
UCSF
UC San Francisco Previously Published Works

Title
Distinct Manifestations of Cooperative, Multidimensional Stimulus Representations in 
Different Auditory Forebrain Stations

Permalink
https://escholarship.org/uc/item/42z14766

Journal
Cerebral Cortex, 30(5)

ISSN
1047-3211

Authors
Shih, Jonathan Y
Yuan, Kexin
Atencio, Craig A
et al.

Publication Date
2020-05-14

DOI
10.1093/cercor/bhz299
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/42z14766
https://escholarship.org/uc/item/42z14766#author
https://escholarship.org
http://www.cdlib.org/


© The Author(s) 2020. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

Cerebral Cortex, May 2020;30: 3130–3147

doi: 10.1093/cercor/bhz299
Advance Access Publication Date: 11 February 2020
Original Article

O R I G I N A L A R T I C L E

Distinct Manifestations of Cooperative,
Multidimensional Stimulus Representations
in Different Auditory Forebrain Stations
Jonathan Y. Shih1, Kexin Yuan1,2, Craig A. Atencio1

and Christoph E. Schreiner1

1Department of Otolaryngology—Head and Neck Surgery, Coleman Memorial Laboratory, UCSF Center for
Integrative Neuroscience, University of California, San Francisco, CA 94158-0444, USA and 2Department of
Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China

Address correspondence to Christoph E. Schreiner, Department of Otolaryngology—Head and Neck Surgery, Coleman Memorial Laboratory, UCSF Center
for Integrative Neuroscience, University of California, 675 Nelson Rising Lane, San Francisco, CA 94158-0444, USA. Email: chris@phy.ucsf.edu.

Abstract
Classic spectrotemporal receptive fields (STRFs) for auditory neurons are usually expressed as a single linear filter
representing a single encoded stimulus feature. Multifilter STRF models represent the stimulus-response relationship of
primary auditory cortex (A1) neurons more accurately because they can capture multiple stimulus features. To determine
whether multifilter processing is unique to A1, we compared the utility of single-filter versus multifilter STRF models in the
medial geniculate body (MGB), anterior auditory field (AAF), and A1 of ketamine-anesthetized cats. We estimated STRFs
using both spike-triggered average (STA) and maximally informative dimension (MID) methods. Comparison of basic filter
properties of first maximally informative dimension (MID1) and second maximally informative dimension (MID2) in the 3
stations revealed broader spectral integration of MID2s in MGBv and A1 as opposed to AAF. MID2 peak latency was
substantially longer than for STAs and MID1s in all 3 stations. The 2-filter MID model captured more information and
yielded better predictions in many neurons from all 3 areas but disproportionately more so in AAF and A1 compared with
MGBv. Significantly, information-enhancing cooperation between the 2 MIDs was largely restricted to A1 neurons. This
demonstrates significant differences in how these 3 forebrain stations process auditory information, as expressed in
effective and synergistic multifilter processing.

Key words: auditory forebrain, cat, multiple filters, predictions, spectrotemporal receptive fields, transformations

Introduction
The spike-triggered average (STA) represents the average stimu-
lus spectrogram preceding spikes from a neuron (de Boer and
Kuyper 1968) and characterizes response properties including
temporal and spectral modulations, and feature selectivity, in a
largely linear manner (Aertsen and Johannesma 1981; deCharms
et al. 1998; Theunissen et al. 2000; Miller et al. 2001; Depireux
et al. 2001; Hsu et al. 2004b; Woolley et al. 2005; Klein et al.
2006).

Before reaching cortex, sound information passes through
brainstem, midbrain, and thalamic nuclei and undergoes trans-
formations in sound representation due to changes in neural
processing, which may be substantially nonlinear (Young 1998;
Escabı́ and Schreiner 2002; Woolley et al. 2006; Williamson et
al. 2016; Lee et al. 2017; Kuchibhotla and Bathellier 2018). One
strategy for modeling nonlinear processing has been to pair
a linear receptive field (RF) with a spiking nonlinearity (NL)
(Steveninck and Bialek 1988; Marmarelis 1997; Ringach 2004;

https://academic.oup.com/


MIDs in the Auditory Forebrain Shih et al. 3131

Simoncelli et al. 2004). However, even this approach is not suf-
ficient to capture the information conveyed by the neurons
(Atencio et al. 2008).

The maximally informative dimension (MID) analysis
extends the linear–nonlinear framework by employing more
than one linear filter (Sharpee et al. 2004), and, with a sufficient
number of filters, such a multilinear framework can capture
more fully nonlinear systems (Marmarelis and Orme 1993;
Marmarelis 1997). Multiple filters can be derived by maximizing
the amount of mutual information they jointly convey. MIDs
have the advantage that they are not biased by stimulus
correlations when non-Gaussian stimuli are applied, including
environmental and communication sounds (Steveninck and
Bialek 1988; Yamada and Lewis 1999; Slee et al. 2005; Fairhall
et al. 2006; Schwartz et al. 2006; Maravall et al. 2007; Sharpee
et al. 2011a). Alternative approaches, which may incorporate
processing constraints, have also been shown to yield conjoint,
multidimensional RFs of auditory cortical neurons that capture
more information and enable better response predictions
(Harper et al. 2016; Kozlov and Gentner 2016; Atencio and
Sharpee 2017).

In cat primary auditory cortex (A1), a 2-filter MID model
showed significant improvements over both the STA and the
single-filter MID model (Atencio et al. 2008, 2009). In contrast,
responses in the central nucleus of the inferior colliculus (ICC)
essentially could be accounted for by a single MID with, on
average, insubstantial contributions of a second filter (Atencio
et al. 2012).

Here, we apply MID analysis to neurons in the ventral divi-
sion of the cat medial geniculate body (MGBv), the core corti-
cal field A1, and the anterior auditory field (AAF) to examine
the progression of nonlinear, multidimensional processing from
subcortical to core forebrain areas. MGBv receives direct input
from the ICC and is a primary source of direct inputs to A1
and AAF (Middlebrooks and Zook 1983; Morel and Imig 1987;
Lee and Winer 2005; Winer et al. 2005). By comparing midbrain,
thalamic, and cortical filter contributions, we can determine
whether the benefits of a multifilter model are restricted to
cortical processing or whether they already exist subcortically
and thereby provide a more complete picture of the emergence,
character, and functional specificity of early auditory cortical
processing.

In all 3 stations, the first MID filter (MID1) captures sig-
nificantly more information than the STA. We confirm that
A1 responses are better modeled by 2, synergistic MID filters
(Atencio et al. 2008, 2009), and that MGBv neurons, similar to
ICC neurons (Atencio et al. 2012), can be sufficiently described by
single-filter RFs with little contribution from multifilter synergy.
AAF neurons, similar to A1, have higher synergy than MGBv neu-
rons although the mean prediction gain for the 2-filter model
appears to be smaller than for A1.

Our findings reveal a dichotomy in the dimensionality and
cooperativity of thalamic and cortical RFs, indicating a trans-
formation between subcortical and cortical auditory processing.
General functional differences between MID1 and MID2 filters
are maintained across forebrain stations.

Materials and Methods
Electrophysiological methods and stimulus design have been
described in previous reports (Atencio et al. 2008, 2016; Atencio
and Schreiner 2010; Miller et al. 2001). A brief description follows.

Electrophysiology

All procedures were carried out in compliance with the Uni-
versity of California, San Francisco Institutional Animal Care
and Use Committee as well as the guidelines of the National
Institutes of Health. Adult cats (n = 3) were initially sedated with
ketamine (30 mg/kg) and acepromazine (0.15 mg/kg) and then
anesthetized with pentobarbital sodium (15–30 mg/kg) for the
surgical procedure. During recording, animals were held in a
stereotaxic frame, and an areflexic state was maintained by
constant infusion of ketamine (2–11 mg/kg/h) and diazepam
(0.05–0.2 mg/kg/h). Diazepam reduces stress-induced release of
neurotransmitter in cortex, thus providing a more stable state
for recording. While it acts as an inhibitory agonist, the relatively
low dose is unlikely to create differing, nucleus-specific effects.

Recordings were made in a sound-shielded anechoic cham-
ber and stimuli were delivered via a closed speaker system to the
contralateral ear. Extracellular recordings in A1 and AAF were
made using linear 16-channel microelectrode arrays (150 μm
spacing; NeuroNexus Technologies). Recordings in the ventral
nucleus of the medial geniculate body (MGBv) used bundles
of 1 to 3 tungsten electrodes (MicroProbes,) with impedances
of ∼4.0 MΩ. The ventral division was typically found approx-
imately 5 mm anterior to the interaural plane and 10 mm
lateral of the midline and identified by its distinct tonotopic
organization and narrow frequency tuning.

Neural traces, bandpass filtered between 600 and 6000 Hz,
were recorded with a Neuralynx Cheetah recording system at
sampling rates between 24 and 31 kHz. Offline spike sorting
used a Bayesian spike-sorting algorithm (Lewicki 1994). The
sorter only considers events that surpass 5 standard deviations
above the background noise level, and the number of spikes
in the refractory period is always below 1%. It also allows the
separation of overlapping spikes from the same contact, thus
increasing the yield (see Atencio and Schreiner 2013; Atencio et
al. 2016).

Stimuli

Dynamic moving ripple (DMR) stimuli (Escabı́ and Schreiner
2002), a broadband stimulus spanning frequencies between 500
and 40 000 Hz with 50 sinusoidal carriers per octave, were pre-
sented for 15 min. For cortical recordings, the stimuli spanned a
temporal modulation range between −40 and 40 Hz (sign refers
to the direction of the frequency sweeps with positive values
corresponding to upward sweeps). For thalamic recordings, the
temporal modulation range spanned from −150 to 150 Hz. For
all recording sites, spectral modulations ranged between 0 and
4 cycles/octave at a maximum modulation depth of 40 dB.

Spiking Nonlinearities

RF models consisted of either 1 or 2 linear filters with 25 fre-
quency bins and 20 time bins each. For each filter, an empirical
spiking nonlinearity NL f (x) was estimated via Bayes’ theorem:

f(x) = P
(
spk|x) = P(spk)P(x|spk)

P(x)
where x is the projection value

between the filter and a stimulus segment, P(spk) is the average
driven spike rate, P(x) is the prior distribution of projection
values, and P(x|spk) is the spike-conditioned distribution of pro-
jection values. In the case of 2-filter models, the 2-dimensional
spiking NL was calculated as

f (x1, x2) = P
(
spk|x1, x2

) = P
(
spk

)
P

(
x1, x2|spk

)
P (x1, x2)
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where x1 and x2 are the projection values for the first and second
filters of the model, respectively.

RF Models

Different methods were used to estimate filters for each model.
Reverse correlation was used to construct the STA (Aertsen
and Johannesma 1981; deCharms et al. 1998; Klein et al. 2000;
Theunissen et al. 2000; Escabı́ and Schreiner 2002). In addition,
MIDs were obtained to construct 1- and 2-filter models for
each neuron (Sharpee et al. 2004). In the 1-dimensional model,
the filter is estimated by maximizing the mutual information
captured by the RF. RF information was calculated as:

I (MID) =
∫
x

P
(
x|spk

)
log2

P
(
x|spk

)
P(x)

dx

The RF information was maximized via an iterative approach
utilizing gradient ascent combined with simulated annealing.
Overfitting was avoided by jackknifing the estimation set. The
mean of 4 jackknifed filter estimations was used in the final
model.

The 2-filter model was obtained by holding the first filter
(MID1) constant and estimating the second filter (MID2) that
captured the most information when considered jointly with
MID1. The joint information yield by the 2 filters was calculated

by I (MID1, MID2) = ∫
x1

∫
x2

P
(
x1, x2|spk

) P(x1,x2 |spk)
P(x1,x2)

where x1 and
x2 are projection values between stimulus segments and MID1
and MID2, respectively. P(x1,x2) is the joint prior distribution of
MID1 and MID2 projection values, and P(x1,x2|spk) is the spike-
conditioned joint distribution of MID1 and MID2 projection val-
ues. Information maximization was achieved, as in the one-filter
MID model, by an iterative approach combining gradient ascent
and simulated annealing. The same jackknifing approach was
used to avoid overfitting.

Single-Spike Information

The mutual information conveyed by single spikes Ispk was
determined as follows (Brenner et al. 2000; Sharpee et al. 2004):

Ispk

〈
P(spk|s)

spk log2
P(spk|s)
P(spk)

〉
s

where s is a discrete stimulus condi-

tion. In the case where a time-varying stimulus s(t) is repeated
over several trials, the above equation is equivalent to Ispk =〈

r(t)
r(t) log2

r(t)
r(t)

〉
t

with r(t) as the time-varying mean firing rate, and

r(t) is the average of r(t) over time.

Response Predictions

Neural responses were modeled as inhomogeneous Poisson pro-
cesses. For each RF model, the time-varying rate r(t) of the
process was estimated within a linear-nonlinear-Poisson (LNP)
framework. r(t) was calculated by

r(t) = P
(
spk|t) = f (x(t))

where x(t) was the set of projection values over time between
the model filter and the stimulus, and f (x) was the spiking NL
function (as defined above). In the case of the 2-filter model, r(t)
was calculated using the 2-dimensional spiking NL function as
follows:

r(t) = f (x1(t), x2(t))

where x1(t) and x2(t) were the sets of projection values over
time for MID1 and MID2, respectively. A RF model’s response
prediction performance was evaluated by finding the coeffi-
cient of determination (R2) between r(t) and the real, observed
peristimulus time histogram (PSTH) of each neuron.

Intrinsic trial-to-trial variability contributes noise that makes
measuring the true time-varying rate function impossible using
finite data. It is possible, however, to estimate the maximum
possible R2 that can be expected to be obtained with PSTHs
constructed from the presentation of a finite number of stim-
ulus trials. This maximum expected R2 was estimated for each
neuron using an approach adapted from previously reported
methodologies (Sahani and Linden 2003; Hsu et al. 2004a). Pre-
diction gain is calculated as:

((
R2 [Filter B] − R2 [Filter A]

)
/R2 [Filter A]

)
∗ 100.

Results
RF Models

Spectro-temporal RF models of single units were obtained for
3 auditory forebrain areas: the MGBv (N = 61 neurons), AAF
(N = 116), and A1 (N = 312). The yield of neurons in AAF was
highest from middle layers and not sufficient to derive layer-
specific statistics. Therefore, we combined data across recording
depth. For each neuron, the stimulus-response relationship was
characterized by 3 different RF models.

The first model was the STA, representing the average stimu-
lus spectrogram preceding a spike. The STA, widely used to char-
acterize sensory neurons (Atencio and Schreiner 2013), serves as
a reference point for comparing the utility of other models.

The second RF model was the MID1, representing the filter
that captures the highest mutual information between the stim-
ulus and response. The one-filter MID model has several theo-
retical advantages over the STA. It is unbiased by stimulus cor-
relations of any order, and can thus be applied to any stimulus
paradigm, including natural stimuli. It is also able to characterize
neurons whose responses are invariant to spectral and temporal
phase; the STA would fail to register a significant filter for these
neurons because stimuli that are countermatched in phase (i.e.,
180◦ out of phase) would cancel each other out.

On its own, however, MID1 may not capture the total stimulus
information conveyed by a neuron if other stimulus information,
independent from that captured by the MID1, modulates the
neuron’s activity. A third RF model, the 2-filter MID, incorporates
an additional linear filter, MID2, to capture potential additional
RF information. The first component of the 2-filter MID model
is the MID1. The second MID component (MID2) is estimated as
the filter that captures the highest mutual information when
considered jointly with MID1.

All RFs were estimated from neural responses to dynamic
moving ripple stimuli (Escabı́ and Schreiner 2002). Figure 1
shows the RF models for 3 exemplar neurons, one each from
MGBv, AAF, and A1. Each RF filter is accompanied by its asso-
ciated spiking NL, which relates the firing rate response to the
similarity between a stimulus and the RF filter. This similarity is
measured in terms of projection values, that is, the dot product
between stimulus and filter. Large positive projection values
indicate high correlation between the stimulus and the filter,
and large negative values indicate high anticorrelation. The
2-dimensional spiking NL (Fig. 1, last column) shows the joint
spiking relationship of MID1 and MID2 for the 2-filter MID model.
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Figure 1. STRF examples. First and second columns: STA filters and associated spiking NL functions. Third and fourth columns: MID1 component filters and associated
spiking nonlinearities. Fifth and sixth columns: MID2 component filters and associated spiking nonlinearities. Seventh column: 2-dimensional spiking NL function
for the joint 2-filter MID model.

Qualitatively, the structures of STA and MID1 filters appear
highly correlated, with dominant excitatory (red) and inhibitory
(blue) components occupying similar regions in spectrotemporal
space in all 3 stations.

The shapes of the STA and MID1 spiking nonlinearities were
also highly similar with predominantly asymmetrical shapes
(Fig. 1, second and fourth columns), indicating that only positive
projection values between the filter and the stimulus are leading
to spiking responses. That is, anticorrelation between stimu-
lus and filter resulted in no increase in firing rate and could
reduce the response below the average firing rate (horizontal
line, Fig. 1). In contrast, MID2 spiking nonlinearities (Fig. 1, sixth
column) were more symmetrical. Stimuli that were either highly
correlated or highly anticorrelated with the MID2 filter had
heightened chances of eliciting a spike.

The similar filter structures and equally asymmetric nonlin-
earities of the STA and MID1 RFs suggest that STA and MID1
encode similar stimulus features. MID2 filters, with their dis-
tinct filter structures and symmetrical spiking nonlinearities,
represent stimulus processing distinct from the STA and MID1.
The symmetric NL reflects an invariance of the response with
regard to the envelope phase. Comparison of the magnitude of
the firing rate reflected in the MID1 and MID2 NL (Fig. 1, fourth
and sixth columns) indicates a larger contribution of MID2 to the
firing rate of cortical neurons relative to thalamic neurons.

Filter Correlations

The degree of RF similarity between the 3 models in differ-
ent processing stations can be quantified by filter correlation.
Figure 2 shows the correlations between the STA and MID1 and
between MID1 and MID2 for MGBv, AAF, and A1 neurons. For
comparison, we also include previous data for ICC neurons,
the main input to the MGBv (Atencio et al. 2012). In all areas,
the STA and MID1 are highly correlated whereas MID2 is gen-
erally uncorrelated to MID1 (and by implication to the STA)
since this filter captures information not represented by the
STA or MID1. ICC and MGBv neurons show higher STA/MID1
correlation values than AAF and A1 neurons (P < 0.01, rank-sum

test, Bonferroni-corrected), with ICC neurons having even higher
STA and MID1 correlations than MGBv units (P < 0.01, rank-sum
test, Bonferroni-corrected). MGBv neurons displayed a median
correlation value of 0.91 between the STA and MID1, significantly
higher than for AAF (0.83) and A1 (0.84) neurons (P < 0.01, rank-
sum test, Bonferroni-corrected). Median correlations between
MID1 and MID2 for MGBv, AAF, and A1 neurons are 0.01, −0.02,
and −0.01, respectively. No significant differences were found
for MID1 and MID2 correlation values for all 4 areas. The high
correlation between STA and MID1 across all areas indicates
that the 2 filters convey similar spectrotemporal features. The
high STA-MID1 correlations for ICC and MGBv neurons suggest
that the STA is a reasonably accurate representation of the first-
order feature processing performed by midbrain and thalamic
neurons. In contrast, the low correlations between MID1 and
MID2 in all 4 auditory areas suggest that the information/predic-
tion improvements yielded by the 2-filter MID model come from
representing additional feature components that were hitherto
unincorporated into the filter analysis.

While MID filters appear to convey the same spectrotempo-
ral features as the STA model, they provide a more accurate
representation of that feature. For example, unlike the STA,
filters obtained via MID analysis are not biased by stimulus
correlations (Sharpee et al. 2004; Atencio et al. 2008). Stimu-
lus correlation effects may be removed from the STA if Gaus-
sian stimuli are used to estimate the filters, because they are
completely described by their second-order correlations. More
complex stimuli such as natural sounds often have higher-
order correlations whose effects cannot be removed (Ringach et
al. 2002; Paninski 2003). An MID filter could provide improved
predictive power over an STA filter that is biased by correlations
that are present in the stimulus.

RF Information

One way of comparing the utility of our models is to esti-
mate the RF information, measured by the mutual information,
which quantifies the ability of the filter to describe the relation-
ship between the stimulus and the neuron’s spiking response.
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Figure 2. RF filter correlations. Average correlation strength between STRF filters

is shown for neurons in ICC (Atencio et al. 2012), MGBv, AAF, and A1. Error
bars: SD.

Figure 3 shows the range of information captured by each of the
3 different models in MGBv, AAF, and A1. Scatterplots of STA
information versus MID1 information (Fig. 3A–C) and of MID1
information versus the joint MID1,2 information (Fig. 3D–F) are
shown. For all neurons, the information yielded by MID1 was
always greater than or equal to that of the STA. Likewise, the
2-filter MID model (MID1,2) always yielded at least as much
information as MID1 alone.

The mutual information conveyed by single spikes can also
be calculated in a model-independent fashion if stimuli are
repeated over many trials (Brenner et al. 2000; Sharpee et al.
2004). Using the spiking responses to 50 repetitions of a short
dynamic moving ripple, we calculated the total single-spike
information Ispk conveyed by each neuron. Ispk serves as an
upper limit on the amount of mutual information that a RF
model can possibly capture.

Figure 3G shows median information values as a percentage
of each neuron’s Ispk value. In MGBv, the median percentage of
Ispk captured by the STA was 31% compared with 23% and 25%
of Ispk in AAF and A1, respectively. This indicated that the STA
was superior in capturing the available single-spike information
in thalamic neurons relative to cortical neurons. MID1 filters in
A1 and AAF captured significantly more information than STAs
with increases of 35% and 27%, respectively. A similar increase
in MGBv was statistically not significant. Compared with the
single-filter MID, MGBv neurons were modeled only marginally
better by the 2-filter MID, improving from a median value of
37% to 40% of Ispk with MID1,2 (an 8% increase). Cortical neuron
models, however, benefitted markedly from the inclusion of a
second filter. Single-filter MIDs yielded median values of 31%
and 33% in AAF and A1, respectively, whereas 2-filter MIDs
improved both AAF and A1 median information values to 39%
of Ispk, a 26% and 18% increase, respectively. Thus, while the
information captured jointly by MID1 and 2 is approximately the
same for all 3 stations, the contribution of MID2 is significantly
larger for A1 and AAF as compared with MGBv. Thus, it becomes
more difficult to capture cortical responses without relying on
increasingly more sophisticated models.

Sufficiency

To elucidate further the advantage of a 2-filter MID model, we
calculated 2 RF sufficiency values: STA sufficiency and MID1

Figure 3. RF information. (A–C) Information captured by the STA versus MID1
information for MGBv, AAF, and A1. (D–F) MID1 information versus the joint 2-

filter MID model (MID1,2) information for the 3 stations. (G) Median percentages
of total single-spike information Ispk for neurons in MGBv, AAF, and A1 captured
by 3 filter field models. Error bars: standard error (SE) about the median.

sufficiency. STA sufficiency is the percentage of the information
captured by MID1,2 that is also captured by the STA. A high STA
sufficiency indicates that a neuron is already well-characterized
by the STA, and applying MID models to the cell may be unneces-
sary. Correspondingly, MID1 sufficiency measures the percent-
age of MID1,2 information that is already captured by MID1.
Figure 4 shows STA and MID1 sufficiency values for neurons
in MGBv, AAF, A1 and again ICC (Atencio et al. 2012). ICC and
MGBv neurons both have significantly higher values of both
STA and MID1 sufficiency compared with AAF and A1 neurons
(P < 0.01, rank-sum test, Bonferroni-corrected), suggesting that
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Figure 4. RF model sufficiency. STA and MID1 RF information relative to the

information captured by the 2-filter MID model. SE bars about the median;
starred horizontal bars: significant differences in medians (P < 0.01, rank-sum
test, Bonferroni-corrected).

single-filter RF models are reasonably sufficient for character-
izing subcortical responses. In fact, ICC and MGBv neurons,
respectively, have median STA sufficiencies of 79% and 80%,
indicating a 20% average increase in information by estimating
MID1,2. In contrast, 2-filter models of cortical neurons stand
to gain nearly 40% in information over the STA. Thus, cortical
neurons display more multifeature processing than subcortical
neurons.

Synergy

The information results for the 2-filter MID model establish the
presence of significant multifeature processing in cortical neu-
rons, yet the manner in which these features interact has yet to
be addressed. There are 3 possibilities for how the 2 RF features
combine to yield information. First, the features could be treated
independently; in this case, information yielded jointly by the
2 features would be the sum of their independent information
contributions. Second, the features could contribute redundant
information; the joint information would be less than the sum
of their independent contributions. Third, the features could
combine synergistically; the joint information would be greater
than the sum of their independent contributions.

Synergy, or positive cooperativity, for MID models has been
shown previously for A1 neurons (Atencio et al. 2008, 2009).
Synergy is defined as 100 times the ratio of the joint, 2-filter
information and the sum of the individual information con-
tributions from each filter component. Synergy values greater
than 100 indicate that the features represented by MID1 and
MID2 combine synergistically, conveying more information than
the sum of their parts. Values below 100 indicate a degree of
redundancy.

Figure 5A–C show the distribution of synergy values for
MGBv, AAF, and A1 neurons. The median synergy values for
the 2-filter MID models of the 3 areas and ICC (Atencio et al.
2012) are depicted in Fig. 5D. AAF and A1 neurons exhibited
significantly more synergy between the MID1 and MID2
features compared with neurons in ICC and MGBv (P < 0.01,
rank-sum test, Bonferroni corrected). Thus, for a significant
proportion of cortical neurons, the features represented in the
2-filter MID model do not simply encode stimulus information
independently. Rather, the 2 features interact nonlinearly,
giving cortical—but not subcortical—neurons sensitivity to
particular combinations of the 2 spectro-temporal features.

Figure 5. Synergy between MID1 and MID2. (A–C) Distribution of synergy values
for MGBv, AAF, and A1. The dashed reference line at 100 indicates no information

synergy. (D) Median 2-filter MID synergy for ICC, MGBv, AAF, and A1 (with SE bars).
Starred horizontal bars: significant differences in medians (P < 0.01, rank-sum
test, Bonferroni-corrected).

These complex, cooperative interactions are expressed in the
2-dimensional spiking nonlinearities of the cortical 2-filter MID
models (see Fig. 1).

NL Asymmetry

In a linear-nonlinear RF framework, the linear filter accounts for
only part of the model. The other part consists of the spiking
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Figure 6. Asymmetry of the filter nonlinearities. (A) ASI of filter nonlinearities for MGBv, AAF, and A1. SE bars about the median. (B–D) Cumulative probability function
for STA, MID1 and MID2. Significant differences are indicated by stars (∗∗P < 0.01; ∗∗∗P < 0.001; Kolmogorov–Smirnov test, Bonferroni-corrected).

NL function that relates the match between the spectrotemporal
structure of the stimulus and filter to the spiking activity of the
neuron. This spiking NL is important because it is possible for 2
neurons with highly similar RF filters to display dissimilar spik-
ing patterns to the same stimulus. For example, consider 2 neu-
rons with identical linear filters. One neuron is sensitive to the
spectral envelope phase of the preferred stimulus feature while
the other neuron responds without regard to spectral phase. The
first neuron will have a spiking NL that is highly asymmetrical,
with spikes occurring only for stimuli in phase with the filter and
thus yielding a large, positive stimulus-filter projection value.
The second neuron, on the other hand, will have a symmetri-
cal NL function such that stimuli highly matched or counter-
matched with the RF filter will both elicit spikes.

For each neuron, we calculate an asymmetry index (ASI)
for the spiking nonlinearities associated with each model filter
(see Material and Methods). ASI values near 1.0 indicate that
a neuron spikes only when a stimulus is highly matched with
the filter. Values near 0.0 indicate that a neuron will spike even
when a stimulus is unmatched. Negative values indicate that a
neuron preferentially spikes when stimuli are countermatched
to the filter. Figure 6A shows mean ASI values for nonlinearities
associated with STA, MID1, and MID2 filters for neurons in
MGBv, AAF, and A1. Cumulative distribution functions (CDFs)
of the ASI values in the 3 areas are shown in Fig. 6B–D. We
found that in all 3 auditory areas, MID2 nonlinearities were
significantly more symmetrical compared with the highly
asymmetric nonlinearities associated with STAs and MID1s
(P < 0.01, rank-sum test, Bonferroni-corrected). The median
value for MID2s (Fig. 6D) is near 0, with equal distribution
of negative and positive ASIs. Both STA and MID1 ASIs were
positive with significantly higher asymmetry in MGBv neurons
compared with those of AAF and A1 neurons (P < 0.01, rank-sum
test, Bonferroni-corrected; Fig. 6B,C).

These results suggest that the stimulus features described by
MID2 filters have a strong tendency toward response invariance
with regard to spectral or temporal envelope phase. In contrast,
the features represented by the STA and MID1 generally require
more precise alignment of stimulus and filter in spectral and
temporal dimensions in order to drive neural responses. The
latter was especially true in MGBv neurons, where ASI values
for the STA and MID1 were higher than in AAF and A1.

NL Threshold and Transition

We next assessed the shape of the NL curve by parametric
fits for the asymmetric nonlinearities of STAs and MID1s (see
Fig. 1 for actual examples and Fig. 7A,B for schematic exam-

Figure 7. NL parameters. (A) Schematic illustration of 2 NL thresholds (T) for

a transition value (S) of 0. (B) Schematic illustration of 2 NL transitions (S) for
a threshold value (T) of 20. (C–F) Cumulative probability functions for STA and
MID1 thresholds and transition values. Dashed reference line at the mean value.

ples). Threshold values (�) indicate the minimal match that
is required between stimulus and STA/MID for the neuron to
respond. High threshold values indicate higher stimulus feature
selectivity. Threshold values for STA and MID1 nonlinearities
(Fig. 7C,D) were fairly similarly distributed across MGBv, AAF, and
A1 with slightly higher thresholds for MGBv versus A1.

The transition parameter (σ ) indicates the noise in the
response. The lower the value, the more the NL approximates
a hard rectification. Again, the transition distributions for the 3
stations were quite similar with slightly lower transition values
for MGBv nonlinearities of the STA (re A1, Fig. 7E) and MID1 (re
AAF, Fig. 7F). Together, these data indicate that neurons in all 3
stations require at least a moderate match between filter and
stimulus to respond at an elevated rate. When this threshold
is reached, the response increases approximately linearly with
increasing stimulus-filter correlations.
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Figure 8. Peak frequency distribution. (A) Schematic illustration of defining peak frequency, spectral integration window (blue lines) and peak latency, temporal

integration window (red lines) from a STRF. (B) Cumulative probability function of peak frequency for the 3 filters in MGBv, AAF, and A1. (C) Difference between
STA and MID1 peak frequency for MGBv, AAF, and A1. (D) Difference between MID1 and MID2 peak frequency for MGBv, AAF, and A1. Dashed reference line for zero
difference.

Spectral Filter Aspects

All 3 filters, STA, MID1 and MID2, reflect a neurons’s specific
spectral and temporal stimulus preferences. To characterize
potential differences in these filters across neurons and
between stations, we identified the peak in the spectrotemporal

structure (see Methods and Fig. 8A for details of filter peak
identification) and measured its location in time and frequency
for every model filter. We focused on the peak of each filter
because it was the strongest component in the RF structure
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and thus represented the stimulus element with the greatest
influence on the neuron’s spiking activity. We called the
temporal location of the peak the peak latency and the spectral
location the peak frequency.

Figure 8 shows results for peak frequencies of each filter
model. The left column (Fig. 8B) displays the CDFs of peak fre-
quencies for each model in neurons from MGBv, AAF, and A1.
We did not find statistically significant differences between the
distributions for each model in any of these 3 auditory areas,
reflecting a fairly unbiased (or equally biased) sampling of the
tonotopic space (P > 0.3, Kolmogorov–Smirnov test, Bonferroni-
corrected). In pairwise comparisons, however, we found that
for a given neuron, MID2 often had a different peak frequency
than the STA and MID1. Figure 8C displays the differences in
peak frequencies between MID1 and STA filters within neu-
rons. Figure 8D displays the peak-frequency differences between
MID2 and MID1 filters. The vast majority of MID1 and STA filters
were well-matched in peak frequency; in all areas, the median
absolute difference in peak frequency between the STA and
MID1 was no more than one-tenth of an octave. In contrast,
the median absolute differences between MID1 and MID2 peak
frequencies were over half of an octave. We use the measure of
median absolute differences rather than SDs due to the com-
parative robustness of median absolute difference measures in
distributions with non-Gaussian tails. In all 3 auditory areas, the
median absolute difference in peak frequency between MID2
and MID1 was greater than that between MID1 and the STA
(P < 0.01, rank-sum test). We found no significant bias in any
filter model toward either lower or higher peak frequencies
(P > 0.2, rank-sum test).

Neurons do not only process stimulus information at the
peaks of their spectrotemporal filters. Each peak is also asso-
ciated with temporal and spectral integration windows that
together represent the portion of a stimulus that influences
the spiking activity of the neuron. We identified the limits of
the temporal and spectral integration windows as the points at
which the amplitudes of the marginal absolute tuning curves
dropped below the lowest quarter of the dynamic range (see
Material and Methods and Fig. 8A for details of filter integration
window identification). We used the absolute values of the
RF filters because we wished to include suppressive regions
(such as inhibitory sidebands) within the integration windows.
The temporal and spectral integration windows thus represent
the ranges over which neurons integrate both excitatory and
inhibitory stimulus information.

Figure 9 shows results for the bandwidth of the spectral
integration windows. Figure 9A shows CDFs of the spectral
integration windows for each of the 3 filter types. STAs and
MID1s in AAF had a larger spectral bandwidth than A1 (P < 0.01,
signed-rank test). In pairwise filter comparisons within each
field (Fig. 9B), we found that MID2s generally had larger spectral
integration windows than MID1 filters in MGBv and A1. In
MGBv neurons, MID2 filters had median bandwidths that
were 0.30 octaves wider than MID1 filters compared with a
difference of only 0.15 octaves in A1 (P < 0.01, signed-rank
test). We found no significant differences in pairwise model
filter comparisons for neurons in AAF (P > 0.2, signed-rank
test).

Our spectral integration results showed that in MGBv and
A1, MID2 filters integrated stimulus information over a broader
frequency range than MID1 filters. Interestingly, we did not
see the same differences between MID2 and MID1 filters for
AAF neurons. This may be because MID1 filters in AAF already

Figure 9. Spectral integration. (A,B) Cumulative probability function of spectral

integration bandwidth for the 3 filters in MGBv, AAF, and A1. Significant dif-
ferences are indicated by stars (∗P < 0.05; ∗∗P < 0.01; Kolmogorov–Smirnov test,
Bonferroni-corrected).

had broader spectral integration windows (median width: 0.80
octaves) compared with MID1 filters in MGBv and A1 (median
widths: 0.65 and 0.60 octaves, respectively).

The peak frequencies of MID2 filters further support the idea
that MID2 represents influences from a separate set of input
connections than for MID1 (Atencio et al. 2008, 2009). MID2 filters
commonly display frequency processing ∼2/3 octaves away from
the peak frequencies of the STA and MID1 (based on peak
difference plus bandwidth difference). This suggests that MID2s
may encode contextual, off-frequency influences from longer-
range connections relative to the main frequency focus encoded
by STAs and MID1s.

Temporal Filter Aspects

Peak latencies reflect the timing relationship between stimulus
and response. Figure 10A displays the CDF of peak latency for
each filter type across the 3 stations. No significant latency
differences across the sampled population were seen for either
STAs or MID1s between the 3 stations. However, MID2 latencies
in A1 and AAF were significantly longer than in MGBv (P < 0.01,
Kolmogorov–Smirnov test, Bonferroni-corrected). In each area, a
greater proportion of MID2s exhibited significantly longer peak
latencies compared with the STA and MID1 (Fig. 10B). We found
that in AAF, the peak latency of the MID2 filter typically occurred
30 ms (median value) later than the peak latency of the MID1
filter. Similarly, in A1, we found that neurons had a median MID2
peak latency 24 ms later than the MID1 peak latency. In both



MIDs in the Auditory Forebrain Shih et al. 3139

Figure 10. Peak latency. (A,B) Cumulative probability function of peak latency for
the 3 filters in MGBv, AAF, and A1. Significant differences are indicated by stars
(∗P < 0.05; ∗∗P < 0.01; Kolmogorov–Smirnov test, Bonferroni-corrected).

AAF and A1, we found these latency differences to be significant
(P < 0.01, paired signed-rank test). We did not find a significant
difference in median MID2 and MID1 peak latencies for MGBv
neurons (P > 0.2, paired signed-rank test).

The differences in MID2 and MID1 peak latencies in corti-
cal cells may suggest that the 2 filters are sensing short-term
sequential aspects in the stimulus with MID2 filters reacting
to stimulus segments 20–40 ms before the stimulus portion
relevant for MID1. The observed synergy between the filters
may be a reflection of this sequence sensitivity. The latency
difference may represent influences from different sources of
neural input. For example, MID2, with its longer peak latency,
may reflect the influences of corticocortical input from non-
primary auditory areas or from nonlemniscal thalamic inputs
whereas MID1 appears to be dominated by influences from
short-latency thalamic inputs. Alternatively, MID2 may reflect
relatively weak synapses on a neuron that require prolonged or
repeated excitation from presynaptic neurons before driving a
spiking response.

Figure 11 shows results for the length of the temporal
integration windows of each model and area. Figure 11A
compares CDFs of the temporal integration windows by
filter type. Only MID2s showed a difference between the
fields, namely longer integration windows for AAF compared
with MGBv (P < 0.05, Kolmogorov–Smirnov test, Bonferroni-
corrected). Significant differences in the CDFs between filter
types for each field (Fig. 11B) were observed in AAF between
the STA and MID1 and in A1 between the STA and MID1 and
between the STA and MID2 (P < 0.01, Kolmogorov–Smirnov test,

Figure 11. Temporal integration. (A,B) Cumulative probability function of tem-
poral integration window for the 3 filters in MGBv, AAF, and A1. Significant
differences are indicated by stars (∗P < 0.05; ∗∗P < 0.01; Kolmogorov–Smirnov

test, Bonferroni-corrected).

Bonferroni-corrected). These differences came in the form of
longer temporal integration windows for the STAs. In AAF and
A1, STA filters had temporal integration windows 5 and 6 msec
longer (respectively) than MID1s for the same neuron (P < 0.01,
signed-rank test). A1 also showed longer STA integration
windows compared with MID2s (P < 0.01, signed-rank test).

Combined, the spectral and temporal differences between
MID1 and MID2 filter features suggests a potential role of MID2s
in spectrotemporal context detection and the representation of
multidimensional feature conjunctions.

Model Validation: Response Predictions

With any RF model, there is a chance that the measured results
are only valid for the stimulus set used for estimation. In order
to test if its utility extends past the estimation set, a model must
be validated on a novel stimulus. To this end, we presented our
neurons with 50 trials of a 30-s dynamic moving ripple segment.
Although the dynamic moving ripple segment had the same
spectrotemporal and modulation parameters as the estimation
stimulus, the stimulus was generated from a random starting
state and thus was uncorrelated to estimation stimulus.

We chose to validate our RF models by using them to predict
these response PSTHs. We generated predicted PSTHs using a
LNP rate model (see Materials and Methods). In this model,
the RF filter is first convolved with the stimulus to generate a
set of projection values over time. These projection values are
then translated into spike rates via the experimentally obtained
spiking NL function. These spike rates constitute the PSTH
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Table 1 Normalized predictions (R2, mean and SD)

N STA MID1 MID1,2

MGB 53 0.03 ± 0.04 0.05 ± 0.11 0.05 ± 0.12
AAF 108 0.11 ± 0.11 0.14 ± 0.13 0.15 ± 0.13
A1 261 0.08 ± 0.09 0.12 ± 0.13 0.13 ± 0.14

prediction for the model. Predictions for all 3 of our RF models
are shown along with the real, observed PSTH for an A1 example
neuron in Figure 12A.

We measured the similarity of each predicted PSTH with
the observed PSTH by calculating the square of the correlation
coefficient (R2) between the 2 signals. R2, also known as the
coefficient of determination, measures the proportion of the
variance in the observed PSTH that is captured by each model
prediction. Due to intrinsic neural variability, however, it is vir-
tually impossible to obtain an R2 value of 1 for any neuron
using real data. With an infinite number of trials, we could
theoretically average out this intrinsic trial-to-trial variability,
but even if our model perfectly predicts the true time-varying
rate function of a neuron, with finite data we will still obtain R2

values less than 1. Additionally, neurons often display differing
degrees of trial-to-trial variability, so it is difficult to compare R2

values directly for different neurons.
It is possible to measure the maximum R2 value that can be

obtained within the limits of finite data sets. We estimated this
value by adapting previously reported methodologies (Sahani
and Linden 2003; Hsu et al. 2004a) to relate the average R2 value
between PSTHs obtained for subsets of the real data to the
maximum possible R2 we would expect to obtain if we possessed
a perfect prediction of the time-varying firing rate. The MGBv
neurons had a median maximum R2 of 0.63 while AAF and
A1 neurons had median values of 0.41 and 0.43, respectively
(Fig. 12B). The median maximum expected R2 value for MGBv
neurons was significantly higher than for neurons in AAF or A1
(P < 0.01, ranked-sum test, Bonferroni-corrected). No significant
difference was found between the distributions of maximum R2

values for A1 and AAF neurons (P > 0.15, Kolmogorov–Smirnov
test). These results indicate that MGBv neurons generally display
significantly less trial-to-trial variability compared with cortical
neurons. In all auditory areas, however, the maximum expected
R2 varied considerably across neurons, and there were several
neurons in both AAF and A1 with maximum expected R2 values
of over 0.8, demonstrating that some cortical neurons maintain
highly precise trial-to-trial spiking comparable to that of the
better thalamic neurons.

In order to compare the prediction performance of our mod-
els for different neurons, we normalized prediction R2 values by
the maximum R2 values for each neuron. These normalized R2

values can be interpreted as the proportion of PSTH variance
captured by the prediction model that could possibly have been
captured. For example, if a neuron has a maximum R2 of 0.5,
and a RF model generates a predicted PSTH with an R2 of 0.4
with the observed PSTH, then our prediction model will have
captured 80% of the variance that is possible to predict. The
mean normalized prediction values for the 3 areas and filter
configurations are shown in Table 1.

Figure 13A,C,E display scatterplots comparing the prediction
performance of our 3 RF models across MGBv, AAF, and A1.
We note that for many AAF and A1 neurons and for a hand-
ful of medial geniculate body (MGB) neurons, some RF mod-

els achieved prediction performances approaching 1, indicat-
ing that those models had captured as much of the response
variance as was possible. In particular, the 2-filter MID model
achieved near maximal prediction performance in many AAF
and A1 neurons.

From the scatterplots, we also observe that the one-filter MID
model generally had superior prediction performance over the
STA in AAF and A1, but this trend was less clear in MGBv. The
2-filter MID model, MID1,2, generally produced slightly better
predictions than MID1 in A1, but this trend was not apparent
in MGBv or AAF. These trends are more clearly illustrated in
Figure 13B,D,F, where the model comparisons are plotted as
histograms of prediction gains. Only values R2 > 0.02 were com-
pared to limit the influence of meaningless predictions. A few
outliers >500% were observed but are not further considered
in this comparison. MID1 had significant prediction gains over
the STA in AAF and A1 (P < 0.01, signed-rank test, Bonferroni-
corrected), but not for neurons in MGBv. MID1,2 had superior
prediction performance to the STA in all studied areas (P < 0.01,
signed-rank test, Bonferroni corrected). MID1,2 predicted better
than MID1, however, only in A1 (P < 0.01, signed-rank test, Bon-
ferroni corrected).

These results indicate that A1 is the only auditory area stud-
ied here with clearly significant multifeature processing. Most of
the prediction gains for AAF neurons were achieved by using the
one-filter MID model rather than the STA. Interestingly, the 2-
filter MID model displayed significant prediction improvements
over the STA despite the fact that MID1 showed no prediction
gains over the STA and the MID1,2 showed no prediction gain
over MID1. We take this result to indicate that the 2-filter MID
model is predominantly useful for characterizing MGBv neurons
that are not already adequately modeled by MID1.

Discussion
Multifeature processing by individual neurons has been demon-
strated in a variety of sensory systems and in many different
animal models. At least 2 relevant RF filters have been identified
for fly H1 neurons (Brenner et al. 2000), salamander retinal
ganglion cells (Fairhall et al. 2006), rat barrel cortex (Maravall et
al. 2007), and macaque visual neurons (Rust et al. 2005; Fitzgerald
et al. 2011; Rowekamp and Sharpee 2011). Several studies have
also shown the presence of multidimensional filters in A1 of cats
(Atencio et al. 2008, 2009, 2012; Atencio and Sharpee 2017) and
ferrets (Harper et al. 2016; Rahman et al. 2019) as well as in birds
(Sharpee et al. 2011b; Kozlov and Gentner 2016).

Specifically, MID RF analysis was applied to recover multiple
features in cat A1 neurons (Atencio et al. 2008, 2009, 2012),
and our current A1 results showed good correspondence to our
previous results. MID models, however, had not been derived for
MGBv or cortical fields other than A1. Our goal was to assess
the potential emergence and/or transformation of multifeature
processing across 3 auditory forebrain areas, MGBv, AAF, and A1,
in comparison to observations in the auditory midbrain that had
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Figure 12. Example model predictions for an A1 neuron. First row: example PSTH observed by averaging over 50 trials of 30 s Dynamic Moving Ripple stimulus.
Second, third, and fourth rows: PSTH predictions generated from the STA, one-filter MID, and 2-filter MID models, respectively. Prediction performance is indicated as
coefficients of determination (R2).

yielded little evidence of multidimensional RFs (Atencio et al.
2012).

Our results show that 2-filter models in cat core auditory
fields A1 and AAF capture significantly more stimulus informa-
tion than in the lemniscal midbrain and thalamus, indicating
a qualitative transformation of signal processing at the cortical
stage. AAF neurons display information gains from the 2-filter
MID model similar to those observed in A1, but the gains
are slightly less than for A1 relative to the one-filter models
in ICC and MGBv neurons. Unlike for the cortical fields, the

one-filter model for MGBv neurons captures most of the
explainable information, similar to results found for ICC neurons
(Atencio et al. 2012). It should be noted that we previously
(Atencio et al. 2009) had observed higher MID1,2 synergy values
and lower MID1 contributions in A1 than in the current sample.
In the first studies, we noted that we estimated MIDs for neurons
that had a significant STA. In the current study, we were more
conservative, and merely incorporated neurons if they modu-
lated their firing rates to repeated trials of the same stimulus,
without regard to whether we obtained an STA for the neuron.
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Figure 13. Comparisons of the prediction performances and gains. (A,C,E) Prediction performance. Scatter plots of coefficient of determination (R2) comparing MID1 to
STA prediction (left panel), MID1,2 to MID1 prediction (middle panel), and MID1,2 to STA prediction (right panel) for MGBv, AAF, and A1, respectively. (B,D,F) Prediction
gain. Percent increase in R2 prediction performance of the MID1 over the STA (left panel); percent increase in R2 prediction performance of the 2-filter MID model over

MID1 alone (middle panel); percent increase in R2 prediction performance of the 2-filter MID model over the STA (right panel). Asterisks denote histograms displaying
significant prediction gains (∗P < 0.01, signed-rank test, Bonferroni-corrected).

Three general aspects of signal processing captured by mul-
tiple neuronal filters and their associated nonlinearities can be
identified and compared across the studied forebrain stations
(Tables 2 and 3): cooperativity, manner, and content.

“Cooperative processing” is expressed in the emergence and
synergistic combination of multifilter features in cortical neu-
rons and is a key aspect of processing transformations between
subcortical and cortical neurons. This is demonstrated by the
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Table 2 Filter-property differences within 3 forebrain stations

Processing aspect Parameter MG A1 AAF

Cooperation Sufficiency MID1 > STA MID1 > STA MID1 > STA
Cooperation Synergy
Manner NL asymmetry STA, MID1 > MID2 STA, MID1 > MID2 STA, MID1 > MID2
Manner NL threshold
Manner NL transition
Content Information MID1 > STA, MID2 MID1 > STA, MID2 MID1 > STA, MID2
Content Spectral integration MID2 > MID1 MID2 > MID1
Content Latency MID2 > STA, MID1 MID2 > STA, MID1 MID2 > STA, MID1
Content Temporal integration STA > MID1 STA > MID1, MID2

Note: MG, ventral medial geniculate body. Statistical difference at P < 0.05 (either Kolmogorov–Smirnov test or ranked-sum test).

Table 3 Filter-property differences between 3 forebrain stations

Processing aspect Parameter STA MID1 MID2 MID1,2

Cooperation Sufficiency MG > A1, AAF MG > A1, AAF
Cooperation Synergy A1, AAF > MG
Manner NL asymmetry MG > A1, AAF MG > A1, AAF
Manner NL threshold MG > A1 MG > A1
Manner NL transition A1 > MG AAF > MG
Content Information MG > A1, AAF MG > A1, AAF A1, AAF > MG
Content Spectral integration AAF > A1 AAF > A1
Content Latency A1, AAF > MG
Content Temporal integration AAF > MG

Statistical difference at P < 0.05 (either Kolmogorov–Smirnov test or rank-sum test).

sufficiency measure that compares the stimulus information
accounted for by a single filter to that jointly captured by 2
simultaneously acting filters. Both, in the ICC and the MGBv, the
information captured by a single filter is nearly as high as that
of a 2-filter model indicating that a second filter does not add
significantly to the information processing (Table 3). By contrast,
the second filter observed in A1 and AAF adds a significant
amount of information that is not accounted for by the first
filter alone. In addition, the active cooperation between the 2
filters, measured as synergy between the filters, is substantial
in cortical neurons but essentially absent in ICC and MGBv.
This lack of feature synergy in ICC and MGBv neurons likely
reflects the weak information contributions by MID2 in these
subcortical structures. Thus, if an ICC/MGBv neuron receives
convergent input from neural populations encoding multiple
features, but is not selective for any particular combination of
those features, it can be adequately summarized in a single-
filter model. The information gain and synergy results indicate
that AAF and A1 both gain multifeature processing characteris-
tics lacking in MGBv/ICC neurons. Thus, there appears to be a
hierarchical evolution of RF dimensionality and feature coop-
erativity as neurons exhibit stronger multifeature processing
at progressively higher levels in the ascending auditory path-
way, with the main transition taking place between MGBv and
cortex. This progression is expected on computational grounds
because the invariant or at least robust representation of audi-
tory objects in various background conditions requires that
neural responses be tuned to conjunctions of features (Atencio
et al. 2012). Because these findings are based on population
averages, it is possible that portions of tectal and thalamic neu-
rons do show stronger nonlinear response features (Escabı́ and

Schreiner 2002; Williamson et al. 2016) that would benefit from
modeling with second feature filters, especially in nonlemniscal
regions.

“Manner of processing” is captured by the nonlinear
relationship that determines how the match between stimulus
and filter is converted into a firing rate. The asymmetry of
the spiking NL function differed between STA/MID1 and MID2
(Table 2; Atencio et al. 2008). We observed highly asymmetric
functions for STA/MID1s and a more symmetric form for
MID2s in all 3 structures, indicating that MID2 filters were
generally less sensitive than the STA/MID1 to the particular
phase of spectrotemporal envelope feature. We interpreted
these results as indicating that MID2 filters not only represent
stimulus features distinct from the STA and MID1, but also
process these features in a distinct manner as well. The
high asymmetry of STA and MID1 nonlinearities in all 3
stations indicate that these filters act like feature detectors
with high sensitivity to the envelope phase and tuned to a
narrow range of stimulus constellations. The higher STA/MID1
asymmetry in MGBv (Table 2) shows that thalamic neurons are
less tolerant of stimulus/filter mismatches than are cortical
neurons.

Threshold values of the nonlinearities quantify the match
required between spectrotemporal receptive field (STRF) and
stimulus for the neuron to respond. High threshold values indi-
cate high stimulus feature selectivity and reduced transmission
noise. Thresholding with different values results in trade-offs
in spiking fidelity and response throughput (Escabí et al. 2005).
Thus, thresholding affects not only the average driven activity
of a neuron, but also constrains the rate and specificity of the
communicated information. The threshold distribution of MGBv
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neurons was shifted to higher values than in A1, indicating
a higher thalamic feature selectivity. AAF and A1 had similar
threshold distributions for STA/MID1 filters.

The transition parameter of the spiking NL relates neuronal
stimulus preferences and intrinsic membrane properties. The
smoothness of the transition point reflects the noise in spike
generation mechanism (Ringach and Malone 2007). Low transi-
tion smoothness indicates that neurons respond in a manner
that approximates hard rectification with little added ‘leakage’
noise. Higher values result in a noisier, more graded response to
stimuli. For MID1 filters, MGBv neurons showed lower transition
values, that is, less leakage noise, than AAF neurons, reflecting
a more faithful signal transmission. This was also the case for
STA filters when comparing MGBv to A1 neurons.

The third aspect of multidimensional RFs, “content process-
ing”, relates to what stimulus characteristics are reflected in the
2 filters. First, the stimulus-based information captured by the
filters differs between the 3 stations (Table 3). The STA and MID1
of MGBv neurons capture more information than those for A1
and AAF. This is potentially related to the fact that temporal
processing in thalamic neurons is more precise and covers a
wider bandwidth than in cortical neurons (Miller et al. 2002). By
contrast, MID2 captures significantly more information both in
A1 and AAF than in MGBv and, as previously shown, in the ICC
(Atencio et al. 2012). This adds critical support for the notion that
multifilter processing essentially emerges, or is significantly
strengthened at the cortical level (Atencio et al. 2012).

We found that in MGBv, AAF, and A1 neurons, MID1 filters
typically represented spectrotemporal features highly similar
to those conveyed by the STA but with higher information
content (Table 2). MID2 filters, on the other hand, represented
stimulus features generally in a similar frequency region but
uncorrelated to those of the STA and MID1, and thus captured
feature processing previously unaccounted for by single-filter
models. Other spectrotemporal processing differences between
the stations include the wider spectral integration range of STAs
and MID1s in AAF relative to A1 and a longer temporal integra-
tion of MID1s in AAF relative to MGBv, consistent with previous
studies (Imaizumi et al. 2004; Miller et al. 2001). Furthermore, the
weak MID2 filters in MGBv have a significantly shorter temporal
integration range than those found in A1 and AAF. Overall,
however, it appears that the content differences among filters
across the 3 stations are less compelling than differences in
relative strength of the 2 filters.

Potential Sources for Multiple Filter Generation

While our study does not serve to directly address the question
how the 2 MIDs are generated, some of our results suggest
likely hypotheses. A1 receives a wide range of corticocortical
connections in addition to thalamocortical connections (Lee
and Winer 2011) and is thus ideally situated to integrate sound
information from a variety of feature sources. The origin of
the 2-MID model likely is linked to convergent and cooperative
thalamic and cortical inputs although the local or distributed
contributing sources still need to be determined.

We found that MID2 processing in cortical areas typically had
longer latencies compared with STA and MID1 processing. One
possible explanation for this is that cortical MID2 filters reflect
the influence of corticocortical and/or nonlemniscal thalamic
connections while cortical STA and MID1 are dominated by
feed-forward influences from the auditory thalamus. AAF and
A1 both receive significant corticofugal projections from other

auditory cortical areas (Rouiller et al. 1991; Lee and Winer 2011),
and these projections are likely to provide long-latency input
that contributes to shaping the stimulus processing of the neu-
ron. As AAF and A1 share a fair degree of reciprocal connectivity
(Rouiller et al. 1991; Lee and Winer 2011), MID2 filters in A1 may
even be capturing influences from AAF, and vice versa.

Another possible explanation for the longer latencies in
MID2 filters is that they capture influences from weak synapses
while the STA and MID1 capture influences from stronger input
connections. For most synapses, pairs of presynaptic spikes
are more likely to drive spikes than isolated, single spikes
(Usrey et al. 1998, 2000; Kara and Reid 2003; Shih et al. 2011).
In weaker synapses that require pairs of spikes in order to elicit
significant postsynaptic activity, registering the effect of the
input spike pair requires waiting for the arrival of the second
presynaptic spike, resulting in longer-latency responses from
these connections.

Further supporting the suggestion that MID2 filters reflect
influences from a different set of input connections than
STA and MID1 filters, MID2 processing is often centered on
frequencies over half an octave away from the peak frequencies
of the STA and MID1. As MGBv, AAF, and A1 are all tonotopically
organized and receive input from other tonotopic areas (Lee and
Winer 2011), the STA and MID1 may represent the effects of
nearby, frequency-matched connections, while MID2 represents
the effects of more distal, off-frequency connections. This
is compatible with our hypothesis that MID2 filters may be
constructed from more remote inputs forming weaker or
less synchronous synaptic activity. The density of synaptic
connections is generally inversely related to the distance from
a neuron (Yuan et al. 2011), so the more distal, off-frequency
influences reflected in MID2 filters would generally come from
a sparser collection of connections that may require more
coincident presynaptic spiking in order to drive postsynaptic
activity.

We also found that MID2 filters often integrate information
over a broader spectral range than MID1 filters, indicating
that MID2 may be particularly important for capturing the
neural processing of broadband stimuli. Natural sounds,
whether textured background sounds, speech, or music, are
characteristically broadband (McDermott and Simoncelli 2011),
so the broader spectral and temporal integration of MID2 filters
as well as their envelope phase tolerance is an important
complement to the narrower tuning and faster integration
of MID1s.

MID2 components of AAF neurons were less effective than in
A1 and may imply that AAF occupies a somewhat lower position
in the auditory processing hierarchy than A1. This notion is sup-
ported by AAF’s slightly shorter response latencies and slightly
higher temporal modulation preferences than A1 (Schreiner and
Urbas 1988; Kowalski et al. 1995; Linden et al. 2003; Rutkowski et
al. 2003).

We recorded only from the ventral division of the MGB, as the
primary contributor of afferents to AAF and A1, which exhibits
clear tonotopic organization (Imig and Morel 1985). However,
projections from nonlemniscal thalamic stations to core cortical
regions exist (Lee and Winer 2011) and may contribute to the
formation of additional, cooperative filters. The medial and dor-
sal divisions of the MGB receive greater corticofugal input from
nonprimary A1 than the ventral divisions (Winer et al. 2001). It
is conceivable that neurons from these divisions may display
significant multifeature processing properties due to cortical
feedback that are less evident in ventral division neurons.
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We used 2 MID filters as the maximum number of dimen-
sions tested in our models, largely because of the heavy
computational load required for MID analysis. We do not imply,
though, that 2 filters are sufficient to model A1 neurons.
Theoretically, the linear-nonlinear framework used in MID
analysis can accurately model the entire set of dynamical,
nonlinear, time-invariant systems classified as a Volterra
series system, when using a sufficient number of linear filters
(Marmarelis and Orme 1993; Marmarelis 1997). It is important
to note, however, that the relative information and prediction
gain of moving to the 2-filter model is significantly smaller
than what is gained by using the one-filter MID instead of the
STA. This suggests that there may be diminishing benefits
from incorporating additional MID filters. Moreover, on a
computational level, it has been suggested that MID analysis
is only practical for recovering stimulus-response relationships
of relatively low-dimensionality, that is, by employing only a few
jointly activated filters. High-dimensional MID models, that is,
with a larger number of joint filters, would require the collection
of an exorbitant amount of data in order to adequately sample
the distribution of spike-conditioned stimulus probabilities
(Fitzgerald et al. 2011).

Our study demonstrates that the information benefits previ-
ously observed for A1 neurons also apply to another core cortical
field, AAF. We find that A1 neurons display significantly stronger
evidence of multifilter processing compared with neurons from
MGBv and AAF. These results have implications for how sound
information may be represented even further along the auditory
pathway.

Multifilter processing is a manifestation of complex, non-
linear properties and is not unique to A1 but seems to first
become relevant in the auditory forebrain; there were subsets
of MGBv and, in particular, AAF neurons that benefited from
the multidimensional model. Given that forebrain neurons with
significant 2-filter MID models exist, an open question remains
concerning what the advantages are for specific functional pro-
cessing aspects, and how they impact processing in subsequent
stations.
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