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Abstract

Analyses of the Drosophila hematopoietic system are becoming more and more prevalent as

developmental and functional parallels with vertebrate blood cells become more evident.

Investigative work on the fly blood system has, out of necessity, led to the identification of new

molecular markers for blood cell types and lineages and to the refinement of useful molecular

genetic tools and analytical methods. This review briefly describes the Drosophila hematopoietic

system at different developmental stages, summarizes the major useful cell markers and tools for

each stage, and provides basic protocols for practical analysis of circulating blood cells and of the

lymph gland, the larval hematopoietic organ.

Introduction

Blood cells have been studied in invertebrate animal models for more than one hundred

years, although how these cells relate to vertebrate blood cells in function and development

has only recently begun at the molecular genetic level. This work is highlighted by studies in

the fruit fly Drosophila melanogaster, an established premier model system for genetic

studies in other contexts. The earliest studies of blood cells (known as hemocytes) in

Drosophila date back to the late 1800s, however significant progress in this area did not

begin in earnest until the 1950s when Rizki and Rizki began their studies of blood cell types

and associated functions, particularly in the areas of innate immune responses and self-/non-

self-recognition, and established the nomenclature for the Drosophila blood cell system that
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is still in use today [1, 2]. Furthermore, their observational work led to the earliest

suggestion that the various Drosophila blood cell types arise from a common precursor cell

type, an idea similar to that which would be established in the mouse within the next few

years [3].

Since that time, with the advent of molecular genetics, quite a bit has been discovered about

how Drosophila blood cells are specified and develop and how this relates to blood-forming

processes in vertebrate systems. Much of this knowledge has been acquired with the

identification and use of many new cellular markers, genetic tools, and analytical methods.

This review will briefly describe the key elements of the Drosophila hematopoietic system

and highlight useful reagents and approaches that are currently available.

The Drosophila hematopoietic system

Mature Drosophila blood cells are found as at least three distinct types known as

plasmatocytes, crystal cells and lamellocytes. The plasmatocyte behaves as a macrophage-

like cell and is the predominant cell type comprising more than 90% of the hemocyte

repertoire [1, 4]. Crystal cells, named for their cytoplasmic paracrystalline protein

inclusions, represent approximately 5% of hemocytes in circulation while lamellocytes are

rarely observed. Lamellocytes can be induced to differentiate, however, in the context of

various conditions including immune challenge by parasitic wasps [5-7]. Several additional

cell types have been described based on morphological features or as precursor populations

lacking differentiation markers [2, 8-10], but their identification as independent cell types

will require the discovery of new and unique markers.

A major function of hemocytes is in the provision of cellular innate immune responses,

which is achieved primarily through the phagocytic clearance of microbial pathogens or the

encapsulation of larger parasites. Additionally, plasmatocytes are known to promote the

humoral immune response by secreting cytokine-like proteins and antimicrobial peptides

[11-15]. Accordingly, flies with impaired plasmatocyte function are more susceptible than

wild-type flies to microbial infection and are less effective in the potentiation of humoral

immune responses [16-19]. Hemocytes also have roles during development where they

secrete and remodel extracellular matrix components as well as remove cellular debris by

phagocytosis [20-23]. These roles are highlighted by their requirement in the embryonic

nervous system, the development of which is severely disrupted in the absence of

plasmatocyte function [24].

As professional phagocytes, plasmatocytes use a large repertoire of receptors to identify and

engulf different targets. Receptors recognizing dying cells include Croquemort (Crq), a

CD36 family member [25], PSR, a phosphatidyl serine receptor [26], and Draper, which is

homologous to the CED-1 phagocytosis receptor in C. elegans [27, 28]. Numerous receptors

that bind microbial pathogens are also known and include the peptidoglycan recognition

protein PGRP-LC and the scavenger receptor D-SR-CI [29-31]. Additionally, the receptors

Eater, Nimrod (NimC1, also known as the P1 antigen) and Dscam have been found to be

important in bacterial clearance. Eater and Nimrod both contain multiple EGF-like motifs,

called NIM repeats, which, in the case of Eater, have been shown to bind bacteria and
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mediate an array of intermolecular interactions [32, 33]. Nimrod belongs to a family of ten

related proteins (grouped into three classes, NimA-NimC), the majority of which are

expressed by hemocytes [33]. Interestingly, the NimB proteins appear to function as

opsonins because they enter the secretory pathway but lack transmembrane and cytosolic

domains. Several isoforms of Dscam have also been identified in the hemolyph suggesting

that it may also function to opsonize microbes [34]. The extracellular domain of Dscam

receptors is composed of repeating immunoglobulin-like domains, a subset of which are

highly variable due to alternative splicing [35]. Though microarray analysis has shown that

more than 18,000 alternatively-spliced isoforms are expressed by hemocytes, just five

isoforms comprise 80-90% of Dscam mRNAs in these cells, suggesting a blood-specific role

for these particular Dscam types [34].

While plasmatocytes primarily function in phagocytic clearance, the main function of crystal

cells is in the process of melanization, the darkening and hardening of tissue due to the local

deposition of melanin. Melanization commonly occurs during immune responses in the

context of barrier formation around pathogens too large to remove by phagocytosis, as well

as during the process of wound healing, particularly when the cuticular epithelia has been

breached. Phenoloxidase (PO) enzymes mediate the oxidation of phenols into quinones that

then polymerize into melanin. Tightly-regulated serine protease cascades convert

Prophenoloxidase (PPO) zymogens into the active PO form [36-39]. Experimental evidence

indicates that the large, cytoplasmic inclusions that crystal cells exhibit (and from which

they derive their name) are composed primarily of PPO [2, 5, 10, 40]. Furthermore,

Drosophila mutant lines that lack crystal cells also lack PO activity in the circulating

hemolymph, identifying crystal cells as the primary source of this activity [40-43]. Genetic

analysis suggests that crystal cell rupture is the mechanism by which PO activity is delivered

to the hemolymph, a process mediated by JNK signaling and the TNF homolog Eiger [41].

Despite the distribution of PPO throughout the hemolymph, PO activity is tightly regulated

and spatially restricted, such as at sites of coagulation and clot formation [44].

Lamellocytes are the most morphologically distinct blood cell type, being large (15-40 μm

across), disc-shaped cells. These cells function during the encapsulation response, where a

cellular barrier, which includes plasmatocytes and crystal cells [45], forms around foreign

objects that cannot be removed by phagocytosis. Normally, very few lamellocytes are

observed [46]; however numerous lamellocytes can be induced to differentiate in response

to signals that include parasitic wasp infestation, injection of foreign objects into the

hemocoel, and sterile wounding [5, 6, 13, 47].

With regard to understanding innate immune mechanisms, Drosophila has proven to be an

exceptional model that has provided key insights into systems, such as Toll-like receptor

signaling, with relevance to human biology [48]. The majority of this work in flies has

focused on understanding the humoral response to microbial pathogens, however the role of

hemocytes in the immune context is beginning to be explored in more detail. Methodologies

and protocols describing microbial challenge and the monitoring immune signaling have

been previously published by Lemaitre and colleagues [49], (Editor: please add current

reference if Lemaitre contributes to this issue). A detailed protocol demonstrating wasp

paristization and associated analytical methods has also recently been made available [50].
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Much like in vertebrate systems, hematopoietic development in Drosophila is biphasic with

regard to timing and location [8, 51, 52]. Drosophila blood cells are first specified in the

head mesoderm and migrate throughout the developing embryo [53]. At later stages of

embryogenesis, a second group of hematopoietic precursors are specified within the

cardiogenic mesoderm (thoracic segments 1-3) and form the lymph gland, a specialized

organ that supports the hematopoietic process throughout subsequent larval development

[54, 55]. At the end of the larval stage, the lymph gland breaks down and releases blood

cells into circulation [56, 57]. Several reports have also suggested that hematopoietic cell

populations exist as sessile cells in association with the internal larval body wall and/or the

dorsal vessel (heart), however a better understanding of the blood-forming potential of these

cells will require further exploration [58-60]. It has been demonstrated that circulating blood

cells derived from both the embryonic head mesoderm and the lymph gland persist into the

adult stage [56], however a major unanswered question is whether any adult blood cells arise

from de novo hematopoiesis during the pupal or adult stages.

Analysis of embryonic hemocytes

Molecular genetic analysis of embryonic blood cells has made use of standard in situ

hybridization and immunostaining methods in combination with specific markers. The

number of genes with expression patterns overlapping with embryonic hemocytes has grown

in the last several years, however with regard to early developmental analysis of blood cells

derived from the head mesoderm, several markers stand out: serpent (srp), glial cells missing

(gcm), lozenge (lz), Prophenoloxidase A1 (ProPOA1), collagen (Cg25c), and Peroxidasin

(Pxn; see Table 1). The onset of Srp (a GATA transcriptional regulator) expression in the

head mesoderm defines blood cell identity, while the expression of Gcm and Lz (a Runx

family transcriptional regulator) mark the plasmatocyte and crystal cell lineages,

respectively [8, 52]. Maturing macrophages express collagen and Pxn, while ProPOA1 is a

marker of mature crystal cells. The lamellocyte cell type has not been reported in the

embryo. Each of the described markers has been analyzed by in situ hybridization and/or

antibody staining, and some excellent examples describing their specific use, either alone or

in combination, can be found in Waltzer et al., (2003) [61] and Milchanowski et al., (2004)

[62], among others.

Embryonic lymph gland cells express srp, similar to head mesoderm blood cells, however

the lymph gland lineage also expresses odd skipped (odd) [54, 63]. Because of the existence

of Odd antibody and the reporters odd-lacZ and odd-gal4, odd expression has been a marker

of choice for identifying lymph gland cells in late-stage embryos. Expression of the

homeotic gene Antennapedia (Antp) also defines the earliest subdivision (stage 11) of the

lymph gland by specifying Posterior Signaling Center (PSC) cells, which behave as niche-

like cells at later developmental stages [64]. The EBF factor Collier (Col, also known as

Knot) is also an important regulator and marker of the PSC (stage 11 onward) [63]. Collier

functions downstream of Antp in the PSC and is important for its maintenance during larval

development [64]. In col mutant animals, the PSC is lost, which causes lymph gland

progenitors to differentiate prematurely [63]. Additional embryonic lymph gland markers

are described in Table 1.
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Drosophila embryos have also been ideal for research groups interested in live imaging of

blood cells. Because of their small size, relative transparency, and the vast genetic tools that

are available, live imaging of embryonic hemocytes has been used to address several basic

developmental and cell biological questions, such as cell migration mechanics and

chemotaxis [65-68]. Because of the versatility of this system, relatively recent detailed

protocols describing live imaging and in vivo tracking of embryonic hemocytes have been

published [69, 70].

Analysis of larval hemocytes

Over the last several years, analysis of Drosophila hematopoiesis has primarily focused on

the larval stages. Recently, there has been growing interest in characterizing larval

circulating cells in both functional and hematopoietic contexts, and several protocols for in

vitro, ex vivo, and in vivo hemocyte analysis have been described [58, 70-76]. A basic

protocol for the collection and preparation of circulating larval hemocytes for analysis is

described in Box 1. Most larval analyses, however, have examined blood development in the

lymph gland, which has proven to be a useful system for understanding mechanisms of

progenitor cell maintenance and differentiation [8, 77]. Although the lymph gland is

specified in the embryo, its growth and differentiation into mature blood cells occurs during

the larval stages. Owing to a lack of good molecular markers, early work was limited mainly

to observation. However, many new markers and tools have been identified (see Table 2)

that, in combination with the application of advanced microscopic techniques, have greatly

enhanced the current understanding of how hematopoiesis occurs in the lymph gland. In

particular, these advances demonstrated that the primary lobes of the lymph gland can be

subdivided into distinct cellular populations that are spatially organized [54]. The periphery

of each primary lobe contains maturing blood cells was named the Cortical Zone (CZ),

whereas the juxtaposed medial region contains blood progenitor cells and was termed the

Medullary Zone (MZ). The posterior tip of each primary lobe harbors the Posterior

Signaling Center (PSC), several dozen specialized lymph gland cells that do not behave as

blood cells but rather form a niche-like group that supports hematopoietic development [64,

78, 79].

Among lymph gland markers there are several that stand out as being particularly useful for

genetic analysis (see Table 2 for these and others). The first lymph gland zone to be

discovered was the PSC through the expression of Serrate (Ser9.5-lacZ), encoding a Notch

receptor ligand. The Serrate enhancer, which is active in the PSC from the second instar

onward, was subsequently utilized to generate a Gal4 driver line utilizing a fluorescent

reporter (UAS-GFP) and as a genetic tool to manipulate PSC cells [54, 79]. Later research

demonstrated that Antennapedia, as described previously, is expressed in and specifies PSC

cells [64]. Antennapedia expression in the PSC is maintained throughout lymph gland

development, making it a marker and driver of choice for PSC-related experiments (both

Antennapedia-gal4 and a monoclonal antibody are available, see Table 2). Similarly useful

reagents are antibodies against Collier as well as the col-gal4 reporter line, both of which

mark PSC cells throughout larval stages [78, 80]. PSC cells also express and secrete

Hedgehog protein, which is sensed by medullary zone progenitor cells and is important for

their long-term maintenance within the lymph gland [64]. A direct hedgehog-GFP reporter
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is available that allows for direct visualization of PSC cells [81], and can be placed in the

context of other Gal4 drivers for analysis of non-autonomous PSC regulation (something not

possible when using Antennapedia-gal4 as a reporter, for example).

The medullary and cortical zones were identified simultaneously through their mutually

exclusive expression of progenitor and mature cell markers, respectively. The classic

medullary zone marker is domeless-gal4 (domeless encodes a receptor that activates the

JAK/STAT pathway), which was first isolated as an enhancer trap [54, 82]. Subsequently

the domeless enhancer responsible for medullary zone expression was identified and has

been used as a Gal4-independent lacZ (domeless-MESO-lacZ) reporter [78, 83]. Recent

analysis demonstrating lymph gland regulation by the central nervous system (CNS) found

that domeless-gal4 is also expressed by various neurons in the brain. To circumvent CNS

effects when using domeless-gal4 to manipulate medullary zone blood progenitors, ELAV-

gal80 has been placed in combination with domeless-gal4 [84]. The ELAV enhancer is

neuron-specific and expresses high levels of Gal80, a natural protein inhibitor of Gal4,

thereby mitigating any brain effects due to domeless-gal4 expression. Additional useful

genetic markers for lymph gland medullary zone progenitors include E-cadherin [54],

Cubitous interruptus [64], Wingless [85], TepIV-gal4 [86], phospho-Akt (p-Akt) [87], and

Bag of marbles [88] (see Table 2).

Previous analysis of mitochondrial function in the lymph gland demonstrated that blood

progenitor cells exhibit relatively high levels of reactive oxygen species (ROS), and that

these ROS establish a critical signaling threshold for proper progenitor maintenance and

differentiation [89]. Since then, fluorescent staining for ROS levels has become a standard

analytic procedure for assessing how genetic change or immune challenge affects ROS

within lymph glands and circulating cells. Many oxidation-sensitive dyes are available,

however dihydroethidium (DHE) has been the marker of choice because of its high

specificity for superoxide radicals and its ability to freely permeate cell membranes. Upon

oxidation, fluorescent DHE metabolites are well retained by cells and tolerate mild fixation

[90], which may be critical for simultaneous analysis of other markers such as GFP. Brief

protocols for DHE analysis in both lymph glands and circulating blood cells are included

here (see Boxes 5 and 6), with a more detailed protocol available as an online resource [91].

Differentiating cells of the lymph gland cortical zone express several useful markers, most

notably Hemolectin-gal4 and the P1 antigen, which are both blood specific [54]. The

Hemolectin-gal4 driver is one of the earliest known markers defining the onset of progenitor

differentiation within the lymph gland at the mid-second instar, and stays on in mature cells

[54, 92]. Expression of Peroxidasin (both the protein and the Peroxidasin-gal4 reporter) [93,

94] is also an early marker of cortical zone formation [54], however it is also expressed at

various levels in other tissues such as the fat body and brain. The Collagen-gal4 driver [95]

is slightly later than Peroxidasin expression in the cortical zone [54], but also has strong

expression in the fat body and, at lower levels, in various cell types [95]. The P1 antigen is

specific to mature plasmatocytes [33, 96] and, by comparison, is considered to be a

relatively late marker [54]. The P1 antigen was identified as one of several proteins

interacting with monoclonal antibodies derived from Drosophila blood cell preparations

[96]. The P1 antigen was subsequently identified as the protein product of the Nimrod C1
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gene (NimC1), described previously [33]. While the anti-P1 monoclonal antibody remains

among the first in the choice of tools to be used for blood analysis given its specific

expression in late plasmatocytes, ease of use, and widespread availability, it should be noted

that several commonly used Drosophila parental stocks are P1-negative [97]. This recessive

expression polymorphism can lead to serious problems with experimental interpretation of

progeny phenotypes, making it imperative to analyze P1-expression in parental strains. The

P1-negative genetic background of any important experimental stock can easily be corrected

through standard chromosome mechanics [97].

Crystal cells in the cortical zone can be identified by expression of the determinant gene

lozenge (both the protein and the lozenge-gal4 reporter) and mature marker

Prophenoloxidase A1 (ProPOA1; protein). The gene encoding ProPOA1 is the Black cells

(Bc) gene, and the crystal cell enhancer has been used to generate several different

fluorescent, Gal4-independent Bc-expression reporters [81]. Lamellocytes also now have

several useful markers available. A classic marker of lamellocyte differentiation is a

misshapen (a JNK activator)-lacZ reporter gene (msn-lacZ) [98], initially isolated as an

enhancer trap. The msn lamellocyte enhancer has subsequently been identified and used to

generate several useful Gal4-independent fluorescent reporter lines [99]. Useful lamellocyte

protein markers, for which antibodies are available, include L1 (identified along with P1

described above) [96], Filamin-240 [100], α-PS4 integrin [78], and Myospheroid βPS-

integrin) [101]. A GFP enhancer trap of the L1 gene (atilla) is also available [102].

Development of new tools for lymph gland analysis

Although several new markers for lymph gland analysis have been identified, their relative

utility varies. As described, some markers are antibody based (many of which are not

monoclonal) and their availability and quality can vary widely. Genetic reporters such as

Hml-gal4, while extremely useful, can be difficult for experiments in which it is necessary

to discern whether Gal4 is a cell identity marker (through UAS-GFP expression, for

example) or is a tool to drive other UAS-transgenes (eg., dsRNA) for genetic analysis;

simultaneous use can make phenotypic interpretations difficult. Another key issue common

to the use of Gal4-based drivers in Drosophila is that it is nearly impossible to perform

and/or interpret results from experiments that combine multiple Gal4 reporters into the same

background, as expression patterns will combine. In short, continued progress in

characterizing the fly hematopoietic system will require the implementation of new or

modified genetic technologies that can complement existing tools. In the past few years,

several groups have expanded the Drosophila molecular genetic tool kit through the

generation of new bipartite gene expression systems [103], such as the LexA-lexAop [104]

and QF-QUAS systems [105]. Once adapted for use in the hematopoietic system (through

the creation of appropriate driver lines such as Hml-QF or dome-QF), it will be possible to

use such lines in combination with the Gal4/UAS system to enhance and refine analyses.

An alternative approach taken by our lab to overcome current limitations and to facilitate

genetic analysis in the lymph gland has been to generate a new line of flies that uses

multiple Gal4-independent fluorescent protein reporters to simultaneously monitor different

lymph gland cell populations. To generate this new hematopoietic tool, we first re-tasked the
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dome-MESO progenitor cell enhancer [83] to drive expression of enhanced blue fluorescent

protein 2 (EBFP2, Ex/Em: 383/448 nm) [106]. This transgene was then recombined with

differentiating-cell marker Hemolectin-DsRed [58] and the PSC/niche cell marker

hedgehog-GFP [81] onto the X chromosome. As can be seen in Figure 1, each reporter

clearly identifies their respective cell in the lymph gland and, therefore, will be extremely

useful for assessing phenotypes in various experimental contexts, such as genetic screening.

This triple recombinant marker line, as well as the new, individual fluorescent dome-MESO

transgenic lines, will be made freely available to the research community.

In contrast to other organs such as the imaginal discs, brain, gut, and fat body, the lymph

gland is likely to be unfamiliar to most Drosophilists. Because of its relatively small size and

delicate nature, the lymph gland presents a significant challenge to anyone interested in

analyzing it by dissection and microscopy. To provide guidance in this area, a protocol for

lymph gland dissection is described, and is followed by a standard immunostaining

procedure and a summary of how to mount high quality, intact lymph glands on glass slides

for microscopic analysis (see Boxes 2, 3, and 4).

Analysis of adult hemocytes

As mentioned, relatively little is known about adult hemocytes or hematopoiesis, owing

primarily to a lack of useful tools and methods. In contrast to larvae, which are akin to fluid-

filled balloons, adult bodies are rigid and have a relatively lower hemolymph volume,

making analysis of circulating cells by “bleeding” more challenging. This becomes even

more difficult in light of the fact that many, if not most, adult hemocytes are sessile,

associated with the adult body wall and internal organs and structures. Many such adult

hemocytes can be visualized through the cuticle in whole-mount preparations using markers

such as Hml-gal4 UAS-GFP, however approach this is not very amenable to more detailed

analyses of blood cell fate, proliferation, or function. It is clear that more work needs to be

done to develop reagents and techniques to make the adult blood system more accessible to

molecular genetic analysis. To date, the most commonly applied method for visualizing and

analyzing adult hemocytes is to perfuse the adult hemocoel with aqueous buffer, which

flushes hemocytes out of the adult and onto a slide for analysis. An adult perfusion protocol

is described in Box 7. Recently, such a method was used in the identification of the first

adult-specific blood marker, Ad1 [107], and further demonstrated that adult hemocytes

maintain NimC1 (P1) expression but lose expression of Hemese (He), the blood-specific pan

hemocyte marker found in larval hemocytes.

Summary

As with any developing field of study, continued effort on the part of researchers will

enhance the ability to manipulate and analyze the fly hematopoietic system. This

advancement will undoubtedly rely in large part on the identification of improved molecular

markers offering higher resolution identification of cell types within the hematopoietic

lineages, as well as on improved technologies for genetic analysis and imaging. Of particular

importance will be approaches that allow for analyses in vivo during the larval, pupal, and

adult stages, which may mitigate current difficulties in extracting blood cells from animals
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for ex vivo analyses. This review has highlighted some of the more useful genetic markers

and analytic methods, both by pointing toward expertise in the published literature where

appropriate and by providing here a set of basic protocols for dealing with the larval and

adult blood system.
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Box 1 | Collection and processing of larval circulating blood cells

1. Collect larvae and wash thoroughly. This is important to ensure that the

circulating cell preparation is not contaminated with food debris, yeast, and

bacteria (which will obscure observation of the cells) from the culture.

2. Place a 14-well glass slide on the stereo microscope and illuminate with the

transmitted light base.

3. Place a 20 μL drop of 1XPBS on one well spot of a 14-well glass slide. Do not

place a drop on each well at the beginning as evaporation will significantly

decrease the buffer volume as you proceed. Instead, use one drop at a time.

4. Place one larva in the drop of buffer.

5. Using two pairs of forceps, pinch the body wall/cuticle at the posterior of the

larva. Keep one forceps in place while tearing the cuticle down the length of the

larva toward the anterior. As the hemocoel is opened, hemolymph will begin to

stream into the 1XPBS buffer; this should be relatively easy to observe because

of differential fluid densities. To obtain a clean preparation of isolated blood

cells, it is essential to grab and tear only the cuticle. Avoid damaging internal

organs particularly the gut, the contents of which will significantly contaminate

the sample and will be difficult to wash away from the slide surface.

6. Once the larval hemocoel is open, use forceps to gently move the larva through

the buffer to evenly distribute the hemolymph and hemocytes throughout.

7. Using single tines from two different forceps, gently remove the carcass from

the drop of buffer containing the blood cells. Do this slowly so that minimal

buffer is removed. Do NOT use one pair of forceps to pick up the carcass as too

much buffer will also be removed due to capillary action between the tines.

8. Repeat for remaining samples.

9. Carefully place slide into humidified chamber. Incubate for 30 minutes to let

blood cells settle onto the glass surface.

10. Remove slide from the humidified chamber.

11. Under the microscope, carefully remove the 1XPBS buffer from each drop using

a pipette.

12. Add 20 μL of freshly prepared fixative to each well and place into humidified

chamber for 10 minutes at room temperature.

13. Under the microscope, remove fixative and replace with 20 μL of 1×PBS for

short term storage at 4C or proceed with subsequent assay of choice, such as

immunostaining. For steps using buffers with detergents, volumes of 5-10 μL

are recommended to avoid mixing between wells due to loss of surface tension.

All steps should be carried out in a humidified chamber to avoid evaporation.
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14. After processing, place a small drop of VECTASHIELD on each well, followed

by a glass cover slip.

15. Seal with nail polish around the edges and proceed to imaging.
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Box 2 | Lymph gland dissection

1. Using a large transfer pipette, place several large drops of 1XPBS on the

silicone dissection plate.

2. Place one larva in each drop. As technique improves, several larvae can be

placed in each drop without interference.

3. Place the plate on a standard stereo dissecting microscope with a transmitted

light base.

4. Illuminate the sample. If lighting makes use of standard light bulbs (instead of a

cold LED source), take care to work quickly so that the larvae/samples do not

overheat. Dissect for a maximum of 30 minutes, with samples stored on ice,

before fixation.

5. Using forceps, orient larva dorsal-side up, anterior to the right (for a right-

handed person).

6. Using the left hand, gently hold larvae at 75% length (A=0%, P=100%).

7. Using the right hand, pinch the dorsal cuticle (only, no internal organs) at

70-75% length, and slowly pull toward the anterior. Pull the entire length,

stopping at the mouth hooks. This will open the body cavity without damaging

internal structures. Sometimes the dorsal cuticle will completely detach or the

ventral cuticle also; either is ok as long as the body cavity is open without

disrupting internal organs. Alternative method: Using both pairs of forceps, rip

the larva in half, then invert the anterior part by pushing the mouth hooks into

the body cavity longitudinally (imagine inverting a sock by pushing your hand

inward at the toes). Once inverted, proceed with step 10 below. Note: this

method opens the gut, which can make subsequent steps more difficult because

food debris, yeast, and bacteria cloud the buffer.

8. Use both forceps to sever the larvae (internal organs and ventral cuticle)

completely at 75% length (near where the larva was being held by the left hand).

9. Stabilize the anterior portion of the larva with the left hand by grabbing the

ventral cuticle. Using the right hand forceps, reach inside the body cavity and

directly grasp the mouth hooks (do not grab them externally as this will include

cuticle).

10. Gently pull the mouth hooks out, separating them from the body wall and

cuticle. Removing the mouth hooks in this manner will bring along a complex of

structures that includes the eye imaginal discs, the brain, the dorsal vessel, the

prothoracic (ring) gland, and the lymph gland; salivary glands are also

commonly included.

11. Gently separate these lymph gland-containing complexes from any residual

tissues such as fat body.
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12. Carefully remove the complex in a small drop of 1XPBS retained between the

tines of a single forceps) to a microfuge tube containing cold 1mL 1XPBS + 1

drop 1XPBST on ice. The PBST break the surface tension of the buffer,

allowing samples to sink to the bottom of the tube.

13. Collect as many lymph gland complexes as needed.

14. Replace buffer with 1 mL of freshly prepared fixative.

15. Place microfuge tube on mixer (Nutator, orbital shaker, or similar) for 30

minutes.

16. Proceed to immunostaining (described below) or other analytical method.

17. For short term storage, wash fixed tissue with 1 mL 1XPBS for 5 minutes;

repeat; store at 4°C.
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Box 3 | Lymph gland immunostaining

For this procedure, lymph glands are left attached to the mouth hook/eye disc/brain

complex, 1) to provide a “handle” so that lymph glands are not damaged because of

physical manipulation and 2) because these tissues are often convenient immunostaining

controls

1. With lymph glands either in fix or 1XPBS in a 1.5 mL microfuge tube, discard

buffer.

2. Add 1mL 1XPBST (1XPBS + 0.4% Triton), place on mixer (Nutator or similar)

for 15 minutes; repeat twice.

3. During the washing stage, prepare 10% normal goat serum (NGS)/1xPBST

blocking solution.

4. Discard wash buffer from lymph glands and replace with 1 mL blocking

solution; block in for 30 minutes.

5. Dilute primary antibody in blocking solution at desired concentration.

6. Discard blocking solution from lymph glands and replace with 100 μL or greater

volume of primary antibody and mix well. For smaller volumes and/or limited

primary antibody, 0.6 mL microfuge tubes, PCR tubes, or Terasaki microtiter

plates (with 10 μL wells) can be used.

7. Place tubes in a rack. For short term incubations at room temperature,

intermittent mixing or placement on an orbital shaker is helpful.

8. Incubate for 3 hours at room temperature or overnight at 4C.

9. Remove primary antibody.

10. Add 1mL 1XPBST, place on mixer for 15 minutes; repeat twice.

11. Discard wash buffer from lymph glands and replace with 1 mL blocking

solution; block 10-30 minutes.

12. Dilute secondary antibody (usually 1:250 for lymph glands) in blocking solution

at desired concentration.

13. Discard blocking solution from lymph glands and replace with 100 μL or greater

volume of primary Incubate in secondary antibody (diluted usually 1:250) in

block for 3 hours at room temperature or overnight at 4C.

14. Remove secondary antibody.

15. Add 1mL 1XPBST, place on mixer for 15 minutes, discard buffer; repeat once.

16. Add 1mL 1XPBST + DNA stain (DAPI, etc.), place on mixer for 15 minutes,

discard buffer.

17. Add 1mL 1XPBS, place on mixer for 15 minutes, discard buffer; repeat once

(these wash steps remove detergent and excess DNA stain).
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18. Use pipette and dissection microscope to remove as much buffer as possible.

19. Add a drop of VECTASHIELD to the lymph glands in the 1.5 mL microfuge

tube.

20. Store in refrigerator or begin mounting procedure.
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Box 4 | Mounting fixed lymph glands for microscopy

Dissection of lymph glands itself can be difficult even for people with lots of practice

with other tissues such as imaginal discs, however mounting them successfully after

processing is just as difficult. Fewer things are more frustrating that dissecting high

quality lymph gland samples, only to destroy them during the mounting process. As with

dissection, many approaches will work depending on the skill level of the investigator.

Below is the primary method taught to individuals in our laboratory.

1. Transfer lymph gland complexes (in VECTASHIELD) from the microfuge tube

to a glass slide using a small transfer pipette or a pipette with a 200 μL tip cut by

a razor blade to enlarge the opening.

2. Place a drop of VECTASHIELD on a new slide.

3. Using forceps, move lymph gland complexes from the first slide to the second,

taking care to minimize the transfer of mounting medium.

4. Once transferred, use forceps to form the VECTASHIELD into a square or

rectangle shape, leaving 5-8 mm of dry area before the side edges.

5. Carefully separate the lymph gland complexes and distribute them in the

rectangle of medium. Use of single tines of the forceps is recommended because

surface tension of the medium will cause it to flow readily between both tines of

a single forceps, which will disrupt your tissues on the slide.

6. Place one tine of one forceps underneath the posterior end of the dorsal vessel,

lift slightly, and gently pull the lymph glands (and anterior structures) toward

the straight, perpendicular edge of the medium where it meets the glass slide.

The brain and discs create drag that straightens out the lymph glands (dorsal

vessel) as you move through the medium.

7. Draw the dorsal vessel/lymph glands out past the perpendicular edge of the

medium and onto the dry part of the slide. As this occurs, the volume of medium

around the lymph gland decreases, causing the lymph gland and other structures

to “sit down”onto the glass surface, instead of just floating around. It is critical

that the tissues make contact with the slide, otherwise the samples will dislodge

and become contorted upon coverslipping.

8. Repeat this process for each lymph gland around the perimeter of the medium,

such that each one is well spaced and straight.

9. Separate the brain and imaginal discs from the lymph glands of each complex.

This is most easily achieved by using a scissoring motion with single tines of

two different forceps (avoid placing both tines of a pair of forceps into the

medium). Place the tines in a “Figure X” over the dorsal vessel anterior to the

primary lobes, usually at or near the location of the ring gland. Hold one tine

still while drawing the other tine across the glass surface; as the tines pass each

other, the dorsal vessel is severed. Push the brain complex away from the lymph

gland, toward the center of the medium pool.
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10. Once the lymph glands and brain complexes have been separated, discard or

move most of the brain complexes (and any other tissue) to a new slide. Place

one brain near each corner of the medium rectangle and one or two in the center

of the medium; these will serve as spacers to protect the lymph glands from

severe compression by the cover slip.

11. Place one short edge of an appropriately sized cover slip down onto the glass

slide near, but not in, the medium. Take care to center it longitudinally. Place

the tines of a forceps under the opposite end and slowly lower the cover slip

onto the medium. To avoid air bubbles and misalignment, do NOT drop it onto

the medium. Wait for the medium to distribute between the cover slip and the

slide. Slight pressure on the cover slip with the forceps can help distribute the

medium, however be careful not to compress the tissues. If more mounting

medium is needed, it can be added using a pipette tip at the edge of the cover

slip. Excess medium should be removed at the edge with a pipette or wicked

away using a Kimwipe.

12. Once the cover slip is down, seal the cover slip around the edges using nail

polish. Allow to air dry for a few minutes, then store slides (horizontal is best) at

4 °C until they can be imaged.
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Box 5 | Staining for Reactive Oxygen Species (ROS) in the lymph glands

Special Materials

• 1X Schneider's Drosophila Medium + L-Glutamine (GIBCO, cat. no. 11720)

• Anhydrous Dimethyl Sulfoxide (DMSO) > 99.9% (Sigma-Aldrich, cat. no.

276855)

• Dihydroethidium – special packaging (Molecular Probes, cat no. D11347)

• VECTASHIELD Mounting Medium (Vector laboratories, cat. no. H-1000)

• Micro Spot Plate – 3 well (Electron Microscopy Sciences, cat. no. 71561- 01)

• 12-well microscope slides with hydrophobic barrier (Erie Scientific).

1. Dissect lymph glands in room temperature Schneider's medium. Do not use cold

1XPBS, which may inhibit respiration, thereby interfering ROS production.

Because these samples are not kept on ice or immediately fixed, dissection times

less than 30 minutes are optimal for limiting tissue degradation.

2. Quickly reconstitute DHE in anhydrous DMSO (see reagent set up).

Reconstituted dye solution should appear slightly pink in color; a more intense

color such as purple may be indicative of oxidation of the dye.

3. Make DHE staining solution by adding 1 μL of the reconstituted DHE/DMSO to

1mL of Schneider's medium (in a microfuge tube) to give a final concentration

of approximately 30μM. Vortex sample 15-30 seconds, but not more.

4. Remove Schneider's medium from lymph glands and replace with the DHE

staining solution. Incubate 5 minutes in the dark, on an orbital shaker at room

temperature.

5. Wash three times, 5-minutes each, with Schneider's medium in the dark, on an

orbital shaker at room temperature.

6. Lightly fix for 5 minutes in 7% formaldehyde/1XPBS.

7. Wash once in 1XPBS.

8. Immediately mount lymph glands on a glass slide in VECTASHIELD medium.

9. Image immediately using fluorescence microcopy.
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Box 6 | Staining for Reactive Oxygen Species (ROS) in circulating cells

1. Bleed larvae into 20 μL Schneider's medium. Mix thoroughly and take care to

remove as little liquid volume as possible when removing the carcass.

2. Let hemocytes settle 20-30 minutes in a humidified chamber at room

temperature.

3. Toward the end of the settling period, reconstitute DHE and prepare DHE

staining solution as described above for lymph glands.

4. Wash settled hemocytes by gently removing Schneider's medium from the edge

of each well using a pipette, and replace with 20 μL Schneider's medium.

5. Remove Schneider's medium from each well and replace with 20 μL DHE

staining solution. Incubate 5 minutes in a dark, humidified chamber.

6. Remove DHE staining solution and wash each well of cells twice, 5 minutes

each, with 20 μL Schneiders medium.

7. Lightly fix cells with 20 μL of 4% formaldehyde/1XPBS for 5 minutes.

8. Remove fixative and wash once with 1XPBS.

9. Remove 1XPBS and add a small volume (~2 μL) of VECTASHIELD to each

well. Coverslip the slide.

10. Image immediately using fluorescence microscopy.
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Box 7 | Collection of adult hemocytes by perfusion

1. Anesthetize adults of interest on a standard carbon dioxide pad under the

dissecting microscope

2. Using forceps and microscissors, cut a small slit or hole in the posterior

abdomen; this should be slightly lateral so that internal organs, genitalia, and the

gut are not disrupted.

3. Place a 10 μL drop of 1XPBS onto a well of a 12-well hydrophobic slide.

4. Using a mouth pipette, draw 1XPBS into a drawn glass capillary needle.

5. Grasp the adult fly by the wing using forceps and gently push the tip of the

needle into the lateral thorax.

6. Place cut posterior end of the adult fly in or near the drop of 1XPBS and gently

perfuse buffer through the adult.

7. Monitor the drop of buffer on the slide for hemolymph streaming into it; when

the drop approximately doubles in size, halt perfusion and remove the adult

carcass from the drop.

8. Place slide in a humidified chamber for 30 minutes.

9. Carefully remove buffer using a pipette and replace with 20 μL of freshly

prepared fixative.

10. Return to humidified chamber for 10 minutes.

11. Carefully remove fixative and replace with 20 μL of 1XPBS, or continue with

processing as described previously.
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Figure 1. A new triple-fluorescence reporter line identifies mature, progenitor, and niche cells
within the hematopoietic lymph gland
A) Differentiated blood cells in the cortical zone of a third-instar larval lymph gland are

marked by DsRed protein (red) expression driven by the Hemolectin enhancer (Hml-DsRed).

B) Blood progenitor cells in the medulary zone express EBFP2 protein (cyan) under the

control of the domeless MESO enhancer (dome-MESO-EBFP2). C) PSC cells express

EGFP protein (green) under the control of the hedgehog PSC enhancer (hh-EGFP). D) A
combined image (Merge) showing differential marking of blood cell populations juxtaposed

in the lymph gland primary lobe. DNA (blue) is labeled with TO-PRO-3 (Molecular Probes)
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in each panel. E) Overview of the generation of the dome-MESO-EGFP and dome-MESO-

EBFP2 constructs. The 2.8 kb dome-MESO enhancer (1) was amplified by PCR from

Drosophila genomic DNA, along with an added 5’ CACC nucleotide sequence for

Gateway® Directional TOPO® cloning into the pENTR/D-TOPO® entry vector (2; Life

Technologies). Upon directional cloning of the dome-MESO enhancer into the Gateway

entry vector (3), the enhancer was recombined with the Ganesh-G2 Gateway destination

vector (4), thereby creating the dome-MESO-EGFP Drosophila transformation vector (5).

The DNA coding sequence for nuclear-localized Enhanced Blue Fluorescent Protein 2

(EBFP2-NLS) was PCR amplified from the expression vector pLV-EBFP2-nuc (Addgene)

as an AgeI/MfeI fragment (6). The dome-MESO-EBFP2 expression vector (7) was

subsequently created by removing the EGFP-NLS DNA sequence from the dome-MESO-

EGFP vector by digesting with AgeI and MfeI restriction endonucleases and then ligating in

the EBFP2-NLS DNA sequence into the vector using the same restriction sites.
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Table 1

Established genetic markers for the embryonic hematopoietic system

Hematopoietic Cells Marker Genetic Reporters Antibody
* Cell Type References

embryonic circulating cells srp srp-gal4 srp-HEMO-gal4 srpD-gal4 P Pan Milchanowski et al., 2004
[62]

Bruckner et al., 2004 [108]
Crozatier et al., 2004 [63]

gcm gcm-lacZ gcm-gal4 P PL Bernardoni et al., 1997 [109]
Cho et al., 2002 [110]

Iz lz-gal4 M CC Lebestky et al., 2000 [52]

crq crq-gal4 P PL Franc et al., 1996 [25];
Olofsson and Page, 2005

[111]

proPO-A1 P CC Rizki et al., 1985 [40];
Waltzer et al., 2002 [112]

CgC25 Cg-gal4 PL Milchanowski et al., 2004
[62]; our observation

Pxn Pxn-gal4 P PL Nelson et al., 1994 [94];
Stramer et al., 2005 [68]

embryonic lymph gland srp P Pan Jung et al., 2005 [54]

odd odd-gal4 odd-lacZ P Pan Ward and Skeath, 2000
[113]; Jung et al., 2005 [54]

Hand Hand-gal4 Hand-GFP Hand-lacZ Pan Han et al., 2005 [114];
Evans et al., 2009 [115]

Antp Antp-gal4 M PSC Mandal et al., 2007 [64]

hth P Pan, non-PSC Mandal et al., 2007 [64]

col col-gal4 Pan, PSC Crozatier et al., 2004 [63];
Krzemien et al., 2007 [78]

Dot Dot-gal4 Pan, PSC Kimbrell et al., 2002 [116];
Jung et al., 2005 [54]

*
P = polyclonal; M = monoclonal
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Table 2

Established genetic markers for the larval lymph gland

Hematopoietic Cells Marker Genetic Reporters Antibody
* Mature cell type References

Pan srp P Lebestky et al., 2000
[52]

odd odd-lacZ P Jung et al., 2005 [54]

He He-gal4 M Kurucz et al., 2003
[117]

Posterior Signaling Center (PSC) Antp Antp-gal4 M Mandal et al., 2007
[64]

Ser Ser9.5-lacZ
Ser9.6-gal4

P Lebestky et al., 2000
[52]

Jung et al., 2005 [54]

hh hh-GFP P Mandal et al., 2007
[64]; Tokusumi et al.,

2009 [81]

col col-gal4 Crozatier et al., 2004
[63]; Krzemien et al.,

2007 [78]

Pvf1 P Mondal et al., 2011
[84]

Progenitors/Medullary Zone dome dome-gal4
dome-gal4; ELAV-gal80

dome-MESO-lacZ
dome-MESO-EGFP
dome-MESO-EBFP2

Jung et al., 2005 [54]
Krzemien et al., 2007

[78]
Mondal et al., 2011

[84]
this work

DE-Cad M Jung et al., 2005 [54]

upd3 upd3-gal4 Jung et al., 2005 [54]

ptc M Mandal et al., 2007
[64]

wg M Sinenko et al., 2009
[85]

ci M Mandal et al., 2007
[64]

ROShigh Owusu-Ansah and
Banerjee, 2009 [89]

bam M Tokusumi et al., 2011
[88]

p-CamK-II P Mondal et al., 2011
[84]

p-Akt P Shim et al., 2012 [87]

P Shim et al., 2013 [118]

GABA-Rhigh P Shim et al., 2013 [118]

TepIV TepIV-gal4
TepIV-gal4; ELAV-gal80

Irving et al., 2005
[101]; Krzemien et al.,

2007 [78]
Avet-Rochex et al.,

2010 [86]

Pvrlow P Jung et al., 2005 [54];
Mondal et al., 2011

[84]
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Hematopoietic Cells Marker Genetic Reporters Antibody
* Mature cell type References

Differentiating cells/Cortical Zone NimC1 (P1) M PL Kurucz et al., 2007
[33]; Kurucz et al.,

2007 [96]

Hml Hml-gal4
Hml-DsRed

PL Sinenko et al., 2004
[119]; Makhijani et al.,

2011 [58]

eater eater-gal4
eater-GFP

PL Tokusumi et al., 2009
[81]

Pvrhigh P Jung et al., 2005 [54];
Mondal et al., 2011

[84]

Pxn Pxn-gal4 P PL Jung et al., 2005 [54];
Stofanko et al., 2008

[60]

Collagen (gal4) Cg-gal4 M PL Jung et al., 2005 [54]

GABA-Rlow P Shim et al., 2013 [118]

Iz Iz-gal4 M CC Lebestky et al., 2000
[52]; Jung et al., 2005

[54]

proPO-A1 Bc1

Bc-GFP, -BFP, -RFP
P CC Rizki et al., 1980

[120]; Jung et al., 2005
[54]; Tokusumi et al.,

2009 [81]

Sima P CC Muhkerjee et al., 2011
[121]

ItgaPS4 P LM Crozatier et al., 2004
[63]; Irving et al., 2005

[101]

msn msn-lacZ
msn-GFP, msn-RFP

LM Braun et al., 1997 [98];
Tokusumi et al., 2009

[99]

atilla (L1) atilla-GFP M LM Honti et al., 2009
[102]

mys M LM Irving et al., 2005
[101]

*
P = polyclonal; M = monoclonal
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