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The exact contraction of a generic two-dimensional (2D) tensor network state (TNS) is known
to be exponentially hard, making simulation of 2D systems difficult. The recently introduced class
of isometric TNS (isoTNS) represents a subset of TNS that allows for efficient simulation of such
systems on finite square lattices . The isoTNS ansatz requires the identification of an “orthogonality
column” of tensors, within which one-dimensional matrix product state (MPS) methods can be used
for calculation of observables and optimization of tensors. Here we extend isoTNS to infinitely long
strip geometries and introduce an infinite version of the Moses Move algorithm for moving the
orthogonality column around the network. Using this algorithm, we iteratively transform an infinite
MPS representation of a 2D quantum state into a strip isoTNS and investigate the entanglement
properties of the resulting state. In addition, we demonstrate that the local observables can be
evaluated efficiently. Finally, we introduce an infinite time-evolving block decimation algorithm
(iTEBD2) and use it to approximate the ground state of the 2D transverse field Ising model on
lattices of infinite strip geometry.
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I. INTRODUCTION

The simulation of strongly interacting systems is a fun-
damental problem in quantum-many body physics. Ten-
sor network state (TNS) methods [1] provide a control-
lable and unbiased approach for approximating the ex-
ponential complexity of the wavefunction in a manner
suitable for computation. Matrix product states (MPS)
are one-dimensional TNS and have proven very success-
ful in numerically and analytically investigating quantum
many-body systems in one-dimension [2–4]. They have
been used to find ground states and excited states, study
quantum dynamics, and calculate the response to exter-
nal probes [1, 3, 5, 6]. The stability and efficiency of
many MPS algorithms, such as the density matrix renor-
malization group (DMRG) [7, 8], time-evolution block-
decimation (TEBD) [9, 10], and time-dependent varia-
tional principle (TDVP) [11, 12], rely on the fact that
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any MPS has an exact isometric form [13][14]. Addi-
tionally this isometric form enables efficient evaluation
of expectation values, regardless of the size of the sys-
tem.

Tensor network states [15–18], a.k.a. projected entan-
gled pair states (PEPS) [19], are a natural generaliza-
tion of MPS to lattices in two-dimensions and have been
studied extensively in the last decade [1]. While algo-
rithms have been introduced to determine ground states
and calculate expectation values for both finite [19–
24] and infinite [25–28] geometries, such methods inher-
ently rely on costly approximations of the exact con-
traction [21, 29–34]. Motivated by the benefits of the
isometric form in MPS algorithms, isometric tensor net-
work states (isoTNS) were introduced in higher dimen-
sions [35–38]. These networks impose isometric con-
straints on the tensors, generalizing the orthogonality
center of an MPS to an orthogonality hypersurface. Such
isometric TNS trade representational power for more ef-
ficient and principled optimization.

As it is not known whether or how well a generic TNS
can be approximated by an isoTNS, one needs to both
study the classes of physical states that can be efficiently
represented by isoTNS and develop efficient numerical al-
gorithms for isoTNS. It was shown that 2D isoTNS on a
honeycomb lattice can exactly represent the fixed points
of string-net liquids and states reached by finite depth
circuit perturbations [39]. Manipulating such networks
on a square lattice relies on the Moses Move (MM) [40]
algorithm for approximately splitting a two-sided MPS
|Ψ⟩ into the combination of an isometric tensor network
operator (isoTNO) A and a normalized two-sided MPS
|Φ⟩, i.e. |Ψ⟩ ≈ A |Φ⟩. This is a 2D generalization of
the QR-algorithm [41] and was introduced in [35]. The
MM algorithm allows for efficient evaluation of observ-
ables without the need for boundary contraction approx-
imations, as evaluating expectation values of operators
contained within the orthogonality hypersurface reduces
to an MPS problem. Meanwhile, optimization of finite
isoTNS for the ground states of 2D models has been
demonstrated both with 2D generalizations of imaginary
TEBD and DMRG, denoted TEBD2 and DMRG2, re-
spectively [35, 42]. These methods benefit from the iso-
metric conditions placed on the network; the orthogo-
nality center is moved to the tensor being updated, thus
yielding well-conditioned optimization in an orthonormal
basis.

MPS are often used to study quasi-2D systems with in-
finite lengths and finite widths, such as an infinite strip
(cylinder) when open (periodic) boundary conditions are
used for the finite dimension. Since an MPS is inherently
a 1D ansatz targeting 1D area-law states, the complex-
ity of such quasi-2D MPS simulation grows exponentially
with the width [43, 44], necessitating the extrapolation
of results from strips of modest width. To avoid this
exponential scaling yet retain the benefits of the isomet-
ric form to study quasi-2D systems, we are motivated to
generalize the finite isoTNS and the MM algorithm on a

square lattice to infinite strip geometries.
The paper is structured as follows. We consider the

generalization of the finite isoTNS on a square lattice
to infinite strip geometries in Sec. II and extend the
MM algorithm to the thermodynamic limit in Sec. III.
This infinite Moses Move (iMM) algorithm splits a two-
sided infinite MPS (iMPS) into an infinite isoTNO and
a normalized iMPS, which are all translationally invari-
ant. In Sec. IIIA-Sec. IIID, we propose and compare
four different methods for solving the splitting problem:
(i) repeated application of the finite, local MM algorithm;
(ii-iii) two iterative update methods optimizing over dif-
ferent objective functions; and (iv) a conjugate gradient
optimization maximizing the overlap. In Sec. III E, we
analyze the errors of this splitting procedure and intro-
duce a structure theorem which clarifies the assignment
of bond dimensions to the isoTNO and iMPS produced
by iMM.We then benchmark the various iMM algorithms
in Sec. IV. As the first application of iMM algorithm,
in Sec. V, we iteratively transform an iMPS found by
iDMRG into a strip isoTNS by repeated applications of
the iMM algorithm to peel off columns. In Sec. VI, we
then show that one can evaluate the expectation value of
physical observables, e.g., energy, efficiently by utilizing
iMM algorithm. We compare the iMM approach to dif-
ferent methods for evaluating expectation value, includ-
ing boundary MPO contractions methods. As a high-
light of applications using iMM, we develop a TEBD2

algorithm and investigate its performance via imaginary
time evolution for finding the ground state (GS) of the
2D transverse field Ising model in Sec. VII. We end with
the discussion and outlook in Sec. VIII.

II. ISOMETRIC TNS AND MOSES MOVE

In this section we briefly review the finite isoTNS be-
fore discussing the generalization of the isoTNS to infi-
nite strip geometries. A more detailed review of isometric
tensor networks in both one- and two-dimensions as well
as technical details of the finite MM algorithm can be
found in [42].

A. Finite isoTNS

On a 2D square lattice, an isoTNS can be represented
diagrammatically as

|Ψ⟩ = , (1)
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where each tensor has five indices, one physical index and
four virtual indices. Each tensor is an isometric matrix
when its legs with incoming and outgoing arrows are re-
spectively grouped as the row and column indices of the
matrix. Hence when we contract a matrix with its com-
plex conjugate over the incoming legs, the result is an
identity operator. Note that the physical indices always
carry incoming arrows. The dimension of the physical
leg coming out of the page is the local Hilbert space di-
mension d. The bond dimension χ of the virtual indices
between sites in the lattice controls the variational power
and computational cost of the networks and algorithms,
respectively.

The tensor with only incoming indices, e.g. the red
tensor in Eq. (1), is the orthogonality center (OC) of
the isoTNS. The horizontal and vertical columns of ten-
sors with only incoming indices from other parts of the
isoTNS, i.e., the red and the blue tensors in Eq. (1)
with light red background, is the orthogonality hyper-
surface. For an 1D MPS in isometric form, the OC is a
0D wave function representing the system expressed in
an orthonormal basis, and the entire MPS is the orthog-
onality hypersurface. In a 2D isoTNS, the orthogonality
hypersurface is a 1D wavefunction representing the full
2D state also in an orthonormal basis. We will only work
with the isoTNS with one OC [45]. Given this isometric
form, expectation values of operators contained entirely
within the orthogonality hypersurface are easy to evalu-
ate, as this reduces to the standard MPS problem. For
more complicated operators, we must contract all tensors
that can be reached by outgoing arrows, and thus this is
in principle as difficult as generic TNS contractions.

For an MPS, we can exactly move the OC to any posi-
tion by the QR algorithm, enabling efficient evaluation of
local operators. For an isoTNS, moving the orthogonal-
ity hypersurface to a neighboring column while ensuring
consistent isometric arrows throughout the network in
general cannot be performed exactly. The finite MM al-
gorithm approximately accomplishes this task by repeat-
edly applying the following local tripartite decomposition
at each site of the column:

≈
j

k i
. (2)

Due to the isometric form, this local decomposition is
done in an orthonormal basis and is in general a con-
strained optimization problem. For details of the tri-
splitting algorithm in Eq. (2), see [35, 42].

The MM algorithm performs the following decomposi-

tion of the orthogonality column as a two-sided MPS:

(i)

≈

(ii)

=

(iii)

≈

(iv)

≈ ... ≈

(v)

,(3)

where in the 2D isoTNS, the physical sites are grouped
either with the left or the right virtual index. The MM
algorithm effectively “unzips” the original MPS into an
isoTNO and a new MPS. The starting point of the MM
algorithm is a orthogonality column with all vertical ar-
rows pointing down, all horizontal arrows pointing in,
and the bottom-most site being the OC.

The MM algorithm has a complexity of O(χ7), when
all virtual bond dimensions in the isoTNS are χ and
physical dimension d = O(1) is ignored. To optimize fi-
nite isoTNS, originally a two-dimensional imaginary time
evolution algorithm TEBD2 was proposed [35]. TEBD2

on isoTNS is equivalent to full update in unconstrained
TNS, as for isoTNS, the environment of the orthogonality
center (i.e., norm matrix) [21] is always an identity and
doesn’t require any approximated boundary contraction.
Thus the cost of the full-update in TEBD2 calculations
is reduced from O(χ10) for unconstrained TNS to O(χ7)
for isoTNS, at the expense of errors due to the MM.

Recently, DMRG2, a 2D generalization of DMRG, was
introduced in which effective Hamiltonian environments
for each tensor are formed from local terms in the Hamil-
tonian [42]. DMRG2 for either isoTNS or unconstrained
TNS have the similar complexity [46], but the optimiza-
tion problem for local tensors reduces from the gen-
eralized eigenvalue problem for unconstrained TNS to
the regular eigenvalue problem for isoTNS. This is be-
cause optimization is done in an orthonormal basis, and
thus the norm matrix is an identity operator [3]. This
method has recently been successfully applied to the Ki-
taev model on honeycomb lattice [42].

B. Infinite strip geometry

An isoTNS on an infinite strip that is uniform along the
infinite direction, for a 4×∞ example, can be represented



4

diagrammatically as

|Ψ⟩ =

...

...

...

...

...

...

...

...

, (4)

where the tensors within a column are the same but may
be different for different columns. Within the 1D orthog-
onality hypersurface (colored light red), the OC can be
placed anywhere within the column using the standard
uniform MPS methods [6]. In the networks we consider,
we place the OC at either y = ±∞ (given the upward
pointing arrows, it is placed at positive ∞ in Eq. (4)),
so that the network has uniform vertical isometry ar-
rows for all columns. Different to the finite case, here
we work with an orthogonality “column”, instead of the
+-shape orthogonality hypersurface. We note that while
we only consider a single-site unit-cell in this work, all
algorithms presented can be extended to multi-site unit
cells, allowing for periodic inhomogeneity along the infi-
nite direction.

While boundary indices for finite isoTNS are typically
trivial, as in Eq. (1), in general the indices on the bound-
ary can be non-trivial with dimensionDb, as shown in the
infinite strip network Eq. (4). The boundary legs always
carry incoming arrows as the OC is contained within the
network. When Db = 1, |Ψ⟩ is a pure quantum state.
When Db > 1, indicating non-trivial boundary indices,
|Ψ⟩ can be viewed as a purification of the density matrix
of the physical sites. Typically for a bond-dimension χ
strip isoTNS, we take Db = χ. As we will show later,
having non-trivial boundaries makes optimization easier
and ensures that the orthogonality column, viewed as a
two-sided MPS, is injective [1].

III. INFINITE MOSES MOVE

Similar to the case of finite isoTNS, we desire the abil-
ity to change the isometric structure and move the or-
thogonality column of strip isoTNS network. This would
allow for evaluation of correlation functions within the
orthogonality column by 1D iMPS methods and also en-
sures that optimization algorithms are done in an or-
thonormal basis. The iMM algorithm solves the problem
of splitting a normalized infinite two-sided MPS |Ψ⟩ into

an infinite isoTNO A and a normalized infinite two-sided
MPS |Φ⟩:

ψ

ψ

ψ

ψ

...

...

|Ψ⟩

≈

a

a

a

a

...

...

ϕ

ϕ

ϕ

ϕ

...

...

A |Φ⟩

. (5)

Note that we group the physical leg with the right or left
legs of the ψ tensor depending on whether we want the
physical leg to be on the a tensor or the ϕ tensor after
splitting. In cases where |ψ⟩ represents the horizontal
contraction of two columns, we distribute one physical
leg to each of the left and right legs of ψ so that both a
and ϕ will have a physical leg. For all iMM algorithms we
present, we require the initial iMPS to have all vertical
arrows pointing down, all horizontal arrows incoming,
and the OC to be at −∞. With this, the iMM can again
be viewed as unzipping the two-column iMPS into an
isoTNO A and a new iMPS |Φ⟩.
Formulating this as an optimization problem, one finds

the optimal isometric tensor a′ and normalized MPS ten-
sor ϕ′ by maximizing the overlap density between |Ψ⟩ and
A |Φ⟩:

a′, ϕ′ = argmax
a,ϕ∈isometry

Reλ1(Tψ:aϕ) (6)

where Re λ1 denotes the real part of the largest eigen-
value of the mixed transfer matrix Tψ:aϕ between |Ψ⟩ and
A |Φ⟩:

T ≡ Tψ:aϕ = ψ a

ϕ

. (7)

As any iMPS can be written exactly in isometric form
with the same bond dimension, we directly search for
isometric ϕ tensors. In the following, when no confusion
arises, we simply use T to denote this mixed transfer
matrix. Note that maximizing Reλ1(T ) or |λ1(T )| is
equivalent for our purpose because of the unitary freedom
of the isometries.
We now propose and evaluate four algorithms for solv-

ing the splitting problem posed in Eq. (5): iMM-Local,
iMM-Polar, iMM-MPO, and iMM-CG. We first give a brief
overview of these methods. iMM-Local is the direct gen-
eralization of the finite MM, in which the local tripartite
decomposition in Eq. (2) is iterated until convergence.
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The method is not guaranteed to converge, but we find
it quickly provides an approximate solution. Thus, we
use it as an initialization for the following optimization
methods. The iMM-Polar method minimizes the error of
the fixed-point tripartite decomposition using repeated
polar decompositions. It is slower than iMM-Local and
does not directly maximize the overlap density Re λ1.
However, we find it to be nearly optimal in practice. Fi-
nally, iMM-MPO and iMM-CG maximize the overlap den-
sity Re λ1 through two different methods. The iMM-MPO
method finds the ϕ tensor by the variational MPO-MPS
compression algorithm and the a tensor by the polar de-
composition over the linearized overlap. The method is
slightly slower than iMM-Polar and yield comparable re-
sults. The iMM-CG method is based on the conjugate gra-
dient ascent of the overlap density Re λ1. This method
has difficulty reaching a satisfying (local) minimum on
its own and is best used to improve the results of other
methods. It is found that the most efficient strategy is to
use iMM-Local to obtain a stable initial guess and then
use iMM-Polar to finish the infinite splitting optimiza-
tion. Using iMM-MPO or iMM-CG in the end is optional, as
the improvements they provide after iMM-Polar are very
little. We include details of the four methods for com-
pleteness but do not use iMM-MPO and iMM-CG beyond
benchmarking.

A. iMM-Local

Given the input iMPS |Ψ⟩ made of tensors ψ as shown
on the left in Eq. (5), one performs the finite MM in
Eq. (3) assuming that all the blue tensors above the OC
equal ψ. The first, normalized s1 is randomly generated
such that the dimensions of the lower two legs match
that of the desired a and ϕ tensors; s1 plays the role
of the initial zero-site wavefunction. One then uses the
tripartite decomposition in Eq. (2) to solve the following
problem for site n iteratively along the infinite direction:

ψ

sn

≈
an

k

ϕn

i

sn+1

j

l

. (8)

This iteration terminates if ∥sn − sn+1∥ is smaller than
certain threshold or n exceeds certain iteration limit.
One then takes A and |Φ⟩ to be composed, respectively,
of the last an and ϕn in the iteration.

For faster runtime and better convergence, we found it
important to minimize Rényi-2 entropy in the tripartite
splitting here. We suggest the interested reader to check-
out the details in previous works [35, 42] and describe the
additional modification in the following. The tripartite
splitting has unitary gauge redundancies on the internal
bonds i, j, and k. To increase the chance that the MM
iterations converge along the infinite direction, we need
to the fix the gauge redundancies on bond k and i. We do

not need to fix the redundancy on bond j, because only
S is used for the convergence criteria. To fix k and i, we
do an SVD on matrix Sk:li = UsV †, which is formed by
grouping bond i and l as the column index, and replace S
with sV †. We then do an SVD on matrix Slk:i = UsV †,
formed by grouping bond k and l, and replace S with Us.
The two SVDs almost fix the gauge redundancy except
the gauge freedom in the SVD itself: every column of U
from an SVD can be multiplied by a phase, as long as the
corresponding row of the V † is multiplied by the inverse
of that phase. To fix this phase freedom, we view Sl=0

as a matrix and demand its first column and first row
to be all positive numbers. This can be achieved by a
unitary diagonal matrix on bond i and k independently.
When the singular values of Sk:li and Slk:i are not degen-
erate, these operations fix the gauge freedom on bond i
and k completely. Despite the gauge-fixing, iMM-Local
still often fails to converge. Thus, it is best used to pro-
vide an initial guess for the iMM-Polar algorithm which
is guaranteed to converge along the infinite direction.

B. iMM-Polar

To overcome the convergence issue of iMM-Local, we
consider iMM-Polar to directly optimize the approximate
fixed point equation of the tripartite decomposition in
Eq. (8). In other words, we enforce translational invari-
ance of the iMM by requiring sn = sn+1 = s in Eq. (8)
and optimize over s, a, and ϕ to make the equality close
to exact. More precisely, we maximize the real part of the
overlap between the left and right-hand side of the Eq. (8)
under the constraints that ∥s∥ = 1, a is an isometry, and
ϕ is a normalized MPS tensor in isometric form [47]:

F = Re
ψ

s a ϕ

s
= Re s†Ts. (9)

We note here that the fitness function above is not the
same as the one in Eq. (6), in which the s tensor plays no
role. iMM-Polar is thus not variationally optimal. This
way of solving Eq. (6) approximately is entirely moti-
vated by the finite MM, and as shown later, is very close
to being variationally optimal.
Here we describe the steps of iMM-Polar which con-

sists of maximizing Eq. (9) alternately:

1. When s and a are fixed, one forms the environment

Eϕ of ϕ in F such that F = Tr
(
E†
ϕϕ

)
. Here ϕ is

viewed as a matrix with its incoming and outgoing
indices grouped as the row and column index re-
spectively. Eϕ is grouped as a matrix such that its
row and column index contract with the row and
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column index of ϕ respectively. Then the optimal
isometry ϕ′ maximizing F is given by the polar de-
composition of Eϕ: ϕ

′ = argmaxϕ F = Uϕ where
UϕPϕ = Eϕ is the polar decomposition of Eϕ [48].

2. When s and ϕ are fixed, one analogously find the
optimal update a′ = argmaxa F through the polar
decomposition of Ea.

3. When a and ϕ are fixed, F = Re s†Ts =
s†

(
(T + T †)/2

)
s, and optimal s′ = argmaxs F is

given by the leading eigenvector of the Hermitian
matrix (T + T †)/2.

We repeat steps 1 to 3 to update ϕ, a, s many times un-
til convergence is reached within a threshold. Note that
F is strictly increasing at each step. Like DMRG, this
style of alternate optimization is not convex, and a good
initial guess, given by iMM-Local , can speed up the opti-
mization greatly. Typically such an optimization results
in local extremum.

C. iMM-MPO

The iMM-MPO method maximizes the overlap density
Re λ1 through alternatively updating a and ϕ tensor until
convergence. We describe the two alternative steps of
iMM-MPO as follows:

1. Given a, which determines an matrix product oper-
ator (MPO) A† acting on the state |Ψ⟩, the optimal
update of ϕ is determined by the variational MPO-
MPS compression algorithm developed for uniform
matrix product states [49]. The update for ϕ is op-
timal since the compression algorithm maximizes
the overlap density. We perform only one update
step in the MPO-MPS compression algorithm [49]
instead of finding the converged solution.

2. Given ϕ, we linearize the overlap Re ⟨Ψ|AΦ⟩, i.e.,
viewing each a tensor in |A⟩ as an independent ten-
sor, and find the update for a by the polar decom-
position over the environment of a tensor,

Ea =
ψ

L ϕ

R
(10)

where LT (row vector) and R (column vector) are
the left and right leading eigenvectors of mixed
transfer matrix T .

We repeat steps 1 to 2 to update ϕ, a until convergence
is reached within a threshold or the overlap density Re λ1
starts increasing in the update for the a tensor. Note

that the update in step 2 usually, but is not guaranteed
to, increase the overlap density. In fact, it is related to a
gradient ascent update [50, 51] on tensor a. We observe
this update is efficient in increasing the overlap at the
initial stage but is slower in the final stage of the con-
vergence comparing to a non-linear conjugate gradient
update. Overall, this method tends to give slightly more
accurate results at the cost of slightly longer runtimes
compared to iMM-Polar.

D. iMM-CG

An alternative way to maximize the overlap density
Re λ1 is to perform non-linear conjugate gradient ascent
on isometries a and ϕ. To respect the isometric constraint
on A and Φ, we parametrize the tensors as a = Uaa0 =
exp(Xa)a0 and ϕ = Uϕϕ0 = exp(Xϕ)ϕ0, where a0 and ϕ0
are any fixed isometries, Ua and Uϕ are unitary matrices
acting on the incoming legs of a and ϕ, respectively, and
Xa and Xϕ are anti-Hermitian matrices. Assuming all
bonds to be dimension χ, Xa is a χ2 × χ2 matrix, while
Xϕ is χ3 × χ3. The variational space is now the vector
space of the anti-Hermitian matrices Xa and Xϕ, and
conjugate gradient ascent can readily be applied.
Denote the fitness function as

O[Xa, Xϕ] ≡ Re λ1(T ) ≡ Re λ1(Tψ:a[Xa]ϕ[Xϕ]). (11)

The change in the objective due to dXa can be computed
as

dO = ReLT · dT ·R = Re tTr(EXa
, dXa) (12)

= tTr(ReEXa , dReXa)− tTr(ImEXa , dImXa)

where LT (row vector) and R (column vector) are the
left and right leading eigenvectors of T . We assume they
are normalized so that LTR = 1. Above, tTr denotes
tensor contraction, and EXa

is the environment of Xa in
the tensor contraction:

EXa
=

ψ

L a ϕ

R
(13)

Note the implicit dependency of L and R on Xa in the
current form give zero contribution to the change in the
objective [52].
The ascent direction for the maximization is thus given

by the derivative:

∂O

∂ReXa
= ReEXa

,
∂O

∂ImXa
= −ImEXa

(14)

Thus, the ascent direction of Xa is EXa
[53]. In fact,

dO is manifestly positive if dXa = EXa
, where the over-

line denotes complex conjugation. Note that the EXa
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computed in Eq. (13) and the ascent direction EXa
are

generally not anti-Hermitian. Therefore, one needs to
anti-Hermitian-ize dXa so that the updated Xa is still
anti-Hermitian. One can analogously compute the as-
cent direction for Xϕ.
With these ingredients, the conjugate gradient ascent

is done as follows.

1. At CG step k, compute EXa
and EXϕ

and anti-
Hermitian-ize them. We overload notation and use
EX to refer to the anti-Hermitian environments be-
low.

2. Set the ascent direction, H, using the gradient and
the ascent direction from the previous step:

Ha(k) = EXa − βHa(k − 1)

Hϕ(k) = EXϕ
− βHϕ(k − 1)

(15)

where β is determined by a non-linear CG β-mixer,
e.g. Polak-Ribiére.

3. Parametrize a(t) and ϕ(t) along the ascent direc-
tion: a(t) = exp(tHa)a and ϕ(t) = exp(tHϕ)ϕ.
Via the linesearch algorithm, look for tmax at which
O(tmax) is maximized along the t-curve. This needs
the computation of dO(t)/dt:

dO(t)

dt
=Re tTr(EXa(t)

, Ha)

+ Re tTr(EXϕ(t)
, Hϕ)

(16)

4. Update a → a(tmax) and ϕ → ϕ(tmax) and k →
k + 1.

This process is iterated until a and ϕ converge to within
the desired threshold.

E. Error measures and a structure theorem

Before presenting benchmarks and applications of the
iMM, we first discuss error measures for the splitting
problem in Eq. (5) and introduce a structure theorem
governing the assignment of bond dimensions to tensors
a and ϕ.

As before, let |Ψ⟩ be the input to the iMM, and A and
|Φ⟩ be the output. |Ψ⟩ and |Φ⟩ are always normalized.
We consider the error of the fidelity density,

ε ≡ 1− (Reλ1(T ))
2 = 1− λ1(T )

2, (17)

where we assume the iMM algorithm finds A and |Φ⟩ such
that the dominant eigenvalue of T is real. To motivate
this definition, let us consider the example of splitting a
finite and uniform system of size L, as in Eq. (3). The
error of the splitting is given by

∥|Ψ⟩ −A |Φ⟩∥2 =2− 2Re ⟨Ψ|A |Φ⟩
≈ 2− 2(

√
1− ε)L ≈ εL.

(18)

Thus, ε is the intensive error density.
It can be shown that ε is a sum of two errors (see

Appendix A for the derivation):

ε = εp + εt +O(ε2p, ε
2
t , εpεt) (19)

where

εp ≡ 1− λ1(TA†Ψ:A†Ψ),

εt ≡ 1−
(
λ1(TÃ†Ψ:Φ

)
)2

. (20)

Here Ã† |Ψ⟩ = A† |Ψ⟩ /
∥∥A† |Ψ⟩

∥∥ is normalized. εp mea-

sures the norm that A† |Ψ⟩ loses due to the projection
and εt measures the truncation error due to approximat-

ing Ã† |Ψ⟩ with the MPS |Φ⟩.
In practice, these errors guide the choice of internal

bond dimensions of the iMM. Let us denote the bond
dimensions of the iMM as the following:

ψ

χ0

χ0

χℓ χr

|Ψ⟩

≈ a ϕ

χv

χv

η

η

χℓ χr
χh

A |Φ⟩

. (21)

Assuming the non-convex optimization in the iMM is suc-
cessful, increasing η decreases εt, and increasing χv and
χh decreases εp. Perhaps less obvious is that increasing
χv and χh can also decrease εt, because A, in addition
to being a projector, also serves as a disentangler of Ψ;

see Sec. IVB. That is, if A is well-chosen, Ã† |Ψ⟩ will
have less entanglement entropy than Ψ, and, when trun-
cated to an MPS with smaller bond dimension, will have
less truncation error compared to directly truncating |Ψ⟩.
Implicitly in iMM, when minimizing ε, the optimization
reaches a balance between the projecting (εp) and the
disentangling (εt) role of A so that their collective effect
minimizes ε. The disentangling effect of A will be re-
flected in |Φ⟩ having less entanglement entropy than |Ψ⟩,
as demonstrated in Sec. VB.
The above discussion would appear to indicates that,

as long as the computational cost is affordable, the in-
ternal bond dimensions should be as large as possible to
reduce ε. In regular iMPS compression algorithms, one
can set the bond dimension of the trial state to be as
large as desired, and the only side-effect is that the code
will run for longer. This is indeed the case η, as it is just
the bond dimension of the new MPS |Φ⟩. For χh, we
have to choose χh ≤ χℓ in order for A to be an isometry
(see Eq. (B1)).
However, care must be taken in choosing the bond di-

mension χv. As we explain below, carelessly increasing
χv may cause the failure of both iMM algorithms and
subsequent iTEBD algorithms. We now present a struc-
ture theorem to guide the choice of χv given choices for
η and χh.
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Theorem 1. Suppose the two-sided iMPS |Ψ⟩ can be
exactly split via iMM: |Ψ⟩ = A |Φ⟩, with bond dimensions
η, χh = χℓ, and χv. If the iMM for |Ψ⟩ is performed with
bond dimensions η, χh and χ′

v > χv, there is an exact
solution |Ψ⟩ = A′ |Φ′⟩, where A′ is an isoTNO such that,
for any normalized two-sided iMPS |B⟩, the dominant
eigenvalue of TA′|B⟩:A′|B⟩ is degenerate.

Proof. Suppose that a set of internal bond dimensions
χv, χh, and η suffices to give an exact iMM splitting:
|Ψ⟩ = A |Φ⟩. Then when χ′

v > χv, χ
′
h = χh, and η

′ = η
are used for the same splitting problem, clearly there is an
exact iMM splitting |Ψ⟩ = A′ |Φ′⟩, where |Φ′⟩ is the same
MPS as |Φ⟩ up to some gauge difference on the virtual
bond, and A′ is A enlarged from bond dimension χv to χ

′
v

while maintaining the isometric constraints. Let a and
a′ be the tensors making up A and A′. When χh = χl,
namely when a is unitary, enlarging the bond dimension
χv of the isometry while maintaining the isometric con-
straint yields a′ = a ⊕ a⊥, where a⊥ is the orthogonal
complement to a in the enlarged space; this is shown in
Appendix B. Then, for any normalized two-sided MPS
|B⟩,

TA′B:A′B = TAB:AB ⊕ TA⊥B:AB

⊕ TAB:A⊥B ⊕ TA⊥B:A⊥B .
(22)

In particular, the spectrum of both TAB:AB and
TA⊥B:A⊥B contains a copy of the spectrum of TB:B . As
|B⟩ is normalized, TA′B:A′B will have at least two eigen-
values equal to 1, meaning that A′ |B⟩ becomes a “cat-
state” (non-injective) iMPS.

If in addition, the solution to iMM with χ′
v is unique

then the cat-state described above will be the only exact
solution, and if the iMM optimization is successful, the
optimization will result in such cat-states. In practice, we
find that such cat-states, if they exist, are always found.
Such states are pathological because the convergence of
many iMPS algorithms, including iDMRG and iTEBD,
scales inversely with the gap of the transfer matrix of the
iMPS, which for A′ |B⟩ is zero.

In particular, if η = χ0 and χh = χl, then χv = 1 is suf-
ficient to give an exact iMM splitting. As a consequence
of Theorem 1, any larger χv will lead to degeneracies in
the spectrum. Choosing χh strictly less than χl is a one
way to avoid the conditions of the Theorem 1 from being
satisfied in simulations — this motivates the choice of the
boundary bond dimension, Db, to be larger than 1.

IV. IMM BENCHMARKS

Having introduced algorithms for performing the iMM
splitting procedure depicted in Eq. (5) and decomposed
the resulting error as the sum of a truncation and pro-
jection error terms, we now perform several experiments.
The first is to compare the four different iMM algorithms
introduced in Sec. III and various combinations of these

algorithms. From this, we conclude that the combina-
tion of iMM-Local and iMM-Polar produces accurate
results without significant computational cost, and we
use this combination for all future experiments. We then
investigate the disentangling properties of the isoTNO A,
finding that varying its vertical bond dimension χv can
greatly decrease both εp and εt. Finally, we repeatedly
apply iMM to a strip isoTNS, sweeping back and forth,
and find that the accumulated error saturates after about
20 iterations.
In this section and those that follow, we consider the

2D transverse field Ising (TFI) model,

H = −
∑
⟨i,j⟩

ZiZj − g
∑
i

Xi, (23)

to benchmark the performance of the iMM algorithms
and the iTEBD2 algorithm. Unless otherwise noted, we
choose g = 3.5 to be in the paramagnetic phase. The crit-
ical coupling for this model, obtained via cluster Monte
Carlo simulations, in the thermodynamic limit in both
directions is g2DC ≈ 3.04438 [54], while from iDMRG
the critical coupling on infinite cylinders increases from
g1DC = 1 towards g2DC with width [55].

A. Benchmark for a single run of iMM

We begin by investigating the performance of the iMM
algorithms introduced earlier. The input state is the
ground state of the 2D TFI model on an infinite strip
of width Lx = 4 obtained from iDMRG with bond di-
mension χ = 128. We contract the four iMPS tensors
in the unit cell (one row) to one iMPS tensor with four
physical legs, each of dimension d = 2. We then group
the two physical legs corresponding to the left two sites in
the row into the left leg and the remaining two legs into
the right leg of the two-sided iMPS. This produces the
iMPS shown in Fig. 1. The splitting problem considered
involves both projection and truncation, as χh < χℓ.
We compare all four iMM algorithms discussed above

and various combinations of them to the two-sided iMPS.
We report errors and the runtimes on a standard work-
station, averaged over five runs, in Table I. In this dis-
cussion, we use the shorthand notation L to represent
iMM-Local , P for iMM-Polar , M for iMM-MPO , and C for
iMM-CG for convenience. We find that L is indeed the
fastest but does not achieve the accuracy of other stan-
dalone methods. However, even though this method is
not guaranteed to converge, the gauge fixing procedure
reduces variance, indicating that this method can be used
to provide a stable starting point for further methods.
Seeding methods P and M with the a and ϕ tensors pro-
vided by L, yielding methods LP and LM, decreases the
error and standard deviation, while also for LP greatly re-
ducing the runtime, compared to P and M alone. Further
improving the results with C is possible but the improve-
ments are not significant yet have added computational
cost. Thus for all future experiments, we use LP.
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Figure 1: Splitting problem
considered for iMM method
benchmarking results in Table I.
This two-sided iMPS of χ = 128
and χℓ = χr = 4 represents the
ground state of 2D TFI model on
Lx = 4 infinite strip, as described
in Sec. IVA.

iMM Method εp εt time (s)

L 1.8e-03 ± 1.0e-06 3.4e-05 ± 8.2e-06 0.7 ± 0.01

P 1.3e-03 ± 1.4e-03 2.3e-05 ± 4.4e-06 38 ± 15

M 1.0e-02 ± 6.7e-03 1.4e-03 ± 1.7e-03 12 ± 21

C 2.2e-01 ± 2.6e-01 3.7e-01 ± 3.6e-01 21 ± 10

LP 6.2e-04 ± 1.9e-08 2.6e-05 ± 1.8e-08 11 ± 0.1

LM 5.0e-04 ± 2.0e-10 9.4e-06 ± 5.7e-10 62 ± 0.6

LC 5.0e-04 ± 1.2e-07 4.2e-05 ± 1.1e-06 29 ± 1.9

LPM 4.6e-04 ± 2.0e-08 5.8e-07 ± 8.8e-11 12 ± 0.05

LPC 4.6e-04 ± 4.2e-06 5.2e-06 ± 2.6e-07 19 ± 1.4

LMC 5.0e-04 ± 2.1e-11 9.3e-06 ± 2.1e-11 72 ± 0.4

LPMC 4.5e-04 ± 3.7e-10 2.4e-07 ± 1.0e-10 20 ± 0.07

Table I: Projection and truncation errors as defined in Eq. (20) in Sec. IVA and
runtimes for different iMM methods applied to the splitting problem in Fig. 1.
Results from five different runs are average to give the standard deviations. We
conclude that the combination of iMM-Local and iMM-Polar provides an
accurate result without incurring a large computational cost.

Additionally, empirically we find that when χv is large,
it is best to use L to produce starting solutions with a
smaller vertical bond dimension, say χ′

v = 4, and then
isometrically expand the vertical dimensions of the a ten-
sor gradually. At each intermediate bond dimension be-
tween χ′

v and χv, we use P to improve the result. We
then expand the isometric tensor a by viewing it as a
matrix by grouping the incoming legs into a row index
and the outgoing legs into a column index. The incom-
ing row index can be increased by zero padding, while
the outgoing leg must be increased by adding orthogonal
columns. Such a gradual iMM procedure improves the
stability and performance of the splitting as χv grows.
Theorem 1 indicates that isometric filling an A produced
by an already exactly splitting will lead to a degenerate
spectrum, so we do the expansion only if either η < χ0

or χh < χℓ.

B. Disentangling effect of A

We now investigate the disentangling properties of A.
As discussed in Sec. III E, by tuning the bond dimensions
χv, χh, and η, we can control the projection and trun-
cation errors of the splitting procedure; see Eq. (B1) for
definitions of these bond dimensions. We know that (1)
increasing η will decrease εt as this error is simply MPS
truncation error; and that (2) increasing χh up to the
maximally allowed χℓ will reduce the projection error.
Here, we want to understand the effect of increasing χv
on both type of errors. Following a similar setup as in

previous section, we obtain the result shown in Fig. 2.
We find that increasing χv can significantly reduce both
types of error with a fixed η and χh. While we expect
the decrease in εp with increasing χv, the less expected
decrease in εt indicates A has a disentangling effect on
Φ, making it easier to truncate and thus reducing εt. In-
creasing χv increases the complexity of the isoTNO, and
thus a more complex operator allows for more successful
disentangling.

Since the A is acting only on one side of the two-sided
MPS, it is similar to the disentangler used for the puri-
fied wavefunction of a mixed state, which only acts on the
auxiliary indices. This indicate that iMM algorithm can
also be applied to produce more efficient purified MPS
description, a problem that was considered in the time
evolution of thermofield double states [56]. Another im-
plication is that there will be a minimal (purification)
entanglement which cannot be removed from the two-
sided MPS by applying A†. We see such effect in Fig. 2
that the errors of both truncation εt and projection εp
saturate with the increasing χv.

C. Repeated application of iMM to an isoTNS

The iMM algorithm performs the splitting in Eq. (5)
approximately and so, unlike moving the OC by QR de-
composition in 1D MPS, iMM will not exactly preserve
the state. Thus it is important to quantify how repeated
applications of iMM affect an isoTNS and perturb it away
from the starting state. Here we consider specifically the
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Figure 2: Projection error (red), εp, and truncation
error (blue), εt, as a function of χv, as calculated by
Eq.(20), using the combination of iMM-Local and
iMM-Polar. (Inset) Splitting problem considered. The
two-sided iMPS is the ground state of the Lx = 4 2D
TFI from iDMRG, similar to Fig. 1. But three physical
indices are grouped to the left and one to the right.

case where the starting state is an approximate ground
state of the 2D TFI model on an Lx = 6 strip repre-
sented by an isoTNS. We measure the deviation of the
state after consecutive iMM from the original state.

Suppose that the current (after n−1 iterations) isoTNS

|Ψ(n−1)⟩ has its orthogonality column |Ψ(n−1)
1 ⟩ as the

leftmost column of the strip; we then write the ten-

sor network as |Ψ(n−1)⟩ = |Ψ(n−1)
1 ⟩B(n−1)

2 . . . B
(n−1)
Lx

,
where B denotes an isoTNO with horizontal isometry

arrows pointing left. We fuse the columns |Ψ(n−1)
1 ⟩ and

B
(n−1)
2 to form a doubled column |Ψ(n)

1,2 ⟩ with two phys-
ical sites per tensor; we split this doubled orthogonal-

ity column using iMM into the isoTNO A
(n)
1 with right-

ward pointing isometry arrows and the new orthogonal-

ity column |Ψ(n)
2 ⟩, with each column having a physical

index. We perform this procedure of merging and split-
ting two columns a total of Lx − 1 times, moving the
orthogonality column entirely to the right of the strip.
This completes one sweep and produces a new isoTNS

|Ψ(n)⟩ = A
(n)
1 . . . A

(n)
Lx−1 |Ψ

(n)
Lx

⟩. We can now repeat the
process moving to the left (or in practice horizontally
mirroring the isoTNS and again moving to the right) to
produce |Ψ(n+1)⟩. We measure the error of fidelity den-
sity as in Eq. (17), where the transfer matrix T is formed
by one row of the original state |Ψ(0)⟩ and the state at
n-iteration |Ψ(n)⟩.
The results of this procedure for an Lx = 6, χinit = 2

isoTNS is shown in Fig. 3. This isoTNS is produced by
the peeling procedure discussed in Sec. V and thus is an
approximation of the 2D TFI ground state. We choose

Figure 3: Error between original isoTNS |Ψ(0)⟩ and
isoTNS |Ψ(n)⟩ produced by repeated n iMM sweeps.
|Ψ(0)⟩ is an isoTNS with Lx = 6, χinit = 2, Db = 1
produced by peeling of iDMRG GS of the 2D TFI
model, as described in Sec. V.

bond dimensions in the iMM splitting to be χ = χv = χh
and η = 24. After each sweep, the maximum bond di-
mension in |Ψn⟩ is χ. Some bonds will have values smaller
than χ so that the isometric conditions on each tensor are
satisfied. We find that for each of the bond dimensions
used in the iMM and thus the bond dimensions of the re-
sulting isoTNS, the accumulated error saturates after 20
sweeps. Additionally, we find that increasing χ decreases
the error as expected, as the iMMs in the sweep can be
done more accurately and thus have a less corrupting
effect on the state.

V. TRANSFORMING IMPS INTO 2D ISOTNS

As the first application of the iMM algorithm, we show
that we can transform an iMPS representing a 2D ground
state into a 2D isoTNS with an approximation error con-
trolled by the bond dimension. We further investigate
the entanglement properties of the states produced dur-
ing the procedure.

A. Peeling

To obtain an isoTNS approximating an iMPS, we use
a peeling process, depicted in Fig. 4, analogous to that
used for finite isoTNS in [35]. Starting from an iMPS
found by iDMRG on an infinite strip of width Lx, we
collapse the unit cell (a row) of Lx sites to form an iMPS
with Lx physical legs per tensor. We then repeatedly
apply iMM to iteratively peel isoTNO columns A off of
the iMPS, one physical site at a time. We use |Φℓ⟩ to
denote the orthogonality column of the isoTNS after ℓ
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applications of iMMs:

|iMPS⟩ = |Φ0⟩
≊ A1 |Φ1⟩ ≊ A1A2 |Φ2⟩
≊ A1A2...ALx−1 |ΦLx−1⟩ = |isoTNS⟩

(24)

As an example of this peeling procedure, we peel an
Lx = 6 iMPS with χ = 128 representing ground state of
TFI model with g = 3.5. The error in fidelity density
for a χ = 6 isoTNS produced by peeling is 2.4 × 10−4,
where the mixed transfer matrix TiMPS:isoTNS is formed
by the iMPS and isoTNS. Increasing to χ = 10 decreases
the error to 7.3 × 10−6, indicating that this conversion
process can be done more accurately by increasing χ.

B. Area Law

For an area-law 2D ground state, one expects that the
iMPS has an extensive amount of half-chain entangle-
ment, i.e., on the order of Lx, before the peeling proce-
dure. In order for an isoTNS with finite bond dimension
to represent this highly entangled iMPS with finite error
density as Lx → ∞, it is necessary that (1) the error in
each iMM application does not increase with the number
of iMM applied, and that (2) during the peeling process,
the half-chain entanglement entropy has been decreased
from O(Lx) in |Φ0⟩ to O(1) in |ΦLx−1⟩. As O(Lx) num-
ber of iMMs are applied in the process as in Eq. (24), we
expect that the half-chain entanglement entropy of the
|Φℓ⟩ is O(Lx − ℓ). We will see that this is indeed the
case.

For an area-law state, we expect the half-chain bi-
partite entropy of an Lx-strip iMPS to be given by
SLx = α(g) · Lx + O(1), where α(g) is coupling depen-
dent slope. During the peeling process, we calculate the
half-chain entropy of the iMPS |Φℓ⟩:

S(|Φℓ⟩) = −
∑
i

σ2
i log σ

2
i , (25)

...

...

...

...

...

...

=

...

...

|Φ0⟩

iMM
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A1 |Φ1⟩

iMM
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...

...

...
...

...

A1 A2 |Φ2⟩

Figure 4: Peeling procedure to convert iMPS to isoTNS.
First the iMPS unit cell is collapsed to form an iMPS
with Lx physical legs per site. Then iMM is applied
Lx − 1 times to strip off columns. Example shown is for
Lx = 3.

where σi are the singular values on a vertical bond of |Φℓ⟩.
This entropy is for the half-chain subsystem composed of
the physical indices and the virtual indices of |Φℓ⟩ and
is thus not a physical entropy. However, it controls the
bond dimension needed for the orthogonality column |Φℓ⟩
and is thus a key quantity in the isoTNS representation.

In Fig. 5, we present the entropy when peeling off
columns of an Lx = 8 iMPS with χ = 128 represent-
ing ground state of the 2D TFI model at g = 3.50 found
by iDMRG. We perform the iMM with χ = 2, so the
first iMM is exact with χv = 1, and thus A1 is a tensor
product of on-site unitaries. Remarkably, even though
S(|Φℓ⟩) is not physical, after an initial delay, the iMM
procedure removes essentially α(g) entanglement per it-
eration, where α(g) is the coupling-dependent physical
entropy density in the entropy area-law equation. We
include a more detailed study of the entanglement struc-
ture in Appendix C and data from analogous experiments
done at the critical coupling in Appendix D.

0 2 4 6

`

0.1

0.2

0.3

0.4

B
ip

ar
ti

te
E

n
tr

op
y

α(Lx − `)
α(Lx − `) + c

S(|Φ`〉)
iDMRG Data

Figure 5: Entropy of |Φℓ⟩ as a function of number of
columns ℓ removed by peeling the ground state of the
2D TFI Hamiltonian with width Lx = 8 and g = 3.50.
After an initial delay, iMM removes an amount of
entanglement consistent with the area law.

VI. EVALUATION OF LOCAL OBSERVABLES:
ENERGY AS AN EXAMPLE

The evaluation of expectation values of local observ-
ables is crucial and non-trivial for 2D finite and infinite
TNS. As the second application of the iMM algorithm,
we show that, up to some small error density, we can ef-
ficiently evaluate the expectation of local observables of
the given strip isoTNS using iMM. We benchmark the
result by comparing to results obtained by approximate
PEPS contractions using boundary MPO (bMPO) ap-
proach [57, 58] and the exact contraction by collapsing
the state into iMPS. Here, we consider the evaluation of
energy as an example, but the method can be applied to
the evaluation of other local observables.
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A. Energy evaluated by iMM

Suppose we wish to evaluate the energy of a state given
a Hamiltonian H =

∑
cHc,c+1 where Hc,c+1 acting on

columns c and c+ 1 is composed of a translationally in-
variant local operator hc,c+1. The expectation value of
Hc,c+1 can be found by evaluating the energy of each
local operator hc,c+1 with an isoTNS with doubled col-
umn c, c + 1 as the orthogonality column. This is be-
cause calculating expectation values of operators con-
tained entirely in the orthogonality column reduces to
an efficient 1D iMPS problem. If we could move the or-
thogonality column freely around the strip in an exact
fashion, this would give us an exact method for evalu-
ating the energy. However, as moving the orthogonality
column requires the iMM, this method inherently incurs
an approximation error on the order of the iMM errors.
As demonstrated in Sec. IVC, the state represented by
an isoTNS is not significantly affected by iMM applica-
tions, where the individual errors of each iMM applica-
tion were presented in Table I. Thus we can perform a
full sweep of iMM iterations over the entire strip and use
the two-site orthogonality center of each doubled column
to evaluate the expectation value of hc,c+1. Doing this
for each two-column term gives us the energy of one row,
⟨Erow⟩ =

∑
c⟨hc,c+1⟩, which can be converted to a per-

site energy by dividing by strip width.

Note that the maximum bond dimension χ′ = χ′
h =

χ′
v, and η

′ of the iMM used to calculate observables does
not need to be the same as χ and η, that of the original
isoTNS. The accuracy of calculated observables increases
as we increase χ′, as this improves the accuracy of iMM.

(a)

=

(b)

⟨h1,2⟩ =

Figure 6: bMPO energy evaluation. (a) boundary MPO
representing fixed point of isoTNS transfer matrix.
Lx ×∞ strip is oriented so that infinite direction is
vertical. Horizontal arrows are omitted for clarity.
Fixed point only needs to be found against the direction
of vertical arrows, as fixed point in the direction of
arrows is the identity. (b) Evaluation of ⟨h1,2 using
bMPO fixed point and trivial fixed point. The energy of
a row is found by

∑
c⟨hc,c+1⟩.

This method for calculating observables scales linearly
with the strip width and requires Lx − 1 applications
of iMM, which as stated previously has a computational
cost of O(χ′4η′3).

B. Energy evaluated by boundary MPO

To check the energy evaluation from the iMM indepen-
dently, we compute the energy of an isoTNS strip without
using the iMM. To do this, we consider the isoTNS row
transfer matrix and find its fixed point. We can compute
local observables efficiently given the fixed points of the
row transfer matrix. However, as the dimension of the
transfer matrix grows exponentially in the width Lx, we
approximate the fixed point “vector” by the boundary
MPO (bMPO) [19] as depicted in Fig. 6(a). Note that
the strip is oriented such that the infinite direction is
vertical. Combining the bMPO contraction methods de-
veloped for finite TNS [19, 21, 57] and the power method,
we find the dominant eigenvector of the transfer matrix
represented by a bMPO with bond dimension DbMPO.
We only have to converge the fixed point against the

direction of the vertical isometric arrows (from the top
down in Fig. 6(b)). This is because the fixed point along
the direction of the arrows is, by definition, an identity
operator over each column. The non-trivial fixed point
against the isometric arrow direction admits a spectral
decomposition UρU†, where ρ is diagonal and positive
definite, encoding the square of the Schmidt values. How-
ever, we do not utilize this property but use a bMPO
directly to parametrize the fixed point vector. With this
bMPO representing the fixed point of the isoTNS row
transfer matrix, we calculate the energy of a row by eval-
uating ⟨∑c hc,c+1⟩ =

∑
c⟨hc,c+1⟩. This is done by con-

tracting the network shown in Fig. 6(b) for each two-
column local operator hc,c+1, shown here to act on two
neighboring rows.

This method can be made arbitrarily accurate by in-
creasing the bond dimension DbMPO, but we note that
this method is very costly as strip width Lx and the bond
dimension χ of the isoTNS grows. Calculating the fixed
point scales as O

(
NiterLx(χ

4D3
bMPO + dχ6D2

bMPO)
)
,

where d is the local Hilbert space dimension and χ is
the dimension of all virtual legs in the isoTNS. Typically
DbMPO ∼ χ2, so this method scales as O(χ10). The Niter

is the number of the transfer matrix-vector multiplica-
tions required for convergence which is related to the gap
in the transfer matrix.

C. Energy Benchmarks

The exact but most computationally intensive
O(exp(Lx)) method is to find the exact fixed point and
perform an exact contraction. To this end, we collapse
each row of an isoTNS to form an iMPS with physical
dimension dLx , representing Lx physical sites per tensor.
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Then, standard MPS methods can be used to find the
exact fixed point and evaluate the energy. We use this
essentially exact method only to benchmark the previous
two methods.

The benchmark result is shown in Fig. 7. We apply
both methods to a Lx = 8, χ = 4 isoTNS produced by
peeling of a 2D TFI GS iMPS, as described in Sec. V.
We find that the bMPO method is essentially exact for
large enough DbMPO, while the accuracy of the iMM en-
ergy increases with both χ′ and η′, as the splitting can be
done more accurately with the larger space of available
tensors. From this, we note that the iMM energy tends to
underestimate the true energy; yet for large strip widths
and large χ, other methods are infeasible due to compu-
tational costs.

2 4 6 8

f

−3

−2

−1

0

1

2

E
−
E

ex
a
ct

(p
er

si
te

)

×10−4

χ′ = 4

χ′ = 6

χ′ = 8

χ′ = 10

DbMPS = 32

DbMPS = 64

DbMPS = 128

Figure 7: Energy of the Lx = 8, χ = 4 isoTNS produced
by peeling evaluated with the iMM and bMPO
methods. We compare the energies to the exact energy
evaluated by exact iMPS contraction. The energy from
the bMPO method is close to exact for large DbMPO

but is very costly as DbMPO grows due to complexity of
finding the fixed point. The accuracy of iMM energy
increases with both η′ and χ′ used in iMM. In the
figure, we use f ≡ η′/χ′.

VII. ITEBD2

We now introduce the TEBD-based time evolution al-
gorithm for infinite strip isoTNS, dubbed iTEBD2. We
then demonstrate the algorithm by performing imaginary
time evolution to find the ground states of the two dimen-
sional transverse field Ising model.

A. iTEBD2 Algorithm

TEBD-like algorithms perform time evolution by ap-
proximating it as successive local time evolutions via the
Suzuki-Trotter decomposition of a Hamiltonian, i.e., the

sum of local terms:

|Ψ(t+ dt)⟩ = e−iHdt |Ψ(t)⟩ (26)

≈
∏
j

e−ihjdt |Ψ(t)⟩ . (27)

After each local time evolution operation e−ihjdt, we find
the closest state within the ansatz manifold to represent
the time-evolved state. This general approach leads to
tensor network implementations as the TEBD algorithm
for finite MPS [9, 10], the iTEBD algorithm for iMPS [59,
60], the TEBD2 algorithm for 2D isoTNS [35], and the
simple and full update for TNS time evolution [25, 61,
62]. Here we focus on the application of iTEBD2 to strip
isoTNS.
For an width Lx strip, we write the Hamiltonian as

H =

Lx−1∑
c=1

Hc,c+1, (28)

where each Hc,c+1 is the infinite collection of local op-
erators acting on columns c and c + 1. Each infinite
two-column operator is the sum of local terms, and we
will assume the form

Hc,c+1 =
∑
i

hi,i+1
c,c+1, (29)

which acts on a plaquette of four spins on columns c and
c+ 1 and rows i and i+ 1. We work with models where
the local term hi,i+1

c,c+1 is translationally invariant in the
vertical direction, so we will drop the row superscripts.
To perform time evolution, we Trotterize the full

Hamiltonian according to

e−idtH = e−iH1,2dte−iH2,3dt . . . e−iHLx−1,Lxdt (30)

which is a first-order splitting of the column operators
Hc,c+1. We then perform a first-order splitting of the
individual plaquette terms hc,c+1 within the column op-
erators. The iTEBD2 algorithm on an infinite strip us-
ing a Hamiltonian of this form is depicted graphically
in Fig. 8. Our initial isoTNS has the orthogonality col-
umn with arrows pointing up as the left-most column.
As shown in Fig. 8(a), we first merge columns 1 and
2 to form a doubled column with two physical sites
per tensor. We then apply the time evolution operator
e−idtH1,2/2 ≈ ∏

e−idth1,2/2 to only the physical legs of
the doubled column, which flips the isometric arrows to
point down. We note that we do not use the standard
iTEBD algorithm that enforces at least a two-site unit
cell along the column [59], as we do not wish to have a
non-trivial unit cell. Instead we simply apply the two-
site gates and do SVD truncation with gauge-fixing to
sweep downward until convergence. Following this 1D
iTEBD on a doubled column, we apply the chosen iMM
algorithm to split this doubled column into an isoTNO
A1 and a new orthogonality column |Φ2⟩, both of which
have isometry arrows pointing up and a single physical
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...

...

...

...

...

iTEBD + iMM
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→
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...

= |Ψ(t+ dt)⟩

Figure 8: iTEBD2 Algorithm. (a) Subroutine acting on two columns, the left of which is the orthogonality column.
First the two columns are fused. 1D iTEBD is applied to the physical legs (colored red) of the double column using
gates e−idthc,c+1 , acting on a plaquette of four physical sites; note that the gate does not act on any virtual legs.
iMM is then applied to split the doubled column and move the orthogonality center to the right. (b) The iTEBD2

algorithm involves Lx − 1 iterations of the subroutines described in (a) to implement a total Trotterized time
evolution step of dt. Subsequent iTEBD2 sweeps alternate sweep directions, left-to-right and vice-versa.

leg. We can now repeat this process with columns 2 and
3. Proceeding in this way from left (right) to right (left)
on odd (even) iterations of iTEBD2, we perform one time
evolution step dt using Lx−1 applications of the iMM and
1D iTEBD; this procedure is summarized in Fig. 8(b).

Both of these subroutines utilize deterministic SVDs
and have complexity O(χ4η3) [63], where we assume that
χh = χv = χ, and allow the bond dimension η along the
orthogonality column to be different from χ. Hence we
see that increasing the strip width incurs a linear increase
in the cost of algorithms for systems obeying area law,
compared to an exponential increase in costs for 1D al-
gorithms applied to 2D strips.

B. Ground state search

With the iTEBD2 algorithm, we can perform imagi-
nary time evolution to find the ground state of Hamilto-
nian starting from an initial state |Ψ0⟩:

|ΨGS⟩ = lim
τ→∞

e−τH |Ψ0⟩
∥e−τH |Ψ0⟩∥

. (31)

We benchmark the algorithm with 2D TFI model on
strips of width Lx = 4, 8, 20 using isoTNS of bond di-
mensions χ = 4, 8 with Db = χ. We investigate a range
of f ≡ η/χ values, where again f controls the bond di-
mension of the intermediate |Φ⟩ columns produced by
iMM during the iTEBD2 sweeps. As an essentially exact
benchmark, we compute the energy via quantum Monte
Carlo (QMC) with the ALPS library [64] on strips of both
finite width and length; we find the energy of strips of
increasing length and extrapolate to infinite strips. The
results are presented in Fig. 9. Here, the energy of each
isoTNS is calculated by the iMM method discussed in

Sec. VIA, using χ = 10 and f = 4 to give an accurate
energy estimate.
If iMM were exact, then the energy would decrease

monotonically with time step dτ . Yet we clearly see
that there exists an energy minimum at intermediate dτ .
There are competing effects between less Trotter error
from a smaller time step but then more error accumu-
lated from an increased number of iTEBD and iMM it-
erations [35, 42]. Additionally, the largest f does not
provide the lowest energy, as one would naively suspect.
Larger f leads to increased vertical bond dimensions dur-
ing the sweep, leading to larger truncation errors during
the iTEBD on the doubled column.

VIII. CONCLUSIONS

In this work, we have extended isometric tensor net-
works on a square lattice to infinite strip geometries
and introduced algorithms to both manipulate and time-
evolve the ansatz. We introduced four different infinite
Moses Move algorithms and found the combination of
iMM-Local and iMM-Polar to be efficient and stable. The
isoTNOs produced by iMM have a significant disentan-
gling effect on a two-sided MPS. We verify this effect by
showing that iMM can remove an amount of entangle-
ment consistent with the area law of the underlying phase
at each iteration, similar to MM [35]. We demonstrated
three different applications based on iMM algorithms: (i)
transforming an iMPS into an 2D isoTNS, (ii) the eval-
uation of local observables, and (iii) the iTEBD2 algo-
rithm, which enables ground state optimization via imag-
inary time evolution. These results demonstrate that the
isoTNS is a 2D network ansatz permitting both efficient
optimization and calculations, and we expect the ben-
efits of this method to become apparent as strip width
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Figure 9: Ground state energies achieved with iTEBD2 for paramagnetic 2D TFI with g = 3.50 on an Lx = 4, 8, and
20 strip. We compare the isoTNS energies against essentially exact energies from quantum Monte Carlo (QMC)
extrapolated from strips of finite length. As a comparison, the dashed line is the result of an iDMRG calculation
with bond dimension χ = 512. For Lx = 4, the iDMRG result is below the bottom axis of the plot.

increases beyond the reach of 1D methods.

We conclude by commenting interesting applications of
the our work. Of foremost interest is the extension of our
methods to the simulation of strongly correlated many-
body systems that are infinite in both directions. Hav-
ing now dealt with infinite columns through the methods
we’ve introduced, a remaining challenge is to find a fixed
point solution to the splitting problem AΨ = ΨB, where
A (B) is an infinite isometric column with horizontal ar-
rows pointing right (left) and Ψ is an infinite orthogo-
nality column. While this is solved in 1D by iterative
gauge-fixed QR decompositions, the iMM algorithms as
currently formulated do not fix the gauge on the hori-
zontal legs, so there is no a priori reason that repeat-
edly applying the algorithm will converge. Additionally,
many interesting physical systems display spontaneous
translational symmetry breaking. While in our current
prescription, the tensors in a row can differ from one an-
other, each row is repeated along the vertical direction.
To allow for a non-trivial unit cell in the infinite direc-
tion, we must generalize the iMM methods discussed in
Sec. III to multi-site unit cells. Such modifications are
simple extensions of the iMM algorithms introduced ear-
lier. We leave the generalization of iMM to infinite width
and exploration of non-trivial unit cells as future works.

A second application is motivated by the use of tensor
networks as state preparing circuits on quantum com-
puters [65–67]. This relies on the network having an
isometric structure so that tensors can be interpreted
as unitaries acting on qubits and that there is a uni-
directional flow of time opposite to the isometry direc-
tions. In general, the isometric tensor of bond dimen-
sion χ would translate into a gate acting across logχ
qubits. To really construct the circuits that could run
on quantum computers, we have to further decompose
such “dense” unitaries into quantum circuits consisting
of two-site gate [68], resulting in the so-called quantum
circuit tensor network. Quantum circuits of finite 2D

isoTNS [69, 70] and infinite 1D isoTNS [71–73] have been
numerically and analytically explored for this purpose.
Adapting changes mentioned above, the infinite strip net-
works developed here can be prepared on a quantum com-
puter, allowing for calculation of expectation values by
directly measuring the state without expensive and ap-
proximate boundary contraction methods. Additionally,
the finite MM algorithm was recently used to prepare
isometric circuits encoding entanglement renormalization
principles to accurately measure long-range correlations
in critical quantum chains [74]. The iMM algorithm de-
veloped here can be used to extend this work to the ther-
modynamic limit.
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Appendix A: Proof of Eq. (19)

Recall A is an isometry such that A†A = 1 and AA† =
P. As a result, we have the following identity:

∥|Ψ⟩ −A |Φ⟩∥2 =
∥∥|Ψ⟩ −AA† |Ψ⟩

∥∥2
+
∥∥A† |Ψ⟩ − |Φ⟩

∥∥2. (A1)

This identity introduces the unnormalized intermediate
states A† |Ψ⟩ and invites an interpretation of the MM
error as the sum of a projection error and an MPS trun-
cation error, which are respectively the first term and the
second term in Eq. (A1).

As we prove below, for a uniform finite system of size
L, to the first order in the errors, both errors are propor-
tional to L:∥∥|Ψ⟩ −AA† |Ψ⟩

∥∥2 ≈ [1− λ1(TA†Ψ:A†Ψ)]L∥∥A† |Ψ⟩ − |Φ⟩
∥∥2 ≈ [1−

(
λ1(TÃ†Ψ:Φ

)
)2

]L,
(A2)

where Ã† |Ψ⟩ ∝ A† |Ψ⟩ is the normalized state [75]. Re-
call the definitions as in Eq. (20):

εp ≡ 1− λ1(TA†Ψ:A†Ψ),

εt ≡ 1−
(
λ1(TÃ†Ψ:Φ

)
)2

.

Evidently, the total error density in Eq. (17) can be de-
composed as

ε = εp + εt +O(ε2p, ε
2
t , εpεt), (A3)

which is Eq. (19).
To complete this appendix, we now give the derivation

of Eq. (A2). The first term in Eq. (A1) is due to the
projection AA†:∥∥|Ψ⟩ −AA† |Ψ⟩

∥∥2 = 1−
∥∥A† |Ψ⟩

∥∥2
≡ 1− (1− εp)

L ≈ εpL. (A4)

The second source of ε comes from the truncation error
of representing the unnormalized state A† |Ψ⟩ with the
MPS |Φ⟩:∥∥A† |Ψ⟩ − |Φ⟩

∥∥2 = 1 +
∥∥A† |Ψ⟩

∥∥2 − 2Re ⟨Φ|A†|Ψ⟩

= 2− εpL− 2Re ⟨Φ| A† |Ψ⟩(√
1− εp

)L (√
1− εp

)L
≡ 2− εpL− 2Re ⟨Φ| Ã† |Ψ⟩(

√
1− εp)

L,

(A5)

where we defined Ã† |Ψ⟩ = A† |Ψ⟩ /
(√

1− εp
)L

as the
normalized state. Analogously to Eq. (18),∥∥∥|Φ⟩ − Ã† |Ψ⟩

∥∥∥2 = 2− 2Re ⟨Φ| Ã† |Ψ⟩ ≈ εtL. (A6)

Thus, putting everything together, we have∥∥A† |Ψ⟩ − |Φ⟩
∥∥2 ≈ 2− εpL− (2− εtL)

(
1− εpL

2

)
= εtL. (A7)

Appendix B: Isometric filling of A

Let a denote the tensor making up A. Label its indices
as below:

ai0 i1.

i2

i3

. (B1)

To enlarge the bond dimension χv = dim(i2) = dim(i3)
to χ′

v while keeping the operator that A represents in-
variant and the isometric condition intact, one groups
i2i0 and i3i1 respectively as the row and column index
of the isometric matrix a. i2 and i3 are the “slow” in-
dex of their respective combined indices. Here we assume
dim(i0) = dim(i1), and thus a is square. To enlarge the
bond dimensions, one first zero-pads on the index i2 and
then adds orthogonal columns on index i3:

[a] →
[
a
0

]
→

[
a 0
0 a⊥

]
, (B2)

where a⊥ is an arbitrary unitary matrix with (χ′
v −

χv) dim(i0) number of rows and columns. Thus, when
dim(i0) = dim(i1), the result of isometric filling is a →
a′ = a⊕ a⊥.

Appendix C: Area law in Pealing iMPS

As discussed in Sec. IVB, iMM has a disentangling
effect on the new iMPS |Φℓ⟩ and we have shown by com-
puting the half-chain entropy of the iMPS |Φℓ⟩ over the
peeling process:

S(|Φℓ⟩) = −
∑
i

σ2
i log σ

2
i ,

where σi are the singular values on a vertical bond of
|Φℓ⟩; see Fig. 10(a). This entropy is for the half-chain
subsystem composed of the physical indices and the vir-
tual indices of |Φℓ⟩ and is thus not physical.
To dig deeper, we ask whether iMM can extract α(g)

using only physical quantities [76]. The answer is yes.
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For each |Φℓ⟩, a further iMM can be applied to |Φℓ⟩ with
χh = 1:

|Φℓ⟩ ≈ A′
ℓ |Φ′

ℓ⟩ , (C1)

where the isoTNO A′
ℓ has no physical legs. The original

|Φl⟩ has virtual bonds and can be viewed as the purifica-
tion state of the density matrix over the remaining physi-
cal spins. Now, the |Φ′

ℓ⟩ is a pure state and the dominant
eigenstate of such a density matrix. Remarkably, we find
that |Φ′

ℓ⟩ has an error density on the order of 10−5 when
compared to the iMPS representing width Lx − ℓ TFI
ground state and thus has an S(|Φ′

ℓ⟩) that obeys the en-
tropy area law almost perfectly while also agreeing with
the values found via iDMRG (see blue crosses Fig. 10(b)).
This suggests that the TFI Hamiltonian of width L and
the entanglement Hamiltonian of a subsystem of width
L in a larger TFI system have approximately the same
ground state. We repeat this experiment at the criti-
cal transverse field g = g2DC and find the same behavior.
Results are shown in Appendix D.

(a)

ϕℓ

ϕℓ

S(|Φℓ⟩)

|Φℓ⟩

≈
a′ℓ

1

a′ℓ
1

ϕ′
ℓ

ϕ′
ℓ

S(|Φ′
ℓ⟩)

A′
ℓ |Φ′

ℓ⟩
(b)

Figure 10: Area law properties of peeled isoTNS. (a)
S(|Φℓ⟩) is the half-chain entropy of |Φℓ⟩, including
contributions from left virtual legs. S(|Φ′

ℓ⟩) is a physical
entropy between physical legs above and below the
bipartition, found by projecting out the left virtual legs
via iMM. (b) Entropy of |Φℓ⟩ as a function of number
of columns ℓ removed by peeling the ground state of the
2D TFI Hamiltonian with width Lx = 8 and g = 3.50.
After an initial delay, iMM removes an amount of
entanglement consistent with the area law. Physical
entropy S(|Φ′

ℓ⟩) and entropy from iDMRG GS of
different width strips agree and obey area law.

Appendix D: Numerical results for g = 3.04438

Here we present numerics at g = g2DC = 3.04438, the
critical transverse field for the two-dimensional TFI in
the thermodynamic limit. Close to the critical point,
we expect this model on finite width strips to be more
difficult to capture by an iMPS due to increased entan-
glement.
First we repeat the area law experiment of Sec. VB

and show the results in Fig. 11. We again see that the
iMM algorithm removes an amount of entanglement α(g)
per column consistent with the area law. Additionally,
the physical entropy S(|Φ′

ℓ⟩) agrees with the entropy from
iDMRG, again indicating that the orthogonality column
of Lx − ℓ columns and the iMPS of the same width have
large overlap. We note that for g = 3.50, the amount
of entanglement removed per column saturates to α(g)
sooner than in the g = 304438 case, indicating that more
horizontal entropy is present in latter case.

Figure 11: Entropy of |Φℓ⟩ as a function of number of
columns ℓ removed by peeling the ground state of the
2D TFI Hamiltonian with width Lx = 8 and
g = 3.04438. After an initial delay, explained by S(|Φℓ⟩)
not being a physical entropy, iMM removes an amount
of entanglement consistent with the area law. Physical
entropy S(|Φ′

ℓ⟩) (as defined in Fig. 10(a)) and entropy
from iDMRG GS of different width strips agree and
obey area law.

Next we use the iTEBD2 algorithm to search for the
ground state of the g = 3.04438 2D TFI. Again we com-
pare isoTNS energies evaluated by iMM against iDMRG
energies for χ = 512. Results for Lx = 4, Lx = 8, and
Lx = 20 infinite strips are shown in Fig. 12, where again
we find an intermediate dt, which balances iTEBD and
iMM errors, leads to the optimal energies.
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Figure 12: Ground state energies achieved with iTEBD2 for critical g = 3.04438 2D TFI on Lx = 4, 8, 20 strip. An
intermediate dτ and f yield the best energy, while χ = 8 outperforms χ = 4. We compare the isoTNS energies
against essentially exact energies from quantum Monte Carlo (QMC) extrapolated from strips of finite length. As a
comparison, the dashed line is the result of an iDMRG calculation with bond dimension χ = 512. For Lx = 4, 8, the
iDMRG result is below the bottom axis of the plot.



19
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straete, and J. I. Cirac, Sequentially generated states for
the study of two-dimensional systems, Physical Review
A 77, 052306 (2008).

[67] M. Foss-Feig, D. Hayes, J. M. Dreiling, C. Figgatt, J. P.
Gaebler, S. A. Moses, J. M. Pino, and A. C. Potter, Holo-
graphic quantum algorithms for simulating correlated
spin systems, Physical Review Research 3, 10.1103/phys-
revresearch.3.033002 (2021).

[68] R. Haghshenas, J. Gray, A. C. Potter, and G. K.-L. Chan,
Variational power of quantum circuit tensor networks,
Physical Review X 12, 011047 (2022).

[69] L. Slattery and B. K. Clark, Quantum circuits
for two-dimensional isometric tensor networks (2021),
arXiv:2108.02792 [quant-ph].

[70] Z.-Y. Wei, D. Malz, and J. I. Cirac, Sequential generation
of projected entangled-pair states, Phys. Rev. Lett. 128,

https://doi.org/10.1103/physrevresearch.3.023236
https://doi.org/10.1103/physrevb.96.115113
https://doi.org/10.1103/physrevb.93.155139
https://doi.org/10.1103/physrevb.79.144108
https://doi.org/10.1103/physrevb.79.144108
https://doi.org/10.1103/PhysRevB.101.245139
https://doi.org/10.1103/PhysRevE.66.066110
https://doi.org/10.1103/PhysRevE.66.066110
https://doi.org/10.1103/PhysRevResearch.4.013250
https://doi.org/10.1103/PhysRevResearch.4.013250
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevLett.98.070201
https://doi.org/10.1103/PhysRevB.78.155117
https://doi.org/10.1103/PhysRevB.78.155117
https://doi.org/10.1103/physrevlett.101.090603
https://doi.org/10.1103/physrevlett.101.250602
https://doi.org/10.1103/physrevresearch.3.033002
https://doi.org/10.1103/physrevresearch.3.033002
https://arxiv.org/abs/2108.02792
https://doi.org/10.1103/PhysRevLett.128.010607


21

010607 (2022).
[71] F. Barratt, J. Dborin, M. Bal, V. Stojevic, F. Pollmann,

and A. G. Green, Parallel quantum simulation of large
systems on small nisq computers, npj Quantum Informa-
tion 7, 79 (2021).

[72] J. Dborin, V. Wimalaweera, F. Barratt, E. Ostby, T. E.
O’Brien, and A. G. Green, Simulating groundstate and
dynamical quantum phase transitions on a supercon-
ducting quantum computer, Nature Communications 13,
5977 (2022).

[73] N. Astrakhantsev, S.-H. Lin, F. Pollmann, and A. Smith,
Time evolution of uniform sequential circuits, arXiv

preprint arXiv:2210.03751 (2022).
[74] S. Anand, J. Hauschild, Y. Zhang, A. C. Potter,

and M. P. Zaletel, Holographic quantum simulation of
entanglement renormalization circuits, arXiv preprint
arXiv:2203.00886 (2022).

[75] Note that it is wrong to use TA†Ψ:Λ in Eq. (A2) as the
states making up the transfer matrix are not properly
normalized.

[76] Here by physical quantities, we mean any quantity ob-
tainable in principle from the initial wavefunction |Φ0⟩.

https://doi.org/10.1103/PhysRevLett.128.010607
https://doi.org/10.1038/s41534-021-00420-3
https://doi.org/10.1038/s41534-021-00420-3
https://doi.org/10.1038/s41467-022-33737-4
https://doi.org/10.1038/s41467-022-33737-4

	Two Dimensional Isometric Tensor Networks on an Infinite Strip
	Abstract
	Contents
	Introduction
	Isometric TNS and Moses Move
	Finite isoTNS
	Infinite strip geometry

	Infinite Moses Move
	iMM-Local
	iMM-Polar
	iMM-MPO
	iMM-CG
	Error measures and a structure theorem

	iMM Benchmarks
	Benchmark for a single run of iMM
	Disentangling effect of A
	Repeated application of iMM to an isoTNS

	Transforming iMPS into 2D isoTNS
	Peeling
	Area Law

	Evaluation of local observables: Energy as an example
	Energy evaluated by iMM
	Energy evaluated by boundary MPO
	Energy Benchmarks

	iTEBD2
	iTEBD2 Algorithm
	Ground state search

	Conclusions
	Acknowledgments
	Proof of Eq. (19)
	Isometric filling of A
	Area law in Pealing iMPS
	Numerical results for g=3.04438
	References




