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Semi-Supervised Clustering of Sparse Graphs:

Crossing the Information-Theoretic Threshold

Abstract

The stochastic block model, also known as the planted partition model, is considered a

canonical random graph model to study clustering and community detection on network-

structured data. Decades of extensive study on the problem have established many profound

results, among which the phase transition for weak recovery at Kesten-Stigum threshold is

particularly interesting both from a mathematical and an applied point of view. It says that

no estimator can perform substantially better than chance on sparse graphs if the model

parameter is below the threshold when we have access only to the network topology.

Nevertheless, if we slightly extend the horizon to the ubiquitous semi-supervised set-

ting, such a fundamental limitation will disappear completely. We prove that with arbitrary

fraction of the labels revealed, the detection problem is feasible throughout the parameter

domain. Moreover, we introduce two efficient algorithms, one combinatorial and one based

on optimization, to integrate label information with graph structures. Our work brings a new

perspective to stochastic model of networks and semidefinite program research. The foun-

dational change caused by semi-supervised learning demonstrates its indispensable power.

In turn, the mathematically rigorous results help us to develop powerful tools for real-

world applications. We propose a variation of graph convolutional network based on our

clustering algorithms, which is the first of its kind to incorporate semi-supervised approach

in the design of propagation scheme. It utilizes the non-local information that is justified by

the learning target. Meanwhile, it captures the essence of cluster structure instead of model

statistics. Numerical experiments show it outperforms other models on challenging tasks.
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CHAPTER 1

Introduction

1.1. Clustering on graphs

The basic task of clustering or community detection in its general form is, given a (pos-

sibly weighted) graph, to partition its vertices into several densely connected groups with

relatively weak external connectivity. This property sometimes is also called assortativity.

Clustering and community detection are central problems in machine learning and data

science with various applications in scientific research and industrial development. A con-

siderable amount of data sets can be represented in the form of a network that consists

of interacting nodes, and one of the first features of interest in such situation is to under-

stand which nodes are “similar”, as an end or as preliminary step towards other learning

tasks. Clustering is used to find genetically similar sub-populations [Pad14], to segment

images [SM00], to study sociological behavior [NWS02a], to improve recommendation sys-

tems [LSY03], to help with natural language processing [GB13], etc. Since the 1970s, in

different communities like social science, statistical physics and machine learning, a large

diversity of algorithms have been developed such as:

• Hierarchical clustering algorithms [Joh67] build a hierarchy of progressive commu-

nities, by either recursive aggregation or division.

• Model-based statistical methods, including the celebrated EM clustering algorithm

proposed in [DLR77], fit the data with cluster-exhibiting statistical models.

• Optimization approaches identify the best cluster structures in regard to carefully

designed cost functions, for instance, minimizing the cut [HS00] and maximizing

the Girvan-Newman modularity [NG04].
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Due to the absence of labels, clustering is considered to be more difficult task than classi-

fication. The given label in the case of supervised learning serves as a clue to grouping data

objects as a whole. Whereas in the case of unsupervised clustering, it is not straightforward

to decide, to which cluster a pattern should belong. The challenge inspires us to study the

semi-supervised approaches that are able to better extract the real groupings with a little

help of the revealed labels. Intuitively, similarity is the central factor to a cluster and hence

clustering process. The natural grouping of data based on some inherent similarity is to be

discovered in clustering. We will see in the following that the similarity is commonly defined

by a measure of distance (e.g. Euclidean distance and graph distance) among the objects.

The similarity and group structure can be abstractly represented by a graph, which bridges

the practical task to elegant mathematical theories.

Multiple lines of research intersect at a simple random graph model, which appears

under many different names. In the machine learning and statistics literature around social

networks, it is called the stochastic block model (SBM) [HLL83], while it is known as

the planted partition model [BCLS84] in theoretical computer science and referred to as

inhomogeneous random graph [BJR07] in the mathematics literature. Moreover, it can also

be interpreted as a spin-glass model [DKMZ11], a sparse-graph code [AS15] or a low-rank

random matrix model [McS01] and more.

Stochastic block model is a generative model for random graphs. The essence of SBM

can be summarized as follows: Conditioned on the vertex labels, edges are generated inde-

pendently and the probability only depends on which clusters the pairs of vertices belong to.

This abstract and mild assumption is all we need to depict the essence of network data. On

the one hand, we use the patterns of connections to distinguish different clusters. On the

other hand, we are aware of that not all connections directly imply the similarity of nodes.

In general, an unweighted graph (G) consists of a collection of nodes / vertices (V ) and

a edges set (E) connecting different nodes. Conventionally, we call the number of nodes
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n = |V | and the number of edges m = |E|. A graph can be uniquely represented by its

adjacency matrix A ∈ Rn×n: Aij = 1 if (i, j) ∈ E, i.e. there exists an edge connecting node i

to node j and Aij = 0 otherwise. Throughout this dissertation we only consider undirected

graphs without self-loops. So A will be a symmetric matrix and Aii = 0, i = 1, . . . n. The

degree of node i is defined as the number of its direct neighbours, d(i) =
∑

j Aij. If the

graph is labeled, we denote the label vector as x ∈ Rn with the corresponding indices of the

nodes. A community / cluster is the collection of all nodes that share the same label. To

keep the notation under control, we identify the name of a node with its index. So, without

loss of generality, we assume that V = [n] where [n] := {1, . . . , n}.

Definition 1.1.1 (General SBM). Let n, k ∈ N∗, p = (p1, . . . , pk) be a probability vector

on 1, . . . , k (the prior distribution,
∑k

i=1 pk = 1) and the connectivity probability W ∈ Rk×k

be a symmetric matrix with Wij ∈ [0, 1], i, j ∈ [k]. A random object (x,G = ([n], E))

obeys the SBM(n, p,W ), if x is a n-dimensional random vector whose components are i.i.d.

instances of p, and G is a n-vertex simple graph with adjacency matrix A where {Aij}’s are

independent random variables that

(1.1) Aij ∼ Bernoulli(Wxixj
), Aji = Aij (i < j)

and Aii = 0, i ∈ [n]. The communities are defined as Si(x) = {v ∈ V |xv = i}, i ∈ [k].

Therefore, we can explicitly put down the distribution of (x,A) ∼ SBM(n, p,W ) for

x∗ ∈ [k]n and A∗ ∈ {0, 1}n×n as the following,

P(x = x∗) =
∏
v∈[n]

px∗
v
=
∏
i∈[k]

p
|Si(x

∗)|
i(1.2)

P(A = A∗|x = x∗) =
∏

1≤u<v≤n

W
A∗

uv
x∗
ux

∗
v
(1−Wx∗

ux
∗
v
)1−A∗

uv(1.3)

=
∏

1≤i≤j≤k

W
Nij

ij (1−Wij)
N∁

ij(1.4)
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where the numbers of edges within and across communities (N) and the numbers of non-edges

within and across communities (N ∁) are calculated as the following.

When i ̸= j,

Nij(x
∗, A∗) =

∑
x∗
u=i, x∗

v=j

Auv(1.5)

N ∁
ij(x

∗, A∗) =
∑

x∗
u=i, x∗

v=j

(1− Auv)(1.6)

= |Si(x
∗)| · |Sj(x

∗)| −Nij(x
∗, A∗).(1.7)

When i = j,

Nii(x
∗, A∗) =

∑
u<v

x∗
u=x∗

v=i

Auv =
1

2

∑
x∗
u=x∗

v=i

Auv(1.8)

N ∁
ii(x

∗, A∗) =
∑
u<v

x∗
u=x∗

v=i

(1− Auv)(1.9)

=
1

2
|Si(x

∗)| · (|Si(x
∗)| − 1)−Nii(x

∗, A∗).(1.10)

The law of large numbers implies

(1.11) lim
n→∞

|Si|
n

= pi a.s..

Hence, instead of assuming x ∼ p, we can also define the SBM with the label vector x drawn

uniformly at random under the constraint that |Si| = npi, i ∈ [k]. For the purpose of this

dissertation, these two definitions are equivalent.

Figure 1.1 demonstrates how the network datasets are described by graphs. On the

left, we show the graph associated with the email-Eu dataset [YBLG17], which is col-

lected from an e-mail communication network of an European research institution. Nodes

indicate members of the institution. Department memberships of individual researchers are

considered the ground truth community. The edge between two researchers implies that
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they exchanged at least one email. For clarity, we only plot a subgraph of 3 departments

randomly selected from the original 42 departments. On the right, we generate one instance

of SBM(25, (0.4, 0.3, 0.3)⊤,W ∗) where

W ∗ =


0.75 0 0.0625

0 0.5 0.125

0.0625 0.125 0.5

 .

Figure 1.1. Community structures in the email-Eu network (left) and a
SBM instance (right). Nodes are color-coded according to the labels.

The symmetric SBM consisting of two blocks is also known as the planted bisection model.

It takes the simplest form of the model but provides a wonderful ground for rigorous study

of various clustering methods and the fundamental limits hidden in complicated problems.

Definition 1.1.2 (Planted bisection model). For n ∈ N and p, q ∈ (0, 1), let G(n, p, q)

denote the distribution over graphs with n vertices defined as follows. The vertex set is

partitioned uniformly at random into two subsets S1, S2 with |Si| = n/2. Let E denote the
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edge set. Conditional on this partition, edges are included independently with probability

(1.12) P
(
(i, j) ∈ E|S1, S2

)
=


p if {i, j} ⊆ S1 or {i, j} ⊆ S2,

q if i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1.

Note that if p = q, the planted bisection model is reduced to the so-called Erdős–Rényi

random graph where all edges are generated independently with the same probability. Hence

there exists no cluster structure. But if p ≫ q, a typical graph realization will have two well-

defined clusters. The scale of p and q also plays a significant role in the resulting graph,

which will be discussed in detail later. They govern the amount of signal and noise in the

graph generating process. As the key parameters that researchers work with, various regimes

and thresholds are described by them.

The SBMs generate labels for vertices before the graph. The ground truth allows us

to formally discuss the presence of community structures and measure the performance of

algorithms in a meaningful way. It also supplies a natural basis to rigorously define the

semi-supervised clustering problem. But as a parametrized statistical model, one can only

hope that it serves as a good fit for the real data. Although not necessarily a realistic

model, SBM provides us an insightful abstraction and captures some of the key phenomena

[MNS15,CX16,BMNN16,ABH16,AS18].

Given a single realization of the graph G, our goal is to recover the labels x, up to

certain level of accuracy. Formally, the ground truth of the underlying community structure

is encoded using the vector x ∈ {+1,−1}n, with xi = +1 if i ∈ S1, and xi = −1 if i ∈ S2.

An estimator is a map x̂ : Gn → {+1,−1}n where Gn is the space of graphs over n vertices.

We define the overlap between an estimator and the ground truth as

(1.13) Overlap(x, x̂(G)) =
1

n
|⟨x, x̂(G)⟩|.
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Overlap induces a measure on the same probability space as the model, which represents

how well an (unsupervised) estimator performs on the recovery task. To intuitively interpret

the result, we put requirements on its asymptotic behavior, which takes place with high

probability as n → ∞.

Definition 1.1.3. Let G ∼ G(n, p, q). The following recovery requirements are solved if

there exists an algorithm that takes G as an input and outputs x̂ = x̂(G) such that

• Exact recovery: P{Overlap(x, x̂(G)) = 1} = 1− o(1)

• Weak recovery: P{Overlap(x, x̂(G)) ≥ Ω(1)} = 1− o(1)

In other words, exact recovery requires the entire partition to be correctly identified.

Weak recovery only asks for substantially better performance than chance. In some literature,

exact recovery is simply called recovery. Weak recovery is also called detection since as long

as one can weakly recover the ground truth, there must exist community structure.

Note that if G is an Erdős–Rényi random graph (p = q) then the overlap will be op(1) for

all estimators. This can be seen by noticing that x and G are independent in this setting and

then applying Markov’s inequality. This has led to two additional natural questions about

SBMs. On the one hand, we are interested in the distinguishability (or testing): is there a

hypothesis test to distinguish random graph generated by Erdős–Rényi model (ERM) from

random graph generated by SBMs that succeeds with high probability? One the other hand,

we can ask about the model learnability (or parameter estimation): assuming thatG is drawn

from an SBM ensemble, is it possible to obtain a consistent estimator for the parameters

(p, q)? Although each of these questions is of independent interest, for symmetric SBMs with

two symmetric communities (planted bisection model) the following holds [Abb18]:

(1.14) learnability ⇐⇒ weak recovery ⇐⇒ distinguishability

The equivalence benefits the analysis of the model in turn. For example, direct analysis

about weak recovery leads to the converse of phase transition theory [MNS15]. While
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the achievability of the phase transition threshold [Mas14a] is proved by counting non-

backtracking walks on the graph which gives consistent estimators of parameters. The recent

work [MS16] on the analysis of SDP approaches the problem via the hypothesis testing

formulation.

SBMs demonstrate the ’fundamental limits’ of clustering and community detection as

some necessary and sufficient conditions for feasibility of recovery, information-theoretically

or computationally. Moreover, they are usually expressed in the form of phase transition.

Sharp transitions exist in the parameter regimes between phases where the task is resolvable

or not. For example, when the average degree grows as log n, if the structure is sufficiently

obvious then the underlying communities can be exactly recovered [BC09], and the threshold

at which this becomes possible has also been determined [ABH16]. Above this threshold,

efficient algorithms exist [ABKK17,AS15,PW17,DLS21] that recover the communities

exactly, labeling every vertex correctly with high probability; below this threshold, exact

recovery is information-theoretically impossible.

1.2. Sparse regime and Kesten-Stigum threshold

In the sparse case where the average degree of the graph is O(1), it is more difficult to

find the clusters and the best we can hope for is to label the vertices with nonzero correlation

or mutual information with the ground truth, i.e. weak recovery. Intuitively, we only have

access to a constant amount of connections about each vertex. The intrinsic difficulty can

be understood from the topological properties of the graphs in this regime. The following

basic results are derived from [ER84]:

• For a, b > 0, the planted bisection model G(n, a logn
n

, b logn
n

) is connected with high

probability if and only if a+b
2

> 1.

• G(n, a
n
, b
n
) has a giant component (i.e. a component of size linear in n) with high

probability if and only if d := a+b
2

> 1.

8



The graph will only have vanishing components if the average degree is too small. Therefore,

it is not possible to even weakly recover the labels. But we will see in the next section

that semi-supervised approaches amazingly piece the components together with consistent

labeling.

Although it is mathematically challenging to work in the sparse regime, real-world data

are likely to have bounded average degrees. [LLDM08] and [Str01] studied a large collection

of the benchmark data sets, including power transmission networks, web link networks and

complex biological systems, which had millions of nodes with average degree of no more than

20. For instance, the LinkedIn network they studied had approximately seven million nodes,

but only 30 million edges.

The phase transition for weak recovery or detection in the sparse regime was first con-

jectured in the paper by Decelle, Krzakala, Moore, Zdeborová [DKMZ11], which sparked

the modern study of clustering and SBMs. Their work is based on deep but non-rigorous

insights from statistical physics, derived with the cavity method (a.k.a. belief propagation).

Since then, extensive excellent research has been conducted to understand this fundamental

limit, see e.g. [MNS15,Mas14a,MNS18,ABRS20]. A key result is the following theorem.

Theorem 1.2.1. [Kesten-Stigum threshold] Let G(n, a/n, b/n) be a symmetric SBM with

two balanced clusters and a, b = O(1). The weak recovery problem is solvable and efficiently

so if and only if (a− b)2 > 2(a+ b).

In particular, if we denote the probability measures induced by the ERM G(n, a+b
2n

, a+b
2n

)

and the SBM G(n, a
n
, b
n
) by P

(0)
n and P

(1)
n correspondingly, they are mutually contiguous,

that is for any sequence of events {En}’s, P (0)
n (En) → 0 if, and only if, P

(1)
n (En) → 0.

Conventionally, the quantity (a− b)2/[2(a+ b)] is called signal-to-noise ratio (SNR). It is

worth noting that we only quoted the KS threshold for the two communities case (k = 2).

For sufficiently large k, namely k ≥ 5, there is a ’hard but detectable’ area where the weak

recovery is information-theoretically possible, but computationally hard [AS18,BMNN16].
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This gap between the KS threshold and information-theoretic (IT) threshold only shows up in

the constant degree regime, making it a fertile ground for studying the fundamental tradeoffs

in community detection. We focus on the cardinal case, symmetric SBM with two balanced

clusters, where two thresholds coincide and semi-supervised approach crosses them together.

Figure 1.2. The left image represents the adjacency matrix of one realization
of G(100, 0.12, 0.05), where the detection is theoretically possible. Yet the data
is given non-colored (middle) and also non-ordered (right).

The terminology ’KS threshold’ can be traced back to the work of Kesten and Stigum

concerning reconstruction on infinite rooted trees in 1966 [KS66]. The problem consists in

broadcasting the root label of a tree with fixed degree c down to its leaves, and trying to

recover it from the leaves at large depth. We start with drawing the root label uniformly

in {0, 1}. Then, in a top-down manner, we independently label every child the same as

its parent with probability 1 − ϵ and the opposite as its parent otherwise. Let x(t) denote

the labels at depth t in this tree with t = 0 being the root. We say the reconstruction is

solvable if limt→∞ E |E(x(0)|x(t)) − 1/2| > 0 or, equivalently, limt→∞ I(x(0);x(t)) > 0, where

I is the mutual information. Although it was shown in the original paper, reconstruction is

solvable when c(1− 2ϵ)2 > 1, the non-reconstruction was proved 30 years later, namely it is

not solvable if c(1− 2ϵ)2 ≤ 1 [BRZ95,EKPS00]. Based on that finding, Mossel, Neeman,

and Sly proved the converse part of Theorem 1.2.1 by coupling the local neighborhood of an

SBM vertex with a Gaton-Watson tree with a Markov Process [MNS15]. Inspired by this

10



elegant approach, we propose our ’census method’ to solve the semi-supervised clustering

problem, and we will see in Chapter 3 how it works by amplifying revealed information with

tree-like neighborhoods.

1.3. Basic algorithms

Information-theoretic bounds can provide the impossibility side of phase transitions, but

we still need specific efficient algorithms for the achievability side. One straight forward

approach is spectral method. Under the Definition 1.1.2, let A be the adjacency matrix of

the graph G ∼ G(n, a/n, b/n), a > b. Up to reordering indices, its expectation is a block

matrix except for the diagonal,

(1.15) EA ≈ 1

n

a b

b a

⊗ In/2×n/2

which has three eigenvalues, (a + b)/n > (a − b)/n > 0. 0 has multiplicity n − 2 and

the eigenvector associated with the second largest eigenvalue is
(

1n/2

−1n/2

)
which is consistent

with the ground truth of the labels. But we do not observe the expected adjacency matrix.

Instead, we only have access to one realization of the model. In modern terms, community

detection is a ’one-shot learning’ task. But one can still hope that A− EA is small and the

second eigenvector of A gives a reasonable estimator. For example, denoting the ordered

eigenvalues of EA and A as {λi}’s and {λ̂i}’s respectively, the Courant-Fischer-Weyl min-

max principle implies

(1.16) |λ̂i − λi| ≤ ∥A− EA∥op (∀i ∈ [n]).

Recall that the operator norm of a symmetric matrix M , with ξi(M) being its i-th largest

eigenvalue, is ∥M∥op = max(ξ1(M),−ξn(M)). If one can bound ∥A− EA∥op by half of the

least gap between the three eigenvalues mentioned above, the order will be preserved. Then

the Davis-Kahan theorem guarantees the eigenvectors are correlated. Namely, if θ denotes

11



the angle between the second eigenvectors (spectral estimator and ground truth), we have

(1.17) sin θ ≤ ∥A− EA∥op/min{∥λi − λ2∥/2 : i ̸= 2}.

Thus, the key is to control the norm of the perturbation. Many deep results from random

matrix theory come into play here [Vu07,NN12,AFWZ20].

This nice and simple approach stops working as we step into the sparse regime [FO05,

CO09,KMO09,DKMZ11,KMM+13]. The main reason is that leading eigenvalues of A

are about the order of square root of the maximum degree. High degree vertices mess up the

desired order of eigenvalues. In particular, for Erdős–Rényi random graphs (G(n, d/n)), we

have λ̂1 = (1+ o(1))
√

log n/ log log n almost surely [KS03]. Furthermore, the leading eigen-

vectors are concentrated to these high degree ’outliers’ and contain no structural information

of the underlying model.

Take the star graph for example, where we assume that only the first node is connected

to k neighbors. It is easy to see that the corresponding adjacency matrix has eigenvalue
√
k

and eigenvector (
√
k, 1, . . . , 1). Various interesting spectrum based methods are proposed to

overcome this challenge [MNS18,Mas14b,BLM15]. The key idea is to replace adjacency

with some combinatorically constructed matrices. However, they typically rely on model

statistics and underlying probabilistic assumptions, which leads to the problem of adversarial

robustness. For example, they are non-robust to ’helpful’ perturbations. Namely, if we let an

adversary to perform following changes on the graph: (1) adding edges within communities

and/or (2) removing edges across communities, spectral approaches are going to fail. It is

surprising since, intuitively, these changes help to emphasize community structures.

Meanwhile, semidefinite programming (SDP) sheds the light on how we may be able to

overcome the limitations of spectral algorithms, which is shown to be robust when SNR

is sufficiently large [MPW16]. In fact, it is another major line of work on clustering and

community detection concerning performance of SDPs on SBMs. While a clear picture of
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the unbounded degree case is figured out in [ABH16,HWX16,AL18,Ban18,ABKK17,

PW17], the results for sparse networks are more complicated. [GV14] proved a sub-optimal

condition, SNR ≥ 104, using Grothendieck inequality. Then, with a Lindeberg interpolation

process [Tao11], Montanari et al. proved that a SDP algorithm as proposed in [MS16] is

nearly optimal for large bounded average degree by transferring the analysis of the original

SDPs to analysis of SDPs of Gaussian random matrices.

Theorem 1.3.1. [MS16] Assume G ∼ G(n, a/n, b/n). If for some ϵ > 0, SNR ≥ 1 + ϵ

and d > d∗(ϵ) then the SDP estimator solves the weak recovery.

If we fix d and view ϵ as its function, the condition becomes SNR ≥ 1+ od(1). Numerical

estimation and non-rigorous statistical mechanism approximation suggest that it is at most

2% sub-optimal. This result seems to be the ceiling of SDP according to the preliminary non-

rigorous calculation in [JMRT16]. Moreover, they address the irregularity of high degree

nodes by showing SDPs return similar results for Erdős–Rényi random graphs and random

regular graphs, which appear to be sensitive only to the average degree. See Section 4 for

more discussion on the estimation. Following their work, we propose a natural modification

of SDP to incorporate revealed labels in the semi-supervised setting and show that it not

only achieves, but also crosses, the KS threshold. In turn, our result brings a new perspective

to study the (non-)achievability and robustness of (unsupervised) SDPs.

1.4. Semi-supervised learning

Within the field of machine learning, there are three basic approaches: supervised learn-

ing, unsupervised learning and the combination of both, semi-supervised learning. The main

difference lies in the availability of labeled data. While unsupervised learning (e.g. cluster-

ing, association and dimension reduction) operates without any domain-specific guidance or

preexisting knowledge, supervised learning (e.g. classification and regression) relies on all
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training samples being associated with labels. However, it is often the case where existing

knowledge for a problem domain doesn’t fit either of these extremes.

In real-world applications, unlabeled data comes with a much lower cost not requiring

expensive human annotation and laboratory experiments. For example, documents crawled

from the Web, images obtained from surveillance cameras, and speech collected from broad-

cast are relatively more accessible comparing to their labels which are required for prediction

tasks, such as sentiment orientation, intrusion detection, and phonetic transcript. Motivated

by this labeling bottleneck, the semi-supervised approach utilizes both labeled and unlabeled

data to perform learning tasks faster, better, and cheaper. Since the 1990s, semi-supervised

learning research have enjoyed an explosion of interest with applications like natural language

processing [QCMC19,CX16] and computer vision [XHLL20,Lee13].

This dissertation is closely related to the subtopic called constrained clustering, where one

has some must-links (i.e. two nodes belong to the same cluster) and cannot-links (i.e. two

nodes are in different clusters) as extra information. Although constrained versions of classic

algorithms have been studied empirically, such as expectation–maximization [SBHHW03],

k-means [WCRS01] and spectral method [KKM03], our results take different approaches

to enhance clustering outcomes instead of hard-coding these pairwise constraints into the

algorithms and provide theoretically guarantees under SBM.

A recent development in semi-supervised learning that has attracted extensive attention

is called graph convolutional network (GCN) [KW17], which is based on an efficient variant

of convolutional neural networks operating on graph structures directly. The objective func-

tions of GCNs only involve labeled data while predictive information propagates through

the graphs built in neural networks to cover unlabeled data. The benefit of integrating

graph structures into deep learning approaches is twofold: (i) it efficiently embeds similar-

ity between nodes to synchronize labeled and unlabeled samples; (ii) it significantly brings

down the number of parameters by only considering the connections induced by underlying
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graphs. A prototypical example of a forward model of a two-layer GCN for semi-supervised

node classification on a graph is given by

(1.18) f(Z,A) = softmax

(
Â ReLU

(
ÂZW (0)

)
W (1)

)
where W (i), i ∈ {0, 1} are weight matrices for the hidden layer and the output layer, soft-

max and Relu are both vector activation functions defined as softmax(x) = exp(x)/
∑

i exp(xi)

and ReLU(x) = max(0, x). Z stands for the features and A is the adjacency matrix. The

output of each layer of GCN goes through a smoothing process defined by the propagation

model matrix Â. It can be a normalized adjacency matrix, a graph Laplacian, or even the

identity matrix, which reduces the model to multi-layer perception. Existing frameworks

are either directly based on the adjacency matrix A [YHC+18] or run basic clustering algo-

rithms on A [CLS+19] to design Â. But whenever GCN is applicable, some of the labels are

always available. It is natural to consider making use of this label information to improve

the decisive component Â, which can be realized directly from our semi-supervised clustering

algorithms. We will discuss this interesting application further in in Chapter 5.
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CHAPTER 2

Main Results

The main theoretical goal of this dissertation is to answer the long-standing open question

regarding the semi-supervised learning on probabilistic graph models. We would like to quote

the version from [Abb18]:

”How do the fundamental limits change in a semi-supervised setting, i.e., when

some of the vertex labels are revealed, exactly or probabilistically?”

2.1. Crossing the threshold

In the previous chapter, we have discussed deep research related to the clustering /

community detection problem on SBMs. Establishing of the phase transition phenomenon

at KS threshold is a major focal point. However, such a sharp and intrinsic limit totally

disappears when an arbitrarily small fraction of the labels is revealed. This astonishing

change is first observed in [ZMZ14] where the authors provide non-trivial conjectures based

on calculations of the belief propagation approach.

The theory of semi-supervised clustering contains some fascinating and fundamental

algorithmic challenges arising from both the sparse random graph model itself and the

semi-supervised learning perspective. To address them rigorously, we first define the semi-

supervised SBM in a way that it captures the essence of realistic semi-supervised learning

scenarios and is a natural and simple generalization of unsupervised models.

Definition 2.1.1 (Semi-supervised planted bisection model). For n ∈ N, p, q ∈ (0, 1) and

ρ ≥ 0, let G(n, p, q, ρ) denote the distribution over graphs with n vertices and n-dimensional

vectors defined as follows. The vertex set is partitioned uniformly at random into two subsets
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S1, S2 under the balance constraint |S1| = |S2| = n/2. Then conditional on the partition,

two processes are undertaken independently:

• Let E denote edge set of the graph G. Edges are included independently with

probability defined as follows.

(2.1) P
(
(i, j) ∈ E|S1, S2

)
=


p if {i, j} ⊆ S1 or {i, j} ⊆ S2,

q if i ∈ S1, j ∈ S2 or i ∈ S2, j ∈ S1.

• An index set R of size m := 2⌊ρ · n
2
⌋ is chosen uniformly at random such that

|R ∩ S1| = |R ∩ S2| = m/2. The revealed labels are given as

(2.2) x̃i =


1, i ∈ R ∩ S1,

−1, i ∈ R ∩ S2,

0, otherwise.

Remark 2.1.1. The revealing process is independent from edge formation, i.e. G ⊥

x̃|S1, S2. Moreover, if we set ρ = 0 or simply ignore the revealed labels, the model is exactly

the unsupervised SBM. In other words, the marginal distribution of the random graph is

indeed G(n, p, q) from Definition 1.1.2.

Remark 2.1.2. One can also consider revealing uniformly at random over the index set

independent of G(n, p, q) (instead of requiring revealed communities to have the same size),

but this modification makes almost no difference in the context of this work. In practice, one

can always achieve the balance requirement by either sampling a few more or dropping the

uneven part.

Remark 2.1.3. The definition is versatile in the sense that it keeps unsupervised setting

as a special case (and with it all the interesting phase transitions). On the other hand, it

can be easily generalized to the multiple and/or asymmetric communities case.
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Under semi-supervised setting, the weak recovery problem is naturally defined as finding

an estimator to perform substantially better than chance on the unrevealed vertices. And

the distinguishability can be expressed as finding a test that with high probability, tells

G(n, d/n, d/n, ρ) from G(n, a/n, b/n, ρ) where d = a+b
2
, a > b. We will discuss these items in

more detail when it comes to the corresponding section.

Based on the fact that a ln(n)-neighborhood in (G, x) ∼ G(n, a/n, b/n) asymptotically

has the identical distribution as a Galton-Watson tree with Markov process, we propose our

first semi-supervised clustering algorithm, called census method. Namely, we decide the label

estimation of a certain node according to the majority of its revealed neighbors,

(2.3) x̂v = sgn

 ∑
i∈{u∈R: d(u,v)=t}

xi


where d(u, v) is the length of the shortest path connecting u and v. We conclude that when

SNR ≤ 1, the optimal choice of t is indeed 1.

Theorem 2.1.1. The 1-neighbors census method solves the semi-supervised weak recovery

problem with any reveal ratio ρ > 0 for arbitrary SNR > 0.

Although this successfully solves the weak recovery problem, there are some limitations

hindering the census method’s utility in practice. Its performance depends on a sufficient

amount of revealed labels, hence requiring n to be really large. Besides, without an unsu-

pervised counterpart, it is not applicable when the revealing is not reliable.

To address these challenges, we propose our second semi-supervised clustering algo-

rithm which performs well in practice and covers the unsupervised setting as a special

case. As discussed in the previous chapter, SDPs enjoy many nice properties, among which

the monotone-robustness is particularly interesting to us. In the semi-supervised setting,

the revealed labels are supposed to enhance the community structure. However, the work

from [MPW16] suggests such enhancement may not help with, but to the contrary can hurt
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the performance of many other algorithms, which makes SDP an ideal starting point for us.

We define the Constrained Semidefinite Program (CSDP) as

(2.4) CSDP(M) = max
X⪰0

Xii=1, ∀i∈[n]

{⟨M,X⟩ : Xij = xi · xj, ∀i, j ∈ R}

and show that it solves the semi-supervised community detection problem.

Theorem 2.1.2. Let (G, xR) ∼ G(n, a/n, b/n, ρ) and A be the adjacency matrix of G.

For any a > b, there exists ρ0 < 1 such that if ρ ≥ ρ0, the CSDP-based test T (G, xR; ∆) =

1{CSDP(A− d
n
11⊤)≥n[(a−b)/2−∆]} will succeed with high probability for some ∆ > 0.

2.2. Proof techniques

The technical challenges of establishing Theorem 2.1.1 are mainly due to that the ad-

vantage created by revealed labels can be easily blurred out by various approximations of

the limit distribution. Instead of the central limit theorem, one needs a Berry–Esseen-type

inequality to derive a more quantitative result of the convergence rate. Moreover, since the

distribution of each underlying component also depends on n, the conventional sample mean

formulation does not apply here. We overcome the difficulty above with a direct analysis of

non-asymptotic distributions, which leads to a detailed comparison between two binomial

variables with constant expectations.

It is quite surprising that this calculation can be carried out in rather elegant manner,

since many other applications of this method are much more technically involved. For

example to establish the independence among estimators, one may need to consider the

’leave-one-out’ trick. But in our case, it comes in a very natural way.

Regarding CSDP, we first show it can be coupled to a SDP with the surrogate input

matrices. Moreover, its optimal value lies in between two unsupervised SDPs associated

with the same random graph model (different parameters). This means all the analytical

results from SDP research can be transferred into the CSDP study. However, we notice that
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it is common to make assumptions on the average degree d in the relevant literature. It is

quite reasonable in the unsupervised setting since the graph topology is a strong indicator

for the possibility of weak recovery, e.g. when d ≤ 1, there will not exist a giant component

that is of size linear in n.

To establish our result without such extra assumptions, we derive a probabilistic bound

on the cut norm of centered adjacency matrix and then use Grothendieck’s inequality to

bound the SDPs on ERMs from above. This idea follows from [GV14], we give a slightly

different analysis to accommodate our usage. A generalized weak law of large number is also

derived to address the issue that distributions of the entries change as n → ∞. Then we

conclude the proof with a lower bound of CSDPs on SBMs considering a witness consists of

the ground truth of labels.

2.3. Outline

The rest of the dissertation is organized in the following way. In Chapter 3, we formally

derive the census method and prove that it can solve the weak recovery problem throughout

the entire parameter domain. In Chapter 4, we introduce the constrained SDP and the

associated hypothesis test, through which we show that even under the KS threshold (also

the information-theoretic threshold), the ERMs and the SBMs become distinguishable in

the semi-supervised setting. In Chapter 5, we discuss the application to GCN. We end the

dissertation with concluding remarks in Chapter 6.

2.4. Notation

For any n ∈ N, we denote the first n integers by [n] = {1, 2, . . . , n}. For a set S, its

cardinality is denoted by |S|. We use lowercase letters for vectors (e.g. v = (v1, v2, . . . , vn))

and uppercase letters for matrices (e.g. M = [Mij]i,j∈[n]). In particular, for adjacency

matrices, we omit their dependency on underlying graphs. Instead of AG, we simply write A.

1n = (1, . . . , 1) ∈ Rn stands for the all-ones vector and In is the n×n identity matrix. ei ∈ Rn
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represents the i’s standard basis vector. For two real-valued matrices A and B with the same

dimensions, we define the Frobenius inner product as ⟨A,B⟩ =
∑

i,j Aij · Bij = Tr(A⊤B).

Vector inner product is viewed as a special case of n×1 matrices. Let ∥v∥p = (
∑p

i=1 ∥vi∥p)1/p

be the ℓp norm of vectors with standard extension to p = ∞. Let ∥M∥p→q = sup∥v∥p≤1 ∥Mv∥q

be the ℓp-to-ℓq operator norm and ∥M∥op := ∥M∥2 := ∥M∥2→2. Random graphs induce

measures on the product space of label, edge and revealed node assignments over n vertices.

For any n ∈ N, it is implicitly understood that one such measure is specified with that

graph size. The terminology with high probability means ‘with probability converging to 1

as n → ∞’. Also, we follow the conventional Big-Oh notation for asymptotic analysis. op(1)

stands for convergence to 0 in probability.
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CHAPTER 3

Census Method

Analysis of Model 1.1.2 is a challenging task since conditioned on the graph, it is neither

an Ising model, nor a Markov random field. This is mainly due to following facts: (1)

The balance requirement puts a global condition on the size of each cluster; (2) Even if

conditioned on sizes, there is a slight repulsion between unconnected nodes. Namely, if two

nodes do not form an edge, the probability of them being in the same community is different

from them being in the opposite communities.

Recent years have witnessed a series of excellent contributions on the phase transitions in

the sparse regime. Our census method for semi-supervised clustering is mainly inspired by

the natural connection between community detection on SBMs and reconstruction on trees,

which is formally established in [MNS15]. Intuitively, for a vertex v in G(n, a/n, b/n), it is

not likely that a node from its small neighborhood has an edge leading back to v. Therefore,

the neighborhood looks like a random labelled tree with high probability. Furthermore, the

labelling on the vertices behaves like the broadcasting a bit from the root of a tree down to

its leaves (see the survey [Mos01] for a detailed discussion).

In this chapter, we will first look into the census method of t-neighbors, i.e., deciding the

label of a node by the majority on its neighbors at depth t. We shall see that when SNR ≤

1, 1-neighbors voting is optimal in terms of recovering the cluster structure via informal

calculation. Then we rigorously prove that census on 1-neighbors solves the semi-supervised

weak recovery for any SNR > 0 with an arbitrarily small fraction of labels revealed.
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3.1. Majority of t-neighbors

Let (G, x) obey the planted bisection model G(n, a/n, b/n). We denote the set of all

vertices by V (G). For a fixed vertex v and t ∈ N, let Nt(v) denote the number of vertices

which are t edges away from v. ∆t(v) is defined as the difference between the numbers of

t-neighbors in each community. Namely,

Nt(v) = |Kt(v)|(3.1)

∆t(v) =
∑

u∈Kt(v)

xu(3.2)

where Kt(v) := {u ∈ V (G) : d(u, v) = t} denotes the t-neighbors of v.

If one assume that the subgraph of G induced by the vertices within t edges of v is a

tree, the expected value of Nt(v) is approximately [(a + b)/2]t and the expected value of

xv · ∆t(v), i.e., the expected number of these vertices in the same community as v minus

the expected number of these vertices in the other community, is approximately [(a− b)/2]t.

So, if one can somehow independently determine which community a vertex is in with an

accuracy of 1/2 + α for some α > 0, one will be able to predict the label of each vertex

with an accuracy of roughly 1/2 + [(a− b)2/(2(a+ b))]t/2 · α, by guessing it as the majority

of v’s t-neighbors. Under the unsupervised learning setting, one can get a small advantage,

α ∼ Θ(1/
√
n), by randomly initializing labels. It is guaranteed by the central limit theorem

that such a fraction exists in either an agreement or disagreement form.

To amplify this lucky guess, we need t to be sufficiently large so that [(a − b)2/(2(a +

b))]t/2 >
√
n, which implies [(a+ b)/2]t > n. Note d = (a+ b)/2 is the average degree. This

means before the signal is strong enough for our purpose, not only our tree approximation

will break down, but vertices will be exhausted. However, if we have access to some of

the true labels, i.e., in the semi-supervised setting, we can leverage the tree structure for a

non-vanishing advantage over random guessing.
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Figure 3.1. Neighborhood of node v with a tree structure. True clusters are
coded in black and white. The shaded area indicates those nodes randomly
guessed to be in the same community or the opposite community as v. The
annulus represents the collection of its t-neighbors.

Let A be the adjacency matrix associated with G. Consider the random variables Yu

representing votes of directly connected neighbors,

(3.3) Yu =


xu if Auv = 1

0 otherwise
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We have

N1(v) =
∑

u∈V (G)

|Yu|(3.4)

∆1(v) =
∑

u∈V (G)

Yu(3.5)

By definition of the planted bisection model,

(3.6) P(Yu = 1|xv = 1) =
P(Yu = 1, xv = 1)

P(xv = 1)
≈ a

2n

Similarly,

(3.7) P(Yu = −1|xv = 1) ≈ b

2n

It is not exact due to the balanced community constraint. But when n is large, such an effect

is negligible. Furthermore, if we consider definition of the planted bisection model without

balance constraint, the equation will be exact.

Without loss of generality, we only consider the case where xv = 1 and omit the condition

on it. We have

(3.8) ∆1(v) =
∑

u∈V (G)

Yu with Yu =


1 w.p. a

2n

−1 w.p. b
2n

0 w.p. 1− a+b
2n

where the Yu’s are independent. Note that E(Yu) =
a−b
2n

and E(Y 2
u ) =

a+b
2n

.

Recall that ρ ∈ [0, 1] is the ratio of revealed labels. For the sake of simplicity, we assume

the total number of revealed vertices m = ρn ∈ 2N to be an even integer. The revealed

vertices are chosen arbitrarily, denoted as R := {u1, u2, . . . , un−m}. The model also provides
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that the number of revealed vertices in each community is ρn
2
. Then the majority of revealed

vertices among 1-neighborhood of v can be written as

(3.9) ∆̃1(v) =
∑
u∈R

Yu

Therefore,

E(∆̃1(v)) =
∑
u∈R

E(Yu) = ρ
a− b

2
(3.10)

Var(∆̃1(v)) =
∑
u∈R

Var(Yu) = ρ
a+ b

2
+ o(1)(3.11)

3.2. Locally tree-like structure

Proceeding to the t-neighbors, we need to understand a bit better the structure of a

small neighborhood in the SBM. The neighborhoods in a sparse network locally have no

loops. So they have a nice tree-like structure. Moreover, the labels also obey some random

broadcasting processes on trees.

A broadcasting process transmit the information from the root of a tree to all the nodes.

At each level, nodes inherit the information from its parent. But error could happen with

certain amount of probability. Usually the edges are assumed to be included according

to the same rule and work independently. It was firstly considered in genetics [Cav78]

since it perfectly describes the propagation of a gene from ancestor to descendants. It

can also be interpreted as a communication network that pass out the information from

the root. So such processes were intensively studied in information theory and statistical

physics [Spi75,Hig77,BRZ95]. In particular, we are interested in the following Markov

process since it can be identified with the labeling process of a small neighborhood in SBM.

Definition 3.2.1 (Galton–Watson tree with Markov process). Let T be an infinite rooted

tree with root v. Given a number 0 ≤ ϵ < 1 and the offspring rate d > 0, we define a random
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labelling τ ∈ {1,−1}T . First, draw τv uniformly in {1,−1}. Then recursively construct the

labelling as follows.

• Generate children of each parent node according to the Poisson distribution with

the expectation of d.

• Conditionally independently given τv, for every child u of v, set τu = τv with prob-

ability 1− ϵ and τu = −τv otherwise.

The following lemma shows that a ln(n)-neighborhood in (G, x) looks like a Galton-

Watson tree with Markov process. For any v ∈ G, let GR be the induced subgraph on

{u ∈ G : d(u, v) ≤ R}.

Lemma 3.2.1. [MNS15] Let R = R(n) = lnn
10 ln(2(a+b))

. There exists a coupling between

(G, x) and (T, τ) such that (GR, xGR
) = (TR, τTR

) a.a.s.

Hence, for fixed t ∈ N, t ≤ R and any v ̸∈ R, we can denote the label of a vertex

in v’s t-neighborhood as Y
(t)
i := Πt

k=1
kYu, where {kYu}tk=1 are independent copies of Yu.

Then we have E(Y
(t)
i ) = (a−b

2n
)t and E((Y

(t)
i )2) = (a+b

2n
)t. Moreover, {Y (t)

i }’s are independent.

Therefore, the census of v’s revealed t-neighbors can be written as

(3.12) ∆̃t(v) =
∑

i∈[ρ·nt]

Y
(t)
i a.a.s

The central limit theorem suggests

(3.13) ∆̃t(v) → N (ρ(
a− b

2
)t, ρ(

a+ b

2
)t) as n → ∞
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Hence,

P(∆̃t(v) > 0|xv = 1) =
1

2

1 + erf

(
ρ[(a− b)/2]t√
ρ[(a+ b)/2]t

√
2

)+ o(1)(3.14)

=
1

2
+

1

2
erf

(√
ρ SNRt

2

)
+ o(1)(3.15)

where erf(x) = 2√
π

∫ x

0
exp(−t2) dt is the Gauss error function.

So one can see that once SNR is less than or equal to 1, it is not beneficial to look

into t-neighbors. The optimal choice of t is 1 in this situation. Since we also know that

weak recovery is solvable when SNR > 1, it makes the majority of 1-neighbors particularly

interesting.

Suppose SNR ≤ 1 and include the symmetric part of xv = −1, we have

(3.16) P(sgn(∆̃1(v)) = xv) >
1

2
+

1

3

√
ρ SNR

Consider the estimator of unrevealed labels

(3.17) x̂R∁ := sgn
(
[∆̃1(u1), ∆̃1(u2), . . . , ∆̃1(un−m)]

⊤
)

and the ground truth xR∁ = [xu1 , xu2 , . . . , xun−m ]
⊤. Recall that

(3.18) Overlap(xR∁ , x̂R∁) =
1

n−m
|⟨xR∁ , x̂R∁⟩|
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We can conclude that

E[Overlap(xR∁ , x̂R∁)] = E

 1

n−m

∣∣∣∣∣∣
∑

i∈[n−m]

sgn(∆̃1(ui))xui

∣∣∣∣∣∣
(3.19)

≥ 1

n−m

∣∣∣∣∣∣
∑

i∈[n−m]

E
[
sgn(∆̃1(ui))xui

]∣∣∣∣∣∣(3.20)

>
2

3

√
ρ SNR(3.21)

The expected overlap is not vanishing which suggests the weak recovery is solvable for

any SNR. But it is technically impractical to rigorously describe the limit distribution of

our census estimator without blurring this edge out. From Figure 3.2, we can see that our

calculation is close to the expectation. But the convergence rate depends on ρ. In particular,

when both SNR and ρ are small, the asymptotic behavior of our algorithm remains unclear.

Hence we go through a direct analysis to establish the desired result.

Figure 3.2. The simulation result of G(3000, 5/3000, 2/3000), SNR ≈ 0.64.
Horizontal coordinate is the ratio of revealed labels. The blue curve stands
for the average overlap of 60 independent realizations of the random graph
with the shaded area being its standard error band. The purple dashed curve
stands for the asymptotic lower bound we conclude from our calculation.
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3.3. Majority of 1-neighbors

Since the algorithm is invariant under index reordering, without loss of generality, we let

the adjacency matrix A be a symmetric matrix with diagonal entries Aii = 0, i = 1, 2, . . . , n.

For 1 ≤ i < j ≤ n, {Aij}’s are independent,

Aij ∼ Bernoulli

(
a

n

) (
i ≤ n

2
and j ≤ n

2

)
or

(
i ≥ n

2
and j ≥ n

2

)
(3.22)

Aij ∼ Bernoulli

(
b

n

)
i ≥ n

2
and j ≤ n

2
(3.23)

The true label x and revealed label x̃ are, respectively,

(3.24) xi =


1, i = 1, 2, . . . , n

2
,

−1, i = n
2
, n
2
+ 1, . . . , n,

x̃i =


1, i = 1, 2, . . . , m

2
,

−1, i = n
2
, n
2
+ 1, . . . , n+m

2
,

0, otherwise.

For a unrevealed vertex, we consider the majority of its 1-neighbors,

(3.25) ∆̃1(i) = ⟨A[i, :], x̃⟩ =
∑

j:x̃j ̸=0

Aijx̃j =
∑

j:x̃j ̸=0

Ajix̃j

Therefore, {∆̃1(i)}’s are independent for all i : x̃i = 0 (the unrevealed nodes) since they have

no common term. Notice it is not the case for all i ∈ [n]. But we only need to predict the

unrevealed labels, hence the independence is sufficient. To be more specific, if x̃k = 0, then

none of {Aik}ni=1 will be involved in the computation of ∆̃1(i) for any i. It brings remarkable

convenience to our analysis.
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The estimator given by majority voting of 1-neighbors is

(3.26) x̂i =


x̃i if x̃i ̸= 0

sgn∗(∆̃1(i)) if x̃i = 0

We toss a fair coin when ∆̃1(i) = 0 to break the tie, i.e.

(3.27) P(sgn∗(∆̃1(i)) = 1|∆̃1(i) = 0) = P(sgn∗(∆̃1(i)) = −1|∆̃1(i) = 0) =
1

2

Notice that it is only introduced for analysis purpose and is equivalent to the conventional

sign function in practice.

3.4. Proof of weak recovery

Now we are ready to show that our semi-supervised clustering algorithm solves the com-

munity detection problem for arbitrary SNR. Suppose (G, x) is an Erdős–Rényi random

graph with revealed label x̃, any estimator can only have vanishing correlation with the true

label among the unrevealed vertices. So the semi-supervised weak recovery problem on SBM

requires finding an estimator such that the correlation restricted on the unrevealed part is

non-vanishing. Formally, we want to show that

(3.28) P
(
Overlap(x|x̃i=0, x̂|x̃i=0) ≥ Ω(1)

)
= 1− o(1)

First, we prove an elementary but important lemma. It shows the difference of two

Binomial distributions with the same limiting success probability does not vanish.

Lemma 3.4.1. Let X and Y be two independent binomial random variables with X ∼

Binomial(n, a
n
) and Y ∼ Binomial(n, b

n
), a > b. Denote δ = δ(a, b) := a−b

2 exp (a+b)
. Then, for
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sufficiently large n,

(3.29) P(X > Y )− P(X < Y ) ≥ δ

Remark 3.4.1. By symmetry, we always have P(X > Y )−P(X < Y ) > 0. This lemma

guarantees the difference will not vanish as n → ∞.

Proof. By the law of total probability and independence, we have

P(X > Y ) =
n∑

x=1

P(Y < x) P(X = x)(3.30)

=
n∑

x=1

x−1∑
y=0

P(Y = y) P(X = x)(3.31)

=
n∑

x=1

x−1∑
y=0

[(
n

x

)(
a

n

)x(
1− a

n

)n−x(
n

y

)(
b

n

)y (
1− b

n

)n−y
]

(3.32)

Let ∆ := P(X > Y )− P(X < Y ), then

∆ =
n∑

x=1

(
n

x

)(
a

n

)x(
1− a

n

)n−x(
b

n

)x(
1− b

n

)n−x

{
x−1∑
y=0

(
n

y

)[(
b

n

)y−x(
1− b

n

)x−y

−
(
a

n

)y−x(
1− a

n

)x−y
]}

=
n∑

x=1

(
n

x

)(
ab

n

)x(
1− a+ b

n
+

ab

n2

)n−x

{
x−1∑
y=0

(
n

y

)
1

ny

[(
1

b
− 1

n

)x−y

−
(
1

a
− 1

n

)x−y
]}

Let f(x) = αx − βx, α > β > 0. Since f ′(x) = αx lnα − βx ln β > 0, we have f(m) ≥

f(1) = α− β, ∀m ∈ N. So
(
1
b
− 1

n

)x−y −
(
1
a
− 1

n

)x−y ≥ a−b
ab

.
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Also notice that
(
n
m

)
=
∏m−1

i=0
n−i
m−i

≥
(
n
m

)m
, ∀1 ≤ m ≤ n. We have,

∆ ≥
n∑

x=1

(
ab

x

)x(
1− a+ b

n

)n−x
x−1∑

y=0

1

yy
· a− b

ab

(3.33)

≥ (a− b)

(
1− a+ b

n

)n

(3.34)

≥ a− b

2 exp (a+ b)
(for sufficiently large n)(3.35)

where we follow the convention that 00 = 1. □

We resort to a classical concentration inequality to bound the overlap.

Lemma 3.4.2 (Chernoff–Hoeffding theorem [Che52]). Suppose X1, . . . , Xn are i.i.d. ran-

dom variables, taking values in {0, 1}. Let p = E(X) and ϵ > 0. Then

(3.36) P

(
1

n

∑
Xi ≤ p− ϵ

)
≤

((
p

p− ϵ

)p−ϵ(
1− p

1− p+ ϵ

)1−p+ϵ
)n

= e−D(p−ϵ∥p)n

where D(x∥y) = x ln x
y
+(1−x) ln(1−x

1−y
) is the Kullback–Leibler-divergence between Bernoulli

distributed random variables with parameters x and y.

We now convert the KL divergence to the total variation distance, which is easier

to work with. Let P1 and P2 be two probability measures defined on the same sample

space Ω and sigma-algebra F . The total variation distance between them is defined as

dTV (P1, P2) = supE∈F |P1(E) − P2(E)|. Moreover, in the discrete case, we have following

identity dTV (P1, P2) = 1
2
∥P1 − P2∥1 =

∑
ω∈Ω

1
2
∥P1(ω) − P2(ω)∥. It is related to the KL

divergence through Pinsker’s inequality (see, eg. [Tsy09], Chapter 3). For completeness, we

include an elementary proof of the Bernoulli special case.
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Lemma 3.4.3. Let P1 and P2 be two Bernoulli distribution, where P1(1) = x and P2(1) =

y. We have

(3.37) 2(dTV (P1, P2))
2 ≤ D(x∥y)

Proof. We can manipulate both sides of the inequality as

(3.38) D(x∥y) = x ln
x

y
+ (1− x) ln(

1− x

1− y
)

(3.39) 2(dTV (P1, P2))
2 =

1

2
∥P1 − P2∥21 = 2(x− y)2

Then we denote

(3.40) f(x, y) = x ln
x

y
+ (1− x) ln

1− x

1− y
− 2(x− y)2.

Therefore,

∂f

∂y
= −x

y
+ (1− x)

1

1− y
+ 4(x− y)(3.41)

=
−x+ y

y(1− y)
+ 4(x− y)(3.42)

= (x− y)(4− 1

y(1− y)
)(3.43)

Notice that since 0 ≤ y ≤ 1, we have y(1− y) ≤ 1
4
. So 4− 1

y(1−y)
is always negative.

Thus, for fixed x, f(x, y) ≥ f(x, x) = 0, ∀y. Hence,

(3.44) D(x∥y)− 2(dTV (P1, P2))
2 ≥ 0

□

Now we prove the main result for the census method.
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Proof of Theorem 2.1.1. Recall that for any i such that x̃i = 0, our estimator is

defined as x̂i = sgn∗(∆̃1(i)) and

(3.45) ∆̃1(i) =
∑

j:x̃j ̸=0

Aijx̃j =

 ∑
ρn

2
<j≤n

2

Aij

−

 ∑
(1+ρ)n

2
<j≤n

Aij


It is indeed the difference between two independent binomial variables with parameters

(ρn, ρa
ρn
) and (ρn, ρb

ρn
). By Lemma 3.4.1, we have

(3.46) P(sgn(∆̃1(i)) = xi)− P(sgn(∆̃1(i)) = −xi) ≥ δ =
ρ(a− b)

2eρ(a+b)

for sufficiently large n. Also notice that

(3.47) P(sgn(∆̃1(i)) = −xi) = 1− P(sgn(∆̃1(i)) = xi)− P(∆̃1(i) = 0)

Therefore,

(3.48) P(sgn(∆̃1(i)) = xi) ≥
1 + δ

2
− 1

2
P(∆̃1(i) = 0)

Then, by the law of total probability, we have

P(x̂i = xi) = P(sgn∗(∆̃1(i)) = xi)(3.49)

= P(sgn(∆̃1(i)) = xi) +
1

2
P(∆̃1(i) = 0)(3.50)

≥ 1

2
+

δ

2
(3.51)

Since {x̂i}’s are independent for all unrevealed vertices as {∆̃1(i)}’s and E
[
x̂ixi+1

2

]
=

P(x̂i = xi), Lemma 3.4.2 and Lemma 3.4.3 give us that

(3.52) P

 1

(1− ρ)n

∑
i:x̃i=0

x̂ixi + 1

2
≤ 1

2
+

δ

2
− ϵ

 ≤ e−2ϵ2(1−ρ)n
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Taking ϵ = δ
4
, we have

(3.53) P

(
Overlap(x|x̃i=0, x̂|x̃i=0) ≥

δ

2

)
≥ 1− e−

δ2(1−ρ)n
8

As long as a > b, we have δ > 0, which concludes the proof. □

Corollary 3.4.1. The semi-supervised SBM and ERM are not mutually contiguous for

any given a > b ≥ 0 and ρ > 0.

Proof. Let P
(0)
n = G(n, a+b

2n
, a+b

2n
, ρ) and P

(1)
n = G(n, a

n
, b
n
, ρ). Then consider the same

constant δ > 0 from the proof of Theorem 2.1.1 and denote the event sequence En =

{Overlap(x|x̃i=0, x̂|x̃i=0) ≥ δ
2
} where x̂ is our semi-supervised census estimator. We have

P (0)
n (En) → 0 (Law of large number)(3.54)

P (1)
n (En) ↛ 0 (Bounded from below)(3.55)

□
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CHAPTER 4

Semi-Supervised SDP

We have seen that the census method solves the semi-supervised community detection

problem. But the algorithm is desirable in practice only when the amount of revealed labels

is sufficient to support a reasonable performance. In other words, it has no unsupervised

’fallback’ built in. Meanwhile, SDPs enjoy nice properties like optimality and robustness as

mentioned earlier. It is also well known that approximate information about the extremal

cuts of graphs can be obtained by computing the optimizer for SDP of their adjacency matrix,

see for example [GW95]. From both a practical and a mathematical point of view, we are

interested in developing an SDP based semi-supervised clustering approach, and through

which we shall be able to see the models, algorithms and phase transitions with a fresh

perspective.

In this chapter, we will focus on the hypothesis testing formulation of the community

detection problem. We have discussed the equivalency between it and the non-vanishing

overlap formulation under the unsupervised setting. In the semi-supervised scenario it is

still an interesting question to ask whether there exists a test that can distinguish SBMs

from ERMs. Here we understand ERM as the special case of SBM with a = b. It also has

ground truth of labels, which is uniformly random under the balance constraint. Given that

they are originally contiguous when SNR ≤ 1, we want to show that revealed labels together

with random graphs can separate them.

4.1. SDP for community detection

Under the Planted Bisection Model 1.1.2, the Maximum A Posteriori (MAP) estimator

is equivalent to the Maximum Likelihood estimator, which is given by min-bisection, i.e., a
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balanced partition with the least number of crossing edges. Formally, it can be written as

the following optimization problem,

(4.1) max
x∈{1,−1}n
x⊤1=0

x⊤Ax

By lifting the variable X := xx⊤, we can rewrite it as

(4.2) X̂MAP(G) = argmax
X⪰0

Xii=1, ∀i∈[n]
rank(X)=1

X1=0

⟨A,X⟩

Although min-bisection of G is optimal (in the MAP sense) for exact recovery, finding

it is NP-hard. Various relaxations have been proposed for the MAP estimator. Since the

rank constraint makes the optimization difficult, we can remove it to make the problem

convex. One can also get rid of the balance constraint by centralizing the adjacency matrix,

Ã := A − d
n
11⊤ with d = (a + b)/2 the average degree. This can also be justified using

Lagrangian multipliers. And the resulting semidefinite relaxation is given by

(4.3) X̂SDP(G) = argmax
X⪰0

Xii=1, ∀i∈[n]

⟨Ã,X⟩

The feasible region {X ∈ Rn×n : X ⪰ 0, Xii = 1 ∀i ∈ [n]} is indeed the space of

correlation matrices, which defines a subset of the unit hypercube and is also called the

elliptope. Although it is derived from the relaxation of MAP, one can define the SDP for

general symmetric matrices as

(4.4) SDP(Mn×n) = max{⟨M,X⟩ : X ∈ elliptopen}
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Proposition 4.1.1. For any n× n symmetric matrix M , if we denote its leading eigen-

value as λ1, then

(4.5)
1

n
SDP(M) ≤ λ1

Proof. For any feasible X ⪰ 0 and Xii = 1, we have Tr(X) = n.

(4.6) ⟨X,M = UΛU⊤⟩ = Tr(U⊤XUΛ) = ⟨Y := U⊤XU,Λ⟩ =
∑

Yiiλi ≤ nλ1

Since Tr(Y ) = n and Y ⪰ 0, we have Yii ≥ 0. So the last inequality follows. □

This proposition relates SDPs to spectra of the underlying matrices, which suffer from

those high degree nodes as we mentioned in the introduction. In contrast, SDPs behave

similarly on SBMs and random regular graphs. The optimal values of the SDPs for both are

approximately 2n
√
d, see [MS16]. Random regular graphs obey the uniform distribution

over graphs with n vertices and uniform degree d, which provide a simple example to illustrate

the regularity property of SDPs. We cite an intermediate result from the original proof as

Lemma 4.4.3.

An important way to understand SDPs is considering the Cholesky decomposition of

X, which characterizes the constraints. Since X is positive semidefinite, we always have

X = ΣΣ⊤ with Σ = (σ1, σ2, . . . , σn)
⊤ and ∥σi∥2 = 1, ∀i ∈ [n]. Therefore, the i-th node

of the graph is associated with the vector σi that lies on the unit sphere. Xij = ⟨σi, σj⟩

can be interpreted as the affinity metric between node i and node j. SDP maximizes the

likelihood score of this affinity matrix with respect to the given centralized adjacency matrix.

The optimizer X∗ is a better representation of the structure information than the vanilla

adjacency matrix. Then we can identify the labels by simply running a K-means method on

it or compute the eigenvector corresponding to the largest eigenvalue.
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4.2. Constrained SDP

In this section, we introduce our SDP modification and prove that it solves the semi-

supervised community detection problem with the hypothesis testing formulation. Let x

denote labels of G(n, a
n
, b

n
). And m of them are revealed uniformly at random in a balanced

manner. Conditioning on the ground truth of clusters, indices of revealed nodes R and edges

are independent. So without loss of generality, we denote revealed labels x̃ as follows.

(4.7) xi =


1, i = 1, 2, . . . , n

2

−1, i = n
2
, n
2
+ 1, . . . , n

x̃i =


1, i = 1, 2, . . . , m

2

−1, i = n
2
, n
2
+ 1, . . . , n+m

2

0, otherwise

We have shown that the entry value of the optimizer X can be interpreted as an affinity

metric among nodes. Moreover, we have Xij ∈ [−1, 1], ∀ i, j. It is natural to force the

optimizer to have large entry values for those vertex pairs in which we have high confidence

to be in the same community and vice versa. Therefore, we propose the CSDP approach to

integrate the information provided by semi-supervised approach. If node i and node j are

revealed to have the same label, we add the constraint Xij = 1 to the optimization model.

If they are revealed to have the opposite labels, we add Xij = −1. Formally, the CSDP is

defined as

(4.8) CSDP(Mn×n) = max{⟨M,X⟩ : X ∈ elliptopen, Xij = xi · xj ∀i, j ∈ R}

whereR denotes the collection of revealed nodes. After reordering the indices, we can assume

it as {1, 2, . . . , m
2
}
⋃
{n
2
, n
2
+ 1, . . . , n+m

2
}. It is worth noting that the optimization remains a

positive semidefinite programming, which can be solved efficiently, for example by interior

point methods [Ali95].
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Then let Sn−1 := {v ∈ Rn : ∥v∥2 = 1} be the unit (n−1)-sphere and σ = (σ1, σ2, . . . , σn) ∈

(Sn−1)n. Consider the CSDP in the form derived from the Cholesky decomposition, X =

ΣΣ⊤. We have the following identities,

(4.9) SDP(M) = max


n∑

i,j=1

Mij⟨σi, σj⟩ : σi ∈ Sn−1 ∀i ∈ [n]



(4.10) CSDP(M) = max
σ∈(Sn−1)n


n∑

i,j=1

Mij⟨σi, σj⟩ : σ⊤
i σj = xixj ∀i, j ∈ R



(4.11) = max
σ∈(Sn−1)n

 ∑
i,j∈[n]\R

Mijσ
⊤
i σj +

∑
i,j∈R

Mijxixj + 2
∑
i∈R

∑
j∈[n]\R

xiMijσ
⊤
0 σj


where σ0 ≡ xiσi, ∀i ∈ R. Now one can consider an alternative matrix with a special margin

denoting the algebraic sum of the blocks from M that are associated with R. We define

Magg to be the (n−m+ 1)× (n−m+ 1) symmetric matrix indexed from 0 that

Magg
00 =

∑
i,j∈R

Mijxixj(4.12)

Magg
0j =

∑
i∈R

xiMi,j+m
2
, ∀j ∈ [

n

2
− m

2
](4.13)

Magg
0j =

∑
i∈R

xiMi,j+m, ∀j ∈∈ [n−m] \ [n
2
− m

2
](4.14)

Magg
ij = Mi+m

2
,j+m

2
, ∀i, j ∈ [

n

2
− m

2
](4.15)

Magg
ij = Mi+m,j+m, ∀i, j ∈ [n−m] \ [n

2
− m

2
](4.16)
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Essentially, we aggregate the rows and columns related to revealed vertices according to

their communities into the 0-th row and column. Then we reindex the matrix. It introduces

spikiness to the underlying matrix.

(4.17) Magg =



∑
i,j∈R Mijxixj Magg

01 Magg
02 · · · Magg

0,n−m

Magg
01

Magg
02

...

Magg
0,n−m

MR∁


Although [MS16] takes a rather different approach to study SDPs, they also notice that the

critical change comes with such built-in structures, where the authors state ”we expect the

phase transition in SDP(λvv⊤ + W )/n to depend — in general — on the vector v, and in

particular on how ‘spiky’ this is”.

Combining the transformed input matrix with equation (4.11), we conclude that CSDP

is indeed an SDP regarding Magg,

CSDP(M) = max
σi∈Sn−m

i=0,1,...,n−m

 ∑
i,j∈[n−m]

Magg
ij σ⊤

i σj +Magg
00 + 2

∑
j∈[n−m]

Magg
0j σ⊤

0 σj

(4.18)

= SDP(Magg)(4.19)

Lemma 4.2.1. Let MR∁ be the principle submatrix of M obtained by removing the rows

and columns associated with R. The following inequalities hold,

(4.20) SDP(MR∁) ≤ CSDP(M)−Magg
00
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Proof. Let X∗ be the optimizer of SDP(MR∁). Define its (n −m + 1) × (n −m + 1)

extension X̂∗ as

(4.21) X̂∗
ij =



1 i = j = 0

0 i ∈ [n−m], j = 0

0 j ∈ [n−m], i = 0

X∗
ij otherwise

Due to the identity from above and the fact that X̂∗ ∈ elliptopen−m+1 is feasible, we can

conclude that

(4.22) CSDP(M) = SDP(Magg) ≥ ⟨X̂∗,Magg⟩ = SDP(MR∁) +Magg
00

□

So far, all the results are deterministic, M can be arbitrary symmetric matrix and R can

be any balanced index set. Next, we will consider M = Ã := A− d
n
11⊤ to study CSDPs on

probabilistic models.

Remark 4.2.1. As shown in the Lemma 4.4.1, Ãagg
00 ≥ m · a−b

2
≥ 0 with high probability.

By definition, we have CSDP(Ã) ≤ SDP(Ã). So, with high probability,

(4.23) SDP(ÃR∁) ≤ CSDP(Ã) ≤ SDP(Ã)

The CSDP always lies in between the SDPs of the original adjacency matrix and the

submatrix of unrevealed vertices. Moreover, if Ã ∼ G(n, a
n
, b
n
), we have ÃR∁ ∼ G(n −

m, a(1−ρ)
n−m

, b(1−ρ)
n−m

). It is worth mentioning that although ÃR∁ is just a submatrix of the origi-

nal centered adjacency matrix, its probabilistic distribution as a random matrix is not simply

changed from n nodes to n−m nodes. The edge probability parameters are also changed by

a factor of (1− ρ). It leads to some technical challenges, which we are going to handle later.
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But intuitively, from the asymptotic behavior of SDP, we can derive a rough understanding

of CSDP as n → ∞. Recall that the phase transition theory tells us that when SNR ≤ 1,

SDP of SBM will not be large enough to distinguish from SDP of ERM. Therefore, the order

of above quantities from inequality (4.23) suggests that semi-supervised SDP can not help to

increase the statistics associated with SBM. The best one can hope for is that it will make

the statistics associated with ERM smaller by a factor depending on ρ. This turns out to be

enough for community detection.

4.3. Hypothesis test with revealed labels

Recall the community detection problem can be formalized as a binary hypothesis testing

problem, whereby we want to determine, with high probability of success, whether the

random graph under consideration has a community structure or not. As discussed in Section

2, we introduce semi-supervised learning to the problem by revealing a part of the labels

involved in the random graph generating process. Namely, if the labels associated with a

graph G over n vertices are denoted as x, we choose m of them uniformly at random denote

the index set by R, such that
∑

i∈R xi = 0.

Given a realization of the random graph G and the revealed labels xR, we want to decide

which of the following holds,

Hypothesis 0: (G, xR) ∼ G(n, d
n
, ρ) is an Erdős–Rényi random graph with edge probability

d
n
, d = a+b

2
and reveal ratio ρ. We denote the corresponding distribution over

graphs by P0.

Hypothesis 1: (G, xR) ∼ G(n, a
n
, b
n
, ρ) is a planted bisection random graph with edge prob-

abilities ( a
n
, b
n
) and reveal ratio ρ. We denote the corresponding distribution

over graphs by P1.
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A statistical test T is a function defined on the graphs and revealed labels with range {0, 1}.

It succeeds with high probability if

(4.24) P0(T (G, xR) = 1) + P1(T (G, xR) = 0) → 0 (n → ∞)

Notice that this is indeed a generalization of the unsupervised community detection.

Simply looking into the labels, two models are indistinguishable. What characters their

difference is the probabilistic law of how edges are generated, i.e., whether there is a cluster

structure. The revealed labels serve as an enhancement of the graph observed. The phase

transition theory says that under the unsupervised setting (the special case when ρ = 0), no

test can succeed with high probability when SNR ≤ 1, or equivalently, a − b ≤
√

2(a+ b).

While if SNR > 1, several polynomially computable tests are developed. SDP based test is

nearly optimal, in the sense that it requires

(4.25)
a− b√
2(a+ b)

≥ 1 + ϵ(d)

where ϵ(d) → 0 as d → ∞. It is believed to be the best that SDPs can reach. As the

monotone-robustness study suggests [MPW16], this gap may be necessary, since SDP is

indeed solving a harder problem where no algorithm can approach the threshold. However,

we are going to see that when ρ is sufficiently large, SDPs can not only reach but cross the

threshold.

4.4. Semi-supervised detectability

With the problem and algorithm defined clearly, we are ready to prove that SBMs and

ERMs can be consistently distinguished in the semi-supervised setting. We take a ’divide

and conquer’ approach to establish an upper bound of CSDPs on ERMs, while we bound

the CSDPs on SBMs from below with a witness that consists of the ground truth of labels,

X = xx⊤.
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Lemma 4.4.1. Let (A, x) obey the planted bisection model G(n, a
n
, b
n
) and denote ⟨xx⊤, Ã⟩

as Y . Then for any ϵ > 0, we have Y/n ∈ [a−b
2

− ϵ, a−b
2

+ ϵ] with probability converging to

one as n → ∞.

Proof.

Y = ⟨xx⊤, Ã⟩ = ⟨xx⊤, A⟩ − d

n
⟨xx⊤,11⊤⟩(4.26)

d
= 2 ·

Bin((n

2

)2

− n

2
,
a

n

)
− Bin

((
n

2

)2

,
b

n

)(4.27)

We have EY = n
2
(a− b)− a and

(4.28) VarY = 4

(
a

(
n

4
− 1

2

)(
1− a

n

)
+ b

n

4

(
1− b

n

))
≤ n(a+ b)

Then Chebyshev’s inequality implies that for any δ in(0, 1)

P

(
|Y − n

2
(a− b) + a| ≥

√
n(a+ b) · n(1−δ)/2

)
≤ 1

n1−δ
(4.29)

=⇒ P

(
|Y
n

− a− b

2
+

a

n
| ≥

√
a+ b

nδ/2

)
≤ 1

n1−δ
(4.30)

(4.31)

Hence, for sufficiently large n, we have

(4.32) P

(
Y

n
≥ a− b

2
+ ϵ

)
+ P

(
Y

n
≤ a− b

2
− ϵ

)
≤ 1

n1−δ

Therefore,

(4.33) P

(
Y

n
∈ [

a− b

2
− ϵ,

a− b

2
+ ϵ]

)
≥ 1− 1

n1−δ

□
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Besides bounding the outcomes on SBMs from below, this lemma can also be applied to

the ’all revealed blocks’ to estimate Ãagg
00 , which is used several times throughout our proofs.

Lemma 4.4.2. Let G ∼ G(n, a
n
, b
n
), d = a+b

2
and Ã = A− d

n
11⊤ be its centered adjacency

matrix. Then for any ϵ > 0 and γ > 0, with probability at least 1 − 1
n1−γ , for all n ≥

n0(a, b, ϵ, γ), we have

(4.34) CSDP(Ã) ≥ n (
a− b

2
− ϵ)

Proof. We prove the lower bound by considering a witness of the constrained optimiza-

tion problem. Notice that xx⊤ is feasible for both SDP and CSDP, where x is the label

vector associated with G. Therefore,

(4.35) CSDP(Ã) ≥ ⟨xx⊤, Ã⟩

Then, we can apply Lemma 4.4.1 to get the result. □

This result holds for any SNR > 0 and suggests the following test for the semi-supervised

community detection problem:

(4.36) T (G, xR; ∆) =


1 if CSDP(Ã) ≥ n[(a− b)/2−∆]

0 otherwise

The following lemmas bound the CSDP of ERM from above. Intuitively, the contribution

from the blocks of adjacency matrix, where columns or rows are associated with revealed

nodes, concentrates well around zero. So the ’effective dimension’ of the SDP is reduced,

which leads to a smaller optimal value. However, it is not directly equivalent to a model

with a smaller n since the connectivity probability depends on the original dimension. There

are some technical issues we need to deal with.
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Lemma 4.4.3 (Theorem 1, [MS16]. Reformulated.). Let G ∼ G(n, d
n
) and Ã = A− d

n
11⊤

be its centered adjacency matrix. There exists absolute constants C and d0 > 1 such that if

d ≥ d0, then with high probability,

(4.37)
1

n
√
d
SDP(Ã) ≤ 2 +

C log d

d1/10

This result is rigorously derived with profound insights from mathematical physics. How-

ever, there is an implicit condition on the average degree d in the proof. In fact, it is common

to assume at least d > 1 in the literature concerning unsupervised clustering because oth-

erwise the graph has no giant component, not to mention reconstruction, as discussed in

Section 1.2. However, our approach leads to a subgraph with possibly small effective aver-

age degree. Moreover, we do not want to be limited by the topology structure, although

which is indeed a fundamental limit in the unsupervised setting. Theorem 2.1.2 shows that

semi-supervised SDPs are able to integrate those sublinear components. To achieve that we

resort to Grothendieck’s inequality and carry out the analysis without assumption on d.

Theorem 4.4.1 (Grothendieck’s inequality [Gro52]). Let M be a n× n real matrix. If

for any s, t ∈ {−1, 1}n,

(4.38)
∣∣∑

i,j

Mijsitj
∣∣ ≤ 1

Then for all vectors Xi, Yi ∈ {x ∈ Rn : ∥x∥2 ≤ 1}, i = 1, 2, . . . , n, we have

(4.39)
∣∣∑

i,j

Mij⟨Xi, Yi⟩
∣∣ ≤ KG

Here KG is an absolute constant called Grothendieck’s constant. We consider the upper

bound derived in [BMMN11],

(4.40) KG <
π

2 log(1 +
√
2)

≤ 1.78
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Notice that if we restrict the vectors Xi’s and Yi’s to the unit sphere Sn−1, the inequality

still holds. Since s, t are arbitrary, the left hand side of equation is the ℓ∞ → ℓ1 norm of

matrix M , which is

(4.41) ∥M∥∞→1 = max
∥x∥∞≤1

∥Mx∥1 = max
s,t∈{−1,1}n

s⊤Mt = max
s,t∈{−1,1}n

∣∣∑
i,j

Mijsitj
∣∣

This norm is also known as the cut norm, whose importance in algorithmic problems is well

understood in theoretical computer science community. Now we can rewrite the theorem in

the matrix form and combine it with the elliptope definition of SDP from equation (4.4).

Lemma 4.4.4. For arbitrary matrix M ∈ Rn×n, we have

(4.42) SDP(M) ≤ max
X∈elliptopen

∣∣⟨M,X⟩
∣∣ ≤ KG∥M∥∞→1

Next, we use Bernstein’s inequality to establish a probabilistic bound on the cut norm

of A− EA where A is the adjacency matrix of G(n, d
n
).

Theorem 4.4.2 (Bernstein’s inequality [Pia38]). Let {Xi}ni=1 be independent random

variables such that EXi = 0 and |Xi| ≤ M for any i ∈ [n]. Denote the average variance as

σ2 = 1
n

∑n
i=1 Var(Xi). Then for any t ≥ 0,

(4.43) P

 1

n

n∑
i=1

Xi > t

 ≤ exp

(
− nt2/2

σ2 + Mt
3

)

Lemma 4.4.5. Let A be the adjacency matrix of an ERM, G(n, d
n
). Then, with probability

at least 1− 5−n+2,

(4.44) ∥A− EA∥∞→1 ≤ 6(1 + d)n
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Proof. According to the identity from equation (4.38), we want to bound

∥A− EA∥∞→1 = max
s,t∈{−1,1}n

∑
i,j

(A− EA)ij sitj(4.45)

= max
s,t∈{−1,1}n

∑
i<j

(A− EA)ij (sitj + sjti)(4.46)

For fixed s, t ∈ {−1, 1}n, denote

(4.47) Xij = (A− EA)ij (sitj + sjti) (1 ≤ i < j ≤ n)

Then we have EXij = 0, |Xij| ≤ 2 and Var(Xij) ≤ 4 d
n
for any i < j. There are totally

n(n − 1)/2 of {Xij}’s. And they are independent by the definition of ERM. So Bernstein’s

inequality implies

(4.48) P

 2

n(n− 1)

∑
i<j

Xij > t

 ≤ exp

(
−n(n− 1)t2/4

4d
n
+ 2t

3

)

Let t = 12(1 + d)/n, which guarantees 4d/n+ 2t/3 < t. Hence,

(4.49) P

∑
i<j

Xij > 6(1 + d)n

 ≤ exp
(
−3(n− 1)

)
Apply the union bound to all 22n possible (s, t), we have

(4.50) P

 max
s,t∈{−1,1}n

∑
i<j

(A− EA)ij (sitj + sjti) > 6(1 + d)n

 ≤ 22n · e−3(n−1)

We conclude the proof with the identity of ℓ∞ → ℓ1 norm and the fact that right hand side

of the above inequality is less than 5−n+2. □

Since the distribution of each entry in the matrix changes as n → ∞, we now develop a

slightly generalized version of the weak law of large numbers to accommodate our purpose.
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Lemma 4.4.6. For any n, let {X(n)
i }ni=1 be a collection of independent random variables.

Assume there exist universal constants µ and σ, such that EX
(n)
i ≤ µ < ∞ and Var(X

(n)
i ) ≤

σ2 < ∞ for any n ∈ N and i ≤ n. If we denote the sample mean as

(4.51) X̄(n) =
X

(n)
1 +X

(n)
2 + · · ·+X

(n)
n

n

then for any ϵ > 0,

(4.52) P
(
X̄(n) ≥ µ+ ϵ

)
→ 0 as n → ∞

Proof. For any n ∈ N, we have

Var(X̄(n)) =
1

n2
Var(X

(n)
1 +X

(n)
2 + · · ·+X(n)

n )(4.53)

=

∑n
i=1Var(X

(n)
i )

n2
(by independence)(4.54)

≤ σ2/n (by uniform boundedness)(4.55)

Then Chebyshev’s inequality ensures

P
(
|X̄(n) − E X̄(n)| ≥ ϵ

)
≤ σ2

nϵ2
(4.56)

=⇒ P
(
X̄(n) ≥ 1

n

n∑
i=1

EX
(n)
i + ϵ

)
≤ σ2

nϵ2
(4.57)

=⇒ P
(
X̄(n) ≥ µ+ ϵ

)
≤ σ2

nϵ2
(4.58)

□

Remark 4.4.1. This result does not require the random variables to be identically dis-

tributed. In fact, the distributions may depend on n. And random variables associated with

different n are not necessary to be independent.

51



Lemma 4.4.7. Let G ∼ G(n, d
n
), x be the labels, R be the revealed indices and Ã =

A− d
n
11⊤ be its centered adjacency matrix. Define

(4.59) Bij =



∑
i,j∈R Ãijxixj i = j = 0∑
k∈R xkÃkj, i = 0, j ∈ [n] \ R∑
k∈R xkÃik, j = 0, i ∈ [n] \ R

0 otherwise

Then for any ϵ > 0, with high probability,

(4.60) SDP(B) ≤ 2dm(1− m

n
) + (2n−m)ϵ

Proof. Notice that for any feasible X of above optimization problem, we have X ⪰

0, Xii = 1 ∀i ∈ [n+ 1]. So, for any i, j ∈ [n+ 1],

(4.61) (ei ± ej)
⊤X(ei ± ej) = 2± 2Xij ≥ 0 =⇒ |Xij| ≤ 1

Therefore,

SDP(B) = max{⟨B,X⟩ : X ∈ elliptopen+1}(4.62)

= B00 + 2max

 ∑
j∈[n]\R

B0jX0j : X ∈ elliptopen+1

(4.63)

≤ B00 + 2
∑

j∈[n]\R

|B0j|(4.64)

Note that {B0j : j ∈ [n]\R}’s are independent random variables. Moreover, if we let B1, B2

be two independent binomial random variables with the same parameter (m
2
, d
n
) and denote

their difference as Z := B1 − B2, we have B0j
d
= Z for any j ∈ [n] \ R with EZ = 0 and

VarZ ≤ dm
n
.
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Since Z2 ≥ |Z|, we have

E |Z| ≤ E(Z2) = VarZ ≤ d
m

n
(4.65)

Var |Z| = E(Z2)− (E |Z|)2 ≤ VarZ ≤ d
m

n
(4.66)

Then Lemma 4.4.6 can be applied to

(4.67) X̄(n) :=

∑
j∈[n]\R |B0j|
n−m

So, for any ϵ > 0, we have

(4.68) lim
n→∞

P

 1

n−m

∑
j∈[n]\R

|B0j| > d
m

n
+ ϵ

 = 0

Hence,
∑

j∈[n]\R |B0j| ≤ (n−m)(dm
n
+ ϵ) with high probability.

Lemma 4.4.1 implies, with high probability,

(4.69) B00 ≤ ϵm

Combining the above results with the union bound completes the proof. □

Returning to the semi-supervised SDP, based on the notions from Section 4.2, we consider

the following decomposition of the transformed input matrix Magg with the unrevealed part

and revealed part as

(4.70) Magg = M (R∁) +M (R)

where we define

(4.71) M
(R)
ij =


Magg

ij i = 0 or j = 0

0 otherwise
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To prove the main result of semi-supervised SDP, we first control the M (R∁) part by

Grothendieck’s inequity and then bound the contribution of M (R) with the generalized law

of large numbers shown above.

Proof of Theorem 2.1.2. Notice that Lemma 4.4.2 guarantees the test to succeed

under the SBM. We only need to show, under ERM, CSDP(Ã) < n[(a − b)/2 −∆] w.h.p..

According to the identity from equation (4.18), we have

CSDP(Ã) = SDP(Ãagg)(4.72)

= max{⟨Ãagg, X⟩ : X ∈ elliptopen}(4.73)

= max{⟨Ã(R∁) + Ã(R), X⟩ : X ∈ elliptopen}(4.74)

≤ SDP(Ã(R∁)) + SDP(Ã(R))(4.75)

Recall that ÃR∁ is the principal submatrix of Ã obtained by removing the rows and

columns associated with R. By definition, we have SDP(ÃR∁) = SDP(Ã(R∁)). Under the

null hypothesis, ÃR∁ has the same distribution as the centered adjacency matrix associated

with G(n−m, (1−ρ)d
n−m

). Also,

SDP
(
Ã(R∁)

)
= SDP

(
AR∁ − EAR∁ −

(1− ρ)d

n−m
In−m

)
(4.76)

= SDP
(
AR∁ − EAR∁

)
− (1− ρ)d(4.77)

According to the Grothendieck’s inequality and Lemma 4.4.5, we conclude that, with

probability at least 1− 5−(1−ρ)n+2,

SDP
(
Ã(R∁)

)
≤ 6KG[1 + (1− ρ)d](n−m)(4.78)

< 12(1 + d)(1− ρ)n(4.79)
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Combining the result from Lemma 4.4.7 with ϵ = d(1− ρ)2, we have

(4.80)
1

n
CSDP(Ã) ≤ 14(1− ρ)(1 + d) w.h.p.

Taking ∆ = (a− b)/40 and ρ0 = 1− a−b
30(1+d)

, we conclude, if m
n
≥ ρ0,

(4.81) P0(T (G, xR) = 1) → 0 (n → ∞)

□

4.5. Numerical simulation

We include some simulation results below. ρ ∈ [0, 1] is the ratio of revealed labels.

Results associated with unsupervised SDPs are identified as ρ = 0. As discussed in Section

3, to make the comparison fair and keep the problem meaningful, all overlaps are restricted

to the unrevealed labels.

Figure 4.1. Disappearance of the phase transition.
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Each point in Figure 4.1 represents one realization of a SBM with n = 1000. The dashed

line stands for the KS and information-theoretic threshold. The graphs are shared by both

the unsupervised and the semi-supervised SDPs. Overlaps of the unsupervised algorithm

essentially drop down to zero on the left-hand side. While, with 20% of the labels revealed,

the outcome of our constraint SDP algorithm goes down gradually as the SNR decreases and

remains substantially greater than zero even when SNR ≤ 1.

Figure 4.2. Overlap heatmaps of the unsupervised (left) and the semi-
supervised (right) SDPs. The coordinates correspond to the model parameters
a and b. The solid line represents the KS and information-theoretic threshold.
The dash line corresponds to a = b.

The phase transition theory 1.2.1 guarantees that the upper left half of the left image

will be totally dark as n → ∞. But we see semi-supervised SDPs successfully ’light up’ the

entire area between the two reference lines, see Figure 4.2. Moreover, when n is sufficiently

large, there will be no pixel with value equals to 0.

Figure 4.3 shows color-coded entry values of optimizer X∗ in different settings and sug-

gests that representing of the underlying community structure is significantly enhanced by

the semi-supervised approach, while no such structure is introduced in ERM setting.
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Figure 4.3. Visualization of the optimizer X∗. The upper row is concerned
with one realization of the SBM G(1000, 12/1000, 5/1000), where the left image
shows the value of optimizer for the unsupervised SDP and the right image is
associated with the semi-supervised SDP with ρ = 0.2. The lower left image is
optimizer for one realization of the ERM of the same size with the associated
average degree d = 8.5, indices of which are reordered such that the entries
related to revealed labels are gathered in four corners. It could be understood
as the situation of null hypothesis we defined in Section 4.2.
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SDP optimal value, when SNR is above KS/IT

Figure 4.4. a = 9, b = 2 (d = 5.5, SNR ≈ 2.23)

SDP optimal value, when SNR is below KS/IT

Figure 4.5. a = 5, b = 2 (d = 3.5, SNR ≈ 0.64)
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To see how such a better representation leads to a successful test that is originally im-

possible, we consider the following simulations. We generate 50 independent realizations of

underlying random graphs (n = 200) and compute their SDP values with and without the

semi-supervised constraints (ρ = 0.25). Particularly, the parameters in Figure 4.4 are chosen

to have SNR > 1. The left two boxes imply that we can tell the difference between SBM and

the ERM with the same average degree d = (a+ b)/2. However, as in Figure 4.5, the vanilla

SDPs give essentially the same result since the two models become contiguous if SNR ≤ 1.

As we have proved in Theorem 2.1.2, our semi-supervised SDP algorithm still manages to

distinguish them by bringing down the optimal value of ERM more significantly comparing

to its effect on SBM, which is confirmed by the right two boxes.
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CHAPTER 5

Application to GCN

In this chapter, we present our first of its kind semi-supervised design of the propagation

model for graph-based deep learning. To avoid repetition, we refer to the theoretical results

in previous chapters directly and focus on addressing the intuition behind our model. We

include the experimental results on both the real-world and the synthetic datasets.

5.1. Deep learning on graphs

Deep neural networks have achieved significant success on a large amount of high-

dimensional datasets, where carefully designed architectures are used to exploit the intrinsic

properties of data. Famous examples include images [KSH12], text [Bis95] and biomedical

research [Web18]. The differentiable blocks in these applications are devoted to the partic-

ular types of data. It remains challenging to replicate their success to other types of data

sets. As one of the largest class of data in the real world, graphs (or arbitrary data sets

with graph structure) are ubiquitous from quantitative finance [EK10] to biomedical appli-

cation [GSR+17], social network [NWS02b], computer program [ABK18], recommender

system [BKW17], etc.

In scenarios of deep learning, a graph consists of a set of nodes and a collection of edges

connecting them. Each node stands for one element of a data set and is possibly associated

with features and label, which is usually the target of underlying learning task. An edge

could be directed or undirected and represents relation between the two end nodes, e.g.,

similarity, social connection or citation.

Recent years have witnessed rapid developments of new deep learning methods that are

capable of learning on graph-structured data. The most prominent advancement is known
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as Graph Convolutional Networks [HYL17], [KW17], [MBB17]. It has become a standard

approach for node classification and an efficient building block of graph processing.

The key idea of GCNs is to learn the features using both the content information and the

graph structure. Namely, the learning outcome of a single convolution layer is the aggregated

result of a node’s 1-hop neighborhood on the graph. In contrast to the pure content-based

deep learning models (e.g., convolutional neural networks, recurrent neural networks), GCNs

take into consideration the connectivity between vertices and draw conclusions from the

entire neighborhood instead of the input features associated with a single node. GCN-based

methods have attracted a vast amount of research interest as they have set a new bar on

countless recommender system benchmarks (see [HYL17] for a survey). A core question of

GCN research is how to design more effective communication protocols that better leverage

the structural information to improve task performance of the GCN [LMBB19,BGLA21,

GWG19,KBG19,LHW18].

Recall that in GCN, the communication protocol among different nodes (or the propa-

gation model) is specified by Â as in equation (1.18). Essentially, the input of activation

function in each intermediate layer is a linear combination of the node representations from

its previous layer.

For example, the original GCN uses the adjacency matrix with self-loops, I +A. Hence,

the activation function takes the sum of the learned features over the 1-neighborhood of

each node as input. As the prevalent approach in the field of graph-based deep learning, this

formulation is also referred to as Message Passing Neural Networks (MPNNs) [GSR+17].

From our analysis, we can see that they only allow the messages to be passed between

neighboring nodes in each layer. Although MPNNs can leverage higher-order neighborhoods

with a deeper structure, it is unreasonable to limit the messages to 1-neighbors. It turns out

that by increasing the number of layers, the performance is not improved [KW17]. So it is

quite natural to consider introducing some global information to the propagation model.
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The MPNN-like models which only rely on the immediate neighborhood information,

are often categorized as spatial methods. And another major type of propagation model is

based on the spectral decomposition of Â. The spectral-based methods capture and make

use of more complex graph properties [DBV16]. However, as we have discussed in Section

1.3, these methods rely heavily on the model statistics. Since the graphs from real-world

applications are often complicated and noisy, these spectral properties become quite delicate.

Therefore, spectral-based methods are routinely outperformed by MPNNs on benchmark

tasks, see e.g. [KW17,VCC+18,XHLJ19]. It is desirable to have a model that enjoys the

robustness of MPNNs while utilizes the global information like spectral-based methods.

5.2. Semi-supervised propagation model

Although GCN is originally proposed to solve semi-supervised learning problems, the

information hidden in the revealed labels is not fully used. A general deep learning classifier

takes features associated with each sample as input and predicts the corresponding label.

Through objective function and backpropagation, the model ’learns’ from the true labels.

So it produces better prediction using the features. As shown in Figure 5.1, GCN reconciles

the node features and the additional graph structure to predict the labels. But the graph

is either used as given or pre-processed in an unsupervised manner. To our knowledge, no

existing method makes use of the label information for a better understanding of the graph,

i.e., the dashed line in the following diagram is missing.

We propose our semi-supervised propagation model matrix for GCN as

(5.1) (Âij) = (1{X∗
ij≥θ})

62



Figure 5.1. Information flow in graph-based deep learning models.

with θ < 1 and X∗ being the optimizer of the following semidefinite program:

(5.2)

max
X

⟨A− d

n
11⊤, X⟩

s.t. Xii = 1 ∀ i ∈ [n]

X ⪰ 0

Xij < γ if i, j ∈ Tr and yi ̸= yj

where d is the average degree of the graph, A is the adjacency matrix, n is the total number

of nodes. And Tr denotes the collection of all indices in the training set, y denotes the label

vector. γ ∈ [−1, 1] is a hyperparameter that controls the maximum correlation between the

representations of different classes.

The main results established by this dissertation show that semi-supervised SDP captures

the cluster structure in a graph even when it is extremely challenging to do so. Our method

then uses such structural information to benefit the learning process. Furthermore, it can

be trivially combined with any existing graph-based algorithm in a plug-and-play manner,

i.e., without changing the model or affecting the computational complexity.
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Intuition. Without the last constraint, the problem reduces to an SDP discussed in (4.4)

and (4.9). Hence, the Cholesky decomposition argument is still valid. Each node is embedded

as a vector on the unit sphere in Rn. X∗ is the correlation matrix of these embeddings.

The larger the value of X∗
ij is, the more similar node i and node j are. Therefore, more

message should be passed between them in the deep neural network, which makes X∗ a

good basis for our propagation model matrix. Furthermore, the similarity is based on the

connectivity pattern of each node. So representation is spatially localized. And by restricting

the embeddings to the unit sphere, we introduce the global consideration to the optimization

problem. Due to the adversarial robustness of SDP, the use of global information is reliable

and faithful to the minimum assumption on graph structure, i.e., node clusters are densely

connected internally and relatively weakly connected externally.

Limitation. Although SDP-based propagation seems to have ticked all the boxes, it

has a drawback that limits its real-world application. The unsupervised SDPs rely on the

homophily assumption, i.e., “birds of a feather flock together” [VCC+18]. It is a very

common assumption that is shared by many methods. However, in practice, this is usually

violated to some degree and it seems non-straightforward to overcome. Take the commonly

considered benchmark citation datasets (Cora, Citeseer, PubMed, etc.) for instance. It is

common for a subfield to be more closely connected to a subfield of another field than some

other topics within its own field. The machine learning publications in the field of statistics

are very likely to cite the publications categorized as machine learning in the field of computer

science. On the other hand, the connections between machine learning of computer science

and programming language of computer science are much sparser. But these relations are

not reflected by the labels. Those ’unexpected’ structures could be amplified by SDP hence

affect the performance. Therefore, we need to find a way to justify the graph information

according to the learning target.
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Semi-supervised approach. To integrate the structural information with the predic-

tion task, we resort to the semi-supervised SDP. Namely, the last constraint from formula

(5.2) effectively separates the embeddings apart as long as they have different labels. This

can been seen through the similarity score interpretation. It is worth noting that X∗
ij = 1

implies X∗
ik = X∗

jk for all k ∈ [n], i.e., the training samples from the same class now share

essentially the same embedding. So we do not hard code the nodes from the same class to

have similarity score of 1 as in equation (4.8). Otherwise, it will lead to a severe overfitting

issue. On the other hand, we also relax the constraints for those nodes from different classes.

Instead of −1 similarity score, we only put an upper bound γ on the corresponding entries.

So the problem remains feasible in the multiclass setting. (E.g., if we force the similarity

among three nodes from three classes to all be −1, we immediately have a contradiction.) In

the citation example mentioned earlier, the subfields of CS-ML and Stats-ML will be embed-

ded not so close due to the semi-supervised constraint. Then the deep learning component

can do better in putting them into the correct classes.

Sparsification. The rounding step in equation (5.1) helps to reduce noise and improve

the generalization. Essentially, we only keep those similarity relations of high confidence. So

if the two class embeddings are far away, they remains separated after the rounding process.

If two embeddings are close, by rounding, we get rid of the noisy patterns in the embeddings

which are mistakenly learnt by deep learning component due to overfitting. The remaining

difference is intrinsic and generalize well to the unseen data. This step also leads to a sparse

Â, which brings additional benefit to the model implementation.

5.3. Experimental results

In this section, we focus on the semi-supervised node classification task, which is consid-

ered a practical and representative test for various graph-based deep learning models. We

consider the following two datasets.
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• Cora [SNB+08]. The dataset consists of publications focusing on the field of

machine learning research. These papers are divided into classes. Totally, the

dataset has 2708 document nodes, 5429 citation edges. The feature of each paper

is a 0/1-valued word vector indicating the absence/presence of the corresponding

word from a dictionary of 1433 unique words.

• Synthetic SBM. We first generate a realization of stochastic block model for

the given parameters. Then node features are sampled from standard Gaussian

distributions such that the centers of clusters are located on vertices of a hypercube.

Figure 5.2. The propagation matrices of MPNN (left) and our method
(right) for the same SBM instance. Semi-supervised SDP allows the infor-
mation to be passed globally with the justification of labels.

All experiments share the same early stopping criteria. The hyperparameters (θ and γ)

are chosen by the same grid search on the validation set. We use the test set only once for

generating test results. For Cora, we compute the average test accuracy over 20 random

splits. We realized 100 independent instances for each parameter setting of SBM and report

the average performance on the test set.
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Figure 5.3. t-SNE [vdMH08] visualization of embeddings associated with
MPNN (left) and CSDP (right) from the Cora dataset with 10% of the labels
revealed. The ground truth of the classes is coded in color.

Since the focus of our work is on the benefit of structural information instead of the design

of downstream deep learning components, we fix a relatively simple deep learning framework

for all the propagation models considered. The feature matrix is fed into graph convolutional

layer with a ReLU activation. It is followed by a dropout layer with dropout probability

of 0.5. Then another graph convolutional layer is used to generate the scoring vector for

prediction. We use cross-entropy for the objective function and Adam with learning rate of

0.01 as the optimizer. And the hidden dimension is set as 16. Although it is not a complicated

model, the message passing approach performs at its best with this model [KW17].

To better isolate the effect of graph information on the learning task, we consider the

featureless Cora, i.e., the original feature matrix is replaced by an identity matrix of the

same dimension as the total number of nodes on the graph. It becomes a much harder

task to classify the publications only based the connectivity. As shown in Figure 5.4, when

there is only 5 training samples per class, MPNN performs not so well. In contrast, the
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Figure 5.4. Node classification accuracy on featureless Cora. The test accu-
racy improves as the number of training samples increases. But unsupervised
SDP is less efficient in making use of this additional information.

performance of SDP and CSDP approaches is decent and very close to each other. This

is because when the labels are limited, the extra semi-supervised constraint are not going

to make much difference. As we have access to more training data, this constraint kicks in

and the accuracy of CSDP-GCN goes up consistently. Although the MPNN also enjoys an

increase in accuracy, there is still a significant margin between it and CSDP.

For the experiments on synthetic SBM dataset, we specify the model to have 500 nodes

which can be divided into two symmetric blocks and fix the dimension of feature vector to

be 2000. The SNR represents how clear this block structure is reflected in the graph. We

report the results for SNR = 0.125 (Figure 5.5) and SNR = 1.5 (Figure 5.6) where the height

of the bar stands for the average accuracy and the interval on top of each bar represents
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Figure 5.5. In a challenging setting (i.e., edges are sparse and unreliable;
features are not strong indicators of the classes), CSDP-based approch out-
performs others.

Figure 5.6. When the edges strongly imply the class similarity, MPNN can
learn those local patterns with enough training data.
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the corresponding standard error. In the previous setting, we simulate the situation where

interclass edges commonly exist and the features are not dependable due to large random

noise. In this case, CSDP makes the best use of the structural information and significantly

increases the performance over the neighborhood-based message passing scheme. And when

SNR is large, the edge become a reliable indicator of class similarity. So MPNN which learns

the small neighborhoods separately and provides a better accuracy when the percentage of

training samples is high. In both situations, we observe that the semi-supervised approach

consistently improves the accuracy over unsupervised SDP across various sizes of the training

set. This suggests that bounding those interclass correlations successfully reconciles SDP’s

dependence on the homophily assumption with the label ground truth.
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CHAPTER 6

Conclusion

The census method comes from the combinatorial perspective, while the CSDP is inspired

by convex optimization research. Both algorithms are computationally efficient. The former

has no requirement on the reveal ratio. The latter one is more practical and backward

compatible to the unsupervised setting. By carefully integrating the revealed information

with the observed graph structure, we can not only improve the performance of clustering

algorithms but resolve initially unsolvable problems. The fundamental changes brought by

semi-supervised approach let us cross KS threshold, information-theoretical threshold and

even the topological limitation.

Our work provides a different angle to study stochastic models of network and semidefinite

programs. In real-world situations, it is almost always the case that we will have a certain

amount of samples being understood fairly well. So an abstract model should be able to

capture the existence of such knowledge instead of being blindly restricted to unsupervised

setting. Combining the universality of ’revealed’ information and the insight derived from

our census method, it is arguable that the phase transitions, although very mathematically

beautiful, will never be an issue in practice. Our results on CSDPs, in turn, could be used

to study the performance of SDPs, e.g. prove or disprove it can reach the phase transition

threshold or the monotone-robustness threshold by a limiting process of ρ → 0.

Besides the mathematical curiosity, a major reason we study these foundational prob-

lems, e.g. clustering on random graph, is to develop better tools for realistic applications

via theoretical guidance. Inspired by our theoretical results, we propose the CSDP-based
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propagation model, which can be easily adapted to various graph-based deep learning archi-

tectures. In particular, it naturally coincides with the key idea behind GCN, i.e., making

similar nodes share the activation. CSDP model will provide a learning objective justi-

fied graph representation, which not only contains more information of the underlying class

structure but also auto-calibrates to the specific learning task. We conduct rigorous and

representative experiments that show our method outperforms the widely adopted MPNN

model, especially when it comes to the challenging learning tasks.

72



Bibliography

[Abb18] E. Abbe, Community detection and stochastic block models: Recent developments, Journal of

Machine Learning Research 18 (2018), no. 177, 1–86.

[ABH16] E. Abbe, A. S. Bandeira, and G. Hall, Exact recovery in the stochastic block model, IEEE

Transactions on Information Theory 62 (2016), 471–487.

[ABK18] M. Allamanis, M. Brockschmidt, and M. Khademi, Learning to represent programs with graphs,

International Conference on Learning Representations, 2018.

[ABKK17] N. Agarwal, A. S. Bandeira, K. Koiliaris, and A. Kolla, Multisection in the stochastic block

model using semidefinite programming, pp. 125–162, Springer International Publishing, Cham,

2017.

[ABRS20] E. Abbe, E. Boix, P. Ralli, and C. Sandon, Graph powering and spectral robustness, SIAM J.

Math. Data Sci. 2 (2020), 132–157.

[AFWZ20] E. Abbe, J. Fan, K. Wang, and Y. Zhong, Entrywise eigenvector analysis of random matrices

with low expected rank., Annals of statistics 48 3 (2020), 1452–1474.

[AL18] A. A. Amini and E. Levina, On semidefinite relaxations for the block model, The Annals of

Statistics 46 (2018), no. 1, 149 – 179.

[Ali95] F. Alizadeh, Interior point methods in semidefinite programming with applications to combina-

torial optimization, SIAM J. Optim. 5 (1995), 13–51.

[AS15] E. Abbe and C. Sandon, Community detection in general stochastic block models: Fundamental

limits and efficient algorithms for recovery, 2015 IEEE 56th Annual Symposium on Foundations

of Computer Science, 2015, pp. 670–688.

[AS18] E. Abbe and C. Sandon, Proof of the achievability conjectures for the general stochastic block

model, Communications on Pure and Applied Mathematics 71 (2018), no. 7, 1334–1406,

https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpa.21719.

[Ban18] A. S. Bandeira, Random Laplacian matrices and convex relaxations, Foundations of Computa-

tional Mathematics 18 (2018), 345–379.

73



[BC09] P. J. Bickel and A. Chen, A nonparametric view of network models and Newman-Girvan and

other modularities, Proceedings of the National Academy of Sciences 106 (2009), no. 50, 21068–

21073, https://www.pnas.org/doi/pdf/10.1073/pnas.0907096106.

[BCLS84] T. Bui, S. Chaudhuri, T. Leighton, and M. Sipser, Graph bisection algorithins with good average

case behavior, 25th Annual Symposium on Foundations of Computer Science, 1984., 1984,

pp. 181–192.

[BGLA21] F. M. Bianchi, D. Grattarola, L. Livi, and C. Alippi, Graph neural networks with convolutional

arma filters, IEEE Transactions on Pattern Analysis and Machine Intelligence (2021), 1–1.

[Bis95] C. M. Bishop, Neural networks for pattern recognition, Oxford University Press, Inc., USA,

1995.

[BJR07] B. Bollobás, S. Janson, and O. Riordan, The phase transition in inhomogeneous random graphs,

Random Struct. Algorithms 31 (2007), no. 1, 3–122.

[BKW17] R. v. d. Berg, T. N. Kipf, and M. Welling, Graph convolutional matrix completion, 2017.

[BLM15] C. Bordenave, M. Lelarge, and L. Massoulié, Non-backtracking spectrum of random graphs:
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