A and to its reverse det(T −F |H1(X)) as the
characteristic polynomial ofA, or the Weil polynomial ofA. We use these two terms interchangeably
throughout the text.

2.2 Weil Polynomials

Define a Weil q-polynomial (or Weil polynomial when q is understood) to be a monic polynomial
over Z whose roots are all Weil q-numbers of weight 1. (Since we are exclusively interested in
abelian varieties, we consider only Weil q-numbers of weight 1 in what follows.) A standard first
step in classifying Weil polynomials is the following observation left as an exercise to the reader.

Proposition 2.1. Let f ∈ Q[T ] be an irreducible polynomial with all real roots. Let β ∈ R satisfy
f(β) = 0. Choose q = pn such that for all ψ : Q(β)→ R we have ψ(β)2 − 4q < 0. If π is a zero of
T 2 − βT + q = 0, then π is a Weil q-number of weight 1.

As a converse, we have the following characterization of Weil q-numbers.

Lemma 2.2 (Weil q-number characterization). Let π be a Weil q-number of weight 1.

1. If Q(π) has a real embedding, then π = ±√q.

2. Suppose that ψ : Q(π)→ C is a non-real embedding, then

(a) β := π + q/π is totally real;

(b) Q(π) is a CM-field with maximal totally real subfield Q(β), and π has no real embeddings;

(c) π is a solution of T 2 − βT + q where ψ(β2 − 4q) < 0 for all ψ : Q(π)→ C.

Proof. 1. In this case, ψ(π)2 = ψ(π)ψ(π) = q.

2. (a) Since π has absolute value
√
q in every embedding, q/π is its complex conjugate.

(b) The fact that Q(π) is CM is [Hon68, Proposition 4], and the second part follows.

(c) Consider the equation
T 2 − βT + q = 0.

Let γ = π − q/π and note that β2 − 4q = γ2. The quadratic formula gives 1
2(β ± γ)

as the solutions, which simplify to π and q/π. The second half of the statement follows
from the fact that π has no real embeddings.

2.3 Weil Polynomials and Isogeny Classes of Abelian Varieties

For most classes of varieties over a fixed finite field, among the possible zeta functions consistent
with the Weil conjectures, it is difficult to predict in advance exactly which ones occur. However,
for abelian varieties, this question is completely solved by the Honda-Tate theorem; we follow the
treatment of this result given in [WM71].
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Let A and B be abelian varieties over Fq with characteristic polynomials

PA(T ) := det(T − F |H1(A)), PB(T ) := det(T − F |H1(B));

these are Weil q-polynomials. The Honda-Tate theorem makes the following assertions:

• PA divides PB if and only if B is isogenous (over Fq) to a product in which A occurs as a
factor; in particular, A and B are isogenous if and only if PA = PB.

• If A is simple, then PA = heA for some irreducible hA(T ) ∈ Z[T ] and some positive integer
e = eA which can be read off explicitly from hA (see below).

• Every irreducible Weil q-polynomial occurs as hA for some A (which is unique up to isogeny).

We explain the rule for computing eA forA simple in the context of analyzing the Q-endomorphism
algebra E := End0(A/Fq). Let π be the class of T in Q(π) := Q[T ]/(hA(T )), and identify π with
the action of Frobenius in E. Then E is a division algebra with center Q(π) and

2g = [Q(π) : Q]eA, eA =
√

[E : Q(π)].

The Brauer invariant invv(E) of E at a place v of Q(π) is given as follows:

• For v finite and not lying above p, invv(E) = 0.

• For v finite and lying above p,

invv(E) ≡ −(logq |π|v)[Kv : Qp] (mod Z).

• For v archimedean, invv(E) = 1
2 if v is real (which by Lemma 2.2 means π = ±√q) and 0

otherwise.

The exponent eA can now be computed as

eA = lcdv{invv(E)},

where lcd denotes the least common denominator. In particular, eA = 1 whenever A is ordinary or
“almost ordinary” (see §2.4).

2.4 Newton Polygons, p-rank and Ordinarity

Let A be an abelian variety over Fq and define PA as in §2.3. The normalized Newton polygon of
PA is the lower convex hull of the set{(

i,
ordp(ai)

ordp(q)

)
: i = 0, . . . , 2g

}
where PA(T ) = T 2g+a1T

2g−1 + · · ·+a2g. (This is invariant under base extension.) The normalized
Newton polygon of PA is the graph of a piecewise linear function on [0, 2g] with changes of slope
only at integer values. In particular, on each of the intervals [0, 1], . . . , [2g − 1, g] the function has
a unique slope; we call these the slopes of PA(T ). For any place v of K = Q(π) above p, the slopes
of PA(T ) coincide with the ratios v(α)/v(q) as α varies over the roots of PA.

The normalized Newton polygon of A satisfies the following properties:
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• The left endpoint is (0, 0) and the right endpoint is (2g, g).

• The vertices are all lattice points with nonnegative second coordinate.

• The vertices are symmetric: (i, j) is a vertex if and only if (2g− i, g− j) is a vertex. Equiva-
lently, (i, j) lies above the polygon if and only if (2g − i, g − j) does so.

We say that any convex polygon satisfying these conditions is eligible in dimension g. For N,N ′

two eligible polygons, we write N ≤ N ′ if N ′ lies on or above N , and N < N ′ if N ≤ N ′ and
N 6= N ′. The eligible Newton polygons in dimension g form a partially ordered set with unique
minimal and maximal elements. The minimal polygon is the one with vertices (0, 0), (g, 0), (2g, g),
in which the slopes are 0, 1 (each with multiplicity g); when this occurs we say that A is ordinary.
If we exclude the ordinary Newton polygon, then there is again a unique minimal polygon, with
vertices (0, 0), (g − 1, 0), (g + 1, 1), (2g, g); when this occurs we say that A is almost ordinary, as in
[LZ93]. The maximal polygon is the one with vertices (0, 0), (2g, g), in which the slopes are 1

2 (with
multiplicity 2g); when this occurs we say that A is supersingular.

Define the elevation of an eligible Newton polygon N in dimension g as the number of lattice
points (i, j) with 1 ≤ i ≤ g, j ≥ 0 which lie strictly below N . (This is not standard terminology.)

Lemma 2.3. Let N,N ′ be eligible Newton polygons in dimension g with N < N ′. Then there exists
an eligible Newton polygon N ′′ in dimension g such that N < N ′′ ≤ N ′ and the elevation of N ′′ is
one more than that of N .

Proof. Since N < N ′, there must exist a vertex (i, j) of N lying strictly below N ′; by symmetry,
(2g− i, g− j) also lies strictly below N ′. Let N ′′ be the lower convex hull of the set of lattice points
lying on or above N exclusive of (i, j) and (2g − i, g − j); this choice has the desired form.

Corollary 2.4. The poset of eligible Newton polygons in dimension g is catenary: any two maximal
chains between the same endpoint have the same length (namely the difference in elevation).

For any positive integer d, by [Kat81] the Newton polygon defines a locally closed stratification
on the coarse moduli space Ag,d of g-dimensional abelian varieties equipped with a polarization of
degree d2.

Theorem 2.5. Let N be an eligible Newton polygon of dimension g.

1. There is a (nonempty) stratum of Ag,d with Newton polygon N .

2. Each irreducible component of this stratum has codimension equal to the elevation of N .

3. If N is not the supersingular Newton polygon, then the corresponding stratum is geometrically
irreducible.

Proof. For the supersingular Newton polygon, this is contained in [LO98, Theorem 4.9]. For general
N , apply Lemma 2.3 repeatedly to construct a maximal chain N0 < · · · < N1 containing N ,
where N0 and N1 are the ordinary and supersingular Newton polygons. By the supersingular case,
the length of the chain (which is the elevation of N1) equals the codimension of each irreducible
component of the supersingular stratum.

We now appeal to the de Jong–Oort purity theorem [dJO00, Theorem 4.1], which asserts that
the Newton polygon stratification on Ag,d jumps purely in codimension 1. For each Newton polygon
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N in the chosen chain, the union XN of all strata corresponding to Newton polygons on or above
N is a closed subscheme of Ag,d; the codimension of XN starts at 0 for N = N0, increases by at
most 1 at each step, and ends with the elevation of N1. Consequently, it must increase by exactly
1 at each step; from this, the first two claims follow. The third claim is a theorem of Chai–Oort
[CO11, Theorem A].

2.5 Galois Groups

Let π be a Weil q-number. By Lemma 2.2, either π = ±√q or Q(π) is CM; assume hereafter that

the second case occurs. Write Q(π)gal for the Galois closure of Q(π) and set 2d = [Q(π) : Q] = 2g
e .

Let G = Gal(Q(π)gal/Q), considered as a subgroup of S2d by its action on the conjugates of π.

Lemma 2.6. Let G be the Galois group of a Weil q-number π.

1. G is a subgroup of W2d := Cd2 o Sd which acts transitively on the 2d roots, where here W2d is
the wreath product of C2 by Sd.

2. G contains complex conjugation, which is the unique nontrivial element of the center of W2d.

Proof. The fact that G ⊆ W2d and contains complex conjugation follows from [Dod84, Prop 1.1].
Transitivity follows from the fact that Q(π) is a field, the claim that the center of W2d has order
2 follows from its presentation as a semidirect product, and that complex conjugation is central is
[Hon68, Prop 1 (b)].

Note that we usually have d = g. In this case, we conjecture that Lemma 2.6 gives the only
constraints on G:

Conjecture 2.7. Suppose that G is a transitive subgroup of W2g containing complex conjugation.
Then there is a Weil q-number π such that Gal(Q(π)gal/Q) ∼= G.

Note that the condition on containing complex conjugation is necessary: when g = 4 there is a
transitive subgroup of W8 (with transitive label 8T14 and abstractly isomorphic to S4) that does
not contain complex conjugation and thus does not arise as the Galois group of a CM-field.

2.6 Frobenius Angle Rank

For A an abelian variety of dimension g with L-polynomial L(T ) =
∏2g
i=1(1− αiT ), the angle rank

of A is the quantity

δ(A) = dimQ(SpanQ({arg(αi) : 1 ≤ i ≤ 2g} ∪ {π}))− 1 ∈ {0, . . . , g}.

Equivalently, δ(A) equals the number of multiplicatively independent elements in the set {α1, . . . , α2g, q
1/2},

which equals the rank of the Frobenius torus associated to A [Chi92].
The angle rank detects multiplicative relations among the roots of L; these are closely related

to exceptional Hodge classes on powers of A.1 For example, by a theorem of Zarhin [Zar94,

1A Hodge class is an étale cohomology class that is invariant under the twisted action of Frobenius. A Hodge
class is exceptional if it is not in the ring (under cup product) generated by Hodge classes of weight two. The Tate
conjecture states that the space of Hodge classes is spanned by the images of algebraic cycles under the cycle class
map to l-adic cohomology. This remains an open problem.
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Theorem 3.4.3], δ(A) = g if and only if there are no exceptional Hodge classes on any power of A.
On the other end, δ(A) = 0 if and only if A is supersingular; this follows from the fact, proven here
in Example 5.1, that an abelian variety A is supersingular if and only if πA = ζ

√
q for ζ a root of

unity.
Another useful observation is that if A is simple and 0 < δ(A) < g, then the inclusion G ⊆W2d

from Lemma 2.6 must be strict, because the action of G preserves Q-linear relations between π
and the arg(αi). For a more refined version of this statement, and more about angle rank, see
[DKZB20].

2.7 Bounds on Point Counts

Recall that if A is an abelian variety of dimension g over Fq with characteristic polynomial (T −
α1) · · · (T − α2g), then

#A(Fq) = (1− α1) · · · (1− α2g).

The Weil bound implies
(
√
q − 1)2 ≤ #A(Fq)

1/g ≤ (
√
q + 1)2;

this can be sharpened a bit to give

d(√q − 1)2e ≤ #A(Fq)
1/g ≤ b(√q + 1)2c

(see [AHL12, Théorème 1.1] or [AHL13, Corollary 2.2, Corollary 2.14]). For general A, these
bounds are best possible: for g = 1, it follows from the Honda-Tate theorem (or an earlier theorem
of Deuring) that #A(Fq) can take the values q+ 1±b2√qc, and the same is then true for arbitrary
g by taking powers.

In light of the fact (which we just used) that

#(A1 ×Fq A2)(Fq) = #A1(Fq)×#A2(Fq),

it is natural to separately consider what happens when A is required to be simple. In this case, if
we exclude A of low dimension, the Weil bounds can be sharpened further.

Theorem 2.8 ([Kad19, Theorem 2.5]). If A is simple of dimension g > 1, then

b(√q − 1)2c+ 1 ≤ #A(Fq)
1/g ≤ d(√q + 1)2e − 1.

Note that this is an improvement on the bound stated earlier when q is a square.
For small q, one can make some additional improvements:

Theorem 2.9 ([Kad19, Theorem 3.2]). For values of q listed below, one has the following lower
and upper bounds on #A(Fq)

1/g for g ≥ 4. (More precisely, the bounds hold for all g outside
of an explicit finite set of exceptional choices of A, each of which has dimension at most 3; see
[Kad19, Table 2, Table 3].)

q 2 3 4 8 9

lower bound 1 1.359 2.2750 4.635 5.47
upper bound 4.0347 5.6333 7.3818 13.05 14.303
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Looking at an asymptotic version of the question, one can see that there is not much room left
for potential improvement in these bounds. Building on [AHL13], Kadets has shown the following:

Theorem 2.10 ([Kad19, Proposition 1.4, Theorem 1.6]). Define

a(q) := lim inf
A

#A(Fq)
1/g, A(q) := lim sup

A
#A(Fq)

1/g,

where in both cases A varies over simple abelian varieties of dimension g over Fq. Then

b(√q − 1)2c+ 1 ≤ a(q) ≤ d(√q − 1)2e+ 2, b(√q + 1)2c − 2− q−1 ≤ A(q) ≤ d(√q + 1)2e − 1.

The cases where #A(Fq) = 1 have been classified by Madan–Pal (modulo Remark 2.12).

Theorem 2.11 ([MP77, Theorem 4]). Suppose that A is simple of dimension g and that #A(Fq) =
1.

• We must have q ≤ 4. (This is easy: if q ≥ 5, then
√
q − 1 > 1 and the Weil bound implies

the claim.)

• If q = 3 or q = 4, then g = 1. (For q = 4, this is the equality case of the Weil bound. For
q = 3 a more careful argument is needed.)

• If q = 2, then the characteristic polynomial of A belongs to an explicit (infinite) list enumer-
ated in op. cit.

Remark 2.12. In [MP77, Theorem 4], the case q = 2 of Theorem 2.11 is asserted modulo a
conjecture of Robinson [Rob64]: for n a positive integer and ζn = e2πi/n, ζ2n + 6ζn + 1 is not a
square in Q(ζn) unless n = 7 or n = 30. This was confirmed by Robinson [Rob77] using a method
of Cassels [Cas69] and Loxton [Lox72].

Remark 2.13. A closely related question to Theorem 2.11 is to classify simple abelian varieties
A of genus g over Fq for which #A(Fq) = #A(Fqn) for some n > 1 (meaning that A acquires no
new points over Fqn). In [Kad19, Corollary 3.4], it is shown (using Theorem 2.8 and Theorem 2.9)
that this cannot occur for n ≥ 4; for n = 3 it can only occur for q = 2, g = 1; and for n = 2 it
occurs precisely when A is the quadratic isogeny twist (see Definition 3.3) of one of the cases listed
in Theorem 2.11.

This in turn implies a corresponding classification for curves over Fq which acquire no new
points over Fqn , using the classification of function fields of class number one (see Example 5.16).

3 Algorithms

We summarize some of the main algorithms used to compute data about abelian varieties in the
LMFDB. The code [DKRV20] used is available at

https://github.com/LMFDB/abvar-fq.
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3.1 Enumerating Weil Polynomials

We begin with the algorithm for enumerating Weil q-polynomials of fixed degree for a fixed prime
power q. This algorithm originated in [AKR10] and was described in more detail in [Ked08,
Section 5] and [KS16, Section 2], to which the reader is referred for more details.

Remark 3.1. The code for enumerating Weil polynomials was incorporated into Sage-9.1.beta0

[S+20] in January 2020.

As noted earlier, identifying Weil q-polynomials of degree 2g

P (T ) = T 2g + a1T
2g−1 + · · ·+ a2g

is equivalent to identifying polynomials of degree g with integer coefficients

Q(T ) = T g + b1T
g−1 + · · ·+ bg

whose roots are all real and belong to the interval [−2
√
q, 2
√
q], via the relation

P (T ) = T gQ(T + q/T ).

In particular, for any integer i ∈ {1, . . . , g}, a1, . . . , ai uniquely determine b1, . . . , bi and vice versa.
The strategy is to catalog these polynomials recursively: given a putative choice of a1, . . . , ai−1 (or
equivalently b1, . . . , bi−1), use various techniques to impose necessary conditions on ai (or equiva-
lently bi), then recurse on the remaining options. Some of these necessary conditions are as follows:

• Rolle’s theorem: the roots of Q(g−i)(T ) must all be real and belong to [−2
√
q, 2
√
q]. This can

be verified by computing a subresultant (Sturm-Habicht) sequence.

• Connectivity: the set of values of bi satisfying the previous condition is either a closed interval
or empty.

• Power sums: the i-th power sum of the roots of P (T ) must have absolute value at most qi/2.

• Descartes’s rule of signs: the polynomials Q(T + 2
√
q) and (−1)gQ(−2

√
q−T ) have all roots

real and nonpositive, so their coefficients must be nonnegative.

• Hamburger criterion: for s0, s1, . . . the sequence of power sums of Q, the Hankel matrix
s0 s1 s2 · · ·
s1 s2 s3 · · ·
s2 s3 s4 · · ·
...

...
...

. . .


is nonnegative definite (equivalently, its principal minors are nonnegative).

• Hausdorff criterion: for all i, j, the sum of (2
√
q− x)i(2

√
q+ x)j as x varies over the roots of

Q is nonnegative.
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A crucial but counterintuitive point is that while some subsets of these conditions together form
sufficient constraints to identify Weil q-polynomials, no subset gives sufficient “on-line” criteria.
That is, they cannot be applied directly to detect whether a given sequence a1, . . . , ak can be
extended to give the coefficients of some Weil polynomial; the conditions can only be checked once
a full sequence has been generated. Therefore we impose “more” conditions than are sufficient to
cut down the search space as much as possible as early as possible in the computation.

One serious issue with this calculation is that, while it is trivial to check the output for false
positives (e.g., Sage has a built-in function is weil polynomial to test whether a given integer
polynomial is a Weil polynomial), it is rather difficult to check for false negatives other than by
generating Weil polynomials using another method (e.g., by computing zeta functions of abelian
varieties) and checking for their presence. One useful consistency check is to run the computation
for q = 1, where the answer is known: by Kronecker’s theorem, the irreducible Weil q-polynomials
for q = 1 are precisely the cyclotomic polynomials. One can also attempt to use the explicit
descriptions of the spaces of Weil polynomials given for g = 3 in [Hal10], for g = 4 in [HS12],
and for g = 5 in [Soh13]. Our results mostly matched in the g = 3 case (we found a few extra
non-simple examples), while the conditions in [HS12, Thm. 1.1] and [Soh13, Thm. 2.1] were not
actually satisfied by all of the Weil polynomials that we found.

3.2 Point Counts

As noted earlier, for A an abelian variety of dimension g, we have H i(A) = ∧iH1(A) for i =
1, . . . , 2g, so the zeta function of A is determined completely by the L-polynomial L(T ). In partic-
ular, if we write L(T ) =

∏2g
i=1(1− αiT ), then

#A(Fq) =

2g∏
i=1

(1− αi) = L(1).

Similarly, for any positive integer r,

#A(Fqr) =

2g∏
i=1

(1− αri ) = Res(L(T ), T r − 1).

In particular,
#A(Fq2) = L(1)L(−1).

3.3 Curve Point Counts

If A is isogenous to the Jacobian of a curve C, then the sequence cn := #C(Fqn) satisfies

L(T )

(1− T )(1− qT )
= exp

( ∞∑
n=1

cn
n
Tn

)
.

In fact, whether or not A is isogenous to a Jacobian, the sequence cn consists of integers, which
we report as the point counts of a “virtual curve” with Jacobian A. If the cn violate any known
constraints on the point counts of a curve of genus g, then A cannot be isogenous to a Jacobian;
these include trivial constraints (such as c1 ≥ 0 and cmn ≥ cn) and some less trivial ones (e.g., the
Ihara bound2).

2Ihara’s bound is the following: #C(Fq)/q ≤ 1
2
(
√

8q + 1− 1). [Iha81]
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3.4 Base Change, Primitivity and Isogeny Twists

If A is an abelian variety over Fq, then the Weil polynomials for A and for the base change of A to
Fqr are related as follows.

Proposition 3.2. Suppose P (T ) =
∏2g
i=1(T −αi) is the Weil polynomial associated to A/Fq by the

Honda-Tate theorem. Then the Weil polynomial associated to the base change of A to Fqr is

Pr(T ) :=

2g∏
i=1

(T − αri ).

Proof. The roots of P (T ) are the eigenvalues of the action of the q-Frobenius on H1(A), and the
qr-Frobenius is just the rth power of the q-Frobenius.

Definition 3.3. We say that A is primitive if A is not isogenous to the base change of any abelian
variety defined over a subfield of Fq. We say that two abelian varieties A and B are isogeny twists
if they become isogenous after some finite extension of Fq. The isogeny twist class of A is the set
of isogeny twists of A.

Corollary 3.4. If A and B are simple abelian varieties of dimension g over Fq with associated
Weil numbers α and β, then A and B are isogeny twists if and only if α = ζβ for some root of
unity ζ.

We use various methods for computing Pr(T ). The simplest is to just factor P (T ) approximately
over C, raise each root to the rth power and then recognize the coefficients of the product as integers.
In order to make this approach rigorous, one needs to use ball arithmetic in C and increase the
precision if there are multiple integers within the error bounds for any coefficient.

The second approach is to symbolically express the coefficients of Pr(T ) as polynomials in
the coefficients of P (T ) using Newton’s identities to change basis between elementary symmetric
polynomials and power sums. For small values of r the resulting transformation is not difficult
to compute but for values of r larger than about 10 the memory footprint of the algorithm grows
rapidly. We therefore only use this approach for smooth values of r, where cached transformations
can be repeatedly applied to compute the overall base change.

Finally, the base change can be computed using polynomials over the cyclotomic field Q(ζr).
In particular, we can use the identity

Pr(T
r) =

r−1∏
i=0

P (ζirT )

to determine Pr(T ). An equivalent approach is to compute Pr(T ) as the resultant of P (U) and
U r − T .

Since we are enumerating Weil polynomials for many q, we can use these methods for computing
base changes to easily determine which isogeny classes are primitive, and to find primitive models
for those which are not. We simply compute all base changes from Fq to Fqr when both prime
powers are contained in the database.

Determining which abelian varieties are isogeny twists of each other is a little more difficult.
The condition in Corollary 3.4 is difficult to determine directly from Weil polynomials. We can
improve it slightly as follows.
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Proposition 3.5. Two simple abelian varieties A and B are isogenous over Fq if and only if
there exists a number field K containing Galois conjugates π′A and π′B of πA and πB such that
π′AOK = π′BOK .

Proof. The requirement that π′A and π′B generate the same ideal is equivalent to π′A = uπ′B for some
unit u ∈ OK . Then u has absolute value 1 at every finite place, and because |π′A|v = |π′B|v =

√
q

for every infinite place v, u has absolute value 1 at every infinite place as well. Therefore u is a
root of unity by Kronecker and we may invoke Corollary 3.4.

This result is not sufficient for our purposes for two reasons. First, it seems to require compu-
tations in Galois closures since we need to work with arbitrary conjugates of π′A and π′B. Second,
as with Corollary 3.4, it only applies when both A and B are simple, yet it is possible for a simple
abelian variety to be a isogeny twist of a non-simple one.

Instead, we break up the set of isogeny classes for each g and q into clusters based on invariants,
then use a pairwise test to further refine these clusters into isogeny twist classes. Isogeny twists
will have the same slopes and the same geometric endomorphism algebra, whose computation we
describe in the next section. These two invariants are sufficient to divide up isogeny classes into
clusters whose size is already usually in the single digits, and is at most several hundred for the
values of g and q that we consider. We then use the following result for each pair of isogeny classes
in the cluster.

Proposition 3.6 ([CMSV19, Sec. 7.2]). Suppose A and B are abelian varieties over Fq with Weil
polynomials P (T ) and Q(T ). If there is an isogeny from A to B defined over Fqr then the cyclotomic
polynomial Φr(T ) divides the resultant Resz(P (z), z2gQ(T/z)).

If we set m to be the least common multiple of the orders of all cyclotomic polynomials dividing
this resultant, then we can determine whether A and B are isogeny twists by computing the base
changes Pm(T ) and Qm(T ) and checking for equality. Note that to find the product of all cyclotomic
polynomials dividing a given polynomial, it is not necessary to factor it fully; there is a more efficient
algorithm of Beukers–Smyth [BS02, §2] that finds cyclotomic factors using the Euclidean algorithm.
(In Sage, a polynomial over Q has a method cyclotomic part implementing this algorithm.)

3.5 Endomorphism Algebras

The method for determining the Brauer invariants of the endomorphism algebra End0(A/Fq) is
described in Section 2.3; given an irreducible Weil polynomial hA these invariants give the power
eA such that heAA is the characteristic polynomial of an isogeny class of abelian varieties over a finite
field. We can also use Proposition 3.6 with B = A to find all possible extension degrees where the
endomorphism algebra might change, and then compute the endomorphism algebra anew for each
such base change. These two results allow us to, for an isogeny class defined over a finite field Fq,
give the endomorphism algebra of the base change of this isogeny class over any finite extension of
Fq.

We refer to the minimal extension over which all endomorphisms are defined as the endomor-
phism field ; one can search the database by degree of the endomorphism field, which we call the
endomorphism degree.

For the convenience of the reader, we now explain how to describe the endomorphism algebra
of a simple isogeny class A over a finite field Fq given its Brauer invariants and its characteristic
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polynomial. This is enough to describe the endomorphism algebra of any isogeny class, as, if A is
isogenous to an abelian variety

An1
1 ×A

n2
2 × · · · ×A

nr
r

where each Ai is simple and Ai is not isogenous to Aj if i 6= j, then

End0(A/Fq) ∼= Mn1(End(A1/Fq))× · · · ×Mnr(End(Ar/Fq)).

Assume now that A is simple. We begin by determining the center of the endomorphism algebra
of A: If the characteristic polynomial is heAA for hA irreducible, then the center of End0(A/Fq) is
the field Q[x]/hA generated by πA. We then compute the degree of End0(A/Fq) over its center.
Its square root is given by the order of the class of End0(A/Fq) in the Brauer group of its center,
by [Tat66, p. 142]. By the exact sequence

0→ Br(FA)→
⊕
v

Br(FA,v)→ Q/Z→ 0,

where FA = Q[x]/hA, this is the least common denominator of the Brauer invariants of End0(A/Fq),
or more simply put, eA.

To complete our description of End0(A/Fq), we note that by [Tat66, Theorem 2 and its proof],
if Q[x]/hA has a real place, then either Q[x]/hA = Q and End0(A/Fq) is the quaternion algebra
over Q that is ramified at p and ∞, or Q[x]/hA = Q(

√
p) and End0(A/Fq) is the quaternion

algebra over Q(
√
p) ramified at both real places and nowhere else.

Otherwise, Q[x]/hA is totally complex. If eA = 1, then End0(A/Fq) = Q[x]/hA. Other-
wise, End0(A/Fq) is ramified only at places dividing p, and we identify the isomorphism class of
End0(A/Fq) by its degree over Q[x]/hA and its Brauer invariants at the places above p in Q[x]/hA.

3.6 Principal Polarizations

A priori, the isogeny class associated to a Weil polynomial consists of unpolarized abelian varieties.
In particular, to show how polarizations may vary within an isogeny class, we remind the reader of
the following standard facts:

1. For g ≥ 2 and over an algebraically closed field, every abelian variety is isogenous to one that
is principally polarizable.

2. For every field, there exist abelian varieties defined over that field which are not principally
polarizable. For example, over an algebraically closed field of characteristic zero, there is
a simple proof that every principally polarizable abelian variety is isogenous to an abelian
variety without a principal polarization.3 However, this last fact is not true in general, see
Example 5.10.

3. Polarization also behaves poorly under decomposition into isogeny factors: An abelian variety
can be principally polarizable without all of its isogeny factors being principally polarizable.
See [How95, Example 13.8] or 3.2.ac c ad, which contains a Jacobian whose two-dimensional
factor is not principally polarizable.

3See https://mathoverflow.net/questions/16992/non-principally-polarized-complex-abelian-varieties.
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The takeaway from these facts is that the quality of admitting a principal polarization is not
an isogeny invariant. Therefore in the database, when we say that an isogeny class is principally
polarizable, we mean that there exists some abelian variety in the class which is principally polar-
izable.

Of the 2,945,722 isogeny classes in the database, there are only 3037 such that we can not
determine if the class has a principal polarization. These isogeny classes all occur in dimension
greater than 3: 358 are in dimension 4, 515 are in dimension 5, and 2164 are in dimension 6.

We now discuss methods for determining when an isogeny class is principally polarizable. This
code was provided by Howe; the version we use is implemented in the has principally polarizable

function [DKRV20].
For simplicity, the algorithm considers only the case of simple abelian varieties. We note that

since an isogeny class is principally polarizable when all of its isogeny factors are, the database
does indicate that a nonsimple isogeny class is principally polarizable when all of its factors are.
We remind the reader however that, as remarked above, the converse is not true, which does mean
that certain non-simple cases are currently completely out of the reach of our implemented tests,
and might be principally polarizable even though not all of their factors are.

Our algorithm depends on the dimension of the isogeny class: In the case g = 1, every isogeny
class is principally polarizable. In the case g = 2, we apply a result of [HMNR08], which tests
for principal polarizations based on a condition on the coefficients of the Weil polynomial. These
conditions are that an isogeny class is not principally polarizable if and only if a21− a2 = q, a2 < 0,
and every prime divisor of a2 is 1 mod 3.

We now list the collection of tests that are implemented in the database in higher dimension.
First, if g is odd and A is simple then its isogeny class is principally polarizable, which takes care
of g = 3 and g = 5.

In addition, in the ordinary case, we can completely determine whether an isogeny class is
principally polarizable, using Corollary 11.4 and Proposition 11.5 of [How95]. We note that the
details of the proofs are given in §14 of [How93] for readers who would like to see them. The test
relies on the fact that in the ordinary case, NK/Q(π− q/π) is always a square and we can consider
its positive square root N . If q > 2, there is a principally polarized variety in the isogeny class
if and only if N ≡ (coeff of T g) mod q. If q = 2, we have a similar congruence condition but for
a power of 2: there is a principally polarized abelian variety in the isogeny class if and only if
N ≡ (coeff of T g) mod 22.

Remark 3.7. In [How95], Howe gives in fact algorithm for determining when an ordinary isogeny
class (simple or not) contains a principally polarizable variety, but the non-simple case has not
been implemented yet and we did not implement it for the database.

Remark 3.8. Howe has explained to us that the congruence conditions come from wanting to
determine if N , the positive square root of NK/Q(π+ q/π), is the same as the square root specified
by certain p-adic conditions. The result is then explained by the fact that the middle coefficient of
the Weil polynomial is congruent modulo q to the square root specified by the p-adic conditions.
When q > 2, the congruence is enough to compare the signs of the two square roots. However,
when q = 2 we have 1 ≡ −1 mod 2, which explains the need to work modulo 4.

Finally, in even dimension, we verify some conditions on the field K generated by the Weil
q-number π to allow us to determine if certain isogeny classes are principally polarizable (this is
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[How96, Theorem 1.1]). First, if K is totally real then the class is principally polarizable. (Although
if g ≥ 4 and A is simple, K is always a CM field.) Otherwise, K is a CM field. To set up the
notation we will need, let P (T ) be the characteristic polynomial of an isogeny class of abelian
varieties. Write P (T ) = h(T )e for h irreducible; then h is the minimal polynomial of a Weil q-
number π. Let K = Q(π) and K+ = Q(π + q/π) be the CM field and its totally real subfield,
respectively. Then we know that there is a principally polarizable abelian variety in the isogeny
class associated to P (T ) if either K/K+ is ramified at a finite prime, or there is a prime of K+ that
divides π − q/π and is inert in K/K+. We note that this second condition requires some work to
test for, and we use the fact that a prime is inert in K/K+ if and only if the prime ideal is equal
to its complex conjugate to do so.

3.7 Jacobian Testing

Given a characteristic polynomial, to test if there exists a Jacobian with this characteristic poly-
nomial, we apply six results from Howe and Lauter’s Magma package http://ewhowe.com/Magma/

IsogenyClasses.magma. (They were re-implemented for the LMFDB by Howe.) This code ac-
companies the paper [HL12]; see especially Section 6 of the article for a high-level overview of the
software. In addition, the comments in the code are excellent, so rather than repeat an explana-
tion of the tests, we refer the reader to these two excellent references. We note that currently the
LMFDB does not implement positive Jacobian testing in genus 4 and higher.

3.8 Angle Rank

We have two algorithms to compute the angle rank of an isogeny class of abelian varieties: one that
is numerical, and one that is algebraic and therefore yields a provably true answer. In the current
version of the LMFDB, the angle rank δ(A) is computed numerically using lattice basis reduction.

This is done in the following way: We first approximate the roots αi of the characteristic
polynomial P (T ) numerically as pairs of floats (the real and imaginary parts of the number). We
then pair each root αi to its complex conjugate (which is also a root of P (T )) and retain only one
number from each pair of complex conjugates, as we know that arg(αi)/2π and arg(αi)/2π have
a linear relation over Q. Following this, we compute arg(αi)/2π numerically (using the principal
branch of the logarithm) for the g remaining αi to get values t1, . . . , tg. Finally, to determine
the dimension of the Q-span of the appropriate set (the reader can go to §2.6 for a reminder of
the definition of angle rank), we apply an LLL algorithm with a certain precision to the tuple
[t1, . . . , tg, 1] (PARI’s lindep). Note that in these computations the branch of the logarithm chosen
for the computations does not matter because we eventually take a Q-vector space span with 1.

For the sake of completeness, we present below the algebraic algorithm yielding a provably
true answer as well. Roughly speaking, the algorithm relies on expressing the roots of P (T ) in
a common generating set for some S-units of the splitting field of P (T ). It would of course have
been preferable to use this algorithm in the database instead, but at the time this computation was
performed for the database (2015), the implementation of the software computing S-units in Sage

was not fast enough to deploy on the full database. See Subsection 6.1 for a possible workaround.
We now present the algebraic algorithm: Let A be an abelian variety over Fq where q = pa.

Let K be the splitting field of P (T ) = PA(T ) =
∏2g
i=1(T − αi). For the computation of the angle

rank we consider
Γ = 〈α1, α2, . . . , α2g〉,
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the multiplicative subgroup of K× generated by the roots of PA(T ). In order to compute δ(A) we
use the fact that

rk(Γ) = δ(A).

The first two authors discuss the group Γ in the sister paper [DKZB20], where some explicit relations
are computed. Let S = {P ∈ Spec(OK) : P |p} be the collection of primes of K above p. The key
observation is that Γ is a subgroup of the group of S-units of K:

Γ ≤ O×K,S .

Using Sage we can then compute generators4 for O×K,S :

O×K,S = 〈ζ, u1, . . . , ur〉

where ζ is a root of unity generating the torsion part of O×K,S and u1, . . . , ur are of infinite order,
and attempt to compute the rank of Γ in this basis. Before proceeding, however, we eliminate the
torsion part of Γ, if any: Let m be the cardinality of the group of roots of unity in K×. Then to
compute the rank of Γ it suffices in fact to compute the rank of Γm = 〈αm1 , . . . , αm2g〉, since

rk(Γ) = δ(AFq) = δ(AFqm
) = rk(Γm).

Here, the equality of angle ranks follows from the fact that δ computes Q-linear relations, and
arg(α)/2π and arg(β)/2π have a Q-linear relation if and only if arg(αm)/2π and arg(βm)/2π do.

We then write each αmi in terms of the generating elements uj , and obtain a vector of exponents
with integer coefficients. We then form a r × 2g matrix Y whose columns are these vectors, and
the rank of this matrix gives us our answer:

rk(Y ) = δ(AFq) + 1.

We note that the explicit relations in Γ mentioned above are derived from the matrix Y ; several
examples of these computations can be found in [DKZB20].

4 Statistics vs. Heuristics

This database naturally invites investigation of the following motivating questions:

• How does the number of objects in the database vary with q and g?

• How about if we sort by the Galois group of Q(π), the Newton polygon, or the angle rank?

• How is the number of points on the abelian variety distributed?

• What are the extreme values of the number of points?

In this section, we gather the data available in the database and informing these questions, and
compare it to the predictions given by heuristics.

4The particular function we use was written by Cremona: http://doc.sagemath.org/html/en/reference/

number_fields/sage/rings/number_field/unit_group.html. We also remark that there is an additional quite
large bottleneck in this algorithm due to the need to compute the splitting field of the characteristic polynomial.
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Ordinary Arbitrary
g q Predicted Actual Predicted Actual

3 25 284444 284740 355556 332166
4 5 104025 105600 130032 132839
5 3 170796 171180 256194 267465
6 2 72362 74122 144724 164937

Table 2: Predicted versus actual values for the number of isogeny classes of ordinary/arbitrary
abelian varieties of dimension g over Fq.

4.1 The Number of Isogeny Classes

In order to set bounding boxes for our data collection, we needed to estimate

N(g, q) = number of isogeny classes of g-dimensional abelian varieties over Fq.

We initially chose the limits described in Table 1 using an incorrect estimate on the growth of
N(g, q): Believing that N(g, q) grows like qg(g+1)/2 (rather than the correct asymptotic qg(g+1)/4;
see below), for each g we included data for q with qg(g+1)/2 ≤ 107 to bound the number of isogeny
classes per pair (g, q).5 We later extended the bounds in order to include more fields of small
characteristic in dimension up to 3, and to make the range of included q contiguous in dimension
3.6

We now give a more careful analysis that better models the numerical data that we have
observed for N(g, q). Since by Honda-Tate these isogeny classes are in bijection with characteristic
polynomials, one reasonable heuristic is to count Weil q-polynomials of degree 2g. This amounts
to counting lattice points in the set of (a1, . . . , ag) ∈ Rg for which the polynomial

T g + a1T
g−1 + · · ·+ ag

has all roots in the interval [−2
√
q, 2
√
q]; it is reasonable to approximate this count by the volume

of the region. This volume has been computed by DiPippo and Howe [DH98, Proposition 2.2.1] 7:
it equals (

2g

g!

g∏
i=1

(
2i

2i− 1

)g+1−i
)
qg(g+1)/4. (4.1)

This turns out to be a good prediction in practice; see Table 2 for some examples.
For the sake of completeness, we note two facts: First, according to [DH98], for q large compared

to g, the dominant contribution to the count is from ordinary abelian varieties. Secondly, to obtain
the number of ordinary isogeny classes from the formula for the total number of isogeny classes, we
simply multiply by a factor of ϕ(q)/q.

Another way to evaluate our prediction for N(g, q) is to make a least-squares fit for values a, b
such that logN(g, q) ≈ a log q+ b. The results are given in Table 3. The log-log plot of q vs N(g, q)
is given in Figure 1.

5We also included (5, 3), where qg(g+1)/2 ≈ 1.4 · 107, and we only included q up to 500 for g = 1, rather than 107.
6Namely, we added powers of 2, 3, 5, 7 up to 1024 for g ∈ {1, 2}, and raised the bound for g = 3 from 13 to 25.
7We remark that the bounds used in op. cit. are also related to the original iterator described in [Ked08] which

some reader might find enlightening.
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a b
g Predicted Actual Predicted Actual

1 0.5 0.4971 1.3863 1.3717
2 1.5 1.4178 2.3671 2.5302
3 3 2.9135 3.1248 3.2598
4 5 4.5452 3.7283 4.2707
5 7.5 7.2188 4.2141 4.5660

Table 3: Predicted versus actual (least squares) values for the equation logN(g, q) = a log(q) + b.

Figure 1: Plots of (log q, logN(g, q)) for each g and q ≤ 27 in the database. The least square
values of logN(g, q) = a log q + b are given in Table 3.
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While we do not yet have data for isomorphism classes (see §6.3), it is worth noting that one
can derive heuristics for counts of isomorphism classes within an isogeny class using Oort’s theory
of isogeny leaves in moduli spaces of abelian varieties [Oor09].

4.2 Galois Groups

Let P (T ) be the characteristic polynomial of an isogeny class of abelian varieties, and Q(π)gal be
the splitting field of P over Q. How can one expect Gal(Q(π)gal/Q) to be distributed as the isogeny
class varies? To answer this question, we need to explain Malle’s conjecture [Mal02, Mal04] and
the invariant a(G) for a finite group G ⊆ Sn. The exposition given here follows the treatment in
[Mal02] (see the introduction for example). Given g ∈ Sn we define

index(g) = n−#number of cycles in the cycle decomposition of g.

We then define

a(G) =
1

min{index(g) : g ∈ G \ 1}
.

Example 4.1. 1. index((12)(34)) = 4− 2 = 2

2. a(S4) = 1

3. a(D4) = 1

4. a(A4) = 1/2

5. a(C4) = 1/2

Let K be a number field, and n be an integer. We define the following counting functions for
number fields L of degree n over K:

NK,n(X) = #{L : [L : K] = n, |Disc(L/K)| ≤ X},
NK,n,G(X) = #{L : [L : K] = n, |Disc(L/K)| ≤ X,Gal(Lgal/K) = G}.

First, we have Linnik’s conjecture (c.f. op. cit.) that there exists a constant c0 = c0(K,n) such
that

NK,n(X) ∼ c0X as X →∞ . (4.2)

Next, the (weak) Malle conjecture states that for all ε > 0 there exist constants c1, c2,ε such that

c1X
a(G) < NK,n,G(X) < c2,εX

a(G)+ε. (4.3)

Assuming these conjectures, given a base field K, we can describe how the proportion of exten-
sions with Galois group G should behave on a log-log scale:

Lemma 4.2. Assuming equations (4.2) and (4.3) we have

lim
X→∞

logNK,G,n(X)

logNK,n(X)
= a(G).
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Proof. Assume the Malle and Linnik conjectures. We will prove the upper bound and omit the
proof of the lower bound as it is similar and easier. Since NK,n(X) ∼ c0X, there exists some ε1(X),
approaching zero as X →∞, such that NK,n(X) = c0X(1 + ε1(X)). Applying Malle’s conjecture,
we then have, for all ε > 0,

logNK,n,G(X)

logNK,n(X)
<

a(G) + ε+
log c2,ε
log(X)

1 + log c0
log(X) + log(1+ε1(X))

log(X)

→ a(G) + ε as X →∞.

This proves that for all ε > 0

lim
X→∞

logNK,n,G(X)

logNK,n(X)
< a(G) + ε,

and hence

lim
X→∞

logNK,n,G(X)

logNK,n(X)
≤ a(G).

A simpler bound using the lower end of Malle’s conjecture proves

a(G) ≤ lim
X→∞

logNK,n,G(X)

logNK,n(X)
,

which gives the result.

Because of this result, we might expect that a group G should appear as Gal(Q(π)gal/Q) with
frequency such that the log-log ratios have a limiting value for each G as q →∞. While this does
seem to be the case, the precise value of these ratios does not seem to coincide with Malle’s constant
a(G), and seems to be more complicated. Table 4 shows them for g = 3. If we let ã(G) denote
these limits, to the authors it seems that

ã(6T11) = 1, ã(6T3) = ã(6T6) ≈ 3/5, 1/10 ≤ ã(6T1) ≤ 3/10,

and we have no theoretical explanation for why this is the case. We do note that there seems to
be some partial progress on these type of conditional Malle distributions in [BSMT17].

Remark 4.3. Alternatively, it may be the case that these distributions fit closer to a “polynomials-
in-a-box” distribution. The study of the Galois group of a random polynomial goes back to van der
Waerden [vdW36], and an excellent summary (and further developments) is given in [Zyw10]. One
can prove (see [BSK20]) that the number of monic polynomials of degree d which are irreducible
and have coefficients in [−L/2, L/2] is asymptotic to Ld. Let’s call this number Bd(L). If we let
Bd,G(L) be the number of monic irreducible polynomials with coefficients in [−L/2, L/2] with Galois
group G, then in analogy with Malle one could naively guess that for every group G transitive on
d elements, there exists some α(G) ≤ 1 such that for every ε > 0, there exist constants c1 and c2,ε
and R > 0 such that for every L > R one has

c1L
dα(G) < Bd,G(L) < c2,εL

d(α(G)+ε).

If such constants exist, is it the case that ã(G) = α(G)?
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Group\q 2 3 4 5 7 8 9 11 13

6T1 0.31636 0.11844 0.26715 −∞ 0.30254 0.23744 0.14698 0.25954 0.28031
2T1 −∞ −∞ −∞ −∞ −∞ 0.079146 −∞ −∞ −∞
6T3 0.60225 0.59221 0.66064 0.58783 0.60854 0.54666 0.63575 0.57555 0.60162
6T11 0.88343 0.96285 0.97157 0.98768 0.99256 0.99380 0.99424 0.99707 0.99743
6T6 0.60225 0.60257 0.58913 0.59649 0.58877 0.60836 0.58708 0.59022 0.59007

Table 4: For g = 3 we have plotted logN(g, q,G)/ logN(g, q). Observe the phenomena for 6T1 at
powers of 3. Also, note that none of these can possibly be a(G) for some G, which must be of the
form 1/n for 1 ≤ n ≤ 2g = 6 (as these number are 1.00, 0.50, 0.33, 0.25, 0.20, 0.16).

4.3 Newton Polygons Data and p-rank Strata

As discussed in §2.4, for any given positive integer d, the coarse moduli space Ag,d of g-dimensional
abelian varieties equipped with a polarization of degree d2 admits a locally closed stratification by
Newton polygons, in which the stratum corresponding to an individual polygon is equidimensional
of codimension equal to the elevation of the polygon. A reasonable guess is that for any given
eligible Newton polygon P in dimension g, the proportion of isogeny classes of abelian varieties
over Fq with Newton polygons lying on or above P is cq−e where e is the elevation of P and c is the
number of geometrically irreducible components of the stratum over Fq. By Theorem 2.5, c = 1
unless P is the supersingular stratum; in the supersingular case the stratum is reducible and not
all irreducible components may be defined over Fq, but it is guaranteed that c > 0 [Yu17]. One
can even give an explicit formula for c when q = p [Ibu18, Thm. 4.6].

For example, in dimension 3 the Newton polygons are linearly ordered (see Figure 4). In
Figure 2, we give a plot of

logq

(
N(3, q, P )

N(3, q)

)
for each of the five possible Newton polygons, where N(g, q, P ) is the number of isogeny classes
with Newton polygon on or above P , and N(g, q) is the total number of isogeny classes. Note that
the values for q prime agree quite well with the discussion above, while for non-prime q there are
more isogeny classes in the smaller strata than expected. We have no explanation for this behavior.
Moreover, the supersingular stratum lies consistently above −4 and logq (N(3, q, P )/N(3, q)) is
increasing with q, suggesting that the number of geometrically irreducible components increases as
some nonzero power of q.

Remark 4.4. In dimension 4, every Newton polygon stratum in A4,1 occurs for the Jacobian of
some curve. For strata of codimension at least 2 this is implied by [ST18, Proposition 2.4]; this
leaves only the ordinary stratum which includes the generic Jacobian, and the almost ordinary
stratum which includes the generic non-ordinary Jacobian.

Problem 4.5. The following question is due to Pries (see http://aimpl.org/cohomabelian/):
Let p be a prime number. For a fixed dimension g and a fixed p-rank f , what is the smallest field
of definition of a simple abelian variety over Fp with dimension g and p-rank f?

For each pair (g, q) for which the LMFDB contains data, we have verified that each of 0, . . . , g
occurs as the p-rank of at least one simple abelian variety of dimension g over Fq.
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Figure 2: logq(N(3, q, P )/N(3, q)) as a function of q, where N(g, q, P ) is the number of isogeny
classes with Newton polygon on or above P . Colors indicate P , with orange the ordinary stratum
and green the supersingular stratum.

4.4 Frobenius Angle Rank

Table 5 shows for each g and angle rank δ with 0 ≤ δ ≤ g which p-ranks do not appear in our
database.

Dimension Angle rank Forbidden p-ranks

1 0 1
1 0

2 0 1,2
1 0,1
2 0

3 0 1,2,3
1 1,2
2 0,1,3
3 none

4 0 1,2,3,4
1 1,2,3
2 1,3
3 3
4 none

5 0 0,1,2,3,4,5
1 1,2,3,4
2 0,1,2,3,4,5
3 0,1,2,3,4,5
4 1,3,5
5 none

6 0 1,2,3,4,5,6
1 1,2,3,4,5
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Dimension Angle rank Forbidden p-ranks

2 1,5
3 1,3,5
4 0,1,3,5,6
5 5
6 none

Table 5: Excluded p-ranks for simple abelian varieties.

From Table 5 some simple patterns emerge.

• Angle rank 0 implies p-rank 0. This is known in general because angle rank 0 is equivalent
to supersingularity.

• Up to g = 4, every positive angle rank can occur for ordinary abelian varieties (i.e., for p-rank
g). However, please note that for g = 5 we only cover q = 2, 3, and for g = 6 we only cover
q = 2.

• If δ = 1 then the p-rank is 0 or g.

• For g ≥ 3, if δ = 2 then the p-rank cannot be 1.

• The p-rank g − 1 only occurs when δ = g − 1 or δ = g. This follows from a theorem of
Lenstra–Zarhin [LZ93, Theorem 5.7], who also show that the case δ = g − 1 cannot occur if
g is even [LZ93, Theorem 5.8].

For discussions in this direction we refer the reader to the forthcoming paper [DKZB20].

4.5 Endomorphism Algebras

We motivate this section with the following open problem:

Problem 4.6 ([Oor08, Open Problem 22.6]). For each g > 0 and p determine the possible endo-
morphism algebras occurring in that characteristic.

As a first step we focus on simple abelian varieties, since the general case is expressible in
terms of matrix algebras over the endomorphism algebras of the simple constituents. We can then
break this problem up into two parts: understanding the center of the endomorphism algebra, and
understanding the endomorphism algebra as a division algebra over its center.

The center of the endomorphism algebra of an abelian variety A is just the number field Q(π)
defined by hA(T ), where PA(T ) = hA(T )e. In order to analyze the possible centers that can arise,
we look at statistics on the discriminant ∆ of Q(π). It is useful to normalize the discriminant in
two ways. First, we consider the root discriminant rd = |∆|1/n instead, where n = [Q(π) : Q]. The
root discriminant is often more useful when considering number fields of different degrees. Second,
we use the following result to rescale the root discriminant in a way that allows comparison across
different values of q.
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Theorem 4.7. Let A be a simple abelian variety of dimension g over Fq with associated Weil
number π. Then the root discriminant rd of Q(π) is bounded by

rd ≤ 2gqg/2.

Proof. By [Mor60, Eq. 17], the maximum possible polynomial discriminant for a polynomial of
degree 2g whose roots all have absolute value

√
q is (2g)2gqg(2g−1). Applied to the polynomial

hA(T ), this yields the bound

rd ≤ 2g

e
qg/e−1/2.

This implies the desired bound when e > 1, so we may assume hereafter that e = 1. To improve
the bound in this case, we distinguish between the discriminant ∆ of Q(π) and the discriminant
∆′ of PA(T ); it will suffice to check that the ratio ∆′/∆ is divisible by qg(g−1).

Put β = π + q/π, let ∆0 be the discriminant of Q(β), and let ∆′0 be the discriminant of the
minimal polynomial of β over Q. Let α1, . . . , α2g be the conjugates of π in Qalg, sorted so that
αiα2g−i = q for i = 1, . . . , g. Then on one hand,

∆′

(∆′0)
2

=

(
g∏
i=1

(αi − α2g−i)
2

) g∏
i=1

g∏
j=i+1

(
(αi − αj)(αi − α2g−j)(αj − α2g−i)(α2g−j − α2g−i)

(αi + α2g−i − αj − α2g−j)2

)2


=

(
g∏
i=1

(αi − q/αi)2
) g∏

i=1

g∏
j=i+1

(
(αi − αj)(αi − q/αj)(αj − q/αi)(q/αj − q/αi)

(αi + q/αi − αj − q/αj)2

)2


=

(
g∏
i=1

(αi − q/αi)2
) g∏

i=1

g∏
j=i+1

(
α−2i α−2j (αi − αj)(αiαj − q)(αiαj − q)(qαi − qαj)

α−2i α−2j (αi − αj)2(αiαj − q)2

)2


= qg(g−1)
g∏
i=1

(αi − q/αi)2.

On the other hand, the relative discriminant of Q(π) over Q(β) divides the polynomial discrim-
inant of x2 − βx+ q, which is (π − q/π)2. Consequently,

∆

∆2
0

divides

g∏
i=1

(αi − q/αi)2.

By writing
∆′

∆
=

∆′

(∆′0)
2

(
∆′0
∆0

)2 ∆2
0

∆

and noting that ∆′0 is divisible by ∆0, we deduce that ∆′/∆ is divisible by qg(g−1) as claimed.

In Figures 5–10 we give distributions of both the polynomial and number field root discriminants
for the different values of g in the database. In the polynomial case, we divide the root discriminant

by 2gq
2g−1

2 , and in the number field case we divide by 2gqg/2. The distribution in the number field
case appears to be a sum of copies of the polynomial distribution after further rescaling by the
appropriate roots of reciprocals of integers. This phenomenon is especially apparent in the g = 2

27



case because of the simple nature of the polynomial distribution. Large spikes can be seen at
1/2, 1/3, 1/4 and 1/5 corresponding to an extra factor of 24, 34, 44 or 54 in the index of the
maximal order in the equation order of the number field; smaller spikes are visible at 1/

√
2 and

1/
√

3 corresponding to extra factors of 22 and 32.
Of course, while the endomorphism algebra is usually commutative, sometimes it is not. In

order to give some insight into the non-commutative cases, we provide statistics on the possible
Brauer invariants of the endomorphism algebra as a division algebra over its center. Table 21 in
the center summarizes the results. The length of the sequence of invariants gives the number of
places above p in the center, and we have collapsed all of the commutative endomorphism algebras
into a single row for each value of g.

4.6 Isogeny Sato-Tate distribution

What is the distribution of #A(Fq)? What about when we restrict to ones with certain invariant
types? From the Lang-Weil estimates (§2.7) we know that

#A(Fq) = qg +O(qg−1/2) as q →∞.

This asymptotic suggests that the normalized error

E :=
#A(Fq)− qg

qg−1/2

will form an interesting probability distribution Pg,q as we vary over all A’s of a fixed dimension g
defined over Fq.

Let us consider what happens if we fix g and take a limit as q → ∞. Writing α1, . . . , α2g for
the Frobenius eigenvalues with αiαg+i = q for i = 1, . . . , g, we have

E = q−g+1/2

(
2g∏
i=1

(1− αi)−
2g∏
i=1

αi

)
=

2g∑
i=1

q−1/2αi + o(q−1/2);

consequently, the distribution of E will have the same limiting behavior as the distribution of the
normalized Frobenius trace of A.

The philosophy of Katz–Sarnak [KS99] would predict that the distribution of the Frobenius
trace should converge to the trace distribution for random matrices in the Lie group USp(2g). This
convergence holds if we average over isomorphism classes of principally polarized abelian varieties,
as this forms a geometric family with maximal monodromy [KS99, Theorem 11.0.4] to which one
may apply Deligne’s equidistribution theorem [KS99, Theorem 9.2.6].

However, since we do not currently have the data of how many isomorphism classes constitute a
given isogeny class, we are only able to compute the average over isogeny classes. We thus predict
a different distribution, given by a function whose value at a1 is proportional to the measure of the
set of (a2, . . . , ag) ∈ Rg−1 for which T g +a1T

g−1 + · · ·+ag has all roots in [−2, 2]. We compute this
distribution using the method of DiPippo–Howe (see §4.1). By computing Jacobian determinants,
we see that integrating 1 over the space of coefficients (a1, . . . , ag) is the same as integrating 1/g!
over the space of power sums (p1, . . . , pg), or integrating 1/g! times the Vandermonde determinant
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V (r1, . . . , rg) =
∏

1≤i<j≤g(rj − ri) over the space of ordered tuples of roots (r1, . . . , rg). That is,
the desired distribution is given (up to a normalizing factor) by the distribution function

f(x) =

∫
S∩Hx

V (r1, . . . , rg)dµHx

where S denotes the simplex

S = {(r1, . . . , rg) ∈ Rg : −2 ≤ r1 ≤ · · · ≤ rg ≤ 2}

and Hx denotes the hyperplane r1 + · · · + rg = x. Let us write this as an iterated integral over
r1, . . . , rg−1, substituting rg = x− r1 − · · · − rg−1; the endpoints of integration of rj are then

max{rj−1, x− 2(g − j)−
j−1∑
k=1

rk}, min{2,

(
x−

j−1∑
k=1

rk

)
/(g − j + 1)}

(writing r0 = −2). In particular, the distribution function is continuous, even, and piecewise
polynomial: on each interval [−2g+ 4(i− 1),−2g+ 4i] for i = 1, . . . , g, it is a polynomial of degree
(g− 1)(g+ 2)/2 with rational coefficients. For the extreme values i = 1 and i = g, this polynomial
is a scalar multiple of (2g − |x|)(g−1)(g+2)/2.

Using Mathematica, we computed the distribution functions fg(x) for g ≤ 4:

g = 1 :

{
1
4 |x| ≤ 2

0 |x| > 2

g = 2 :

{
3
27

(4− |x|)2 |x| ≤ 4

0 |x| > 4

g = 3 :


3
213

(15|x|4 − 200|x|2 + 816) |x| ≤ 2
3
215

(6− |x|)5 2 < |x| ≤ 6

0 |x| > 6

g = 4 :


5(−|x|9−72|x|8−2304|x|7+64512|x|6−516096|x|5+1548288|x|4−7077888|x|2+24117248)

3·227 |x| ≤ 4
5

3·227 (8− |x|)9 4 < |x| ≤ 8

0 |x| > 8.

See Figure 3 for plots of the distribution for g ≤ 4, and Figures 11, Figure 12, and Figure 13 for
plots of this prediction against our data. A table of moments for g = 3, 4, 5, 6 is given in Table 7.

It is natural to ask about the limit as g →∞. While we do not have a general formula for fg(x),
we can give some evidence that the limiting distribution f∞ is a Gaussian with variance 2, which is

also the limit of the Sato-Tate distributions [DS94, Theorem 6].8 Let m
(r)
∞ =

∫∞
−∞ x

rf∞(x)dx and

let m̃
(r)
g be a numerical approximation to

∫∞
−∞ x

rfg(x)dx. If f∞ were Gaussian, we would have

m(r)
∞ = (m(2)

∞ )r/2(r − 1)!! (4.4)

for even r. As Table 6 shows, this identity already holds approximately for g = 6.

8It may be feasible to prove that the limiting distribution is Gaussian by bounding the difference in moments
directly.
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Figure 3: Isogeny Sato-Tate distribution for g ≤ 4.

r 4 6 8 10 12 14

m̃
(r)
6 10.2041 93.7929 1203.9623 19814.7906 397315.2698 9.3803× 106(
m̃

(2)
6

)r/2
(r − 1)!! 10.2243 94.3750 1219.5797 20263.1948 411486.7236 9.8754× 106

Table 6: Predicted moments from equation (4.4).

The authors don’t have enough data to determine what happens when we restrict to isogeny
classes of abelian varieties with a fixed Newton polygon, endomorphism algebra, delta rank, or
Galois group. We expect similar interesting distributions in these cases as q →∞ as we normalize
the dimensions appropriately. We also remark that a determination of the conjectural distribution
of point counts also remains open (for say, P (T ) of a fixed degree 2g and fixed Galois group G).

g 2nd 4th 6th 8th 10th 12th 14th

3 1.7142 8.6857 71.7575 796.1318 10750.4655 166954.5839 2.8786× 106

4 1.7777 9.4199 82.5201 1001.4566 15384.2906 282674.8553 5.9748× 106

5 1.8181 9.8834 89.1908 1121.6573 18035.9973 351973.2932 8.0435× 106

6 1.8461 10.2041 93.7929 1203.9623 19814.7906 397315.2698 9.3803× 106

Table 7: Even moments for the isogeny Sato-Tate distributions for g = 3, 4, 5, 6.

4.7 Maximal and Minimal Point Counts

The question of the maximum number of points on a curve of given genus over a given finite
field has been studied quite extensively, due to its connection with error-correcting codes via the
Goppa construction. The web site https://manypoints.org tabulates most known results on this
question. In this section we investigate minimal and maximal point counts of abelian varieties.

We will say an isogeny class [A] is maximal (resp. minimal) for a fixed g and q when #A(Fq)
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is the maximum (resp. minimum) of

{#B(Fq) : B an abelian variety of dim g over Fq}

While studying maximal (resp. minimal) abelian varieties is formally similar to studying maxi-
mal (resp. minimal) curves, it is not directly related: an isogeny class being maximal (resp. minimal)
has nothing to do with it containing the Jacobian of some maximal (resp. minimal) curve. See Ex-
ample 5.8 for explicit examples.

In a similar vein one might also naively expect that, since Artin-Schreier curves are all maximal
and known to be supersingular (see Example 5.5), an abelian variety A being maximal (resp.
minimal) might imply that A is supersingular. Indeed, in some references (such as [KP19]) the terms
maximal and minimal are used to refer exclusively to supersingular abelian varieties. However, we
will see below that a maximal (resp. minimal) abelian variety in our sense need not be supersingular.

When looking at the data our first observation is that for a fixed g, q we almost always found
that there were unique isogeny classes Amax and Amin with L(Amax, T ) = L(Amin,−T ). This
equality implies that Amin and Amax are quadratic isogeny twists.

Example 4.8. When g = 3 and q = 3 we have P (Amin, T ) = T 6 − 9T 5 + 36T 4 − 81T 3, 108T 2 −
81T + 27 which is 3.3.aj bk add and P (Amax, T ) = T 6 + 9T 5 + 36T 4 + 81T 3 + 108T 2 + 81T + 27,
which is 3.3.j bk dd.

We now explain our findings. In Table 8, we report the unique minimal and maximal isogeny
classes for g = 3 and 3 ≤ q ≤ 25. These are all isogenous to cubes of elliptic curves, and the minimal
and maximal examples for a given q are isogeny twists of each other; but some are ordinary and
some are supersingular. We omit q = 2 because it is a bit anomalous: there are 7 minimal isogeny
classes (and a unique maximal one). See Lemma 4.9 and Lemma 4.10 for an explanation of these
observations.

We now investigate these observations. Recall that the (sharpened) Weil bounds on an abelian
variety A of dimension g over Fq take the form

d(√q − 1)2e ≤ #A(Fq)
1/g ≤ b(√q + 1)2c. (4.5)

These are precisely the maximal and minimal values appearing in Table 8. We are thus led to ask
whether equality in the upper (resp. lower) bounds happens only for a power of a maximal (resp.
minimal) elliptic curve, or equivalently whether the inequalities become strict if we restrict to simple
abelian varieties of dimension greater than 1. This is in fact claimed in both [AHL12, Théorème 1.1]
and [AHL13, Corollary 2.2, Corollary 2.14], but we have already seen by an example that this is
false for q = 2; moreover, Theorem 2.11 implies that there are infinitely many g for which there
exists a simple abelian variety A of dimension g over F2 with #A(F2) = 1.

On the other hand, by working more closely through the literature, we can recover an argument
that the inequalities become strict.

Lemma 4.9. For q = 5, 7, assume that #A(Fq)
1/g > Nq for every abelian variety A of dimension

g defined over Fq, where N5 = 2.708 and N7 = 3.970 (reported to us by Kadets). Then for all
q > 2, the inequalities (4.5) become strict for simple abelian varieties of dimension greater than 1.

Proof. First, by inspection of the proof of [AHL13, Proposition 2.17], one deduces that the lower
bound is strict for q ≥ 8; thus only the cases q = 3, 4, 5, 7 are at issue. For q = 3 and q = 4,
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#A(Fq) PA(T ) Newton Polygon Jac?

q = 3: 343
(
T 2 + 3T + 3

)3
ss No

1
(
T 2 − 3T + 3

)3
ss No

q = 4: 729 (T + 2)6 ss No

1 (T − 2)6 ss No

q = 5: 1000
(
T 2 + 4T + 5

)3
ord No

8
(
T 2 − 4T + 5

)3
ord No

q = 7: 2197
(
T 2 + 5T + 7

)3
ord No

27
(
T 2 − 5T + 7

)3
ord No

q = 8: 2744
(
T 2 + 5T + 8

)3
ord ???

64
(
T 2 − 5T + 8

)3
ord No

q = 9: 4096 (T + 3)6 ss ???

64 (T − 3)6 ss No

q = 11: 5832
(
T 2 + 6T + 11

)3
ord No

216
(
T 2 − 6T + 11

)3
ord No

Table 8: Maximal and minimal abelian varieties (g = 3).

Theorem 2.9 implies that the lower bound is strict (for q = 4 we may also apply Theorem 2.8). For
q = 5 and q = 7, one can obtain similar lower bounds by emulating the calculation used to prove
Theorem 2.9. Kadets reports that a nonrigorous version of the calculation gives the lower bounds
2.708 for q = 5 and 3.970 for q = 7, but as of this writing a rigorous calculation remains to be
made.

We raise our observations to the status of theorems below.

Lemma 4.10. Under the hypothesis of Lemma 4.9, for every g > 1 and every q > 2 there exists
unique maximal and minimal isogeny classes of dimension g. These classes are quadratic isogeny
twists of each other and are a power of the unique maximal (resp. minimal) isogeny class of elliptic
curves. Finally, the class is supersingular or ordinary according to whether p divides b2√qc.

Proof. By Theorem 2.8, one always gets a maximal (resp. minimal) abelian variety of a given
dimension over Fq by taking a power of the maximal (resp. minimal) elliptic curve over Fq. By
the discussion following equation (4.5), this is unique except for the minimal case over F2 in some
genera— the isogeny class of an elliptic curve is determined by a single point count. In particular,
since the minimal and maximal elliptic curve over Fq are isogeny twists of each other, the same is
true of their powers.

Remark 4.11. As asserted in Lemma 4.10, whether or not the maximal and minimal elliptic
curves over Fq, and hence the resulting abelian varieties, are supersingular or ordinary depends on
whether or not b2√qc is divisible by p. When q = p, this divisibility holds only for p = 2, 3 (as

otherwise 0 < 2
√
p < p). When q is a square, so q = p2e, we have b2√qc = 2

√
p2a = 2pa which is

obviously divisible by p. In other cases, q = p2e+1 for some positive integer e and we are asking
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whether the base-p expansion of 2
√
p has a zero in the e-th position after the radix point; this can

occur but is rather sporadic.9

Following the discussion in Subsection 2.7, we now restrict attention to simple abelian varieties.
We say that an isogeny class [A] of dimension g over Fq is simple-maximal (resp. simple-minimal)
if #A(Fq) is maximal (resp. minimal) among simple abelian varieties of dimension g over Fq. In
Table 9, we report the unique simple-maximal and simple-minimal isogeny classes for g = 3 and
5 ≤ q ≤ 25. For each of q = 2, 3, 4, there are 2 simple-minimal isogeny classes (and a unique
simple-maximal one).

We make a few curious observations about this data which we are unable to rigorously explain.
For one, all of the simple-maximal and simple-minimal examples are ordinary. For another, the
simple-maximal and simple-minimal varieties are most often isogeny twists of each other, but not
always (see q = 5, 13, 17, 19); in any case, they have opposite sign patterns (the coefficients of PA(T )
are positive for A simple-maximal and alternate in sign for A simple-minimal). Finally, note that
the simple-maximal variety for q = 3 is a Jacobian.

#A(Fq) PA(T ) NP Jac?

q = 5: 631 T 6 + 8T 5 + 34T 4 + 93T 3 + 170T 2 + 200T + 125 ord Yes
25 T 6 − 8T 5 + 32T 4 − 85T 3 + 160T 2 − 200T + 125 ord No

q = 7: 1561 T 6 + 11T 5 + 59T 4 + 195T 3 + 413T 2 + 539T + 343 ord ???
71 T 6 − 11T 5 + 59T 4 − 195T 3 + 413T 2 − 539T + 343 ord No

q = 8: 2157 T 6 + 12T 5 + 69T 4 + 243T 3 + 552T 2 + 768T + 512 ord ???
111 T 6 − 12T 5 + 69T 4 − 243T 3 + 552T 2 − 768T + 512 ord No

q = 9: 2911 T 6 + 13T 5 + 81T 4 + 305T 3 + 729T 2 + 1053T + 729 ord ???
169 T 6 − 13T 5 + 81T 4 − 305T 3 + 729T 2 − 1053T + 729 ord No

q = 11: 4861 T 6 + 15T 5 + 105T 4 + 439T 3 + 1155T 2 + 1815T + 1331 ord ???
323 T 6 − 15T 5 + 105T 4 − 439T 3 + 1155T 2 − 1815T + 1331 ord No

q = 13: 7181 T 6 + 16T 5 + 122T 4 + 555T 3 + 1586T 2 + 2704T + 2197 ord ???
615 T 6 − 16T 5 + 120T 4 − 543T 3 + 1560T 2 − 2704T + 2197 ord No

q = 16: 12649 T 6 + 19T 5 + 166T 4 + 847T 3 + 2656T 2 + 4864T + 4096 ord ???
1189 T 6 − 19T 5 + 166T 4 − 847T 3 + 2656T 2 − 4864T + 4096 ord No

q = 17: 14351 T 6 + 19T 5 + 169T 4 + 885T 3 + 2873T 2 + 5491T + 4913 ord ???
1539 T 6 − 19T 5 + 167T 4 − 871T 3 + 2839T 2 − 5491T + 4913 ord No

q = 19: 19601 T 6 + 21T 5 + 201T 4 + 1119T 3 + 3819T 2 + 7581T + 6859 ord ???
2113 T 6 − 21T 5 + 197T 4 − 1085T 3 + 3743T 2 − 7581T + 6859 ord No

q = 23: 32671 T 6 + 24T 5 + 258T 4 + 1591T 3 + 5934T 2 + 12696T + 12167 ord ???
4049 T 6 − 24T 5 + 258T 4 − 1591T 3 + 5934T 2 − 12696T + 12167 ord ???

q = 25: 40391 T 6 + 25T 5 + 281T 4 + 1809T 3 + 7025T 2 + 15625T + 15625 ord ???
5473 T 6 − 25T 5 + 281T 4 − 1809T 3 + 7025T 2 − 15625T + 15625 ord ???

Table 9: A table of the unique simple-maximal and simple-minimal Weil polynomials for g = 3.

Finally, in Table 11, we compare the extreme values of #A(Fq)
1/g to the bounds given in

Theorem 2.9.

9The radix point is the analogue of the decimal point for a general base expansion.
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#A(Fq) PA(T ) NP Jac?

q = 3: 979 T 8+7T 7+27T 6+72T 5+143T 4+216T 3+243T 2+189T+81 ord ???
5 T 8− 6T 7 + 13T 6− 10T 5 + T 4− 30T 3 + 117T 2− 162T + 81 ord No

q = 4: 2521 T 8+9T 7+42T 6+132T 5+305T 4+528T 3+672T 2+576T+
256

ord ???

29 T 8−9T 7+41T 6−125T 5+285T 4−500T 3+656T 2−576T+
256

ord No

q = 5: 5599 T 8 + 11T 7 + 62T 6 + 229T 5 + 601T 4 + 1145T 3 + 1550T 2 +
1375T + 625

ord ???

61 T 8 − 10T 7 + 45T 6 − 130T 5 + 305T 4 − 650T 3 + 1125T 2 −
1250T + 625

ord No

Table 10: A table of the unique simple-maximal and simple-minimal Weil polynomials for g = 4.

q g lower bound minimum maximum upper bound

2 4 1 1 3.940 4.035
2 5 1 1.149 3.717 4.035
2 6 1 1 3.697 4.035
3 4 1.359 1.495 5.594 5.634
3 5 1.359 1.670 5.423 5.634
4 4 2.275 2.321 7.086 7.382
5 4 2.708 2.795 8.615 8.938

Table 11: Bounds and extreme values for #A(Fq)
1/g for a simple abelian variety A of dimension g

over Fq. The bounds for q = 2, 3, 4 are taken from [Kad19]; the bounds for q = 5 were computed
numerically (but not rigorously) by Kadets using the same method (see Lemma 4.9).

5 An Isogeny Class Scavenger Hunt

In this section, we describe a number of examples related to questions or results in the literature.
Several of these examples involve Jacobians of curves, whereas the LMFDB does not currently

contain complete information about Jacobians of curves of genus at least 4 (§6.2). To generate
these examples, we used Sage [S+20] to exhaust over hyperelliptic curves, computing zeta functions
until we found one of the desired form. (This can also be done in Magma [BCP97].)

5.1 Some Basic Examples

Example 5.1 (supersingular elliptic curves). One of the first interesting examples of abelian vari-
eties are supersingular elliptic curves defined over finite fields. If E is an elliptic curve defined over
a finite field, we have

ζ(E/Fq, T ) =
1− aT + qT 2

(1− T )(1− qT )
,

with a ∈ Z and |a| < 2
√
q by the Hasse-Weil bound. In addition, if E is supersingular then a ≡ 0

mod p, for p the characteristic of Fq. Therefore if p is prime and p ≥ 5, then there is a unique
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isogeny class of supersingular elliptic curves over Fp, namely the one with a = 0. This means that

PE(T ) = T 2 + q = (T − i√q)(T + i
√
q);

a similar phenomenon holds in more generality. Indeed, when A/Fq is a simple abelian variety, A
is supersingular if and only if πA = ζ

√
q for ζ a root of unity: namely, if A is supersingular, then

π/
√
q is an algebraic number with norm 1 in every finite and infinite place, so by Kronecker–Weber

it is a root of unity.
In contrast, while an elliptic curve defined over a finite field has p-rank zero if and only if

it is supersingular, this does not hold in higher dimension, even for simple abelian varieties. For
example, isogeny class 3.2.ac c ac is geometrically simple of p-rank 0, but has Newton polygon slopes
[1/3, 1/3, 1/3, 2/3, 2/3, 2/3] and therefore is not supersingular. (This is the smallest dimension for
which p-rank 0 does not imply supersingular.) Conversely, a supersingular isogeny class always has
p-rank 0.

We finally comment on the endomorphism rings of supersingular elliptic curves. While every
supersingular elliptic curve has geometric endomorphism ring a maximal order in a quaternion
algebra, it is not the case that every endomorphism is defined over the field of definition of the
elliptic curve. For example, there are supersingular elliptic curves defined over Fp for each prime
p (belonging to the isogeny class with a = 0, as above), but each of them has endomorphism ring
isomorphic to an order in an imaginary quadratic field and only acquires its extra endomorphisms
over an extension of Fp. For example, isogeny class 1.3.ad has endomorphism degree 6, by which we
mean that its geometric endomorphisms are defined over F36 ; isogeny class 1.2.ac has endomorphism
degree 4; and isogeny class 1.2.a has endomorphism degree 2.

Example 5.2. We now give examples of particularly uncomplicated Weil polynomials for g = 2
and g = 4. These polynomials can be useful to check conjectures when one wants to produce
examples quickly by hand. We first observe that by Lemma 2.2 a Weil polynomial PA(T ) = P (T )
of an abelian variety A of dimension g can be written as

P (T ) =

g∏
i=1

(T 2 − βiT + q) (5.1)

where βi = αi + q/αi is totally real, and α1, . . . , α2g are the roots of the Weil polynomial, arranged
so that αiα2g−i = q for i = 1, . . . , g.

When g = 2, we can expand this to obtain:

P (T ) = T 4 − (β1 + β2)T
3 + (2q + β1β2)T

4 − (β1 + β2)qT + q2.

For r a positive integer, choosing β1 =
√
r and β2 = −

√
r gives a nice family of examples. In

fact, for any positive integer a not divisible by p such that 2q > |a|, letting r = 2q − a gives the
characteristic polynomial

P (T ) = T 4 + aT 2 + q2

for an abelian surface. (Note that we require p - a to ensure that eA = 1; see Section 2.3.) This
isogeny class has Weil q-numbers

+

√
−a+

√
a2 − 4q2

2
,+

√
−a−

√
a2 − 4q2

2
,−

√
−a+

√
a2 − 4q2

2
,−

√
−a−

√
a2 − 4q2

2
.
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Even more concretely, for q = 5 any a ∈ {−9,−8, . . . , 8, 9} is admissible. In the case a = −1 this
is 2.5.a ab.

One can generalize the above example by considering (5.1) where β1, . . . , βg are totally real
algebraic integers which form a union of Galois orbits over Q and q is a sufficiently large prime
power.

Another pleasing family of isogeny classes can be obtained by considering the case of g = 4 with
two isogeny factors of dimension 2 each with Weil polynomial of the form T 4 + aiT

2 + q2 as above.
In this case this isogeny class has Weil polynomial

(T 4 + a1T
2 + q2)(T 4 + a2T

2 + q2) = T 8 + (a1 + a2)T
6 + (2q2 + a1a2)T

4 + (a1 + a2)q
2T + q4,

which we can specialize to a1 = c+ b
√
d and a2 = c− b

√
d, where a1 and a2 are algebraic integers,

and as before 2q > |ai| for each i, to give

a1 + a2 = 2c, a1a2 = c2 − db2,

and
P (T ) = T 8 + 2cT 6 + (2q2 + c2 − db2)T 4 + 2cq2T + q4.

In the special case c = 1, b = 2, d = 2, q = 5 this is 4.5.a c a br.

Example 5.3 ([AP11, Example 2.1] and 4.3.a a a g). Consider the hyperelliptic curve given by

C : y2 = x9 + x7 + 2x5 + x4 + 2x3 + x2 + x.

The genus of this curve is 4 and

L(C/F3, T ) = 81T 8 + 6T 4 + 1.

This example was computed by writing down the shape of the zeta function and equating terms in
the truncated Taylor series.

Example 5.4 ([Voi05, Example 2.3] and 3.2.a a f ). The isogeny class of the Jacobian of a curve
C over Fq can be identified by knowing #C(Fqr) for 1 ≤ r ≤ g. In the examples where C is a
projective curve defined by x3y+x3z+ y3z = 0 or x3y+ y3z+xz3 = 0 over F2, C has genus 3 and
we can compute point counts “by hand” using a presentation of the field:

r 1 2 3 4

#C(F2r) 3 4 24 17

This allows us to solve explicitly for the L-polynomial (see op. cit.)

L(T ) = 8T 6 + 5T 3 + 1.

Example 5.5. Artin-Schreier curves are fan favorites. An affine Artin-Schreier curve has a model

Uf,q : yq − y = fd(x)

where fd(x) ∈ Fq[x] is a polynomial of degree d. After a desingularization of the naive projective
model one gets a proper model X = Xf,q. In the case where q = p, the genus of this curve is
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g = (d− 1)(p− 1)/2, and for d = 5 and p = 3 the curve has genus 4 so its Jacobian will be in our
database. How can we find it? It turns out that the point counts of such a curve can be explicitly
computed:

#Xf,q(Fqn) = 1 +

 ∑
ψ∈F̂q\{1}

S(ψ, n)

+ qn.

In the above expression the ψ’s are additive characters and the S’s are character sums given by

S(ψ, n) :=
∑
b∈Fqn

ψ(Trq,n(f(b))), Trq,n(a) :=

n−1∑
i=0

aq
i
.

All of the additive characters of Fq are parametrized by a ∈ Fp and take the form χa : Fq → C
where

χa(b) = ζ
aTrFq/Fp (b)
p .

For details on this computation see [Mue13, §2.1 and §2.2].
In the special case where f(x) = x5, we computed the values of these characters using Sage,

and found that #X(F3n) = 4, 10, 28, 154, 244 for n = 1, 2, 3, 4, 5. Searching our database gives
4.3.a a a s, as the isogeny class of the Jacobian. This isogeny class contains supersingular abelian
varieties, as expected.

In the special case f(x) = x5 + 2x + 1, we again compute #X(F3n) = 1, 7, 55, 91, 271 for n =
1, 2, 3, 4, 5, and find that the Jacobian belongs to 4.3.ad d j abb, another non-simple supersingular
isogeny class; this time the isogeny factors are not isogenous to each other.

Example 5.6. The isogeny class 2.2.a ad provides an example of a principally polarizable isogeny
class of abelian varieties of dimension 2 over F2 which does not contain a Jacobian (Example 5.21
is another example in higher dimension).

Also, as discussed previously, there exist principally polarizable abelian varieties which have
isogeny factors whose isogeny classes are not principally polarizable. For instance, the g = 4, q = 5
isogeny class 4.5.ak bp adq hc has a g = 2 isogeny factor 2.5.ac ab which contains no principally
polarizable abelian surface.

For interested readers, we point out that our methods don’t allows us to determine if the
particular g = 4 simple isogeny class 4.5.ag o au bj contains a principally polarizable abelian variety.
We are unable to do so whenever the isogeny class is not ordinary, and its associated CM field
K = Q(π) (which in this particular case is 8.0.268960000.3) is unramified over its totally real
subfield K+ and every prime of K+ dividing π− q/π is not inert in K/K+. In short, the condition
in [How96, Theorem 1.1] summarized in §3.6 does not completely answer the question: “Does this
non-ordinary isogeny class contain a principally polarizable variety?”

Remark 5.7. Howe points out to us that the 2-dimensional isogeny class 2.2.a ad presented in the
above example is one from a family that is in the Appendix to [MN02]. The theorem in op. cit.
is that no polynomial of the form T 4 + (1 − 2q)T 2 + q2 is the Weil polynomial of a Jacobian of a
curve over Fq. One can also see that such an isogeny class contains a principally polarized abelian
variety. It is the restriction of scalars from Fq2 to Fq of an elliptic curve with Weil polynomial
T 2 + (1− 2q)T + q2.
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Example 5.8. In this example we show that maximality or minimality of a curve has nothing to
do with the associated Jacobian being maximal or minimal as an abelian variety in the sense of
§4.7. Indeed, the isogeny class 3.3.aj bk add is minimal for q = 3 and g = 3 with #A(F3) = 1,
but it does not contain a Jacobian since its virtual curve count has #C(F3) = −5. Therefore, a
minimal curve of genus 3 over F3 cannot have minimal Jacobian.

Example 5.9. When g = 6 and q = 2 there exist isogeny twists 6.2.a ac a c a a and 6.2.a c a c a a
which have different number fields (with the same discriminant). The two number fields have a
different number of places above 2 (3 in one case and 4 in the other), so the Brauer invariants of
their endomorphism algebras are different: (0, 0, 0) vs (0, 0, 0, 0).

Example 5.10 (communicated to us by Howe). Consider isogeny class 2.2.b b, which has charac-
teristic polynomial P (T ) = T 4 + T 3 + T 2 + 2T + 4. The ring Z[π, q/π] is a maximal order in a
field with class number one, and therefore this isogeny class contains a single isomorphism class of
abelian varieties. Furthermore, this abelian variety must have a principal polarization (by [How95]
or by the more general Theorem 1 of [How96]). This shows that while over an algebraically closed
field of characteristic 0 every abelian variety is isogenous to an abelian variety that does not admit
a principal polarization, this is not true in general (cf. §3.6).

5.2 Supersingular Curves

It is not clear whether every eligible Newton polygon can occur for curves of a given characteristic
(see Remark 5.13), and the following is a related long-standing open problem.

Question 1. For every prime p and every positive integer g, does there exist a genus g curve over
Fp whose Jacobian is supersingular?

This is known for g ≤ 4 [KHS19]. It is also known for all g when p = 2 [vdGvdV95]; however,
these curves cannot always be taken to be hyperelliptic [SZ02]. Some higher-genus cases are treated
in [LMPT18, LMPT19]; however, the following example is not covered by those papers (nor by
[vdGvdV95], which handles some genera for p > 2).

Example 5.11. Let C be the hyperelliptic curve over F3 given by

y2 = x11 + 2x9 + x5 + x3 + x.

Then
L(C/F3, T ) = 1 + 3T 2 + 81T 8 + 243T 10,

so the Jacobian A of C is supersingular and belongs to isogeny class 5.3.a d a a a.

Remark 5.12. One can also consider curves whose Jacobians are superspecial, meaning that they
are isomorphic (not just isogenous) to a product of supersingular elliptic curves. Ekedahl [Eke87]
showed there do not exist superspecial genus 4 curves in characteristics 2 and 3, and asked whether
conversely they exist in all characteristics at least 5; this question was answered negatively by
Kudo–Harashita [KH17], who showed that none exist in characteristic 7.

Remark 5.13. The moduli space Mg of curves of genus g has dimension 3g − 3, which is much
smaller than the length of a maximal chain of inclusions of Newton strata in Ag, which is asymp-
totic to g2/4 (see Corollary 2.4). However, unlike Ag, which has irreducible strata except for the
supersingular case, Newton strata inMg can be much more reducible. While it is conceivable that
there are enough strata inMg to account for all possible Newton polygons, it does not seem likely.
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5.3 Ordinarity and Angle Ranks

The following is a conjecture of Ahmadi–Shparlinski.

Conjecture 5.14 ([AS10, §5]). Every ordinary geometrically simple Jacobian has maximal angle
rank.

This is verified in the database in dimensions 2 and 3. This is a theorem in dimension 2, even
without the ordinary condition: [AS10, Theorem 2]. It is also a theorem in dimension 3, but this
time it requires the ordinary condition: [Zar15, Theorem 1.1].

We verified the conjecture in dimension 4 over F2 as follows. According to the LMFDB, there
are 52 isogeny classes of ordinary, geometrically simple abelian varieties with angle rank at most 3
(in fact they are all equal to 3). Since the LMFDB does not yet contain full data about whether
an isogeny class in dimension greater than 3 contains a Jacobian, we used the fact that every
nonhyperelliptic genus 4 curve is the intersection of a quadric and a cubic in P3 to compute the
zeta functions of all genus 4 curves over F2. We found 620 distinct zeta functions, none of which
occur among the previous list of 52. (This result has been independently confirmed by Xarles
[Xar20].)

As an aside, note that [Zar15, Theorem 1.1] implies that for each of the 52 isogeny classes in the
previous paragraph, the endomorphism algebra must contain an imaginary quadratic field, which
we have confirmed.

By contrast, the conjecture fails in dimension 4 over F3 and F5, as shown by the curves given in
Example 5.15. We also note in passing that Conjecture 5.14 is incompatible with Conjecture 5.20
below.

Example 5.15. Let C be the hyperelliptic curve over F3 given by

y2 = x9 + x8 + x7 + 2x5 + x.

Then
L(C/F3, T ) = 1− T + 2T 2 − 4T 3 − 2T 4 − 12T 5 + 18T 6 − 27T 7 + 81T 8,

so the Jacobian A of C belongs to isogeny class 4.3.ab c ae ac. We see that A is ordinary, geometri-
cally simple, and has angle rank 3. It thus constitutes a counterexample to the Ahmadi–Shparlinski
conjecture (Conjecture 5.14). Consistently with Zarhin’s theorem, the endomorphism algebra con-
tains the field Q(

√
−7).

Similarly, let C be the hyperelliptic curve over F5 given by

y2 = x9 + x6 + 2x5 + x.

Then
L(C/F5, T ) = 1− T + 2T 2 − 4T 3 + 16T 4 − 20T 5 + 50T 6 − 125T 7 + 625T 8,

so the Jacobian A of C belongs to isogeny class 4.5.ab c ae q. Again, A is ordinary, geometrically
simple, and has angle rank 3. The endomorphism algebra contains the field Q(

√
−15).
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5.4 Function Fields of Class Number One

Example 5.16 ([Sti14] and 4.2.ad c a b). The following is the LMFDB annotation for 4.2.ad c a b.
In [Sti14], Stirpe exhibited an example of a genus 4 curve C/F2 for which

L(C/F2, T ) = 1− 3T + 2T 2 + T 4 + 8T 6 − 24T 7 + 16T 8.

The Jacobian A of this curve belongs to isogeny class 4.2.ad c a b.
This example is notable because C has the largest possible genus among curves over finite fields

with trivial class group, and because it refuted a published result from almost 40 years earlier. In
[LMQ75], it was shown (correctly) that there are seven such curves of genus at most 3 and at most
one of genus 4; it was also claimed (incorrectly) that the genus 4 case could be ruled out. Correct
proofs of the classification can be found in [MS15] and [SS15].

5.5 Hypersymmetric Abelian Varieties

Let A be an abelian variety over a field k ⊃ Fp. Following Chai–Oort [CO06, Definition 2.1], we
say that A is hypersymmetric if

End(Ak)Zp
∼= End(Ak[p

∞]).

These are meant to provide a positive-characteristic analogue of CM points in the moduli space of
abelian varieties.

According to [CO06, Theorem 3.3], for a simple abelian variety, one can read off whether it is
hypersymmetric explicitly from the Frobenius polynomial.

Here is an explicit example.

Example 5.17. We exhibit a simple hypersymmetric abelian threefold over F8 by verifying that
3.8.ag bk aea satisfies the conditions of [CO06, Conclusion 3.6]. The Newton polygon has slopes
1/3 and 2/3 each with multiplicity 3, so it is balanced in the sense of [CO06, Definition 3.4]. The
prime 2 splits completely in Q(π) = Q(

√
−7), and the Brauer invariants of the endomorphism

algebra at the places above 2 are again 1/3 and 2/3.
The same conditions are satisfied by the quadratic isogeny twist 3.8.g bk ea. We have checked

that other than elliptic curves (which are all hypersymmetric), these are the only examples of
hypersymmetric abelian varieties currently found in the LMFDB.

5.6 Isomorphic Endomorphism Algebras and Different p-ranks

Example 5.18. This example is a modified version of [Gon98, Example 4.2]. (That example starts
over F3 rather than F2, but we do not currently have abelian threefolds over F27 in the LMFDB.)

Let A be an abelian threefold over F2 in the isogeny class 3.2.ad c b. Then A is simple, ordinary,
and of p-rank 3, and its endomorphism algebra is Q(ζ7). Although A is not geometrically simple,
its base change to F8, which belongs to the isogeny class 3.8.ag bd adf, is again simple.

Let B be an abelian threefold over F8 in the isogeny class 3.8.ag i i; the Weil number for B
is twice that for A. Here B is geometrically simple of p-rank 0, and its endomorphism algebra is
again Q(ζ7).
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Example 5.19. There are also examples where both A and B are geometrically simple and have
the same endomorphism algebra but different p-ranks. For example, abelian varieties in the isogeny
class 3.2.a c c have p-rank 0 while abelian varieties in the isogeny class 3.2.d f h have p-rank 3; both
have endomorphism algebra isomorphic to the number field 6.0.679024.1.

5.7 Abelian Fourfolds as Jacobians

For g ≥ 4, a generic principally polarized abelian variety is not isomorphic to a Jacobian for
dimension reasons. However, when working up to isogeny, it becomes much less clear what to
expect. Using ideas from the theory of unlikely intersections, Shankar–Tsimerman [ST18] have
made numerous observations about this question, including the following conjecture.

Conjecture 5.20 ([ST18, Conjecture 2.5]). Every 4-dimensional abelian variety over Fp is isoge-
nous to the Jacobian of some (possibly reducible) stable curve.

Notably, however, it is not predicted that a 4-dimensional abelian variety over Fq is isogenous
to the Jacobian of a curve over Fq. This can fail to occur, as in the following example.

Example 5.21. Consider the isogeny class 4.2.c c ac af over F2. This class contains a principally
polarized abelian fourfold A which is not isogenous to a Jacobian: if it were, the corresponding
curve would have a negative number of F8-points (see §3.3). However, the base change of A to
F4 = F2[α], which belongs to the isogeny class 4.4.a c i j, is isogenous to the Jacobian of the
hyperelliptic curve

y2 + (αx4 + x3 + x2 + x+ α)y = x9 + x8.

We can also stress-test the conjecture by considering the following example.

Example 5.22. Consider the isogeny class 4.2.a a b af over F2. This isogeny class is geometrically
simple and ordinary. It cannot contain a Jacobian over any subfield of F16: if it did, the corre-
sponding curve would have a negative number of F16-points. In addition, Howe’s criterion (see
§3.6) implies that this isogeny class cannot contain a principally polarized abelian fourfold over F2g

for any odd integer g. Consequently, if Conjecture 5.20 holds, then this isogeny class contains a
Jacobian over F2g for some even integer g ≥ 6.

5.8 Distinguishing Isogeny Classes by Point Counts

The Weil polynomial of an abelian variety of dimension g has g unknown coefficients, so it is
expected that these can be solved for using g point counts. It turns out that we can often do
better than this. This exotic phenomenon is governed by information-theoretic heuristics (see
Remark 5.25).

Example 5.23. For A a 5-dimensional abelian variety over F2, A is determined up to isogeny by
the tuple (#A(F2i) : i = 1, . . . , 4). This is best possible: for example, an abelian variety A in any
of the isogeny classes

5.2.ab b c d ac, 5.2.ab c a a i, 5.2.ab c b a d

satisfies (#A(F2),#A(F4),#A(F8)) = (42, 2520, 80262). By contrast, over F3, a 5-dimensional
abelian variety is determined up to isogeny by the tuple (#A(F3i) : i = 1, . . . , 3).
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Example 5.24. Similarly, for A a 6-dimensional abelian variety over F2, A is determined up to
isogeny by the tuple (#A(F2i) : i = 1, . . . , 4). This is best possible even if we restrict to simple
abelian varieties: for example, an abelian variety A in any of the isogeny classes

6.2.ab ab b g ab aj, 6.2.ab b ab ac f ad, 6.2.ab c ab ad f ap

is geometrically simple and satisfies (#A(F2),#A(F4),#A(F8)) = (42, 4032, 246078).

Remark 5.25. It is not known exactly how many initial point counts are needed to identify a g-
dimensional abelian variety over Fq up to isogeny (for known g and q). The fact that the complete
sequence of point counts determines the Weil polynomial is already nontrivial; it follows from a
theorem of Fried [Fri88] (see also [Hil05]). Using the Weil bounds, it is shown in [Ked06b] that
at most max{18, 2g} counts suffice; however, Noam Elkies has pointed out that on information-
theoretic grounds, one should expect the number of counts needed to be about g/2, and indeed
this is consistent with these examples. Namely, we need to distinguish among O(qg(g+1)/4) Weil
polynomials (§4.1), whereas the Lang-Weil bound (§2.7) implies that the number of possible values
for the tuple (#A(Fqi))

n
i=1 is O(qn

2/2).

6 Possible Generalizations and Bottlenecks

We conclude with some discussion about possible future directions for this work.

6.1 Bottlenecks

We first identify some bottleneck steps that limited our original work, and which we would like to
overcome.

As described in §3.8, we currently present Frobenius angle ranks which were computed non-
rigorously using floating-point arithmetic, because it is not feasible to run the rigorous algorithm
on all cases in the database. However, since we also compute Galois groups, we can use those to
certify some cases as having maximal angle rank. This covers the vast majority of cases, which
might make it feasible to run the rigorous algorithm on the rest, but our present methods rely on
the computation of a splitting field, which is also very costly.

As has come up on several occasions already, we do not currently implement positive Jacobian
testing for abelian varieties of dimension greater than or equal to 4. See §6.2 for further discussion.

One obstruction to adding complete tables of abelian varieties for other pairs (g, q) is the overall
size of the dataset. Using equation (4.1), including (7, 2) would add about 2.2 million isogeny classes,
(6, 3) about 10 million, (5, 4) about 2.2 million, (4, 7) about 700000, and (3, 27) about 450000. For
comparison, the database currently contains about 3 million isogeny classes and takes up about 10
GB. It would certainly be feasible to extend, but a line needs to be drawn somewhere. Moreover,
the computational time required per isogeny grows quickly with g, so adding data with g ≥ 5 takes
more effort than suggested by the number of classes alone.

In lieu of enlarging the tables, one could also implement the computation of the data presented
in LMFDB on a case-by-case basis for individual isogeny classes. One piece of data that would
be difficult to compute in this way is the isogeny twists, which we currently do by finding hash
collisions across the entire table (§3.4).

It would also be useful to have a mechanism to produce random elements of the set of isogeny
classes for large g and q. It should be possible to effectively simulate the uniform distribution on
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isogeny classes by computing analogues of the isogeny Sato-Tate distribution in which one projects
onto the first k polynomial coefficients (the isogeny Sato-Tate distribution being the case k = 1).
An alternative approach may also be to take the existing Weil polynomial iterator discussed in
Remark 3.1 and replace iterations over integers in an interval with uniform random samples.

6.2 Jacobians

Currently the LMFDB does not identify any isogeny class of abelian varieties of dimension at
least 4 as containing a Jacobian. For dimension 4, it may be possible to exhaust over isomorphism
classes of genus 4 curves using the fact that every such curve is either hyperelliptic or the transverse
intersection of a quadric and a cubic surface in P3; see [Sav03] for a similar calculation. For curves
of genus 5, the analogous assertion is that every such curve is either hyperelliptic, trigonal, or
the transverse intersection of three quadrics in P4. For curves of genus 6, the analogous assertion
is that every such curve is either hyperelliptic, trigonal, bielliptic, isomorphic to a smooth plane
quintic, or birational to a plane sextic with four double points [ACGH85, Exercises V.A]. (Beware
that the previous assertions are made over an algebraically closed field.)

6.3 Isomorphism Classes

Beyond the current data in the LMFDB, it would be extremely desirable to tabulate abelian
varieties up to isomorphism, not just up to isogeny. The easiest cases for this are those of ordinary
abelian varieties, for which an explicit description of isomorphism classes within an isogeny class
has been given by Deligne [Del69]; abelian varieties over Fp, for which a similar description has
been given by Centeleghe–Stix [CS15]; and almost ordinary abelian varieties [OS20]. The recent
work of Marseglia [Mar19] has made great strides towards making these methods practical at the
scale of the LMFDB, and we plan on working with him on including data on isomorphism classes
into the database.

In order to handle nonordinary abelian varieties over nonprime fields, it is probably necessary
to go back to the proof of Honda’s theorem, by constructing CM abelian varieties over number
fields and then reducing them modulo primes. Note that whereas Honda’s original approach to
this in [Hon68] used complex uniformization and GAGA, a more recent construction of Chai–Oort
[CO15] gives a more algebraic approach that might be easier to implement as an algorithm.

6.4 K3 Surfaces and Higher Weight

It would be natural to attempt a similar compilation of other types of algebraic varieties over finite
fields and their zeta functions. A strong candidate class for this is K3 surfaces, for which a weak
version of the Honda-Tate theorem is known [Tae16, Ito19]. More precisely, for a given candidate
Weil polynomial in this setting, one can prove there exists a corresponding K3 surface in some
base change of this isogeny class. The code for tabulating Weil polynomials described in §3.1 can
produce lists of possible zeta functons for K3 surfaces over Fq for small q (this has been tested up
to q = 5).

This suggests the question of trying to determine exactly which zeta functions occur for K3
surfaces over a given field. An indication of the difficulties involved can be seen in [KS16], where a
complete tabulation of smooth quartic surfaces in P3 over F2 and their zeta functions was made
(computing the latter by enumerating points); while this search did realize every eligible zeta

43



function that could not occur for any other type of K3 surface, not every zeta function that could
have appeared did so. Furthermore, certain zeta functions can only appear for K3 surfaces of very
large degree, which would be very difficult to write down explicitly (the moduli space of K3 surfaces
of a given degree becomes increasingly hyperbolic as the degree increases).

A closely related case is that of cubic fourfolds. Some examples of zeta function computations
to resolve specific existence questions for cubic fourfolds can be found in [AA18] and [CHK19].

In another direction, one can also identify a class of surfaces with small invariants (genus,
irregularity, K2); identify all Weil polynomials over Fq (for some given small values of q) which
could arise from a surface with the given invariants; then exhaust over the surfaces in question to
see which polynomials arise and what “isogeny classes” they fall into. (In general it is not clear
what geometric conditions correspond to an equality of Weil polynomials. One nontrivial example
is that surfaces which are derived equivalent, meaning that they have isomorphic bounded derived
categories of coherent sheaves, have the same zeta function [Hon15].) In some cases, candidate
polynomials can be ruled out because they would predict impossible point counts on the underlying
variety; for example, this happens for K3 surfaces over F2 as shown in [KS16].

A Tables and Figures

Dimension Num of groups Num of Newton polygons

1 2 2
2 4 3
3 5 5
4 30 8
5 9 12
6 46 20

Table 12: The number of distinct Galois groups and distinct Newton polygons, by dimension

Dimension G a(G) ãmaxp(G) q = 2 q = 3 q = 4 q = 5

1 1T1 −∞ 2
1 2T1 1 1.000 5 7 7 9
2 2T1 1 0.000 1 1 1
2 4T1 1/2 0.370 2 2 2
2 4T2 1/2 0.661 11 16 14 29
2 4T3 1 0.997 8 16 30 52
3 6T1 1/3 0.199 4 2 6
3 6T3 1/2 0.557 14 32 84 88
3 6T6 1 0.588 14 34 52 94
3 6T11 1 0.999 48 280 676 1850
4 4T2 1/2 −∞ 6
4 4T3 1 −∞ 4
4 8T2 1/4 0.267 13 20 14 22
4 8T3 1/4 0.259 4 13 23 20
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Dimension G a(G) ãmaxp(G) q = 2 q = 3 q = 4 q = 5

4 8T4 1/4 0.095 1 2 3
4 8T6 1/3 0.250 8 18
4 8T9 1/2 0.519 41 112 195 405
4 8T10 1/2 0.334 12 32 34 48
4 8T11 1/2 0.155 2 2 6
4 8T12 1/4 0.267 6 12 8 22
4 8T13 1/4 0.228 2 16 8 14
4 8T17 1/2 0.199 2 8 10
4 8T18 1/2 0.581 20 116 254 832
4 8T19 1/2 −∞ 4
4 8T20 1/2 0.060 2 2 2
4 8T22 1/2 0.180 8
4 8T23 1/3 0.155 8 4 6
4 8T24 1/2 0.656 92 362 630 1984
4 8T26 1/2 0.180 4 8
4 8T27 1 0.429 24 66 144
4 8T28 1/2 0.259 2 8 20
4 8T29 1/2 0.448 8 42 44 178
4 8T30 1/2 −∞ 2
4 8T31 1 0.408 12 34 112
4 8T32 1/2 0.120 4
4 8T35 1 0.706 34 356 1206 3546
4 8T38 1 0.467 20 100 224
4 8T39 1/2 0.745 62 558 1214 5554
4 8T40 1/2 0.199 4 4 10
4 8T44 1 0.989 368 4986 23272 93506
5 10T1 1/5 0.114 4
5 10T5 1/4 0.334 18 58
5 10T11 1/4 0.057 2
5 10T14 1 0.268 8 26
5 10T22 1/2 0.562 100 932
5 10T23 1 0.379 14 100
5 10T29 1 0.347 4 68
5 10T36 1 0.356 2 76
5 10T39 1 0.999 6178 189514
6 12T2 1/6 0.253 18
6 12T3 1/6 0.061 2
6 12T6 1/4 0.096 3
6 12T10 1/4 0.326 41
6 12T18 1/4 0.202 10
6 12T21 1/2 0.000 1
6 12T23 1/4 0.267 21
6 12T24 1/4 0.141 5
6 12T25 1/2 0.351 55
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Dimension G a(G) ãmaxp(G) q = 2 q = 3 q = 4 q = 5

6 12T26 1/4 0.000 1
6 12T28 1/3 0.061 2
6 12T37 1/4 0.157 6
6 12T41 1/4 0.061 2
6 12T48 1/2 0.487 259
6 12T76 1/4 0.243 16
6 12T77 1/2 0.382 78
6 12T78 1/3 0.425 128
6 12T79 1/2 0.061 2
6 12T90 1/2 0.309 34
6 12T101 1/2 0.400 96
6 12T103 1/2 0.141 5
6 12T125 1/2 0.323 40
6 12T134 1 0.202 10
6 12T135 1 0.061 2
6 12T136 1/2 0.061 2
6 12T138 1/2 0.061 2
6 12T139 1/2 0.560 595
6 12T148 1/2 0.061 2
6 12T186 1/2 0.122 4
6 12T193 1 0.243 16
6 12T208 1 0.304 32
6 12T219 1/2 0.656 1784
6 12T222 1 0.415 114
6 12T224 1 0.061 2
6 12T226 1/2 0.122 4
6 12T227 1 0.182 8
6 12T236 1/2 0.441 152
6 12T237 1/2 0.182 8
6 12T240 1 0.061 2
6 12T250 1 0.482 244
6 12T255 1 0.182 8
6 12T260 1 0.625 1240
6 12T285 1/2 0.833 13342
6 12T286 1 0.157 6
6 12T287 1/2 0.182 8
6 12T293 1 0.980 71290

Table 13: Counts of isogeny classes by Galois group; a(G) and ãmaxp(G).

Dimension Slopes q = 2 q = 3 q = 4 q = 5

1 (0, 1) 2 4 4 8
1

(
1
2 ,

1
2

)
3 3 5 1
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Dimension Slopes q = 2 q = 3 q = 4 q = 5

2 (0, 0, 1, 1) 13 30 34 66
2

(
0, 12 ,

1
2 , 1
)

2 2 8 12
2

(
1
2 ,

1
2 ,

1
2 ,

1
2

)
5 3 4 6

3 (0, 0, 0, 1, 1, 1) 56 266 576 1696
3

(
0, 0, 12 ,

1
2 , 1, 1

)
12 54 192 284

3
(
0, 12 ,

1
2 ,

1
2 ,

1
2 , 1
)

4 16 30 36
3

(
1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3

)
8 10 18 16

3
(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
2 2

4 (0, 0, 0, 0, 1, 1, 1, 1) 453 5062 18178 87115
4

(
0, 0, 0, 12 ,

1
2 , 1, 1, 1

)
94 1048 6966 15698

4
(
0, 0, 12 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
43 381 1398 3108

4
(
0, 13 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1
)

26 114 244 526
4

(
0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1
)

6 12 66 70
4

(
1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
36 82 275 168

4
(
1
3 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3

)
2 2 20 16

4
(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
5 6 5 5

5 (0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 4034 137776
5

(
0, 0, 0, 0, 12 ,

1
2 , 1, 1, 1, 1

)
1248 35796

5
(
0, 0, 0, 12 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
532 11558

5
(
0, 0, 13 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1

)
170 3024

5
(
0, 0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
62 696

5
(
0, 14 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1
)

86 968
5

(
0, 13 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3 , 1
)

12 166
5

(
0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1
)

8 56
5

(
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5

)
140 614

5
(
1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
22 94

5
(
1
3 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3

)
2 20

5
(
2
5 ,

2
5 ,

2
5 ,

2
5 ,

2
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5

)
8 12

6 (0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 54730
6

(
0, 0, 0, 0, 0, 12 ,

1
2 , 1, 1, 1, 1, 1

)
17466

6
(
0, 0, 0, 0, 12 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
8570

6
(
0, 0, 0, 13 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
3042

6
(
0, 0, 0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
1382

6
(
0, 0, 14 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
1502

6
(
0, 0, 13 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3 , 1, 1

)
262

6
(
0, 0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
330

6
(
0, 15 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 , 1
)

774
6

(
0, 14 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1
)

130
6

(
0, 13 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3 , 1
)

40
6

(
0, 25 ,

2
5 ,

2
5 ,

2
5 ,

2
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 , 1
)

88
6

(
0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1
)

10
6

(
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
998

6
(
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
2 ,

1
2 ,

4
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5

)
202

6
(
1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
66
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Dimension Slopes q = 2 q = 3 q = 4 q = 5

6
(
1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3

)
90

6
(
1
3 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3

)
8

6
(
2
5 ,

2
5 ,

2
5 ,

2
5 ,

2
5 ,

1
2 ,

1
2 ,

3
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5

)
4

6
(
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
8

Table 14: Counts of isogeny classes by Newton polygon.

Slopes Group Angle Rank q = 2 q = 3 q = 4 q = 5

(0, 1) 2T1 1 2 4 4 8(
1
2 ,

1
2

)
1T1 0 2(

1
2 ,

1
2

)
2T1 0 3 3 3 1

Table 15: Counts of isogeny classes by Newton polygon, Galois group, and angle rank (g = 1).

Slopes Group Angle Rank q = 2 q = 3 q = 4 q = 5

(0, 0, 1, 1) 4T1 2 2
(0, 0, 1, 1) 4T2 1 7 14 12 26
(0, 0, 1, 1) 4T3 2 6 14 22 40(
0, 12 ,

1
2 , 1
)

4T3 2 2 2 8 12(
1
2 ,

1
2 ,

1
2 ,

1
2

)
2T1 0 1 1 1(

1
2 ,

1
2 ,

1
2 ,

1
2

)
4T1 0 2 2(

1
2 ,

1
2 ,

1
2 ,

1
2

)
4T2 0 4 2 2 3

Table 16: Counts of isogeny classes by Newton polygon, Galois group, and angle rank (g = 2).

Slopes Group Angle Rank q = 2 q = 3 q = 4 q = 5

(0, 0, 0, 1, 1, 1) 6T1 1 4 4
(0, 0, 0, 1, 1, 1) 6T3 1 4 10 12 28
(0, 0, 0, 1, 1, 1) 6T3 3 2 6 10 42
(0, 0, 0, 1, 1, 1) 6T6 3 14 32 48 82
(0, 0, 0, 1, 1, 1) 6T11 3 32 218 502 1544(
0, 0, 12 ,

1
2 , 1, 1

)
6T3 2 6 12 56 6(

0, 0, 12 ,
1
2 , 1, 1

)
6T6 3 2 10(

0, 0, 12 ,
1
2 , 1, 1

)
6T11 3 6 42 134 268(

0, 12 ,
1
2 ,

1
2 ,

1
2 , 1
)

6T3 3 2 4(
0, 12 ,

1
2 ,

1
2 ,

1
2 , 1
)

6T6 3 2 2(
0, 12 ,

1
2 ,

1
2 ,

1
2 , 1
)

6T11 3 4 16 26 30(
1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3

)
6T3 1 2 4 4 8
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Slopes Group Angle Rank q = 2 q = 3 q = 4 q = 5(
1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3

)
6T6 3 2(

1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3

)
6T11 3 6 4 14 8(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
6T1 0 2 2

Table 17: Counts of isogeny classes by Newton polygon, Galois group, and angle rank (g = 3).

Slopes Group Angle Rank q = 2 q = 3 q = 4 q = 5

(0, 0, 0, 0, 1, 1, 1, 1) 8T2 1 8 12 10 10
(0, 0, 0, 0, 1, 1, 1, 1) 8T2 2 3
(0, 0, 0, 0, 1, 1, 1, 1) 8T3 1 4 12 9 19
(0, 0, 0, 0, 1, 1, 1, 1) 8T4 2 1 3
(0, 0, 0, 0, 1, 1, 1, 1) 8T6 4 8 8
(0, 0, 0, 0, 1, 1, 1, 1) 8T9 1 6 20 28 80
(0, 0, 0, 0, 1, 1, 1, 1) 8T9 2 19 59 100 221
(0, 0, 0, 0, 1, 1, 1, 1) 8T9 4 8
(0, 0, 0, 0, 1, 1, 1, 1) 8T10 2 10 26 28 32
(0, 0, 0, 0, 1, 1, 1, 1) 8T10 4 4 2
(0, 0, 0, 0, 1, 1, 1, 1) 8T11 4 2 2 4
(0, 0, 0, 0, 1, 1, 1, 1) 8T12 4 6 12 8 22
(0, 0, 0, 0, 1, 1, 1, 1) 8T13 3 2 8 4 12
(0, 0, 0, 0, 1, 1, 1, 1) 8T13 4 6 2
(0, 0, 0, 0, 1, 1, 1, 1) 8T17 4 2 6 10
(0, 0, 0, 0, 1, 1, 1, 1) 8T18 2 12 84 206 688
(0, 0, 0, 0, 1, 1, 1, 1) 8T18 4 2 2 6 12
(0, 0, 0, 0, 1, 1, 1, 1) 8T19 4 4
(0, 0, 0, 0, 1, 1, 1, 1) 8T20 4 2 2 2
(0, 0, 0, 0, 1, 1, 1, 1) 8T22 4 4
(0, 0, 0, 0, 1, 1, 1, 1) 8T23 4 6 2 4
(0, 0, 0, 0, 1, 1, 1, 1) 8T24 3 50 202 406 1292
(0, 0, 0, 0, 1, 1, 1, 1) 8T24 4 12 54 62 356
(0, 0, 0, 0, 1, 1, 1, 1) 8T26 4 4 4
(0, 0, 0, 0, 1, 1, 1, 1) 8T27 4 24 60 136
(0, 0, 0, 0, 1, 1, 1, 1) 8T28 4 4
(0, 0, 0, 0, 1, 1, 1, 1) 8T29 4 8 34 40 140
(0, 0, 0, 0, 1, 1, 1, 1) 8T30 4 2
(0, 0, 0, 0, 1, 1, 1, 1) 8T31 4 8 28 110
(0, 0, 0, 0, 1, 1, 1, 1) 8T32 4 2
(0, 0, 0, 0, 1, 1, 1, 1) 8T35 4 26 298 926 3122
(0, 0, 0, 0, 1, 1, 1, 1) 8T38 4 10 48 172
(0, 0, 0, 0, 1, 1, 1, 1) 8T39 4 46 488 1068 4964
(0, 0, 0, 0, 1, 1, 1, 1) 8T40 4 4 4 10
(0, 0, 0, 0, 1, 1, 1, 1) 8T44 4 240 3674 15112 75662(
0, 0, 0, 12 ,

1
2 , 1, 1, 1

)
8T6 4 4
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Slopes Group Angle Rank q = 2 q = 3 q = 4 q = 5(
0, 0, 0, 12 ,

1
2 , 1, 1, 1

)
8T23 4 2 2(

0, 0, 0, 12 ,
1
2 , 1, 1, 1

)
8T26 4 4(

0, 0, 0, 12 ,
1
2 , 1, 1, 1

)
8T31 4 2(

0, 0, 0, 12 ,
1
2 , 1, 1, 1

)
8T35 4 2 32 108 260(

0, 0, 0, 12 ,
1
2 , 1, 1, 1

)
8T38 4 10 42 48(

0, 0, 0, 12 ,
1
2 , 1, 1, 1

)
8T44 4 92 1006 6814 15378(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T3 2 4(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T4 2 1 1(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T6 4 4(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T9 2 6 17 29 62(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T9 3 4 14 22(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T10 2 2 2(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T11 4 2(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T13 3 2(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T17 4 2(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T18 2 4 22 30 108(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T18 4 4(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T22 4 4(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T24 3 14 64 96 252(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T24 4 2 30(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T27 4 4(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T28 4 6 16(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T29 4 6 4 38(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T31 4 4 6(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T32 4 2(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T35 4 4 22 144 150(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T38 4 10 4(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T39 4 2 38 68 432(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1

)
8T44 4 12 200 976 1978(

0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1
)

8T13 3 2(
0, 13 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1
)

8T23 4 2(
0, 13 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1
)

8T24 3 10 18 36 48(
0, 13 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1
)

8T24 4 2 2 6 2(
0, 13 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1
)

8T39 4 4 26 40 130(
0, 13 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1
)

8T44 4 10 64 162 346(
0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1
)

8T6 4 2(
0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1
)

8T28 4 2 2(
0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1
)

8T35 4 2(
0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1
)

8T39 4 4 2 12 12(
0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1
)

8T44 4 2 8 52 54(
1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
4T2 1 6(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
4T3 2 4(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T2 1 8(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T3 1 9
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Slopes Group Angle Rank q = 2 q = 3 q = 4 q = 5(
1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T9 1 6 12 6 12(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T9 2 4 18(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T10 2 2 2 16(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T13 3 2(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T18 2 2 8 12 20(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T24 3 4 20 24 4(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T27 4 2 8(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T29 4 2(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T35 4 2 4 28 12(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T39 4 6 4 26 16(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
8T44 4 10 32 136 72(

1
3 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3

)
8T44 4 2 2 20 16(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
8T2 0 5 5 4 4(

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2

)
8T3 0 1 1 1

Table 18: Counts of isogeny classes by Newton polygon, Galois group, and angle rank (g = 4).

Slopes Group Angle Rank q = 2 q = 3

(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 10T1 1 4
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 10T5 1 10 38
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 10T5 5 2
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 10T14 5 8 26
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 10T22 5 34 292
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 10T23 5 12 80
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 10T29 5 2 50
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 10T36 5 2 52
(0, 0, 0, 0, 0, 1, 1, 1, 1, 1) 10T39 5 3966 137232(
0, 0, 0, 0, 12 ,

1
2 , 1, 1, 1, 1

)
10T22 4 46 480(

0, 0, 0, 0, 12 ,
1
2 , 1, 1, 1, 1

)
10T23 5 8(

0, 0, 0, 0, 12 ,
1
2 , 1, 1, 1, 1

)
10T29 5 2 18(

0, 0, 0, 0, 12 ,
1
2 , 1, 1, 1, 1

)
10T36 5 12(

0, 0, 0, 0, 12 ,
1
2 , 1, 1, 1, 1

)
10T39 5 1200 35278(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
10T22 5 4 52(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
10T23 5 2 12(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
10T36 5 2(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
10T39 5 526 11492(

0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1

)
10T11 5 2(

0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1

)
10T22 5 4 32(

0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1

)
10T36 5 10(

0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1

)
10T39 5 166 2980(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
10T22 4 2 48(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
10T39 5 60 648(

0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1
)

10T22 5 4 4
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Slopes Group Angle Rank q = 2 q = 3(
0, 14 ,

1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1
)

10T39 5 82 964(
0, 13 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3 , 1
)

10T39 5 12 166(
0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1
)

10T39 5 8 56(
1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5

)
10T5 1 6 14(

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5

)
10T39 5 134 600(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
10T22 4 6 24(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
10T39 5 16 70(

1
3 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3

)
10T39 5 2 20(

2
5 ,

2
5 ,

2
5 ,

2
5 ,

2
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5

)
10T5 1 2 4(

2
5 ,

2
5 ,

2
5 ,

2
5 ,

2
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5

)
10T39 5 6 8

Table 19: Counts of isogeny classes by Newton polygon, Galois group, and angle rank (g = 5).

Slopes Group Angle Rank q = 2

(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T2 1 10
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T3 1 1
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T10 1 9
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T10 3 3
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T18 1 6
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T21 3 1
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T23 3 3
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T23 5 6
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T24 3 3
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T25 3 55
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T48 3 95
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T48 5 12
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T48 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T76 6 16
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T77 5 40
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T78 2 74
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T78 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T90 3 32
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T101 3 67
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T103 3 4
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T125 6 22
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T134 6 10
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T135 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T136 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T138 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T139 3 365
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T139 6 8
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T148 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T186 6 4
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Slopes Group Angle Rank q = 2

(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T193 6 12
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T208 6 30
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T219 5 1084
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T219 6 102
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T222 6 106
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T224 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T226 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T227 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T236 6 98
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T237 6 4
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T240 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T250 6 152
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T255 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T260 6 968
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T285 6 8810
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T286 6 2
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T287 6 6
(0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1) 12T293 6 42488(
0, 0, 0, 0, 0, 12 ,

1
2 , 1, 1, 1, 1, 1

)
12T125 6 2(

0, 0, 0, 0, 0, 12 ,
1
2 , 1, 1, 1, 1, 1

)
12T250 6 28(

0, 0, 0, 0, 0, 12 ,
1
2 , 1, 1, 1, 1, 1

)
12T255 6 6(

0, 0, 0, 0, 0, 12 ,
1
2 , 1, 1, 1, 1, 1

)
12T260 6 34(

0, 0, 0, 0, 0, 12 ,
1
2 , 1, 1, 1, 1, 1

)
12T286 6 4(

0, 0, 0, 0, 0, 12 ,
1
2 , 1, 1, 1, 1, 1

)
12T293 6 17392(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T6 3 2(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T10 2 15(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T23 2 6(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T23 3 1(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T28 4 2(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T48 2 42(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T48 3 36(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T77 4 34(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T79 4 2(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T90 3 2(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T101 3 19(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T125 4 4(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T125 6 2(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T139 3 93(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T193 6 2(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T219 5 340(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T219 6 14(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T236 6 40(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T237 6 4(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T250 6 34
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Slopes Group Angle Rank q = 2(
0, 0, 0, 0, 12 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T260 6 152(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T285 6 2020(

0, 0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1, 1, 1

)
12T293 6 5704(

0, 0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
12T37 2 6(

0, 0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
12T41 2 2(

0, 0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
12T78 2 12(

0, 0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
12T139 6 12(

0, 0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
12T219 5 22(

0, 0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
12T219 6 26(

0, 0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
12T227 6 2(

0, 0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
12T250 6 6(

0, 0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
12T260 6 12(

0, 0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
12T285 6 974(

0, 0, 0, 13 ,
1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 , 1, 1, 1

)
12T293 6 1968(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
12T78 2 12(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
12T222 6 8(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
12T226 6 2(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
12T236 6 2(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
12T250 6 8(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
12T260 6 2(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
12T285 6 504(

0, 0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1, 1

)
12T293 6 844(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T24 2 2(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T48 2 16(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T48 5 4(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T77 4 4(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T78 4 2(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T103 3 1(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T125 4 4(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T139 3 35(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T219 5 58(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T219 6 8(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T250 6 4(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T260 6 24(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T285 6 372(

0, 0, 14 ,
1
4 ,

1
4 ,

1
4 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1, 1

)
12T293 6 968(

0, 0, 13 ,
1
3 ,

1
3 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3 , 1, 1

)
12T125 6 2(

0, 0, 13 ,
1
3 ,

1
3 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3 , 1, 1

)
12T293 6 260(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T6 3 1(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T23 3 2(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T26 3 1(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T48 3 6(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T101 3 6(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T125 6 4
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Slopes Group Angle Rank q = 2(
0, 0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T139 3 16(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T193 6 2(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T219 5 46(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T219 6 4(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T236 6 10(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T260 6 12(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T285 6 100(

0, 0, 12 ,
1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1, 1

)
12T293 6 120(

0, 15 ,
1
5 ,

1
5 ,

1
5 ,

1
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 , 1
)

12T219 6 8(
0, 15 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 , 1
)

12T285 6 252(
0, 15 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5 , 1
)

12T293 6 514(
0, 14 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1
)

12T250 6 2(
0, 14 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4 , 1
)

12T293 6 128(
0, 13 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3 , 1
)

12T285 6 24(
0, 13 ,

1
3 ,

1
3 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

2
3 ,

2
3 ,

2
3 , 1
)

12T293 6 16(
0, 25 ,

2
5 ,

2
5 ,

2
5 ,

2
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 , 1
)

12T219 5 6(
0, 25 ,

2
5 ,

2
5 ,

2
5 ,

2
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 , 1
)

12T219 6 4(
0, 25 ,

2
5 ,

2
5 ,

2
5 ,

2
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 , 1
)

12T285 6 36(
0, 25 ,

2
5 ,

2
5 ,

2
5 ,

2
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 ,

3
5 , 1
)

12T293 6 42(
0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1
)

12T285 6 6(
0, 12 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

1
2 , 1
)

12T293 6 4(
1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
12T10 1 12(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
12T48 3 32(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
12T78 2 18(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
12T139 3 56(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
12T219 5 48(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
12T227 6 4(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
12T236 6 2(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
12T250 6 10(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
12T260 6 32(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
12T285 6 206(

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6 ,

5
6

)
12T293 6 578(

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
5 ,

1
2 ,

1
2 ,

4
5 ,

4
5 ,

4
5 ,

4
5 ,

4
5

)
12T293 6 202(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
12T23 2 3(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
12T48 2 5(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
12T101 3 2(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
12T139 3 4(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
12T260 6 2(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
12T285 6 16(

1
4 ,

1
4 ,

1
4 ,

1
4 ,

1
2 ,

1
2 ,

1
2 ,

1
2 ,

3
4 ,

3
4 ,

3
4 ,

3
4

)
12T293 6 34(

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3

)
12T3 1 1(

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3

)
12T10 1 2(

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3

)
12T18 1 4(

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3

)
12T48 3 9
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Slopes Group Angle Rank q = 2(
1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3

)
12T78 2 6(

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

1
3 ,

2
3 ,

2
3 ,

2
3 ,

2
3 ,
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)
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1
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3 ,
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)
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3 ,
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3

)
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1
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3

)
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)
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)
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)
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)
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2 ,
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2 ,

1
2

)
12T2 0 8

Table 20: Counts of isogeny classes by Newton polygon, Galois group, and angle rank (g = 6).

g End0(A/Fq) invs End0(A/Fq) invs Count qs Example

1 zeroes zeroes 6000 all 1.2.ab
(0) (1/2) 154 all except 169 1.2.ac
(1/2) (1/2) 30 squares 1.4.e

2 zeroes zeroes 1198020 all 2.2.b a
(0) (1/2) 195 all except 121 2.2.a ae
(0, 0) (1/2) 80 5, 7, 9, 13, 17, 25 . . . 2.5.a a
(1/2, 1/2) (1/2) 7 25, 49, 169, 625 2.25.a by

3 zeroes zeroes 962658 all 3.2.b b d
(0) (1/2) 16 3, 4, 7, 9, 16, 25 3.3.a a aj
(0, 0) (1/3, 2/3) 140 all 3.2.a a ac
(1/3, 2/3) (1/3, 2/3) 2 8 3.8.g bk ea

4 zeroes zeroes 141018 2, 3, 4, 5 4.2.ac b ab d
(0) (1/2) 14 2, 3, 4, 5 4.2.a c a e
(0, 0) (1/2) 7 3, 4, 5 4.3.a a a aj
(0, 0) (1/4, 3/4) 53 2, 3, 4, 5 4.2.a a a c
(0, 0) (1/2, 1/2) 84 2, 3, 4, 5 4.2.a ae a k
(1/2, 1/2) (1/4, 3/4) 6 4 4.4.a m a cq
(1/2, 1/2) (1/2, 1/2) 4 4 4.4.ae q abo dw
(0, 0, 0, 0) (0, 0, 1/2, 1/2) 23 3, 4, 5 4.3.a ac a ad
(0, 0, 0, 0, 0, 0) (0, 0, 1/2, 1/2) 21 3, 5 4.3.a c a ad

5 zeroes zeroes 197078 2, 3 5.2.ad h ao y abm
(0, 0) (1/5, 4/5) 20 2, 3 5.2.a a a a ag
(0, 0) (2/5, 3/5) 6 2, 3 5.2.a a a a e

6 zeroes zeroes 89471 2 6.2.b ab a ad ad h
(0) (1/2) 4 2 6.2.a a e a a i
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g End0(A/Fq) invs End0(A/Fq) invs Count qs Example

(0, 0) (1/2) 4 2 6.2.ac c a ae i ai
(0, 0) (1/6, 5/6) 12 2 6.2.a a ac a a c
(0, 0) (1/3, 2/3) 31 2 6.2.a a ac a a o
(0, 0) (1/2, 1/2) 88 2 6.2.a a a c a ac
(0, 0, 0) (0, 1/2, 1/2) 13 2 6.2.a ac a g a ai
(0, 0, 0, 0) (0, 1/3, 2/3) 2 2 6.2.a a ac a a a
(0, 0, 0, 0) (0, 1/2, 1/2) 1 2 6.2.a ac a c a a
(0, 0, 0, 0) (0, 0, 1/2, 1/2) 42 2 6.2.a ab a c a ag
(0, 0, 0, 0, 0, 0) (0, 0, 1/3, 2/3) 20 2 6.2.a a d a a c
(0, 0, 0, 0, 0, 0) (0, 0, 1/2, 1/2) 14 2 6.2.a b a a a ac

Table 21: Brauer invariants of endomorphism algebras. Each “zeroes” row combines all commu-
tative endomorphism algebras for that g.
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Figure 4: Possible Newton polygons for dimension 3 abelian varieties. The partial ordering is linear.
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Polynomial Number field

Figure 5: Normalized root discriminants for g = 1.

Polynomial Number field

Figure 6: Normalized root discriminants for g = 2.
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Polynomial Number field

Figure 7: Normalized root discriminants for g = 3.

Polynomial Number field

Figure 8: Normalized root discriminants for g = 4.

Polynomial Number field

Figure 9: Normalized root discriminants for g = 5.
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Polynomial Number field

Figure 10: Normalized root discriminants for g = 6.

Figure 11: Isogeny Sato-Tate distribution for g = 2 with q = 7, 27, 101, 211.
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Figure 12: Isogeny Sato-Tate distribution for g = 3 with q = 7, 16 and 25.

Figure 13: Isogeny Sato-Tate distribution for g = 4 and q = 5.
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