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Scalar Field Theories with Polynomial Shift Symmetries

Tom Griffina, Kevin T. Grosvenorb,c, Petr Hǒravab,c and Ziqi Yanb,c

aBlackett Laboratory, Department of Physics

Imperial College, London, SW7 2AZ, UK

bBerkeley Center for Theoretical Physics and Department of Physics

University of California, Berkeley, CA, 94720-7300, USA

cTheoretical Physics Group, Lawrence Berkeley National Laboratory

Berkeley, CA 94720-8162, USA

Abstract: We continue our study of naturalness in nonrelativistic QFTs of the Lifshitz

type, focusing on scalar fields that can play the role of Nambu-Goldstone (NG) modes

associated with spontaneous symmetry breaking. Such systems allow for an extension of the

constant shift symmetry to a shift by a polynomial of degree P in spatial coordinates. These

“polynomial shift symmetries” in turn protect the technical naturalness of modes with a

higher-order dispersion relation, and lead to a refinement of the proposed classification of

infrared Gaussian fixed points available to describe NG modes in nonrelativistic theories.

Generic interactions in such theories break the polynomial shift symmetry explicitly to the

constant shift. It is thus natural to ask: Given a Gaussian fixed point with polynomial

shift symmetry of degree P , what are the lowest-dimension operators that preserve this

symmetry, and deform the theory into a self-interacting scalar field theory with the shift

symmetry of degree P? To answer this (essentially cohomological) question, we develop a

new graph-theoretical technique, and use it to prove several classification theorems. First,

in the special case of P = 1 (essentially equivalent to Galileons), we reproduce the known

Galileon N -point invariants, and find their novel interpretation in terms of graph theory, as

an equal-weight sum over all labeled trees withN vertices. Then we extend the classification

to P > 1 and find a whole host of new invariants, including those that represent the most

relevant (or least irrelevant) deformations of the corresponding Gaussian fixed points, and

we study their uniqueness.
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1. Introduction: Landscapes of Naturalness

Some of the most fundamental questions of modern theoretical physics can be formulated as

puzzles of naturalness [1]. Why is the observed cosmological constant so small compared to

the Planck scale? Why is the observed Higgs mass so small compared to any high particle-

physics scale (be it the quantum gravity scale, or the scale of grand unification, or some

other scale of new physics)? In both cases, the expected quantum corrections estimated in

the framework of relativistic effective field theory (EFT) predict natural values at a much

higher scale, many orders of magnitude larger than the observed ones. The principle of

naturalness is rooted in the time-honored physical principles of causality and the hierarchy

of energy scales from the microscopic to the macroscopic. It is conceivable that some

puzzles of naturalness may only have environmental explanations, based on the landscape

of many vacua in the multiverse. However, before we give up naturalness as our guiding

principle, it is important to investigate more systematically the “landscape of naturalness”:

To map out the various quantum systems and scenarios in which technical naturalness does

hold, identifying possible surprises and new pieces of the puzzle that might help restore

the power of naturalness in fundamental physics.

One area in which naturalness has not yet been fully explored is nonrelativistic grav-

ity theory [2, 3]. This approach to quantum gravity has attracted a lot of attention in

– 1 –



recent years, largely because of its improved quantum behavior at short distances, novel

phenomenology at long distances [4], its connection to the nonperturbative Causal Dy-

namical Triangulations approach to quantum gravity [5–7], as well as for its applications

to holography and the AdS/CFT correspondence of nonrelativistic systems [8–10]. This

area of research in quantum gravity is still developing rapidly, with new surprises already

encountered and other ones presumably still awaiting discovery. Mapping out the quan-

tum structure of nonrelativistic gravity theories, and in particular investigating the role of

naturalness, represents an intriguing and largely outstanding challenge.

Before embarking on a systematic study of the quantum properties of nonrelativis-

tic gravity, one can probe some of the new conceptual features of quantum field theories

(QFTs) with Lifshitz-type symmetries in simpler systems, without gauge symmetry, dy-

namical gravity and fluctuating spacetime geometry. In [11], we considered one of the ubiq-

uitous themes of modern physics: The phenomenon of spontaneous symmetry breaking, in

the simplest case of global, continous internal symmetries. According to Goldstone’s the-

orem, spontaneous breaking of such symmetries implies the existence of a gapless Nambu-

Goldstone (NG) mode in the system. For Lorentz invariant systems, the relativistic version

of Goldstone’s theorem is stronger, and we know more: There is a one-to-one correspon-

dence between broken symmetry generators and the NG modes, whose gaplessness implies

that they all share the same dispersion relation ω = ck. On the other hand, nonrelativistic

systems are phenomenologically known to exhibit a more complex pattern: Sometimes,

the number of NG modes is smaller than the number of broken symmetry generators,

and sometimes they disperse quadratically instead of linearly. This rich phenomenology

opens up the question of a full classification of possible NG modes. A natural and elegant

approach to this problem has been pursued in [12]: In order to classify NG modes, one

classifies the low-energy EFTs available to control their dynamics.

In the case of systems with nonrelativistic Lifshitz symmetries, this approach suggests

a classification of NG modes into two categories [12]: Type A, and Type B NG modes.

Each Type A mode is associated with a single broken symmetry generator, and each Type

B mode with a pair. Upon closer inspection [11], it turns out that even such simple

examples of Lifshitz-type QFTs exhibit rich and surprising features, often contrasting or

contradicting the intuition developed in relativistic QFTs. Our analysis of naturalness in

the patterns of spontaneous symmetry breaking in systems with Lifshitz symmetries has

revealed a refined hierarchy of the Type A and B universality classes of NG dynamics, with

rich low-energy phenomenology dominated by multicritical NG modes whose dispersion is

of higher degree in momentum. These results shed some new, and perhaps surprising,

light on the concept of naturalness in nonrelativistic quantum field theory. However, as

usual, the naturalness of the multicritical dispersion relation turns out to be protected by

a symmetry. This new kind of symmetry is generated by the shifts of the NG fields by a

polynomial in spatial coordinates.1

In this paper, we continue our investigation of scalar field theories with such polynomial

1This symmetry is a natural generalization of two types of symmetries well-known in the literature: The

famous constant shift symmetry observed in systems with relativistic NG modes, and the shift linear in the

spacetime coordinates known from the relativistic theory of Galileons [13].
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shift symmetries of degree P . The paper is organized into several relatively self-contained

blocks. In §2, we review the physics background and discuss the structure of multicrit-

ical symmetry breaking in nonrelativistic systems of the Lifshitz type, summarizing and

expanding on the findings of [11, 14]. We discuss the Goldstone theorem in the nonrela-

tivistic regime, and give the refined classification of Nambu-Goldstone modes for systems

with Lifshitz symmetries into two hierarchies of multicritical fixed points of Type An and

B2n, with n = 1, 2, . . .. We present the nonrelativistic analog of the Coleman-Hohenberg-

Mermin-Wagner (CHMW) theorem, and discuss its implications for the dynamics of the

multicritical NG modes. Throughout, we stress the role played by the polynomial shift

symmetry, as an approximate symmetry restored at the Gaussian infrared fixed points. In

many general examples of multicritical symmetry breaking, the polynomial shift symmetry

is broken by the self-interactions of the NG modes. It is then natural to ask: What if

we impose the polynomial shift symmetry as an exact symmetry? What is the lowest-

dimension operator that can be added to the action while preserving the symmetry? This

is the task we address in the remainder of the paper.

The classification of Lagrangians invariant under the polynomial shift of degree P up

to a total derivative (which we will refer to as “P -invariants” for short) is essentially a coho-

mological problem. In §3, we consider the polynomial-shift invariants in the simplest case

of linear shifts (i.e., “1-invariants”). In order to prepare for the general case of P > 1, we

develop a novel technique, based on graph theory. Having rephrased the defining relation

for the invariants into the language of graphs, we can address the classification problem

using the abstract mathematical machinery of graph theory. The basic ingredients of this

technique are explained as needed in §3 and §4. However, we relegate all the technicalities

of the graphical technique into a self-contained Appendix B (preceded by Appendix A, in

which we offer a glossary of the basic terms from graph theory). Appendix B is rather

mathematical in nature, as it contains a systematic exposition of all our definitions, theo-

rems and proofs that we found useful in the process of generating the invariants discussed

in the body of the paper. The good news is that Appendix B is not required for the un-

derstanding of the results presented in §3 and §4: Once the invariants have been found

using the techniques in Appendix B, their actual invariance can be checked by explicit

calculation (for example, on a computer). In this sense, the bulk of the paper (§3 and §4)

is also self-contained, and can be read independently of the Appendices.

The N -point 1-invariants discussed in §3 are known in the literature, where they have

been generated in the closely related context of the relativistic Galileon theories [13]. While

it is reassuring to see that our graph-theoretical technique easily reproduces these known 1-

invariants, the novelty of our results presented in §3 lies elsewhere: We find a surprisingly

simple and elegant interpretation of the known N -point 1-invariants in the language of

graphs. They are simply given by the equal-weight sum over all labeled trees with N

vertices!

In §4 we move beyond the 1-invariants, and initiate a systematic study of P -invariants

with P > 1, organized in the order of their scaling dimension. We find several series of

invariants; some of them we prove to be the unique and most relevant (or, more accurately,

least irrelevant) N -point P -invariants, while others represent hierarchies of P -invariants of
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higher dimensions. We also show how to construct higher P -invariants from superposing

several graphs that represent invariants of lower P . Appendix C contains a brief discus-

sion of the connection between our invariant Lagrangians and the Chevalley-Eilenberg Lie

algebra cohomology theory. In §5 we present our conclusions.

2. Multicritical Nambu-GoldstoneBosons andPolynomial Shift Symmetries

Some surprising features of naturalness in the regime of nonrelativistic field theories are

illustrated by considering one of the classic problems in physics: The classification of

NG modes associated with possible patterns of spontaneous breaking of continuous global

internal symmetries. In this section, we summarize and explain the results found in [11, 14],

which lead to a refinement in the classification of NG modes in systems with Lifshitz

symmetries, characterized by a multicritical behavior which is technically natural, and

protected by a symmetry.

2.1. Geometry of the Spacetime with Lifshitz Symmetries

For clarity and simplicity, as in [11], in this paper we focus on systems on the flat space-

time with Lifshitz spacetime symmetries. We define this spacetime to be M = RD+1

with a preferred foliation F by fixed spatial slices RD, and equipped with a flat metric.

Such a spacetime with the preferred foliation F would for example appear as a ground-

state solution of nonrelativistic gravity [2] whose gauge symmetry is given by the group of

foliation-preserving spacetime diffeomorphisms, Diff(M,F) (or a nonrelativistic extension

thereof [15]). It is useful to parametrize M by coordinates (t,x = {xi, i = 1, . . . D}), such

that the leaves of F are the leaves of constant t, and the metric has the canonical form

gij(t,x) = δij , N (t,x) = 1, Ni(t,x) = 0 (2.1)

(here gij is the spatial metric on the leaves of F , N is the lapse function, and Ni the shift

vector).

The isometries of this spacetime are, by definition, those elements of Diff(M,F) that

preserve this flat metric [16]. Explicitly, the connected component of this isometry group

is generated by infinitesimal spatial rotations and spacetime translations,

δt = b, δxi = ωij x
j + bi, ωij = −ωji. (2.2)

At fixed points of the renormalization group, systems with Lifshitz isometries develop an

additional scaling symmetry, generated by

δxi = λxi, δt = zλt. (2.3)

The dynamical critical exponent z is an important observable associated with the fixed

point, and characterizes the degree of anisotropy between space and time at the fixed

point.
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The connected component of the group of isometries of our spacetime M with the flat

metric (2.1) is generated by (2.2), and we will refer to it as the “Lifshitz symmetry” group.2

The full isometry group of this spacetime has four disconnected components, which can be

obtained by combining the Lifshitz symmetry group generated by (2.2) with two discrete

symmetries: The time-reversal symmetry T , and a discrete symmetry P that reverses the

orientation of space. In this paper, we shall be interested in systems that are invariant

under the Lifshitz symmetry group. Note that this mandatory Lifshitz symmetry does not

contain either the discrete symmetries T and P, or the anisotropic scaling symmetry (2.3).

2.2. Effective Field Theories of Type A and B Nambu-Goldstone Bosons

We are interested in the patterns of spontaneous symmetry breaking of global continu-

ous internal symmetries in the flat spacetime with the Lifshitz symmetries, as defined

in the previous paragraph. Our analysis gives an example of phenomena that are novel

to Goldstone’s theorem in nonrelativistic settings, and can in principle be generalized to

nonrelativistic systems with even less symmetry.

An elegant strategy has been proposed in [12]: In order to classify Nambu-Goldstone

modes, we can classify the corresponding EFTs available to describe their low-energy dy-

namics. In this EFT approach, we organize the terms in the effective action by their in-

creasing dimension. Such dimensions are defined close enough to the infrared fixed point.

However, until we identify the infrared fixed point, we don’t a priori know the value of the

dynamical critical exponent, and hence the relative dimension of the time and space deriva-

tives – it is then natural to count the time derivatives and spatial derivatives separately.

Consider first the “potential terms” in the action, i.e., terms with no time derivatives. The

general statement of Goldstone’s theorem implies that non-derivative terms will be absent,

and the spatial rotational symmetry further implies that (for D > 1) all derivatives will

appear in pairs contracted with the flat spatial metric. Hence, we can write the general

“potential term” in the action as

Seff, V =

∫
dt dx

{
1

2
gIJ(π)∂iπ

I∂iπ
J + . . .

}
(2.4)

where gIJ(π) is the most general metric on the vacuum manifold which is compatible

with all the global symmetries, and . . . stand for all the terms of higher order in spatial

derivatives.

If the system is also invariant under the primitive version T of time reversal, defined

as the transformation that acts trivially on fields,

T :

{
t → −t,
πI → πI ,

(2.5)

2It would be natural to refer to M with the flat metric (2.1) as the “Lifshitz spacetime”. Unfortunately,

this term already has another widely accepted meaning in the holography literature, where it denotes the

curved spacetime geometry in one dimension higher, whose isometries realize the Lifshitz symmetries (2.2)

plus the Lifshitz scaling symmetry (2.3) for some fixed value of z [17].
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the time derivatives will similarly have to appear in pairs, and the kinetic term will be

given by

Seff,K =

∫
dt dx

{
1

2
hIJ(π)π̇I π̇J + . . .

}
, (2.6)

where again hIJ is a general metric on the vacuum manifold compatible with all symmetries,

but not necessarily equal to the gIJ that appeared in (2.4); and . . . are higher-derivative

terms.

However, invariance under T is not mandated by the Lifshitz symmetry. If it is absent,

the Lifshitz symmetries allow a new, more relevant kinetic term,

S̃eff,K =

∫
dt dx

{
ΩI(π)π̇I + . . .

}
, (2.7)

assuming one can define the suitable object ΩI(π) on the vacuum manifold so that all the

symmetry requirements are satisfied, and ΩI(π)π̇I is not a total derivative. Since ΩI(π)

plays the role of the canonical momentum conjugate to πI , if such Ω-terms are present in

the action, they induce a natural canonical pairing on an even-dimensional subset of the

coordinates on the vacuum manifold.

In specific dimensions, new terms in the effective action that are odd under spatial

parity P may exist. For example, in D = 2 spatial dimensions, we can add new terms to

the “potential” part of the action, of the form

S̃eff, V =

∫
dt dx

{
1

2
ΩIJ(π) εij ∂iπ

I∂jπ
J + . . .

}
, (2.8)

where ΩIJ is any two-form on the vacuum manifold that respects all the symmetries.3 In

the interest of simplicity, we wish to forbid such terms, and will do so by imposing the P
invariance of the action, focusing on the symmetry breaking patterns that respect spatial

parity. This condition can of course be easily relaxed, without changing our conclusions

significantly.

This structure of low-energy effective theories suggests the following classification of

NG modes, into two general types:

• Type A: One NG mode per broken symmetry generator (not paired by ΩI). The

low-energy dispersion relation is linear, ω ∝ k.

• Type B: One NG mode per each pair of broken symmetry generators (paired by ΩI).

The low-energy dispersion relation is quadratic, ω ∝ k2.

In general, Type A and Type B NG modes may coexist in one system. Some examples

from condensed matter theory can be found in [12].

Based on the intuition developed in the context of relativistic quantum field theory,

one might be tempted to conclude that everything else would be fine tuning, as quantum

corrections would be likely to generate large terms of the form (2.4) in the effective action

if we attempted to tune them to zero.

3For example, if ΩI(π) suitable for (2.7) exist, one can take ΩIJ = ∂[IΩJ].
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2.3. Naturalness of Slow Nambu-Goldstone Modes

Our careful study of a number of explicit examples revealed [11] that the naive intuition

about fine-tuning summarized in the previous paragraph is incorrect. It turns out that the

leading spatial-derivative term in (2.4) can be naturally small (or even zero), as we illus-

trated in [11] by explicit calculations of loop corrections in a series of examples. The leading

contribution to Seff, V then comes at fourth order in spatial derivatives; schematically,

Seff, V =

∫
dt dx

{
1

2
gIJ(π)∂2πI∂2πJ + . . .

}
, (2.9)

where the “. . .” stand for all other terms of order four and higher in ∂i. The dispersion

relation of this NG mode at the Gaussian infrared fixed point is then ω ∝ k2 (or ω ∝
k4), if the kinetic term is of Type A as in (2.6) (or of Type B as in (2.7)). The reason

why this behavior does not require fine tuning is simple [11]: As we approach this new

Gaussian infrared fixed point, the theory develops a new enhanced symmetry. Specifically,

the symmetry that protects the Type A NG modes with the quadratic dispersion relation is

a generalization of the constant shift symmetry of conventional NG modes: The generators

of the new symmetry act by shifting each field component πI by a quadratic polynomial

in spatial coordinates,

δπI(t,x) = aIijx
ixj + aIi x

i + aI0. (2.10)

The leading, quadratic part of this symmetry forbids the term (2.4) allowing only terms of

fourth order in ∂i and higher to appear in the action in the free-field limit. The subleading

linear and constant terms have been included in (2.10) because they would be generated

anyway by the action of spatial translations and rotations, which are a part of the assumed

Lifshitz symmetry of the system. Similarly, quadratic shift symmetries can also be extended

to the Gaussian limit of Type B NG modes. At the Gaussian fixed point, ΩI(π) of (2.7)

reduces to a linear function of π, such that S̃eff,K is invariant under the quadratic shift up

to a total derivative, and the extra shift symmetry yields Type B NG modes with a quartic

dispersion relation.

This construction can obviously be iterated. The quadratic shift symmetry (2.10) can

be promoted to a polynomial shift symmetry by polynomials of degree P = 2, 3, . . ., leading

to a natural protection of higher-order dispersion relations ω ∝ kn (or ω ∝ k2n) for Type

A (or Type B) NG modes.

2.4. Polynomial Shift Symmetries

Since the polynomial shift symmetries act on the fields πI(t,x) separately component by

component, from now on we shall focus on just one field component, and rename it φ(t,x).

The generators of the polynomial shift symmetry of degree P act on φ by

δPφ = ai1...iP x
i1 · · ·xiP + . . .+ aix

i + a. (2.11)

The multicritical Gaussian fixed point with dynamical exponent z = n is described by

Sn =

∫
dt dx

{
1

2
φ̇2 − 1

2
ζ2
n (∂i1 . . . ∂inφ) (∂i1 . . . ∂inφ)

}
. (2.12)
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In fact, it is a one-parameter family of fixed points, parametrized by the real positive

coupling ζ2
n. (Sometimes it is convenient to absorb ζn into the rescaling of space, and we

will often do so when there is no competition between different fixed points.)

The action Sn is invariant under polynomial shift symmetries (2.11) of degree P ≤
2n− 1: It is strictly invariant under the symmetries of degree P < n, and invariant up to

a total derivative for degrees n ≤ P ≤ 2n− 1.

Morally, this infinite hierarchy of symmetries can be viewed as a natural generalization

of the Galileon symmetry, proposed in [13] and much studied since, mostly in the cosmolog-

ical literature. In the case of the Galileons, the theory is relativistic, and the symmetry is

linear in space-time coordinates. The requirement of relativistic invariance is presumably

the main reason that has precluded the generalization of the Galileon symmetries past the

linear shift: The higher polynomial shift symmetries in spacetime coordinates would lead

to actions dominated by higher time derivatives, endangering perturbative unitarity.

So far, we considered shifts by generic polynomials of degree P , whose coefficients ai1...i`
are arbitrary symmetric real tensors of rank ` for ` = 0, . . . , P . We note here in passing

that for degrees P ≥ 2, the polynomial shift symmetries allow an interesting refinement.

To illustrate this feature, we use the example of the quadratic shift,

δ2φ = aijx
ixj + aix

i + a0. (2.13)

The coefficient aij of the quadratic part is a general symmetric 2-tensor. It can be decom-

posed into its traceless part ãij and the trace part aii,

aij = ãij +
1

D
akkδij . (2.14)

Since this decomposition is compatible with the spacetime Lifshitz symmetries (2.2), one

can restrict the symmetry group to be generated by a strictly smaller invariant subalgebra

in the original algebra generated by aij . For example, setting the traceless part ãij of

the quadratic shift symmetry to zero reduces the number of independent generators from

(D+2)(D+1)/2 to D+2, but it is still sufficient to prevent ∂iφ∂iφ from being an invariant

under the smaller symmetry. This intriguing pattern extends to P > 2, leading to intricate

hierarchies of polynomial shift symmetries whose coefficients ai1...i` have been restricted

by various invariant conditions. As another example, invariance under the traceless part

has been studied in [18]. In the interest of simplicity, we concentrate in the rest of this

paper on the maximal case of polynomial shift symmetries with arbitrary unrestricted real

coefficients ai1...i` .

The invariance of the action under each polynomial shift leads to a conserved Noether

current. Each such current then implies a set of Ward identities on the correlation functions

and the effective action. Take, for example, the case of n = 2 in (2.12): The currents for the

infinitesimal shift by a general function a(x) of the spatial coordinates xi are collectively

given by

Jt = a(x)φ̇, Ji = a(x)∂i∂
2φ− ∂ja(x)∂i∂jφ+ ∂i∂ja(x)∂jφ− ∂i∂2a(x)φ, (2.15)
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and their conservation requires

J̇t + ∂iJi ≡ a(x)
{
φ̈+ (∂2)2φ

}
− (∂2)2a(x)φ = 0. (2.16)

The term in the curly brackets is zero on shell, and the current conservation thus reduces

to the condition (∂2)2a(x)φ = 0, which is certainly satisfied by a polynomial of degree

three,

a(x) = aijkx
ixjxk + aijx

ixj + aix
i + a. (2.17)

Note that if we start instead with the equivalent form of the classical action

S̃2 =

∫
dt dx

{
1

2
φ̇2 − 1

2
(∂i∂iφ)2

}
, (2.18)

the Noether currents will be related, as expected, by

J̃t = Jt,
J̃i = a(x)∂i∂

2φ− ∂ia(x)∂2φ+ ∂2a(x)∂iφ− ∂i∂2a(x)φ (2.19)

= Ji + ∂j [∂ia(x)∂jφ− ∂ja(x)∂iφ] .

From these conserved currents, one can formally define the charges

Q[a] =

∫
Σ
dxJt. (2.20)

However, for infinite spatial slices Σ = RD, such charges are all zero on the entire Hilbert

space of states generated by the normalizable excitations of the fields φ. This behavior is

quite analogous to the standard case of NG modes invariant under the constant shifts, and

it simply indicates that the polynomial shift symmetry is being spontaneously broken by

the vacuum.

2.5. Refinement of the Goldstone Theorem in the Nonrelativistic Regime

In its original form, Goldstone’s theorem guarantees the existence of a gapless mode when

a global continuous internal symmetry is spontaneously broken. However, in the absence

of Lorentz symmetry, it does not predict the number of such modes, or their low-energy

dispersion relation.

The classification of the effective field theories which are available to describe the low-

energy limit of the Nambu-Goldstone mode dynamics leads to a natural refinement of the

Goldstone theorem in the nonrelativistic regime. In the specific case of spacetimes with

Lifshitz symmetry, we get two hierarchies of NG modes:

• Type A: One NG mode per broken symmetry generator (not paired by ΩI) The

low-energy dispersion relation is ω ∝ kn, where n = 1, 2, 3, . . ..

• Type B: One NG mode per each pair of broken symmetry generators (paired by ΩI).

The low-energy dispersion relation is ω ∝ k2n, where n = 1, 2, 3, . . ..
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It is natural to label the members of these two hierarchies by the value of the dynamical

critical exponent of their corresponding Gaussian fixed point. From now on, we will refer

to these multicritical universality classes of Nambu-Goldstone modes as “Type An” and

“Type B2n”, respectively.

The following few comments may be useful:

(1) While Type B NG modes represent a true infinite hierarchy of consistent fixed

points, the Type A NG modes hit against the nonrelativistic analog of the Coleman-

Hohenberg-Mermin-Wagner (CHMW) theorem: At the critical value of n = D, they

develop infrared singularities and cease to exist as well-defined quantum fields. We

comment on this behavior further in §2.6.

(2) Type A preserve T invariance, while Type B break T . (This does not mean that a

suitable time reversal invariance cannot be defined on Type B modes, but it would

have to extend T of (2.5) to act nontrivially on the fields.)

(3) Our classification shows the existence of An and B2n hierarchies of NG modes de-

scribed by Gaussian fixed points, and therefore represents a refinement of the classifi-

cations studied in the literature so far. However, it does not pretend to completeness:

We find it plausible that nontrivial fixed points (and fixed points at non-integer val-

ues of n) suitable for describing NG modes may also exist. In this sense, the full

classification of all possible types of nonrelativistic NG dynamics – even under the

assumption of Lifshitz symmetries – still remains a fascinating open question.

(4) For simplicity, we worked under the assumption of spacetime Lifshitz symmetry.

Obviously, this simplifying restriction can be removed, and the classification of mul-

ticritical NG modes in principle extended to cases whereby some of the the spacetime

symmetries are further broken by additional features of the system – such as spatial

anisotropy, layers, an underlying lattice structure, etc. We also expect that the clas-

sification can be naturally extended to Nambu-Goldstone fermions associated with

spontaneous breaking of symmetries associated with supergroups. Such generaliza-

tions, however, are beyond the scope of this paper.

2.6. Infrared Behavior and the Nonrelativistic CHMW Theorem

In this section, we consider the Type An and Type B2n hierarchies of NG modes, and their

infrared behavior. For simplicity, we will focus on theories that consist of Type An (or

Type Bn) NG modes with a fixed n, and leave the generalizations to interacting systems

that mix different types of NG modes for future studies.

In relativistic systems, all NG bosons – if they exist – are Type A1. However, whether

or not the corresponding symmetry is spontanously broken famously depends on the space-

time dimension. This phenomenon is controlled by the celebrated theorem discovered in-

dependently in condensed matter by Mermin and Wagner [19] and by Hohenberg [20], and

in high-energy physics by Coleman [21]; we therefore refer to it, in the alphabetical order,

as the Coleman-Hohenberg-Mermin-Wagner (CHMW) theorem.
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This famous CHMW theorem states that no spontaneous breaking of global continuous

internal symmetries is possible in 1 + 1 spacetime dimensions. The proof is beautifully

simple: 1+1 represents the “lower critical dimension” of the massless scalar field φ, defined

as the dimension where φ is formally dimensionless at the Gaussian fixed point. Quantum

mechanically, this means that its propagator is logarithmically divergent, and we need to

regulate it by introducing an infrared regulator µIR:

〈φ(x)φ(0)〉 =

∫
d2k

(2π)2

eik·x

k2 + µ2
IR

≈ − 1

2π
log(µIR|x|) + const.+O(µIR|x|). (2.21)

The asymptotic expansion in (2.21), valid in the regime µIR|x| � 1, clearly shows that

as we try to take µIR → 0 the propagator stays sensitive at long scales to the infrared

regulator µIR. We can still construct various composite operators out of derivatives and

exponentials of φ, yielding consistent and finite renormalized correlation functions in the

µIR → 0 limit, but the field φ itself does not exist as a quantum object. And since the

candidate NG mode φ does not exist, the corresponding symmetry could never have been

broken in the first place, which concludes the proof.

Going back to the general class of Type An NG modes, we find an intriguing nonrela-

tivistic analog of the CHMW theorem. The dimension of φ(t,x) at the An Gaussian fixed

point in D + 1 dimensions – measured in the units of spatial momentum – is

[φ(t,x)]An =
D − n

2
. (2.22)

The Type An field φ is at its lower critical dimension when D = n. Its propagator also

requires an infrared regulator. There are many ways how to introduce µIR in this case, for

example by

〈φ(t,x)φ(0)〉 =

∫
dω dDk

(2π)D+1

eik·x−iωt

ω2 + k2D + µ2D
IR

, (2.23)

or by

〈φ(t,x)φ(0)〉 =

∫
dω dDk

(2π)D+1

eik·x−iωt

ω2 + (k2 + µ2
IR)D

. (2.24)

Either way, as we try to take µIR → 0, the asymptotics of the propagator again behaves

logarithmically, both in space

〈φ(t,x)φ(0)〉 ≈ − 1

(4π)D/2Γ(D/2)
log(µIR|x|) + . . . for |x|D � t (2.25)

and in time,

〈φ(t,x)φ(0)〉 ≈ − 1

(4π)D/2D Γ(D/2)
log(µDIRt) + . . . for |x|D � t. (2.26)

Most importantly, the propagator remains sensitive to the infrared regulator µIR. Con-

sequently, we obtain the nonrelativistic, multicritical version of the CHMW theorem for

Type A NG modes and their associated symmetry breaking:
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The Type An would-be NG mode φ(t,x) at its lower critical dimension D = n ex-

hibits a propagator which is logarithmically sensitive to the infrared regulator µIR,

and therefore φ(t,x) does not exist as a quantum mechanical object. Consequently,

no spontaneous symmetry breaking with Type An NG modes is possible in D = n

dimensions.

By extension, this also invalidates all Type An would-be NG modes with n > D: Their

propagator grows polynomially at long distances, destabilizing the would-be condensate

and disallowing the associated symmetry breaking pattern.

In contrast, in the Type Bn case (and assuming that all the NG field components are

assigned the same dimension), we have

[φ(t,x)]B2n
=
D

2
,

and the lower critical dimension is D = 0. Hence, in all dimensions D > 0, the Type B2n

NG modes are free of infrared divergences and well-defined quantum mechanically for all

n = 1, 2, . . ., and the Type B nonrelativistic, multicritical CHMW theorem is limited to

the following statement:

The Type B2n symmetry breaking is possible in any D > 0 and for any n = 1, 2, . . ..

In the special cases for Type A2 and Type B2 NG modes, the multicritical CHMW

theorems stated above reproduce the results reported in [22].

2.7. Cascading Multicriticality

The conclusions of the nonrelativistic CHMW theorem appear rather unfavorable for Type

An NG modes with n ≥ D. However, unlike in the relativistic case of n = 1 in 1 + 1

dimensions, the nonrelativistic systems offer an intriguing way out [14], as we now illustrate

for the case of the lower critical dimension D = n, with D > 1.

At this Gaussian fixed point, the propagator for φ is logarithmically sensitive to the

infrared regulator. However, all is not lost – unlike in the relativistic case, the system

can now provide its own natural infrared regulator, and flow under the influence of some

of the relevant terms to another infrared fixed point of Type An′ , with a lower value of

n′ < n. And we know that this phenomenon can be arranged to happen hierarchically,

in a pattern protected by the hierarchical breaking of the polynomial symmetries. Thus,

we can break the polynomial shift symmetry at a high energy scale µ only partially, to a

polynomial symmetry of a lower degree which is then broken at a lower energy scale µ′.

This process can continue until at some low scale µ′′ the symmetry is broken all the way

to the constant shift and n′′ = 1.4 This process of consecutive partial symmetry breaking

opens up a hierarchy of energy scales

µ� µ′ � . . .� µ′′, (2.27)

4In the case of preudo-NG modes, even the constant shift symmetry can be broken explicitly at some

scale.
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over which the propagator for φ exhibits a cascading behavior: First it appears logarithmic

and the formation of a condensate seems precluded, and then it undergoes a series of

crossovers to lower values of z < D until in the far infrared the condensate is no longer

destabilized by infrared fluctuations. The separation between two consecutive scales µ and

µ′ can be kept large, as a result of the symmetry that is given by a larger-degree polynomial

at scale µ than at scale µ′. All in all, whether or not the original continuous global internal

symmetry (for which the field is the NG mode) is spontaneously broken is now a question

about the competition of various scales in the system.

2.8. Polynomial Shift Symmetries as Exact Symmetries

We have established a new infinite sequence of symmetries in scalar field theories, and

have shown that they can protect the smallness of quantum mechanical corrections to

their low-energy dispersion relations near the Gaussian fixed points. The symmetries are

exact at the infrared Gaussian fixed point, and turning on interactions typically breaks

them explicitly – as we have seen in the series of examples in [11]. Yet, the polynomial

shift symmetry at the Gaussian fixed point is useful for the interacting theory as well: It

controls the interaction terms, allowing them to be naturally small, parametrized by the

amount ε of the explicit polynomial symmetry breaking near the fixed point.

Generally, this explicit breaking by interactions breaks the polynomial shift symmetries

of NG modes all the way to the constant shift, which remains mandated by the original

form of the Goldstone theorem (guaranteeing the existence of gapless modes).5 However,

one can now turn the argument around, and ask the following question: Starting at a given

Type An or B2n fixed point, what are the lowest-dimension scalar composite operators that

involve N fields φ and respect the polynomial shift symmetry of degree P exactly, up to

a total derivative? Such operators can be added to the action, and for N = 3, 4, . . . they

represent self-interactions of the system, invariant under the polynomial shift of degree P .

More generally, one can attempt to classify all independent composite operators invariant

under the polynomial shift symmetry of degree P , organized in the order of their increasing

dimensions.

These are the questions on which we focus in the rest of this paper. In order to

provide some answers, we will first translate this classification problem into a more precise

mathematical language, and then we will develop techniques – largely based on abstract

graph theory – that lead us to systematic answers. For some low values of the degree P

of the polynomial symmetry and of the number N of fields involved, we can even find the

most relevant invariants and prove their uniqueness.

5Strictly speaking, moving away from the Gaussian fixed point by turning on the self-interactions gen-

erally yields additional corrections to the constant shift symmetries, if the underlying symmetry group of

the interacting theory is non-Abelian. Such non-Abelian corrections vanish at the Gaussian fixed point,

and each NG component effectively becomes an Abelian field with its own constant shift symmetry. In

this paper, we will concentrate solely on the simplest Abelian case, with one Type A NG field φ and the

symmetry group U(1).
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3. Galileon Invariants

Consider a quantum field theory of a single scalar field φ(t,x) in D spatial dimensions

and one time dimension. Consider the transformation of the field which is linear in spatial

coordinates: δφ = aix
i + a0, where ai and a0 are arbitrary real coefficients. Other than

the split between time and space and the exclusion of the time coordinate from the linear

shift transformation, this is the same as the theory of the Galileon [13].

The goal is to find Lagrangian terms which are invariant (up to a total derivative)

under this linear shift transformation. We will classify the Lagrangian terms by their

numbers of fields N and derivatives 2∆. Imposing spatial rotation invariance requires

that spatial derivatives be contracted in pairs by the flat metric δij . Thus ∆ counts the

number of contracted pairs of derivatives. It is easy to find Lagrangian terms which are

exactly invariant (i.e., not just up to a total derivative): Let ∆ ≥ N and let at least two

spatial derivatives act on every φ. For the linear shift case, all terms with at least twice

as many derivatives as there are fields are equal to exact invariants, up to total derivatives

(Theorem 4). However, it is possible for a term to have fewer derivatives than this and still

be invariant up to a non-vanishing total derivative. For fixed N , the terms with the lowest

∆ are more relevant in the sense of the renormalization group. Therefore, we will focus

on invariant terms with the lowest number of derivatives, which we refer to as minimal

invariants.

These minimal invariants have already been classified for the case of the linear shift.

There is a unique (up to total derivatives and an overall constant prefactor) N -point

minimal invariant, which contains 2(N − 1) derivatives (i.e., ∆ = N − 1). These are listed

below up to N = 5.

L1-pt = φ, (3.1a)

L2-pt = ∂iφ∂iφ, (3.1b)

L3-pt = 3 ∂iφ∂jφ∂i∂jφ, (3.1c)

L4-pt = 12 ∂iφ∂i∂jφ∂j∂kφ∂kφ+ 4 ∂iφ∂jφ∂kφ∂i∂j∂kφ, (3.1d)

L5-pt = 60 ∂iφ∂i∂jφ∂j∂kφ∂k∂`φ∂`φ+ 60 ∂iφ∂i∂jφ∂j∂k∂`φ∂kφ∂`φ

+ 5 ∂iφ∂jφ∂kφ∂`φ∂i∂j∂j∂k∂`φ. (3.1e)

These are not identical to the usual expressions (e.g., in [13]), but one can easily check that

they are equivalent.

3.1. The Graphical Representation

We can represent the terms in (3.1) as formal linear combinations of graphs. In these

graphs, φ is represented by a •-vertex. An edge joining two vertices represents a pair of

contracted derivatives, one derivative acting on each of the φ’s representing the endpoints
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of the edge. The graphical representations of the above terms are given below:

L1-pt = •, (3.2a)

L2-pt = , (3.2b)

L3-pt = 3 , (3.2c)

L4-pt = 12 + 4 , (3.2d)

L5-pt = 60 + 60 + 5 . (3.2e)

The structure of the graph (i.e., the connectivity of the vertices) is what distinguishes

graphs; the placement of the vertices is immaterial. This reflects the fact that the order of

the φ’s in the algebraic expressions is immaterial and the only thing that matters is which

contracted pairs of derivatives act on which pairs of φ’s. Therefore, for example, the graphs

below all represent the same algebraic expression.

(3.3)

Similarly, the four graphs below represent the same algebraic expression.

(3.4)

A more nontrivial example is given by the following twelve graphs, which all represent the

same algebraic expression.

(3.5)

The graphs in the second line above appear to have intersecting edges. However, since

there is no •-vertex at the would-be intersection, these edges do not actually intersect.

3.2. Galileon Invariants as Equal-Weight Sums of Trees

There are three times as many graphs in (3.5) as there are in (3.4). It so happens that

the coefficient with which the first graph in (3.5) appears in L4-pt (3.2d) is also three times

the coefficient with which the first graph in (3.4) appears in L4-pt. This suggests that

the coefficient with which a graph appears in a minimal term is precisely the number of
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graphs with the exact same structure (i.e., isomorphic), just with various vertices and edges

permuted.

One simple way to state this is to actually label the vertices in the graphs. If the

vertices were labeled, and thus distinguished from each other, then all of the graphs in

each one of (3.3), (3.4) and (3.5) would actually be distinct graphs. Of course, this means

that the corresponding algebraic expressions have φ’s similarly labeled, but this labeling is

fiducial and may be removed afterwards. Note the simplicity that this labeled convention

introduces: L4-pt is the sum of all of the graphs in (3.4) and (3.5) with unit coefficients.

The graphs in (3.4) and (3.5) have an elegant and unified interpretation in graph

theory. These graphs are called trees. A tree is a graph which is connected (i.e., cannot

be split into two or more separate graphs without cutting an edge), and contains no loops

(edges joining a vertex to itself) or cycles (edges joining vertices in a closed cyclic manner).

One can check that there are exactly 16 trees with four vertices and they are given by (3.4)

and (3.5). Cayley’s formula, a well-known result in graph theory, says that the number of

trees with N vertices is NN−2.

For N = 3, the 33−2 = 3 trees are in (3.3), and we indeed find that L3-pt is the sum of

all three graphs with unit coefficients. The same can be said for L2-pt and L1-pt. Therefore,

the minimal terms for N = 1, 2, 3 and 4 are represented graphically as a sum of trees with

unit coefficients (an equal-weight sum of trees). If this were to hold for the N = 5 case, it

would strongly suggest that this may hold for all N .

There are 53 = 125 trees for N = 5. They can be divided into three sets such that the

trees in each set are isomorphic to one of the three graphs appearing in L5-pt (3.2e). There

are 60 graphs which are isomorphic to the first graph appearing in L5-pt; 12 of these are

listed below and the rest are given by the five rotations acting on each of these 12 graphs:

(3.6)

There are 60 graphs which are isomorphic to the second graph appearing in L5-pt; 12 of

these are listed below and the rest are given by their rotations:

(3.7)

Finally, there are five graphs which are isomorphic to the third graph appearing in L5-pt,

which are simply the five rotations acting on that graph. Therefore, L5-pt is indeed the

sum with unit coefficients of all trees with five vertices!

Thus, we arrive at the main result of this section (proven in Appendix B.3):

– 16 –



The unique minimal N -point linear shift-invariant Lagrangian term is represented

graphically as a sum with unit coefficients of all labeled trees with N vertices.

4. Beyond the Galileons

Now, we extend the linear shift transformation to polynomials of higher degree. We will

need to develop the graphical approach further in order to tackle this problem and numer-

ous technicalities will arise. However, a rather elegant and beautiful description of these

polynomial shift invariants will emerge.

Consider the problem of determining all possible terms in a Lagrangian that are in-

variant under the polynomial shift symmetry:

φ(t, xi)→ φ(t, xi) + δPφ, δPφ = ai1···iP x
i1 · · ·xiP + · · ·+ aix

i + a. (4.1)

The a’s are arbitrary real coefficients that parametrize the symmetry transformation, and

are symmetric in any pair of indices. P = 0, 1, 2, . . . corresponds to constant shift, linear

shift, quadratic shift, and so on. Obviously, if a term is invariant under a polynomial shift

of order P , then it is also invariant under a polynomial shift of order P ′ with 0 ≤ P ′ ≤ P .

We will call a term with N fields and 2∆ derivatives an (N,∆) term. We are interested

in interaction terms, for which N ≥ 3. As previously mentioned, terms with the lowest

possible value of ∆ are of greatest interest. It is straightforward to write down invariant

terms with ∆ ≥ 1
2N(P + 1) since, if each φ has more than P derivatives acting on it, then

the term is exactly invariant. Are there any invariant terms with lower values of ∆? If so,

then these invariant terms will be more relevant than the exact invariants.

To be invariant, a term must transform into a total derivative under the polynomial

shift symmetry. In other words, for a specific P and given (N,∆), we are searching for

terms L such that

δPL = ∂i(Li). (4.2)

Here L is a linear combination of terms with N φ’s and 2∆ ∂’s, and Li is a linear combi-

nation of terms with N − 1 φ’s. Such L’s are called P-invariants.

How might we determine such invariant terms in general? For a given (N,∆), the most

brute-force method for determining invariant terms can be described as follows. First, write

down all possible terms in the Lagrangian with a given (N,∆) and ensure that they are

independent up to integration by parts. Next, take the variation of all these terms under

the polynomial shift. There may exist linear combinations of these variations which are

equal to a total derivative, which we call total derivative relations. If we use these total

derivative relations to maximally reduce the number of variation terms, then the required

P -invariants form the kernel of the map from the independent Lagrangian terms to the

independent variation terms (Corollary 6). Let us consider some examples of this brute-

force procedure in action.
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4.1. Brute-force Examples

4.1.1. (P,N,∆) = (1, 3, 2)

In this case, a general Lagrangian is made up of two independent terms, after integrating

by parts, given by

L1 = ∂iφ∂jφ∂i∂jφ, L2 = φ∂i∂jφ∂i∂jφ.

The variation under the linear shift symmetry (for P = 1) of these terms is given by

δ1(L1) = 2L×a , δ1(L2) = L×b ,

where L×a = ai ∂jφ∂i∂jφ and L×b = (akx
k+a) ∂i∂jφ∂i∂jφ. There is only one total derivative

that can be formed from these terms, namely

∂i(ai∂jφ∂jφ) = 2L×a .

Therefore, there is a single invariant term for (P,N,∆) = (1, 3, 2), given by

L1 = ∂iφ∂jφ∂i∂jφ.

4.1.2. (P,N,∆) = (3, 3, 4)

In this case, a general Lagrangian is made up of four independent terms, after integrating

by parts, given by

L1 = ∂i∂jφ∂k∂lφ∂i∂j∂k∂lφ, L2 = ∂i∂jφ∂i∂k∂lφ∂j∂k∂lφ,

L3 = ∂iφ∂j∂k∂lφ∂i∂j∂k∂lφ, L4 = φ∂i∂j∂k∂lφ∂i∂j∂k∂lφ.

The variation under the cubic shift symmetry (for P = 3) of these terms is given by

δ3(L1) = 2L×a , δ3(L2) = L×b + 2L×c ,

δ3(L3) = L×d + L×e , δ3(L4) = L×f .

where

L×a = (6aijmx
m + 2aij)∂k∂lφ∂i∂j∂k∂lφ

L×b = (6aijmx
m + 2aij)∂i∂k∂lφ∂j∂k∂lφ

L×c = 6aikl∂i∂jφ∂j∂k∂lφ

L×d = (3aimnx
mxn + 2aimx

m + ai)∂iφ∂j∂k∂lφ∂i∂j∂k∂lφ

L×e = 6ajkl∂iφ∂i∂j∂k∂lφ

L×f = (amnpx
mxnxp + amnx

mxn + amx
m + a)∂i∂j∂k∂lφ∂i∂j∂k∂lφ.

There are three independent total derivatives that can be formed out of these:

∂i[2(6aijmx
m + 2aij)∂k∂lφ∂j∂k∂lφ− 6aijj∂k∂lφ∂k∂lφ] = 2(L×a + L×b ),

∂i[6aijk∂j∂lφ∂k∂lφ] = 2L×c ,

∂i[6aijk∂j∂k∂`φ∂`φ] = L×c + L×e .
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It is a non-trivial exercise to find and verify this, and a more systematic way of finding the

total derivative relations will be introduced later.

Applying these relations, one finds a single invariant for (P,N,∆) = (3, 3, 4):

L1 + 2L2 = ∂i∂jφ∂k∂lφ∂i∂j∂k∂lφ+ 2∂i∂jφ∂i∂k∂lφ∂j∂k∂lφ.

Note that δ3(L1 + 2L2) = 2(L×a + L×b ) + 2(2L×c ), which is a total derivative.

4.2. Introduction to the Graphical Representation

It is clear that even for these simple examples, the calculations quickly become unwieldy,

and it becomes increasingly difficult to classify all of the total derivative relations. At

this point we will rewrite these results in a graphical notation which will make it easier

to keep track of the contractions of indices in the partial derivatives. Full details about

this graphical approach can be found in Appendix B, but we will summarize them here.

In addition to the •-vertex and edges we introduced in §3, we represent δPφ by a ⊗ (a ×-

vertex). Note that there are at most P edges incident to a ×-vertex since P + 1 derivatives

acting on δPφ yields zero, whereas an arbitrary number of edges can be incident to a •-
vertex. Moreover, we introduce another vertex, called a ?-vertex, which will be used to

represent terms that are total derivatives. We require that a ?-vertex always be incident

to exactly one edge, and that this edge be incident to a •-vertex or ×-vertex. This edge

represents a derivative acting on the entire term as a whole, and the index of that derivative

is contracted with the index of another derivative acting on the φ or δPφ of the •- or

×-vertex, respectively, to which the ?-vertex is adjacent. Therefore, directly from the

definition, any graph with a ?-vertex represents a total derivative term. The expansion of

this derivative using the Leibniz rule is graphically represented by the summation of the

graphs formed by removing the ?-vertex and attaching the edge that was incident to the

?-vertex to each remaining vertex. This operation is denoted by the derivative map ρ. The

symbols N(•), N(×) and N(?) represent the numbers of each type of vertex. Note that

N = N(•) +N(×) does not include N(?) since ?-vertices represent neither φ nor δPφ.

We define three special types of graphs: A plain-graph is a graph in which all vertices

are •-vertices. A ×-graph is a plain-graph with one •-vertex replaced with a ×-vertex. A

?-graph is a graph with one ×-vertex and at least one ?-vertex.

Note that the variation δP of a plain-graph under the polynomial shift symmetry is

given by summing over all graphs that have exactly one •-vertex in the original graph re-

placed with a ×-vertex. To illustrate the graphical approach, we rewrite the examples from

sections 4.1.1 and 4.1.2 using this new graphical notation. Since the algebraic expressions

have unlabeled φ’s, the graphs in this section will be unlabeled.

4.2.1. (P,N,∆) = (1, 3, 2)

The two independent terms are written in the graphical notation as

L1 = L2 =
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The variation under the linear shift symmetry (for P = 1) is given by

δ1

(
×

)
= 2
×

δ1

(
×

)
=
×

The only independent total derivative that can be formed out of these terms is

ρ

(
F×
)

= 2
×

As before, there is a single invariant for (P,N,∆) = (1, 3, 2) given by L1. In this case, the

graphical version of (4.2) is given by

δ1

(
×

)
= 2
×

= ρ

(
F×
)

4.2.2. (P,N,∆) = (3, 3, 4)

The four independent terms are written in the graphical notation as

L1 = L2 = L3 = L4 =

The variation under the cubic shift symmetry (for P = 3) is given by

δ3

(
×

)
= 2
×

δ3

(
×

)
=
×

+ 2
×

δ3

(
×

)
=
×

+
×

δ3

(
×

)
=
×

The independent total derivatives that can be formed out of these terms are

ρ

(
2

F×
−

F×
)

= 2
×

+ 2
×

ρ

(
F×
)

= 2
×

ρ

(
F×
)

=
×

+
×

Once again, there is a single invariant for (P,N,∆) = (3, 4) given by L1 + 2L2. The

graphical version of (4.2) is given by

δ3

(
×

+ 2
×

)
= 2
×

+ 2
×

+ 4
×

= ρ

(
2

F×
−

F×
+ 2

F×
)

(4.3)
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So far all we have done is rewrite our results in a new notation. But the graphical notation

is more than just a succinct visual way of expressing the invariant terms. The following

section illustrates the virtue of this approach.

4.3. New Invariants via the Graphical Approach

As shown in Appendix B, the graphical approach allows us to prove many general theorems.

In particular, we have the following useful outcomes:

1. Without loss of generality, we can limit our search for invariants to graphs with very

specific properties (Appendix B.2).

2. There is a simple procedure for obtaining all the independent total derivative relations

between the variation terms for each P , N and ∆ (Theorem 1).

3. The graphical method allows a complete classification of 1-invariants (Theorem 4).

4. The graphical method allows many higher P -invariant terms to be constructed from

lower P invariants (Appendix B.4).

We will expound upon the above points by presenting explicit examples. These examples

are generalizable and their invariance is proven in Appendix B. However, the reader can

also check by brute force that the terms we present are indeed invariant. We will now

summarize points 1 and 2 and will return to point 4 in §4.4. Point 3 was discussed in §3
with technical details in Appendix B.3.

When building invariants, we need only consider loopless plain-graphs (Proposition 2),

since a loop represents ∂i∂i acting on a single φ and one can always integrate by parts

to move one of the ∂i’s to act on the remaining φ’s. We can also restrict to plain-graphs

with vertices of degree no less that 1
2(P + 1) (Proposition 7). This represents a significant

simplification from the previous procedure (§4.2). For instance, in §4.2.2, the graphs L3

and L4 are immediately discarded.

Taking the variation of these terms yields ×-graphs and we need to determine the

total derivative relations between them. Since all plain-graphs we are considering are

loopless, any ×-graphs involved in these total derivative relations are also loopless. The

total derivative relations that we need to consider can be obtained with the use of graphs

called Medusas (Definition 10). A Medusa is a loopless ?-graph with all of its ?-vertices

adjacent to the ×-vertex and such that the degree of the ×-vertex is given by:

deg(×) = P + 1−N(?), (4.4)

where, again, N(?) is the number of ?-vertices. Note that because deg(×) ≥ N(?) for a

Medusa, (4.4) implies that N(?) ≤ 1
2(P + 1) ≤ deg(×) for any Medusa. Furthermore, we

need only consider Medusas with ×-vertex and •-vertices of degree no less than 1
2(P + 1)

(Proposition 8). From each of these Medusas, we obtain a total derivative relation, con-

taining only loopless ×-graphs, by applying the map ρ and then omitting all looped graphs

(Proposition 4). This map is denoted as ρ(0) in Definition 13. In §4.3.3, we will give an
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introduction to the construction of such total derivative relations from Medusas. Moreover,

this procedure captures all relevant total derivative relations (Theorem 1). Appendix B.2

provides a systematic treatment of Medusas.

In general, for given N and P , we call an invariant consisting of graphs containing

the lowest possible value of ∆ a minimal invariant (Definition 16). Minimal invariants are

of particular interest in a QFT, since they are the most relevant N -point interactions. In

§4.3.1 and §4.3.2 we apply the graphical approach to classify all minimal invariants for

N = 4 and P = 2, 3.

4.3.1. The Minimal Invariant: (P,N,∆) = (2, 4, 5)

As our first example, let us find the minimal 2-invariant for N = 4. For P = 2, any Medusa

must have N(?) ≤ 1
2(P +1) = 3

2 , and thus there is exactly one ?-vertex in a P = 2 Medusa.

Furthermore, we need only consider Medusas in which each vertex has degree at least 2,

since 1
2(P + 1) = 3

2 . Therefore, the counting implies that we need only consider P = 2

Medusas with ∆ ≥ N + 1. In particular, when N = 4, the minimal ∆ is 5 (representing

terms with 10 derivatives). In the following we show that there is exactly one 2-invariant

with ∆ = 5. The relevant Medusas are:

M1 =

F
×

M2 =

F
×

The resulting loopless total derivative relations are:

ρ(0)(M1) = 2
×

+
×

≡ 2L×a + L×e

ρ(0)(M2) =
×

+
×

+
×

≡ L×b + L×c + L×d

(4.5)

Note that, when acting on these P = 2 Medusas, ρ and ρ(0) are in fact the same.

On the other hand, the invariants must be constructed out of plain-graphs containing

vertices of degree no less than 1
2(P + 1) = 3

2 . The only possibilities are:

L1 = L2 = L3 = L4 = L5 =

The invariant cannot be constructed out of L5 since δ2(L5) is absent from the total deriva-

tive relations (4.5). Hence, we need only consider the variations of L1, L2, L3 and L4.

We can now determine the 2-invariants. The total derivative relations allow us to

identify L×d ∼ −L
×
b − L

×
c and L×e ∼ −2L×a . Up to total derivatives,

δ2


L1

L2

L3

L4

 =


2 0 0 0 0

0 2 0 0 0

0 0 2 0 0

0 0 0 2 1



L×a
L×b
L×c
L×d
L×e

 ∼


2 0 0

0 2 0

0 0 2

−2 −1 −1


L×a
L×b
L×c

 (4.6)
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The invariants form the nullspace of the transpose of the final 4 × 3 matrix in (4.6). The

nullspace is spanned by (1, 1, 1, 1). Therefore, there is one 2-invariant given by the linear

combination L1 + L2 + L3 + L4, i.e.,

+ + + (4.7)

Therefore, (4.7) gives the only independent minimal 2-invariant for N = 4.

4.3.2. The Minimal Invariant: (P,N,∆) = (3, 4, 6)

Next, let us consider P = 3, N = 4, for which each vertex degree must be at least
1
2(P + 1) = 2. Again we would like to find the minimal invariant in this case. By counting

alone, it is possible to write down Medusas with ∆ = 5. In fact, a 3-invariant with N = 4

and ∆ = 5 would also be 2-invariant. The only possible 2-invariant with (N,∆) = (4, 5) is

(4.7). However, this is not a 3-invariant because it is impossible for some graphs contained

in it to appear in a 3-invariant. For example, by replacing a degree-2 vertex in L2 in

(4.7) with a ×-vertex, a ×-graph Γ× is produced; Γ× and the only P = 3 Medusa M that

generates Γ× are given below:

Γ× =
×

M =

FF
×

But M contains a •-vertex of degree lower than 2, and therefore (4.7) cannot be 3-invariant.

This sets a lower bound for ∆: ∆ ≥ 6. For ∆ = 6, the Medusas are:

M1 =

F
×

M2 =

F
×

M3 =

F
×

M4 =

F
×

M5 =

F
×

M6 =

F
×

M7 =

FF
×

M8 =

FF
×

These give the following total derivative relations:

ρ(0)(M1) =
×

+
×

+
×

≡ L×a + L×b + L×c

ρ(0)(M2) =
×

+ 2
×

≡ L×d + 2L×e

ρ(0)(M3) =
×

+ 2
×

≡ L×f + 2L×g

ρ(0)(M4) =
×

+
×

+
×

≡ L×a + L×h + L×i

ρ(0)(M5) = 2
×

+
×

≡ 2L×e + L×j
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ρ(0)(M6) =
×

+
×

+
×

≡ L×b + L×k + L×h

ρ(0)(M7) = 2
×

+
×

+ 4
×

+ 2
×

≡ 2L×` + L×m + 4L×n + 2L×o

ρ(0)(M8) = 2
×

+
×

+ 2
×

+ 4
×

≡ 2L×p + L×q + 2L×r + 4L×s

Then the invariants must be made up of plain-graphs whose variations are contained in

the total derivative relations above. In other words, the invariants are made from:

L1 = L2 = L3 = L4 = L5 =

L6 = L7 = L8 = L9 = L10 =

We can now determine the 3-invaraints:

δ3



L1

L2

L3

L4

L5

L6

L7

L8

L9

L10



=



4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0

0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0





L×a
L×b
L×c
L×d
L×e
L×f
L×g
L×h
L×i
L×j
L×k
L×`
L×m
L×n
L×o
L×p
L×q
L×r
L×s
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∼



4 0 0 0 0 0 0 0 0 0 0

0 2 0 0 0 −2 −4 −2 0 0 0

0 0 1 0 1 0 1 0 0 0 0

0 0 0 4 0 0 0 0 0 0 0

−2 0 0 0 −2 0 0 0 0 1 0

0 0 −8 0 0 0 0 0 0 0 0

0 −1 0 0 −1 1 0 0 0 0 1

0 0 0 0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0 −6 −6 −12





L×a
L×b
L×e
L×f
L×h
L×l
L×n
L×o
L×p
L×r
L×s


The nullspace of the transpose of this matrix is spanned by (3, 6, 24, 0, 6, 3, 12, 6, 3, 1), giving

the only invariant linear combination,

3 + 6 + 24

+ 6 + 3 + 12

+ 6 + 3 + (4.8)

This gives the only independent minimal 3-invariant for N = 4.

Note that L4 does not appear in the invariant. Indeed, it can be discarded immediately,

since the unique Medusa associated with L4 is

FF F

×

This Medusa has an empty vertex, which violates the lower bound on vertex degree.

4.3.3. Medusas and Total Derivative Relations

We have seen that Medusas play a central role in the search for P -invariants. It is thus

worthwhile to discuss the key features of Medusas and to demonstrate how a total derivative

relation consisting of loopless ×-graphs is constructed from a Medusa. Given any Medusa,

ρ(0)(M) is in fact a total derivative relation, as can be seen from the following construction.

For fixed P and N , consider a Medusa M that contains N(?) ?-vertices. Then, by

definition, it has a ×-vertex of degree deg(×) = P + 1 −N(?). Since the maximal degree

of a ×-vertex is P , graphs in ρ(M) contain at most N(?) − 1 loops. Form a ?-graph Γ(`)

from M by deleting ` ≤ N(?)− 1 ?-vertices in M and then adding ` loops to the ×-vertex.

By this definition, M = Γ(0). In the algebraic expression represented by Γ(`), the N(?)− `
?-vertices stand for N(?) − ` partial derivatives acting on the whole term. Distributing

N(?)− `− 1 ∂’s over all φ’s in this algebraic expression will result in a linear combination
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of total derivative terms. In the graphical representation, this is equivalent to acting ρ

on Γ(`) but keeping fixed exactly one ?-vertex and its incident edge. Setting to zero all

coefficients of graphs in the resulting linear combination, except for the ones containing

exactly ` loops, generates a linear combination L(`) of ?-graphs, each containing exactly

one ?-vertex. By construction,

ρ(0)(M) = ρ

N(?)−1∑
α=0

(−1)αL(α)

 . (4.9)

The algebraic form of the RHS of (4.9) is explicitly a total derivative relation. For a

rigorous treatment of the above discussion, refer to Proposition 4 in Appendix B.2.3.

As a simple example, we consider the Medusa M7 referred to in §4.3.2. We have

M7 =

FF
×

⇒ ρ(0)(M7) = ρ

( F
×

+ 2

F
×

−

F
×

)

For a second example, we consider (P,N,∆) = (5, 3, 6) and the Medusa

M =

FF
F×

By (4.9), we obtain

ρ(0)(M) = ρ

(
2

F×
+ 2

F×
− 2

F×
+

F×
)
.

This Medusa is involved in a 5-invariant that we will construct in §4.4.

4.4. Superposition of Graphs

In §3, we discovered an intriguing construction of the minimal 1-invariant for given N ,

which is a sum with equal coefficients of all possible trees with N vertices. A close study

of the P -invariants with P > 1 in §4 also reveals an elegant structure in these invariants:

They can all be decomposed as a superposition of equal-weight tree summations and exact

invariants. Recall that an exact invariant is a linear combination that is invariant exactly,

instead of up to a total derivative. In the graphical representation, a linear combination

of graphs is an exact PE-invariant if and only if all vertices are of degree larger than PE
(Corollary 4). Each graph in an exact invariant is itself exactly invariant.

Next we illustrate “the superposition of linear combinations” by explicit examples.

When appropriate, we will consider labeled graphs and only remove the labels at the end.

Consider two labeled graphs,

Γ1 = Γ2 =
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The superposition of Γ1 and Γ2 is defined to be the graph formed by taking all edges in Γ2

and adding them to Γ1, i.e.,

Γ1 ∪ Γ2 =

The superposition of two linear combinations, LA =
∑kA

i=1 ai Γ
A
i and LB =

∑kB
i=1 bi Γ

B
i , of

plain graphs ΓAi ,Γ
B
j with the same N , is defined as

LA ∪ LB ≡
kA∑
i=1

kB∑
j=1

ai bj ΓAi ∪ ΓBj .

In the following we present numerous examples of invariants constructed by superposing

equal-weight tree summations and exact invariants for various P ’s. In fact, Theorem 7 of

Appendix B.4 states:

For fixed N , the superposition of an exact PE-invariant with the superposition of Q

minimal loopless 1-invariants results in a P -invariant, provided PE + 2Q ≥ P .6

We conjecture that the above result captures all P -invariants, up to total derivatives. Since

we have classified all exact invariants and all 1-invariants (Theorem 4), it is straightforward

to construct the P -invariants in the above statement for any specific case. We now proceed

to construct the minimal P -invariants for some important cases.

4.4.1. Quadratic Shift (P=2)

N = 3 Case: A 2-invariant can be constructed by superposing an equal-weight tree

summation with an exact 0-invariant. In the labeled representation, all possible trees for

N = 3 are given by (3.3),

The sum of all three N = 3 trees with unit coefficients gives a 1-invariant, L3-pt. On the

other hand, up to total derivatives, an exact 0-invariant with ∆ = 2 is isomorphic to

Γ0 =

Then Γ0 ∪ L3-pt contains the three superposed graphs as follows:

6Note that this theorem also applies when PE < 0, where we take an exact PE-invariant for PE < 0

to mean any linear combination of plain-graphs. In particular, the plain-graph consisting only of empty

vertices is a PE-invariant for any PE < 0, and superposing this graph on any other is equivalent to not

superposing anything at all.
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(a) All 16 trees for N = 4.7 (b) Superposition of (4.11) and the 16 trees.

Figure 1: The most relevant 2-invariant for N = 4 from superposition of graphs.

Summing over all superposed graphs with unit coefficients gives a 2-invariant for N = 3

(after identifying isomorphic graphs),

δ2

(
+ 2

)
= ρ(0)

(
2

F×
)
. (4.10)

Note that for P = 2 and N = 3, we need only consider Medusas with at least four edges,

since that the ×-vertex and •-vertices have degree no less than 2. The Medusa in (4.10)

is the only such Medusa with ∆ = 4. Therefore, this is the only independent minimal

2-invariant. Note that the 2-invariant given in (4.10) and the 3-invariant in (4.3) happen

to be the same.

In fact, we can prove a general minimality statement for N = 3. Consider a Medusa

with ∆ = P + 1 for odd P , and ∆ = P + 2 for even P . The •-vertices of this Medusa have

degree at least 1
2∆. For odd P this already saturates the lower bound for the degree of a

•-vertex; no edge joining the two •-vertices can be removed and thus ∆ cannot be lowered

further. For even P , one •-vertex saturates the lower bound on vertex degree and the other

•-vertex has an excess of exactly one edge. Nevertheless, the same conclusion holds.

N = 4 Case: In §4.3.1 we found that (4.7) gives the only independent minimal 2-invariant

for N = 4. It has the structure of a superposition of the sum with unit coefficients of all

N = 4 trees (Figure 1a) and an exact 0-invariant:

(4.11)

The superposition of this 0-invariant with the trees in Figure 1a is given in Figure 1b. The

sum of all graphs in Figure 1b with unit coefficients gives the 2-invariant in (4.7) (with an

overall prefactor of 4).

7The trees are arranged in order of their Prüfer sequences [23].
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4.4.2. Cubic Shift (P=3)

N = 3 Case: For P = 3, the only independent minimal invariant for N = 3 is given in

(4.3), which can be written as a superposition of two equal-weight tree summations:

As we already pointed out, this 3-invariant happens to be the minimal 2-invariant as well.

We can produce more 3-invariants by superposing an exact 1-invariant on the equal-

weight sum of N = 3 trees. This would have two more derivatives compared to the minimal

term above. For example, there are two independent exact 1-invariants for N = 3 with 3

edges:

which yield the following two 3-invariants:

+ 2

N = 4 Case: In §4.3.2 we found that (4.8) gives the only independent minimal 3-invariant

for N = 4. It has the structure of a superposition of two sums with unit coefficients of all

trees in Figure 1a. As mentioned in §3, there are two isomorphism classes of N = 4 trees:

TA = TB = (4.12)

Superposing these graphs on the N = 4 trees produces the graphs in Figure 2. If T and

T ′ are isomorphic trees, then superposing T on the trees in Figure 1a produces 16 graphs

which are isomorphic to the 16 graphs formed by superposing T ′ on the same trees. There

are four trees in the isomorphism class of TA and twelve for TB. Therefore, we just have

to give the 16 graphs in Figure 2a weight 4 and the 16 graphs in Figure 2b weight 12 and

then add them all up. The result is (4.8) with an overall prefactor of 4. Again, we have

already shown that this is the unique minimal 3-invariant for N = 4.

As in the N = 3 case, we can produce non-minimal 3-invariants by superposing an

exact 1-invariant on the equal-weight sum of N = 4 trees. For example, there are four
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(a) Superposition of TA and Figure 1a. (b) Superposition of TB and Figure 1a.

Figure 2: Superposition of graphs in (4.12) on trees in Figure 1a.

independent exact 1-invariants for N = 4 with the lowest number of edges:

4.4.3. Quartic Shift (P=4)

N = 3 Case: As argued earlier, ∆min = 6 in this case. There are two Medusas with the

fewest edges such that the ×-vertex and the •-vertices have degree no less than 3 (note

that 1
2(P + 1) = 5

2 in this case):

F
F×

F
F×

There is exactly one minimal 4-invariant in this case, which is constructed by superposing

two equal-weight sums of trees with an exact 0-invariant:

+ 6 + 2

Note that the sum of the coefficients is 9, as it should be, since there are three N = 3 trees,

and thus there are nine superpositions of two N = 3 trees.

Examples of non-minimal invariants can be constructed by superposing an equal-weight

sum of trees with an exact 2-invariant, or two equal-weight sums of trees with an exact

1-invariant.

The proofs of uniqueness and minimality for the remaining N = 4 examples are lengthy

and involve many more Medusas than the previous examples, but the process is the same.

Therefore, we will simply write the invariants and state that they are unique and minimal.
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N=4 Case: We construct the minimal 4-invariant by superposing two copies of equal-

weight sums of trees with an exact 0-invariant. There is one independent exact 0-invariant:

Superposing this on the superposition of two copies of equal-weight sums of trees yields

48 + 40 + 16 + 32

+ 20 + 16 + 16 + 16

+ 16 + 8 + 8 + 4

+ 4 + 4 + 4 + 4

Note that the sum of the coefficients is 256 = 162.

4.4.4. Quintic Shift (P=5)

N = 3 Case: In this case, ∆min = 6. There are three Medusas with the fewest edges such

that the ×-vertex and the •-vertices have degree no less than 3 (note that 1
2(P + 1) = 3):

F F
F×

FF
F×

F
F×

There is exactly one minimal 5-invariant in this case, which is constructed by superposing

three equal-weight sums of trees:

3 + 18 + 6

Note that the sum of the coefficients is 27 = 33. Also, note that this is proportional to

the unique independent minimal 4-invariant found in the previous section, which was the

superposition of two equal-weight sums of trees and an exact 0-invariant.

– 31 –



N = 4 Case: The superposition of three equal-weight sums of N = 4 trees yields

4 + 12 + 108 + 432 + 288

+ 72 + 216 + 216 + 36 + 72

+ 72 + 144 + 144 + 612 + 144

+216 + 72 + 72 + 432 + 72

+ 72 + 72 + 216 + 192 + 108

Note that the sum of the coefficients is 4096 = 163.

To facilitate the check of the invariance of the above linear combination, denoted as

L, we provide the linear combination of Medusas LM such that δ5(L) = ρ(0)(LM ):

12

FF F

×
+ 72

FF F

×
+ 24

FF F

×
+ 72

FF
×

+ 72

FF
×

+ 144

FF
×

+144

FF
×

+ 216

FF
×

+ 72

F
×

+ 72

F
×

+ 72

F
×

+ 288

F
×

+432

F
×

+ 108

F
×

+ 216

F
×

+ 144

F
×

+ 216

F
×

5. Conclusions and Outlook

In this paper, we studied nonrelativistic scalar field theories with polynomial shift symme-

tries. In the free-field limit, such field theories arise in the context of Goldstone’s theorem,

where they lead to the hierarchies of possible universality classes of Nambu-Goldstone

modes, as reviewed in §2. Our main focus in §3 and §4 has been on interacting effective

field theories which respect the polynomial shift symmetries of degree P = 1, 2, . . .. In or-

der to find such theories, one needs to identify possible Lagrangian terms invariant under

the polynomial shift up to total derivatives, and organize them by their scaling dimension,

starting from the most relevant. As we showed in §3, §4 and Appendix B, this essentially

cohomological classification problem can be usefully translated into the language of graph

theory. This graphical technique is important for two reasons. First, it is quite powerful:

The translation of the classification problem into a graph-theory problem allows us to gen-

erate sequences of invariants for various values of P , number N of fields, the number 2∆
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of spatial derivatives, and as a function of the spatial dimension D, in a way that is much

more efficient than any “brute force” technique. Secondly, and perhaps more importantly,

the graphical technique reveals some previously hidden structure even in those invariants

already known in the literature. For example, the known Galileon N -point invariants are

given by the equal-weight sums of all labeled trees with N vertices! This hidden simplic-

ity of the Galileon invariants is a feature previously unsuspected in the literature, and its

mathematical explanation deserves further study. In addition, we also discovered patterns

that allow the construction of higher polynomials from the superposition of graphs rep-

resenting a collection of invariants of a lower degree – again a surprising result, revealing

glimpses of intriguing connections among the a priori unrelated spaces of invariants across

the various values of P , N and ∆.

Throughout this paper, we focused for simplicity on the unrestricted polynomial shift

symmetries of degree P , whose coefficients ai1...i` are general real symmetric tensors of rank

` = 0, . . . , P . As we pointed out in §2.4, at P ≥ 2, this maximal polynomial shift symmetry

algebra allows various subalgebras, obtained by imposing additional conditions on the

structure of ai1...i` ’s. While this refinement does not significantly impact the classification of

Gaussian fixed points, reducing the symmetry to one of the subalgebras inside the maximal

polynomial shift symmetry can lead to new N -point invariants, beyond the ones presented

in this paper. It is possible to extend our graphical technique to the various reduced

polynomial shift symmetries, and to study the refinement of the structure of polynomial

shift invariants associated with the reduced symmetries.

Our main motivation for the study of scalar field theories with polynomial shift sym-

metries has originated from our desire to map out phenomena in which technical natu-

ralness plays a crucial role, in general classes of field theories with or without relativistic

symmetries. The refined classification of the universality classes of NG modes and the

nonrelativistic refinement of Goldstone’s theorem have provided an example of scenarios

where our naive relativistic intuition about technical naturalness may be misleading, and

new interesting phenomena can emerge. We anticipate that other surprises of natural-

ness are still hidden not only in the landscape of quantum field theories, but also in the

landscape of nonrelativistic theories of quantum gravity.
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A. Glossary of Graph Theory

In this section, we list the standard terminologies in graph theory to which we will refer.

(These essentially coincide with the ones in [23].)

Graph A graph Γ is an ordered pair (V (Γ), E(Γ)) consisting of a set V (Γ) of vertices and

a set E(Γ), disjoint from V (Γ), of edges, together with an incident function ΨΓ that
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associates with each edge of Γ an ordered pair of (not necessarily distinct) vertices of

Γ. If e is an edge and u and v are vertices such that ΨΓ(e) = {u, v}, then e is said to

join u and v.

Isomorphism Two graphs ΓA and ΓB are isomorphic if there exist a pair of bijections

f : V (ΓA) → V (ΓB) and φ : E(ΓA) → E(ΓB) such that ΨΓA(e) = {u, v} if and only

if ΨΓB (φ(e)) = {f(u), f(v)}.

Identical Graphs Two graphs are identical, written ΓA = ΓB, if V (G) = V (H), E(G) =

E(H) and ΨG = ΨH .

Labeled Graph A graph in which the vertices are labeled but the edges are not, is called

a labeled graph. This will be the notion of graphs that we will refer to most frequently.

Unlabeled Graph An unlabeled graph is a representative of an equivalence class of iso-

morphic graphs.

Finite Graph A graph is finite if both of its vertex set and edge set are finite.

Null Graph The graph with no vertices (and hence no edges) is the null graph.

Incident The ends of an edge are said to be incident to the edge, and vice versa.

Adjacent Two vertices which are incident to a common edge are adjacent.

Loop A loop is an edge that joins a vertex to itself.

Cycle A cycle on two or more vertices is a graph in which the vertices can be arranged

in a cyclic sequence such that two vertices are joined by exactly one edge if they are

consecutive in the sequence, and are nonadjacent otherwise. A cycle on one vertex

is a graph consisting of a single vertex with a loop.

Loopless Graph A loopless graph contains no loops. Note that a loopless graph may still

contain cycles on two or more vertices.

Vertex Degree The degree of a vertex v, denoted by deg(v), in a graph Γ is the number

of edges of Γ incident to v, with each loop counting as two edges.

Empty Vertex A vertex of degree 0 is called an empty vertex.

Leaf A vertex of degree 1 is called a leaf.

Edge Deletion The edge deletion of an edge e in a graph Γ is defined by deleting from Γ

the edge e but leaving the vertices and the remaining edges intact.

Vertex Deletion The vertex deletion of a vertex v in a graph Γ is defined by deleting

from Γ the vertex v together with all the edges incident to v. The resulting graph is

denoted by Γ− v.
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Connected Graph A graph is connected if, for every partition of its vertex set into two

nonempty sets X and Y , there is an edge with one end in X and one end in Y .

Connected Component A connected component of a graph Γ is a connected subgraph

Γ′ of Γ such that any vertex v in Γ′ satisfies the following condition: all edges incident

to v in Γ are also contained in Γ′.

Tree A tree is a connected graph that contains no cycles. In particular, note that a tree

has no empty vertices if it contains more than one vertex.

Cayley’s Formula The number of labeled trees on N vertices is NN−2.

B. Theorems and Proofs

B.1. The Graphical Representation

Consider the polynomial shift symmetry applied to a real scalar field φ,

φ(t, xi)→ φ(t, xi) + δPφ, δPφ = ai1···iP x
i1 · · ·xiP + · · ·+ aix

i + a. (B.1)

The polynomial ends at P th order in the spatial coordinate xi with P = 0, 1, 2, . . ., respec-

tively corresponding to constant shift, linear shift, quadratic shift, and so on. The a’s are

arbitrary real coefficients that parametrize the symmetry transformation, and are symmet-

ric in any pair of indices. In the algebraic language, for a specific P , we are searching for

a Lagrangian that is invariant under the polynomial shift up to a total derivative. Let L

be a term in the Lagrangian with N φ’s and 2∆ spatial derivatives. Then,

δP (L) = ∂i(Li), (B.2)

where Li is an expression containing N − 1 φ’s and an index i, which is not contracted.

Such L’s are called P-invariants. We will mainly focus on interaction terms, i.e., N ≥ 3.

We want to express these P -invariants using a graphical representation. The ingredi-

ents of the graphical representation are:

1. •-vertices, denoted in a graph by •.

2. ×-vertices, denoted in a graph by ⊗.

3. ?-vertices, denoted in a graph by F.

4. Edges, denoted in a graph by a line, that join the above vertices.

In this context, a graph contains up to three types of vertices. This means that these

graphs carry an additional structure regarding vertex type, compared to the conventional

definition of a graph in Appendix A.

We construct graphs using the following rules:

1. The maximal degree of a ×-vertex is P . Any graph containing a ×-vertex of degree

greater than P is identified with the null graph.
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F

(a) ∂i(∂jφ∂i∂jφ) (b) ∂jφ∂i∂jφ∂i∂
2φ

Figure 3: Examples for the graphical representation of algebraic expressions.

2. There is at most one ×-vertex in a graph.

3. A ?-vertex is always a leaf (i.e., it has degree one).

4. Two ?-vertices are not allowed to be adjacent to each other.

We now describe what these graph ingredients represent. A •-vertex represents a φ and

a ×-vertex represents δPφ. A pair of derivatives with contracted indices, each one acting

on a certain φ or δPφ, is represented by an edge joining the relevant •- and ×-vertices.

Note that Rule 1, which requires that there be at most P edges incident to the ×-vertex,

is justified since P + 1 derivatives acting on δPφ gives zero.

A graph with ?-vertices will represent terms which are total derivatives. By Rules 3

and 4, a ?-vertex must always have exactly one edge incident to it, and this edge is incident

to a •-vertex or ×-vertex. This edge represents a derivative acting on the entire term as a

whole, and the index of that derivative is contracted with the index of another derivative

acting on the φ or δPφ of the •- or ×-vertex, respectively, to which the ?-vertex is adjacent.

Therefore, any graph with a ?-vertex represents a total derivative term.

Since the Lagrangian terms that these graphs represent have a finite number of φ’s and

∂’s, we will consider only finite graphs. In addition, by the definition of graphs, all vertices

and edges are automatically labeled, due to the fact that all elements in a set are distinct

from each other. Therefore, a graph represents an algebraic expression in which each φ

and ∂ carries a label. It will be convenient to keep the labels on φ, but it is unnecessary

to label the derivatives. This motivates the definition given in Appendix A for “labeled”

graphs. In the rest of Appendix B, unless otherwise stated, a graph is understood to be a

labeled graph.

The desired algebraic expressions in which all φ’s are identical can be recovered by iden-

tifying all isomorphic graphs (for examples, refer to §3). In fact, the labeled P -invariants

already capture all of the unlabeled ones (Appendix B.5).

Note that not all algebraic expressions are captured in the graphical representation

described above. For example, ∂2(∂jφ∂jφ) cannot be represented by a graph, since two

?-vertices are forbidden to be adjacent to each other by Rule 4. However, this algebraic

expression can be written as 2∂i(∂i∂jφ∂jφ), which is graphically represented in Figure 3a,

disregarding the coefficient 2. Another peculiar example is ∂i(∂jφ∂jφ) ∂i∂
2φ, which is equal

to 4(∂i∂jφ)(∂jφ)(∂i∂
2φ). Although the graphical representation for the former expression

is beyond the current framework, the graphical representation for the latter one is given

in Figure 3b. One could generalize the graphical representation to include all possible

algebraic expressions. However, for our purposes, the present framework will suffice.
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B.1.1. Types of Graphs and Vector Spaces

We classify graphs by different combinations of vertices:

Definition 1.

1. A plain-graph is a graph in which all vertices are •’s.

2. A ?-ed plain-graph is a graph with vertex set consisting of only •-vertices and at least

one ?-vertex.

3. A ×-graph is a plain-graph with one •-vertex replaced with a ×-vertex.

4. A ?-graph is a graph with one ×-vertex and at least one ?-vertex.

We define sets of graphs and the real vector spaces that they generate:

Definition 2.

1. GN,∆ is the set of plain-graphs with N •-vertices and ∆ edges.

2. G×N,∆ is the set of ×-graphs with N − 1 •-vertices, one ×-vertex and ∆ edges.

3. G?N,∆ is the set of ?-graphs with N − 1 •-vertices, one ×-vertex, at least one ?-vertex

and ∆ edges.

In the above graphs, we choose the labels of the •- and ×-vertices to go from v1 to vN and

the labels of the ?-vertices to go from v?1 to v?N(?), where N(?) is the number of ?-vertices.

Let LN,∆, L×N,∆ and L?N,∆ be the real vector spaces of formal linear combinations generated

by GN,∆, G×N,∆ and G?N,∆, respectively. The zero vector in any of these vector spaces is the

null graph.

Note that N = N(•) + N(×), where N(•) is the number of •-vertices and N(×) is the

number of ×-vertices. N does not include N(?) since ?-vertices represent neither φ nor δPφ.

These sets of graphs are finite and therefore the vector spaces of formal linear combinations

are finite-dimensional.

By Definition 2, graphs in a linear combination L ∈ LN,∆ (L×N,∆ or L?N,∆) share the

same number of N and ∆. In most of the following discussion, N and ∆ are fixed. We

will therefore omit theses subscripts as long as no confusion arises. However, the number

of ?-vertices N(?) is not fixed in a generic linear combination of ?-graphs.

B.1.2. Maps

We now define some maps between the sets and vector spaces in Definition 2. This will

model the operations that act on the algebraic expressions represented by the graphs.

Firstly, the variation under the polynomial shift δP of an algebraic term, expressed by

a graph Γ, is represented graphically by summing over all graphs that have one •-vertex

in Γ replaced with a ×-vertex.
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Definition 3 (Variation Map). Given a plain-graph Γ ∈ G, with V (Γ) = (v1, . . . , vN ), the

map δP : G → L× is defined by δP (Γ) =
∑N

i=1 Γ×i , where Γ×i is a graph given by replacing

vi with a ×-vertex. This map extends to L → L× by distributing δP over the formal sum.

Note that Γ×i is the null graph if vi has degree greater than P . We will omit the subscript

P in δP as long as no confusion arises. It is also necessary to define a map that operates

in the reverse direction:

Definition 4. The map v : G× → G is defined by replacing the ×-vertex with a •-vertex.

In the algebraic expressions, a total derivative term looks like ∂iLi, and the ∂i can be

distributed over Li as usual, by applying the Leibniz rule. This feature will be captured

by the graphical representation in the following definition.

Definition 5 (Derivative Map). For a given ?-graph Γ? ∈ G?, the derivative map ρ : G? →
L× is defined using the following construction:

1. For the ?-graph Γ?, denote the •-vertices by v1, . . . , vN−1, the ×-vertex by vN and

the ?-vertices by v?1, . . . , v
?
k, k = N(?). Take any ?-vertex v?i in Γ?. For each

j1 ∈ {1, . . . , N}, form a graph Γj1 by deleting v?1 in Γ? and then adding an edge

joining vj1 and the vertex that was adjacent to v?1 in Γ?.

2. Apply the above procedure to each of the Γj1 to form Γj1j2 by removing the next v?2.

Iterate this procedure until all ?-vertices have been removed, forming the ×-graph

Γj1...jk .

3. Define ρ(Γ?) ≡
∑N

j1,...,jk=1 Γ×j1...jk .

The domain of this map can be extended to L? by distributing ρ over the formal sum. The

derivative map ρ can be similarly defined on ?-ed plain-graphs. Furthermore, we take ρ to

be the identity map when it acts on ×-graphs.

Note that the above definition is well-defined since ρ is independent of the order in which

the ?-vertices are deleted.

B.1.3. Relations

There are many linear combinations of plain- and ×-graphs representing terms that can

be written as a total derivative. To take this feature into account, we define two notions

of relations for plain- and ×-graphs, respectively.

Definition 6 (Relations). If a linear combination of plain-graphs L ∈ L can be written as

ρ(L′), where L′ is a sum of ?-ed plain-graphs, then L is called a plain-relation. If a linear

combination of ×-graphs L× ∈ L× can be written as ρ(L?), with L? a sum of ?-graphs,

then L× is called a ×-relation.

We shall denote the set of all plain-relations by R and the set of all ×-relations by R×. R
and R× have a natural vector space structure and are subspaces of L and L×, respectively.
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B.1.4. The Consistency Equation and Associations

Recall that P -invariants are defined algebraically by equation (B.2), δP (L) = ∂i(Li). This

equation is written in the graphical representation as

δP (L) = ρ(L?), (B.3)

for L ∈ L and L? ∈ L?. We call (B.3) the consistency equation. Searching for P -invariants

is equivalent to constructing all consistency equations. Note that, by Definition 6, the

consistency equation implies that δP (L) is a ×-relation and so we make the following

definition:

Definition 7 (P -Invariant). L ∈ L is a P -invariant if δP (L) ∈ R×.

Furthermore, there is a simple class of P -invariants, which we call exact P -invariants.

These represent terms which are exactly invariant under the polynomial shift symmetry

(B.1), not just up to a total derivative.

Definition 8 (Exact P -Invariant). L ∈ L is an exact P -invariant if δP (L) = 0.

The following notion, called “association between graphs”, will turn out to be indis-

pensable in constructing consistency equations.

Definition 9 (Associations). The associations between pairs of plain- and ×-graphs, plain-

and plain-graphs, ?- and ×-graphs, ?- and ?-graphs and plain- and ?-graphs are defined as

follows:

1. Γ ∈ G and Γ× ∈ G× are associated with each other if Γ× is contained in δP (Γ), or,

equivalently, v(Γ×) = Γ.

2. Any two graphs Γ1,Γ2 ∈ G are associated with each other if either they are associated

with the same Γ× ∈ G×, or Γ1 is identical to Γ2.

3. Γ? ∈ G? and Γ× ∈ G× are associated with each other if Γ× is contained in ρ(Γ?).

4. Any two graphs Γ?1,Γ
?
2 ∈ G? are associated with each other if either they are associated

with the same Γ× ∈ G×, or Γ?1 and Γ?2 are identical to each other.

5. Any two graphs Γ ∈ G and Γ? ∈ G? are associated with each other if they are associated

with the same Γ× ∈ G×.

It turns out that the associations between only plain-graphs and ×-graphs have a simple

structure. Note that for any ×-graph Γ× ∈ G×, v(Γ×) uniquely defines the associated

plain-graph. Hence,

Proposition 1. A ×-graph is associated with exactly one plain-graph.

The corollaries below directly follow:

Corollary 1. For L ∈ L and Γ× a ×-graph in δ(L), L contains the plain-graph v(Γ×).
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Corollary 2. Any two associated plain-graphs are identical to each other.

Proof. If two distinct plain-graphs are associated with each other, then they are associated

with a common ×-graph, which violates Proposition 1. Therefore, only identical plain-

graphs are associated with each other.

Corollary 3. For L ∈ L and a plain-graph Γ in L, δ(L) contains all ×-graphs in δ(Γ).

Proof. Without loss of generality, suppose Γ appears in L with unit coefficient (otherwise,

simply divide L by the coefficient of Γ). Let Γ× be a ×-graph in δ(Γ). By Proposition 1,

Γ is the only plain-graph associated with Γ×. Therefore, Γ× cannot drop out of δ(Γ + L′)

for any L′ ∈ L that does not contain Γ. Applying this statement to L′ = L−Γ proves that

Γ× must appear in δ(L).

This now allows us to find all exact P -invariants in a simple manner:

Corollary 4. L ∈ L is an exact P -invariant if and only if all vertices in all graphs

contained in L have degree at least P + 1.

Proof. If there is a vertex v in some plain-graph Γ in L of degree lower than P + 1, then

δP (Γ) contains the ×-graph where v is replaced with a ×-vertex. But by Corollary 3, this

means that δP (L) also contains this ×-graph, which contradicts δP (L) = 0.

All of the above definitions and conclusions make sense when extended to P < 0. Even

though P < 0 no longer corresponds to any polynomial shift symmetry, it will occasionally

be useful to consider graphs with P < 0. Since any vertex has a non-negative degree,

Corollary 4 implies:

Corollary 5. If P < 0, any L ∈ L is an exact P -invariant.

Associations between ?-graphs and ×-graphs also have a simple and useful property:

Lemma 1. Suppose that a ×-graph Γ× ∈ G× is associated with a ?-graph Γ? ∈ G? that

contains a single ?-vertex. Then Γ× appears in ρ(Γ?) with coefficient 1.

In general, a ×-graph can be associated with more than one ?-graph. Figure 4 presents a

simple example with (P,N,∆) = (2, 3, 2). Consequently, there can exist multiple consis-

tency equations for the same P -invariant. In the next section we will develop techniques

to deal with this difficulty.

B.2. Building Blocks for Consistency Equations

In this section, we introduce the building blocks with which we will construct the con-

sistency equation (B.3), δP (L) = ρ(L?). Any polynomial shift-invariant can be gen-

erated using these building blocks. We show that we can constrain L to contain only

loopless plain-graphs, and all other invariants are equal to these ones up to total deriva-

tives. Consequently, δP (L), and thus ρ(L∗), contains only loopless ×-graphs. Therefore,

ρ(L?) = ρ(0)(L?), where ρ(0) acts in the same way as ρ but omits any looped graphs (Defi-

nition 13). In fact, we can restrict L? to be a linear combination LM of a particular type of
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Figure 4: Two different linear combinations of ?-graphs result in an identical ×-relation

for P = 2. In particular, the ×-graph with a coefficient 2 is associated with all three

?-graphs in the figure.

?-graph, such that ρ(0)(L?) = ρ(0)(LM ). These ?-graphs will be called Medusas (Definition

10). In Appendix B.2.5 we determine a lower bound on the degree of a vertex in any graph

that appears in the consistency equation.

B.2.1. The Loopless Realization of L/R

There are usually many alternative expressions for a single P -invariant algebraic term,

which are equal to each other up to total derivatives. In the graphical language, the

graphs representing these equivalent expressions are related by plain-relations. Therefore,

we are interested in the space of linear combinations of plain-graphs modding out plain-

relations, i.e., the quotient space L/R. We need to find subset of graphs, B ⊂ G, whose

span is isomorphic to L/R. In other words, every element of L can be written as a linear

combination of graphs in B and plain-relations. Furthermore, this means that there are no

plain-relations between elements in the set B. The following proposition shows that the

set of loopless plain-graphs realizes the set B.

Proposition 2 (Loopless Basis). The span of loopless plain-graphs is isomorphic to L/R.

Proof. Denote the span of all loopless plain-graphs by Lloopless. If ∂i∂i acts on a single φ,

then one can always integrate by parts to move one of the ∂i’s to act on the remaining φ’s.

In the graphical language, this means that any graph with loops can always be written as

a linear combination of loopless graphs up to a plain-relation. This proves L/R ⊂ Lloopless.

Now, we show that there are no plain-relations between the loopless plain-graphs.

Suppose there exists a linear combination of loopless plain-graphs L that is a plain-relation.

That is, there exists a linear combination L′ of ?-ed plain-graphs such that L = ρ(L′). Let

Γ′ be a ?-ed plain-graph in L′. Then, ρ(Γ′) is a linear combination of plain-graphs each

of which has a number of loops no greater than the number of ?-vertices in Γ′. There will

be exactly one graph, Γf.l., which is fully-looped (with the number of loops equal to the

number of ?-vertices in Γ′), produced when all the original ?-vertices (and the edges incident

to them) are replaced with loops. Furthermore, Γf.l. uniquely determines Γ′ by replacing

each loop in Γf.l. with an edge incident to an extra ?-vertex. Choose the ?-ed plain-graph

appearing in L′ with the largest number of ?-vertices (the maximally ?-ed plain-graphs).

This maximum exists since the number of the edges incident to the ?-vertices is bounded

above by the number of edges ∆. The fully-looped graphs formed from these maximally

?-ed plain-graphs cannot cancel each other (by uniqueness) and cannot be canceled by
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any other graphs that are not fully-looped (by maximality). Therefore ρ(L′) is a linear

combination containing looped graphs, which contradicts the initial assumption that L

only consists of loopless graphs. This proves Lloopless ⊂ L/R.

Therefore, Lloopless
∼= L/R.

Henceforth, we can restrict our search for P -invariants to Lloopless. Note that if L ∈
Lloopless, then all the graphs in δ(L) are also loopless, so it is sufficient to consider only

loopless ×-graphs. We can also restrict to loopless ×-relations, R×loopless ⊂ R
×, which is

the vector space consisting of ×-relations that are linear combinations of loopless graphs.

We summarize this discussion in the following corollary:

Corollary 6. The P -invariants that are independent up to total derivatives are represented

by L ∈ Lloopless with δ(L) ∈ R×loopless. Equivalently, they span the kernel of the map:

q ◦ δ : Lloopless → L×loopless/R
×
loopless,

where q is the quotient map q : L×loopless → L
×
loopless/R

×
loopless.

B.2.2. Medusas and Spiders

Corollary 6 motivates us to look for a basis of R×loopless, the ×-relations that are linear com-

binations of loopless graphs. To classify all such loopless ×-relations, we are led to study

the linear combinations of ?-graphs that give rise to these relations under the derivative

map ρ. We will realize a convenient choice for the basis of R×loopless, which will tremen-

dously simplify our calculations: It turns out that the basis of R×loopless is in one-to-one

correspondence with a particular subset of loopless ?-graphs, which we now define.

Definition 10 (Medusa). A Medusa is a loopless ?-graph with all ?-vertices adjacent to

the ×-vertex, such that the degree of the ×-vertex deg(×) and the number of ?-vertices

N(?) satisfy deg(×) = P + 1−N(?). We denote the set of Medusas by MN,∆.

We should point out that applying ρ to a Medusa does not necessarily generate a ×-relation

in R×loopless; it will sometimes produce ×-graphs with loops. In order to form a loopless

×-relation, these looped ×-graphs must be canceled by contributions from other ?-graphs.

In the proof of the one-to-one correspondence between the basis of R×loopless and the

subset of Medusas, we will frequently refer to the following definitions.

Definition 11 (Primary ?-Graphs). A primary ?-graph is a ?-graph that contains exactly

one ?-vertex.

Definition 12 (Spider). A spider is a primary ?-graph with the ?-vertex adjacent to the

×-vertex and deg(×) = P .

Since deg(×) ≥ N(?) for a Medusa, we have 1
2(P + 1) ≤ deg(×) ≤ P . In particular, if

P = 1 or 2, then deg(×) = P and N(?) = 1 (i.e., a Medusa is a loopless spider for P = 1 or

2). Spiders will play an important role in sorting out all independent loopless ×-relations

in Appendix B.2.4, and loopless spiders will lead us to the classification of 1-invariants in

Appendix B.3.
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In B.2.3 and B.2.4 we will construct R×loopless by spiders and Medusas. We will need

to keep track of graphs containing specific numbers of loops, and the following refinement

of the derivative map ρ (Definition 5) will allow us to formulate the graphical operations

algebraically.

Definition 13. The map ρ(`) : L? → L× is defined such that, for L? ∈ L?, ρ(`)(L?) is

equal to ρ(L?), with the coefficient of any graph that does not contain ` loops set to zero.

Note that ρ =
∑∞

i=0 ρ
(i). If Γ? ∈ G? contains a loop, then ρ(0)(Γ?) is identically zero. In

Theorem 1 we will show that the map ρ(0) defines the one-to-one correspondence between

M and the preferred basis of R×loopless.

It is also useful to introduce the operation of “undoing” loops.

Definition 14. Given a Γ ∈ G× ∪ G? which contains ` loops, labeled from 1 to `, the map

θi : G× ∪ G? → G? is defined such that θi(Γ) is a ?-graph constructed by deleting the ith

loop from Γ, adding an extra ?-vertex v? and adding an edge joining v? to the vertex at

which the ith deleted loop ended. Define θ : G× ∪ G? → G? by θ(Γ) ≡ θ1 ◦ · · · ◦ θ`(Γ). This

map extends to L× ∪ L? → L? by distributing θ over the formal sum. The map θ can be

similarly defined on ?-ed plain-graphs.

We will need to distinguish different types of loops:

Definition 15. A loop at the ×-vertex is called a ×-loop, and a loop at a •-vertex is a

•-loop. A graph that contains ` loops is called `-looped.

We can now prove a key formula:

Proposition 3. If an `-looped ?-graph Γ? contains a loop at vertex vA, then

ρ(`−1) ◦ θA(Γ?) = ρ(`−1) ◦ θA ◦ ρ(`)(Γ?) + ρ(`−1)
(

L
(`−1)
spider

)
, (B.4)

where θA undoes a loop at vA, and L
(`−1)
Spider is a linear combination of (`− 1)-looped spiders.

Every graph in a nonzero L
(`−1)
Spider has one fewer ×-loop than Γ?. L

(`−1)
Spider is nonzero if and

only if the following three conditions are satisfied:

(a) vA is the ×-vertex;

(b) There is a ?-vertex that is not adjacent to the ×-vertex;

(c) deg(×) ≥ P+1−N•(?), where N•(?) is the number of ?-vertices in Γ? that are adjacent

to •-vertices.

Proof. Denote the vertices in Γ? adjacent to ?-vertices by vi, i = 1, . . . , k, and the ×-vertex

by v×. Note that v× and vA may coincide with each other and with some of the vi’s. Form

an (`− 1)-looped graph Γ from Γ? by deleting all ?-vertices and deleting a loop at vA. We

now show that all graphs in ρ(`−1) ◦ θA(Γ?) and ρ(`−1) ◦ θA ◦ ρ(`)(Γ?) in (B.4) contain Γ as

a subgraph:
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• ρ(`−1) ◦ θA(Γ?): Define Γvβ1 ...vβk to be a graph formed from Γ by adding k edges

joining vi and vβi , respectively. Then

ρ(`−1) ◦ θA(Γ?) =
∑
vα 6=vA

∑
vβ1 6=v1

. . .
∑

vβk 6=vk

Γvαvβ1 ...vβk
, (B.5)

where Γvαvβ1 ...vβk
is the graph Γvβ1 ...vβk with an extra edge joining vA and vα. Note

that the graphs formed from Γ by adding edges joining vA (or vi) to itself are not

included in this sum, because these graphs are not (`− 1)-looped.

• ρ(`−1) ◦ θA ◦ ρ(`)(Γ?): Define ΓA to be the graph Γ with a loop added at vA. Then

ρ(`)(Γ?) =
∑

vβi 6=vi
Γ̃vβ1 ...vβk , where Γ̃vβ1 ...vβk is the graph formed from ΓA by adding

k edges joining vi and vβi , respectively. vβi 6= vi in the sum because only `-looped

graphs are included. Applying ρ(`−1) ◦ θA gives:

ρ(`−1) ◦ θA ◦ ρ(`)(Γ?) =
∑
vα 6=vA

∑
vβ1 6=v1

. . .
∑

vβk 6=vk

Γ̃vαvβ1 ...vβk
, (B.6)

where Γ̃vαvβ1 ...vβk
is formed from Γ̃vβ1 ...vβk by deleting a loop at vA and adding an

edge joining vA and vα. vα 6= vA in the sum because only (`− 1)-looped graphs are

included.

We now want to compare Γvαvβ1 ...vβk
and Γ̃vαvβ1 ...vβk

for vα 6= vA and vβi 6= vi. At first it

might seem that Γvαvβ1 ...vβk
= Γ̃vαvβ1 ...vβk

, since both ultimately involve taking Γ and adding an

edge joining vA and vα, and edges joining vi and vβi . However, there is a subtlety involved:

Recall that graphs containing a ×-vertex of degree larger than P are identified with the

null graph. Therefore, Γvαvβ1 ...vβk
= Γ̃vαvβ1 ...vβk

, provided neither side is null or both sides are

null; when one side of this equation represents the null graph and the other does not, then

this equation will not hold. This violation happens only if there is a difference in deg(×)

of the graphs formed during the construction of Γvαvβ1 ...vβk
and Γ̃vαvβ1 ...vβk

. Note that we add

the same k edges (joining vi and vβi) to both Γ and ΓA to form the intermediate graphs,

Γvβ1 ...vβk and Γ̃vβ1 ...vβk , respectively. Thus the difference between the latter two graphs is

the same as the difference between Γ and ΓA: There is an extra loop at vA in ΓA compared

to Γ, which will only be deleted after the edges have been added. Hence, the violation of

the equality, Γvαvβ1 ...vβk
= Γ̃vαvβ1 ...vβk

, happens only if vA = v×. This is condition (a).

From now on, we assume vA = v×. In addition, there must exist at least one vβi = v×

in order for the violation to occur, since otherwise deg(×) in any graph we are considering

never exceeds the one in Γ?, and thus no graph in (B.5) and (B.6) is null. Hence for at least

one vβi , v
× = vβi 6= vi, which implies condition (b). From now on we assume v× = vβi 6= vi,

for at least one vβi , and denote the number of vβi equal to v× by b, where 1 ≤ b ≤ N•(?).
We know that deg(×) in Γ̃vβ1 ...vβk is 2 higher than deg(×) in Γvβ1 ...vβk , due to the one

extra loop at vA in ΓA.

Therefore, if Γvαvβ1 ...vβk
vanishes, then Γ̃vαvβ1 ...vβk

should also vanish, since Γ̃vβ1 ...vβk al-

ready has a higher deg(×). Furthermore, deg(×) in Γ̃vβ1 ...vβk is 1 higher than deg(×) in
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Γvαvβ1 ...vβk
, and thus Γvαvβ1 ...vβk

6= Γ̃vαvβ1 ...vβk
if and only if deg(×) = P in Γvαvβa ...vβk

. In this case,

Γvαvβ1 ...vβk
does not vanish, but Γ̃vβ1 ...vβk contains a ×-vertex of degree P +1 and is identified

with the null graph, which means Γ̃vαvβ1 ...vβk
is also null. So the equality is violated if and

only if deg(×) = P + 1 in Γ̃vβ1 ...vβk . We want to write this condition in terms of deg(×) in

Γ?. Note that deg(×) = P + 1 in Γ̃vβ1 ...vβk if and only if deg(×) = P + 1− b− (k−N•(?))
in ΓA, and deg(×) = P − 1− b− (k−N•(?)) in Γ. Finally this implies deg(×) = P + 1− b
in Γ?. Since 1 ≤ b ≤ N•(?), we have that P ≥ deg(×) ≥ P + 1−N•(?), which is condition

(c). Moreover, ∑
vα 6=vA

Γvαvβ1 ...vβk
= ρ (Γspider) ,

where Γspider is an (` − 1)-looped spider formed from Γvβ1 ...vβk by adding a ?-vertex and

then adding an edge that joins this ?-vertex and the ×-vertex. By construction, Γspider has

one fewer ×-loop than Γ?. Such spiders form the desired L
(`−1)
spider in (B.4).

B.2.3. Constructing Loopless ×-Relations

Constructing a basis for R×loopless requires a thorough examination of ?-graphs. The next

lemma shows that any ×-relation can be written as a derivative map acting on a linear com-

bination of primary ?-graphs, which allows us to restrict to primary ?-graphs in classifying

all loopless ×-relations.

Lemma 2. For any L× ∈ R×, there exists L? ∈ L? that contains only primary ?-graphs,

satisfying L× = ρ(L?).

Proof. Since L× is a ×-relation, there exists L̃? =
∑

i bi Γ
?
i ∈ L? such that ρ(L̃?) = L×.

Starting with Γ?i , one can follow steps 1 and 2 in Definition 5 to construct a series of

?-graphs, (Γ?i )j1 , (Γ
?
i )j1j2 , . . . (Γ

?
i )j1...jk−1

, with jα = 0, . . . , n − 1 and α = 1, . . . , k. By

construction, (Γ?i )j1...jk−1
contains exactly one ?-vertex (which makes it a primary ?-graph),

and ρ(Γ?i ) = ρ
(∑n−1

j1,...,jk−1=0(Γ?i )j1...jk−1

)
. Therefore,

L× =
∑
i

bi · ρ(Γ?i ) = ρ

∑
i

N−1∑
j1,...,jk−1=0

bi (Γ?i )j1...jk−1

 .

This linear combination of primary ?-graphs (Γ?i )j1...jk−1
defines the desired L?. Opera-

tionally, such L? is constructed from L̃? by removing the ?-vertices one by one, as per the

steps in the definition of ρ, until only one ?-vertex remains.

The following proposition presents a general construction for loopless ×-relations. In the

next section we will prove that this procedure generates all elements in R×loopless.

Proposition 4. Let L? ∈ L? be a linear combination of `-looped primary ?-graphs such

that all ×-graphs in ρ(L?) are `-looped. There exists an L?` ∈ L?, such that

(a) L?` − L? contains no graph with more than `− 1 loops;
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(b) ρ(L?` ) = (−1)`ρ(0)◦θ(L?+Lspider) ∈ R×loopless. Lspider is a linear combination of spiders.

Proof. Since each graph in ρ(L?) is `-looped, ρ(L?) = ρ(`)(L?). Let ρ(`)(L?) ≡
∑k

i=1 bi Γ
×
i ,

where each Γ×i contains ` loops. For each Γ×i , label the loops from 1 to `. By Definition

14, θ1 undoes the 1st loop, and θ1(Γ×i ) defines a primary ?-graph with ` − 1 loops that

is associated with Γ×i . By Lemma 1, Γ×i drops out of ρ(L? − bi · θ1(Γ×i )). Moreover, all

×-graphs in ρ ◦ θ1(Γ×i ), except for Γ×i , are (`− 1)-looped. Then

L?1 ≡ L? −
k∑
i=1

bi · θ1(Γ×i ) = L? − θ1 ◦ ρ(`)(L?)

defines an L?1 that satisfies ρ(L?1) = ρ(`−1)(L?1). Repeat this procedure for L?1 and the 2nd

loop, in place of L? and the 1st loop, obtaining

L?2 ≡ L?1 − θ2 ◦ ρ(`−1)(L?1) = L? − θ1 ◦ ρ(`)(L?) + θ2 ◦ ρ(`−1) ◦ θ1 ◦ ρ(`)(L?).

The second equality holds because ρ(`−1)(L?) = 0. Furthermore, ρ(L?2) = ρ(`−2)(L?2).

Iterating this ` times, we will reach a linear combination of primary ?-graphs

L?` ≡ L? +
∑̀
i=1

(−1)iX?
i , X?

i ≡ θi ◦ ρ(`−i+1) ◦ · · · ◦ θ2 ◦ ρ(`−1) ◦ θ1 ◦ ρ(`)(L?). (B.7)

Here ρ(L?` ) = ρ(0)(L?` ) ∈ R
×
loopless. Moreover, X?

i only contains (`− i)-looped graphs. This

means that graphs in L?` − L? =
∑`

i=1(−1)iX?
i contain at most `− 1 loops. Therefore, L?`

satisfies condition (a) of the proposition.

To prove that L?` also satisfies condition (b), take L
(i)
spider to stand for “any linear

combination of i-looped spiders” and, for 0 < k ≤ `, define

Z?`−k ≡ θk ◦ . . . ◦ θ1 (L?)−
k∑

α=2

θk ◦ . . . ◦ θα
(
L

(`−α+1)
spider

)
− L

(`−k)
spider

which contains only (` − k)-looped graphs. Define Z?` ≡ L?. Therefore, for 0 ≤ k ≤ `,

applying Proposition 3,

ρ(`−k−1) ◦ θk+1 ◦ ρ(`−k)
(
Z?`−k

)
= ρ(`−k−1)

[
θk+1

(
Z?`−k

)
− L

(`−k−1)
spider

]
=ρ(`−k−1)

[
θk+1 ◦ · · · ◦ θ1 (L?)−

k+1∑
α=2

θk+1 ◦ . . . ◦ θα
(
L

(`−α+1)
spider

)
− L

(`−k−1)
spider

]
,

i.e.,

ρ(`−k−1) ◦ θk+1 ◦ ρ(`−k)
(
Z?`−k

)
= ρ(`−k−1)

(
Z?`−k−1

)
. (B.8)
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Note that ρ(0)(L?) = 0 and ρ(0)(X?
i ) = 0 for i = 1, . . . , `− 1. Then, by (B.7) and (B.8),

ρ(0)(L?` ) = (−1)`ρ(0)(X?
` )

= (−1)`ρ(0) ◦ θ` ◦ ρ(1) ◦ · · · ◦ θ2 ◦ ρ(`−1) ◦ θ1 ◦ ρ(`)(Z?` )

= (−1)`ρ(0) ◦ θ` ◦ ρ(1) ◦ · · · ◦ θ2 ◦ ρ(`−1)(Z?`−1) = . . . = (−1)`ρ(0) (Z?0 )

= (−1)`ρ(0)

(
θ` ◦ . . . ◦ θ1 (L?)−

∑̀
α=2

θ` ◦ . . . ◦ θα
(
L

(`−α+1)
spider

)
− L

(0)
spider

)

= (−1)`ρ(0) ◦ θ

(
L? −

`+1∑
α=2

L
(`−α+1)
spider

)
.

Hence,

ρ(L?` ) = ρ(0)(L?` ) = (−1)`ρ(0) ◦ θ(L? + Lspider) ∈ R×loopless.

This gives condition (b), with Lspider = −
∑`+1

α=2 L
(`−α+1)
spider .

Corollary 7. Given Ls, a linear combination of spiders, ρ(0) ◦ θ(Ls) ∈ R×loopless.

Proof. It is enough to show that this corollary is true for one spider S. We claim that

Proposition 4 holds for L? = S and where Lspider is null if we order the loops such that

loops 1 to `× are ×-loops and `× + 1 to ` are •-loops and the loops are removed in this

order. Define Z?`−k ≡ θk ◦ . . . ◦ θ1 (S) and Z?` ≡ S. As in the proof of Proposition 4, we

are done if we can prove (B.8), but with this new definition of Z?`−k (i.e., when Lspider is

always taken to be zero).

For k = 0, Z?` = S, a spider, which has no ?-vertex adjacent to a •-vertex in violation

of Proposition 3(b). Thus, ρ(`−1) ◦θ1 ◦ρ(`)(Z?` ) = ρ(`−1) ◦θ1(Z?` ) = ρ(`−1)(Z?`−1). This holds

regardless of which loop is chosen to be undone first. However, if the first loop is a ×-loop,

then Z?`−1 = θ1(S) will continue to violate Proposition 3(b). Therefore, if all of the ×-loops

are undone first, then ρ(`−k−1) ◦θk+1 ◦ρ`−k(Z?`−k) = ρ(`−k−1)(Z?`−k−1) holds for 0 ≤ k ≤ `×.

Now, there are no longer any ×-loops. Whenever there are •-loops, Z?`−`× will violate

Proposition 3(a). Thus, ρ(`−k−1) ◦ θk+1 ◦ ρ`−k(Z?`−k) = ρ(`−k−1)(Z?`−k−1) continues to hold

all the way until k = `.

B.2.4. A Basis for R×loopless
To find a basis for R×loopless, we first show that any loopless ×-relation can be written as

ρ(0) ◦ θ acting on a linear combination of spiders. We start with the following lemmas:

Lemma 3. Let L× ∈ R×loopless satisfy L× = ρ(L?), with L? a linear combination of primary

?-graphs. For any Γ?A in L? that is associated with a looped ×-graph Γ×, there exists another

?-graph Γ?B 6= Γ?A in L?, such that Γ× is not contained in ρ(Γ?A − Γ?B).

Proof. Suppose Γ?A is the only ?-graph in L? that is associated with Γ?A. Assume that the

coefficient of Γ?A in L? is bA 6= 0. Therefore, none of the ?-graphs in L?−bAΓ?A is associated

with Γ×, and thus Γ× is not contained in ρ(L? − bAΓ?A). Hence, the looped ×-graph Γ×
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appears in ρ(L?) = ρ(L? − bAΓ?A) + bA · ρ(Γ?A) with coefficient bA 6= 0, which contradicts

the fact that ρ(L?) ∈ R×loopless.

The above argument shows that there exists a Γ?B 6= Γ?A in L? that is associated with

Γ×. By Lemma 1, Γ× appears in both ρ(Γ?A) and ρ(Γ?B) with coefficient 1. Then, ρ(Γ?A−Γ?B)

does not contain Γ×.

Specifically, if Γ?A is `-looped and Γ× is (`+ 1)-looped, then Γ?B is also `-looped.

Lemma 4. If Γ?A,Γ
?
B ∈ G? are `-looped primary ?-graphs that are associated with the same

(`+ 1)-looped ×-graph, then θ(Γ?A − Γ?B) = 0.

Proof. Since Γ?A and Γ?B are both associated with the same (` + 1)-looped ×-graph, Γ×,

θ(Γ?A) = θ(Γ?B) = θ(Γ×). Therefore, θ(Γ?A − Γ?B) = 0.

Proposition 5. For any loopless ×-relation L× ∈ R×loopless, there exists a linear combina-

tion of spiders Ls, such that L× = ρ(0) ◦ θ(Ls).

Proof. In the following, we take Lspider to stand for “any linear combination of spiders”.

Since L× is a ×-relation, there exists L? ∈ L?, consisting of primary ?-graphs, such that

L× = ρ(L?). Take the set, H` = {Γ?1, . . . ,Γ?H`}, of ?-graphs in L? that contain the highest

number, `, of loops. Let bi` be the coefficient of Γ?i in L?. Therefore, L? −
∑H`

i=1 b
i
`Γ

?
i

contains no graphs with more than `− 1 loops. We implement the following procedure for

all graphs in H` in order from Γ?1 to Γ?H` :

1. Define β
(1)
` ≡ b

(1)
` . Apply to Γ?1 the construction outlined in Proposition 4:

(a) If Γ?1 is a spider: By Corollary 7, Proposition 4(b) becomes that there exists a

linear combination of primary ?-graphs L
(1)
` , such that

ρ
(
L

(1)
`

)
= ρ(0) ◦ θ (Γ?1) = ρ(0) ◦ θ (Lspider) ∈ R×loopless.

By Proposition 4(a), graphs in L
(1)
` − Γ?1 contain at most `− 1 loops.

(b) If Γ?1 is not a spider: ρ(Γ?1) contains an (`+ 1)-looped ×-graph Γ×. By Lemma

3, there exists an `-looped ?-graph Γ?j ∈ H, Γ?j 6= Γ?1, that is associated with Γ×

and Γ× is not in ρ(Γ?1 − Γ?2). By Lemma 4, θ(Γ?1 − Γ?j ) = 0. By Proposition 4,

ρ
(
L

(1)
`

)
= ρ(0) ◦ θ (Lspider) ∈ R×loopless,

where graphs in L
(1)
` − (Γ?1 − Γ?j ) contain at most `− 1 loops.

2. Define β
(i)
` , for i > 1, as the coefficient (which may be zero) of Γ?i in L? − β(1)

` L
(1)
` .

3. If β
(2)
` = 0, skip this step; if not, repeat step 1 for Γ?2, resulting in an L

(2)
` with

ρ
(
L

(2)
`

)
= ρ(0) ◦ θ(Lspider) ∈ R×loopless.

Redefine β
(i)
` , for i > 2, to be the coefficient of Γ?i in

(
L? − β(1)

` L
(1)
`

)
− β(2)

` L
(2)
` .
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4. Repeat step 3 for Γ
(3)
` , . . . ,Γ

(H`)
` in sequence. This will eventually generate a linear

combination of ?-graphs, L? −
∑H`

i=1 β
(i)
` L

(i)
` , where

ρ

(
H∑̀
i=1

β
(i)
` L

(i)
`

)
= ρ(0) ◦ θ(Lspider) ∈ R×loopless,

and all graphs in L? −
∑H`

i=1 β
(i)
` L

(i)
` contain at most `− 1 loops.

We can now repeat this procedure for L? −
∑H`

i=1 β
(i)
` L

(i)
` . We will obtain

L? −
H∑̀
i=1

β
(i)
` L

(i)
` −

H`−1∑
i=1

β
(i)
`−1L

(i)
`−1, ρ

H`−1∑
i=1

βi`L
(i)
`−1

 = ρ(0) ◦ θ(Lspider) ∈ R×loopless.

In the first expression graphs contain at most `− 2 loops. Iterate ` times to get

L̃? ≡ L? −
∑̀
α=1

Hα∑
i=1

βiαL
(i)
α ,

which contains only loopless primary ?-graphs. In addition,

ρ

(∑̀
α=1

Hα∑
i=1

βiαL
(i)
α

)
= ρ(0) ◦ θ(Lspider) ∈ R×loopless.

Therefore,

ρ(L̃?) = L× − ρ

(∑̀
α=1

Hα∑
i=1

βiαL
(i)
α

)
∈ R×loopless.

Next we show that L̃? is a linear combination of spiders. Suppose there exists a ?-

graph Γ?A in L̃? that is not a spider. Then, by Lemma 3, there should exist another ?-graph

Γ?B 6= Γ?A in L̃? that is associated with the 1-looped ×-graph Γ× in ρ(Γ?A). But since Γ×

is associated with a unique loopless ?-graph (resulting from undoing the loop), this is

impossible. Therefore, graphs in L̃? are loopless spiders, and thus ρ(L̃?) = ρ(0) ◦ θ(L̃?).
Hence,

L× = ρ

(
L̃? +

∑̀
α=1

Hα∑
i=1

βiαL
(i)
α

)
= ρ(0) ◦ θ (Lspider) .

The Lspider within the last pair of parentheses is the desired Ls.

Thus we have shown that any loopless ×-relation can be written as ρ(0) ◦ θ(Ls). In fact,

we can go further and show that it is equal to ρ(0)(LM ), where LM is a linear combination

of Medusas. We start with the following Lemma:

Lemma 5. Given a spider S that contains `× ×-loops, there exist two linear combinations

of spiders Y ?, with graphs containing `× ×-loops but no •-loop, and W ?, with graphs

containing fewer than `× ×-loops, such that ρ(0) ◦ θ (Y ?) = ρ(0) ◦ θ
(
S +W ?

)
.
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Proof. Suppose S contains `• •-loops, labeled from 1 to `•. Denote the total number of

loops in S to be ` = `× + `•. Label the ×-loops in S from `• + 1 to `. We will follow the

proof of Proposition 4 to undo these •-loops. However, we want to keep the ?-vertex in S

untouched. Therefore, define ρs to be the usual derivative map except that it keeps the

original ?-vertex in S untouched; we can grade ρs by number of loops in analogy with ρ.

Apply θ1 to S to undo the 1st •-loop. Define Y ?
1 ≡ S − ρs ◦ θ1(S) and note that S

drops out of Y ?
1 . Furthermore, since S is the only `-looped graph in ρs ◦ θ(S),

Y ?
1 = S − ρs ◦ θ1(S) = −ρ(`−1)

s ◦ θ1(S).

Repeat this procedure for all graphs in Y ?
1 and the 2nd •-loop, in place of S and the 1st

•-loop, obtaining Y ?
2 ≡ Y ?

1 − ρs ◦ θ2(Y ?
1 ), which is a linear combination of (` − 2)-looped

graphs. However, since all graphs in Y ?
1 are (`− 1)-looped, we have

Y ?
2 = (−1)2ρ(`−2)

s ◦ θ2 ◦ ρ(`−1)
s ◦ θ1(S).

Iterate this `• times, resulting in

Y ?
`• = (−1)`

•
ρ(`−`•)
s ◦ θ`• ◦ · · · ρ(`−2)

s ◦ θ2 ◦ ρ(`−1)
s ◦ θ1(S).

Graphs in Y ?
`• contain no •-loops. As in the derivation of (B.2.3) in Proposition 4,

Y ?
`• =(−1)`

•
ρ(`−`•)
s

(
θ`• ◦ · · · ◦ θ1(S)−

`•∑
α=2

θ`• ◦ · · · ◦ θα
(

L
(`−α+1)
spider

)
− L

(`−`•)
spider

)
(B.9)

By Proposition 3, each graph in L
(`−α+1)
spider and L

(`−`•)
spider contains fewer than `× ×-loops.

Take Y ? = (−1)`
•
Y ?
`•

. Then, by Proposition 3,

ρ(0) ◦ θ(Y ?) = ρ(0) ◦ θ` ◦ · · · ◦ θ`•+1(Y ?) = ρ(0) ◦ θ(S +W ?),

where W ? is a linear combination of spiders containing fewer than `× ×-loops.

The next proposition finally allows us to relate spiders and Medusas.

Proposition 6. For any linear combination of spiders Ls ∈ L?, there exists a linear

combination of Medusas LM , such that ρ(0) ◦ θ(Ls) = ρ(0)(LM ).

Proof. Take the set,

H`× =
{
S

(`×)
1 , . . . , S

(`×)
H`×

}
,

of spiders in Ls that contain the highest number, `×, of ×-loops. Denote the coefficient

of S
(`×)
i in Ls as b

(`×)
i . Therefore, graphs in Ls −

∑H`×
i=1 b

(`×)
i S

(`×)
i contain at most `× − 1

×-loops. Applying Lemma 5 to each S
(`×)
i yields two linear combinations of spiders Y (`×),

comprised of graphs containing `× ×-loops but no •-loop, and W (`×), comprised of graphs

containing fewer than `× ×-loops, such that

H`×∑
i=1

ρ(0) ◦ θ
(
b
(`×)
i S

(`×)
i

)
= ρ(0) ◦ θ

(
Y (`×) −W (`×)

)
. (B.10)

– 50 –



Furthermore,

Ls −

H`×∑
i=1

b
(`×)
i S

(`×)
i +W (`×)

 (B.11)

is a linear combination of spiders that contain at most `× − 1 ×-loops. Replace Ls with

(B.11), and the above procedure applies, resulting in a linear combination of spiders that

contain at most `× − 2 ×-loops. Iterating `× times, we will obtain

L(0)
s ≡ Ls −

`×∑
α=1

(
Hα∑
i=1

b
(α)
i S

(α)
i +W (α)

)
, (B.12)

By construction, L
(0)
s is a linear combination of spiders containing no ×-loop. Moreover,

ρ(0) ◦ θ
(
Y (α)

)
= ρ(0) ◦ θ

(
Hα∑
i=1

b
(α)
i S

(α)
i +W (α)

)
, (B.13)

in analogy with (B.10). Finally, repeat the same procedure one last time with L
(0)
s in

(B.12) in place of Ls. Since there are no longer any ×-loops in L
(0)
s , no W (α)’s will arise.

We obtain

L(0)
s =

H0∑
i=1

b
(0)
i S

(0)
i , ρ(0) ◦ θ

(
Y (0)

)
= ρ(0) ◦ θ

(
H0∑
i=1

b
(0)
i S

(0)
i

)
. (B.14)

Combining (B.12), (B.13) and (B.14), we obtain

ρ(0) ◦ θ (Ls) = ρ(0) ◦ θ

 `×∑
α=0

Y (α)

 .

Since the Y (α)’s are linear combinations of spiders with no •-loops and α ×-loops, θ(Y (α)),

is a linear combination of loopless ?-graphs with deg(×) = P − α and N(?) = α+ 1. This

means deg(×) + N(?) = P + 1 in these loopless ?-graphs. By Definition 10, such graphs

are Medusas. Therefore,

LM = θ

 `×∑
α=0

Y (α)


gives the desired linear combination of Medusas in ρ(0) ◦ θ (Ls) = ρ(0) (LM ).

Theorem 1. ρ(0) (M) forms a basis of R×loopless.

Proof. Proposition 5 states that any L× ∈ R×loopless can be written as ρ(0) ◦ θ(Ls), with Ls
a linear combination of spiders. Proposition 6 states that there exists a linear combination

of Medusas LM , such that ρ(0) ◦ θ(Ls) = ρ(0)(LM ). Therefore, L× = ρ(0)(LM ). This proves

the completeness.

Suppose that there exists a linear combination of Medusas LM =
∑k

i=1 αiMi 6= 0,

such that ρ(0)(LM ) = 0. Note that if two Medusas MA and MB have ×-vertices of different
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degrees, then ρ(0)(MA) and ρ(0)(MB) do not have ×-graphs in common. Therefore, without

loss of generality, we can assume that the ×-vertices in all Mi have the same degree. By

the definition of Medusas, P = deg(×) +N(?)−1, and this implies that they also have the

same number of ?-vertices. Furthermore, we can assume that, after deleting the ×-vertex,

all Mi’s are identical since this must be the case in order for the ρ(0)(Mi) to cancel each

other. Therefore, the only differences between the Mi are in the edges incident to the

×-vertex.

For any •-vertex, v, take the set H = {M̃1, . . . , M̃H} of distinct Medusas in LM , such

that each M̃i contains the highest number, E, of edges that join v and the ×-vertex among

all Medusas in LM . For each M̃i, form a specific graph, Γ×i , in ρ(0)(M̃i) by deleting all N(?)

?-vertices and adding N(?) edges joining the ×-vertex and v. Now, Γ×i contains E +N(?)

edges joining v and the ×-vertex. By construction, the Γ×i contain the highest number of

edges joining v and the ×-vertex, among all ×-graphs in ρ(0)(LM ). Therefore, the Γ×i can

only be canceled among ρ(0)(M̃i)’s. Thus in order for Γ×i to be canceled, we need Γ×i = Γ×j
for some i 6= j (note that this Γ×i appears in ρ(0)(M̃i) with unit coefficient). But this means

M̃i = M̃j which is a contradiction since the M̃i are distinct. This proves independence.

We can use this result to systematically find any P -invariant. When P = 0 or P = 1, a

simple classification is possible for any N . The case P = 1 is studied in detail in Appendix

B.3 and P = 0 is dealt with in the following corollary.

Corollary 8. Any loopless 0-invariant is an exact 0-invariant.

Proof. There are no Medusas in P = 0 (since Medusas require N(?) ≥ 1 and N(?) ≤
deg(×) = P + 1−N(?) ≤ P ). Therefore R×loopless = {0}.

Since we have already identified all exact invariants in Corollary 4, this classifies all loopless

0-invariants.

B.2.5. Lower Bound on Vertex Degree

Within the loopless basis, we will set a lower bound on the degree of any •- or ×-vertex in

any graph appearing in a consistency equation for a P -invariant.

Proposition 7. The vertices of a plain-graph Γ in a P -invariant L ∈ Lloopless are of degree

no less than 1
2(P + 1).

Proof. Let v be a vertex in Γ of degree less than 1
2(P + 1). Let Γ× in δ(Γ) be the term

given by replacing v with a ×-vertex. By Corollary 3, Γ× is in δ(L). Since L is P -invariant,

by Theorem 1, δ(L) = ρ(0) (
∑

i αiMi) for Mi ∈ M and thus, Γ× is in ρ(0)(Mj) for some

j. Since Mj is a Medusa, the ×-vertex in Mj is of degree no less than 1
2(P + 1). This

contradicts the fact that the ×-vertex in Γ× is of degree less than 1
2(P + 1).

Proposition 8. If L ∈ Lloopless is a P -invariant and LM is a linear combination of

Medusas, such that δL = ρ(0)(LM ), then the vertices of any Medusa in LM are of de-

gree no less than 1
2(P + 1).
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Proof. Suppose that a Medusa M0 in LM has a vertex, v, of degree lower than 1
2(P+1). For

an interaction term, there exists at least one other vertex v0 in M0 to which the ?-vertices

can be joined such that v0 is neither v nor the ×-vertex. The resulting graph in ρ(0)(M0)

is a ×-graph Γ×0 with vertex v of degree lower than 1
2(P + 1), and thus, by Proposition 7,

does not appear in δ(L). Therefore, there must exist another Medusa M1 in LM such that

M0 6= M1 and Γ×0 is absent from ρ(0)(M0 −M1). Therefore, M1 must produce Γ×0 after

deleting the ?-vertices and adding the same number, N(?), of edges joining the ×-vertex

and the other vertices. Since M0 6= M1 at least one of these other vertices is not v0, so the

degree of v0 is larger in M1 than in M0. Now, form another ×-graph, Γ×1 , in ρ(0)(M1) by

deleting the ?-vertices in M1 and adding the same number of edges joining the ×-vertex

and v0. Γ×1 again contains v with degree lower than 1
2(P + 1). This ×-graph must be

canceled by introducing a third Medusa M2. This procedure can be iterated to obtain an

infinite sequence of Medusas M0,M1,M2, . . . in LM , with the number of edges incident to

v0 in Mi monotonically increasing with i. But this is impossible since the Medusas have a

fixed finite number of edges and thus we have a contradiction.

B.3. Linear Shift Symmetry, Trees and Galileons

For P = 1, Medusas have a very limited configuration: A Medusa M has two subgraphs,

which are disconnected from each other, one of which is F × , and the other of which is

a loopless plain-graph. This strongly restricts the possible associations between graphs. In

addition, for P = 1, ρ(M) = ρ(0)(M) for any Medusa M .

Proposition 9. For P = 1, a loopless ×-graph is associated with at most one Medusa.

Proof. If the ×-vertex in the loopless ×-graph has degree zero, then it cannot be associated

with a Medusa. If the ×-vertex in the loopless ×-graph has degree one, then the loopless

×-graph takes the form of a ×-vertex and an edge joining this ×-vertex to a vertex in

a loopless plain-graph, Γ. The unique Medusa associated with this ×-graph is given by

deleting the edge incident to the ×-vertex and adding a ?-vertex together with an edge

joining the ?-vertex and the ×-vertex.

Following the same logic as in the proofs of Corollary 2 and 3, we obtain:

Corollary 9. For P = 1, any two associated Medusas are identical to each other.

Corollary 10. For P = 1, if M is a Medusa in a sum of Medusas LM , then ρ(LM )

contains all graphs in ρ(M).

Corollary 11. For P = 1, if a Medusa M is associated with a plain-graph in a 1-invariant,

L ∈ Lloopless, then δ(L) contains all graphs in ρ(M).

Proof. If M is associated with Γ in the 1-invariant L, then there exists Γ× shared by δ(Γ)

and ρ(M). Corollary 3 implies Γ× is in δ(L). Theorem 1 implies δ(L) = ρ(LM ) where

LM is a sum of Medusas. Therefore, Γ× is in ρ(LM ). Proposition 9 implies M is in LM .

Corollary 10 implies ρ(LM ) contains ρ(M) and thus δ(L) contains ρ(M).
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B.3.1. Minimal Invariants

Definition 16. A nonzero P -invariant LN,∆ is minimal if there is no nonzero P -invariant

L′N,∆′ for any ∆′ < ∆. For a given P and N , let ∆min denote the minimum ∆ for which

a P -invariant exists.

Now, we prove that a minimal 1-invariant is a sum of trees. We start with the following

lemma.

Lemma 6 (Leaf Shuffling). If a graph ΓA that contains a leaf v appears in a 1-invariant L,

then any graph ΓB that contains v as a leaf and satisfies ΓB − v = ΓA− v is also contained

in L.

Proof. Depicted below is a series of graphs, which are all associated with each other:

v

ΓA

⇒ ×
v

Γ×A

⇒ F ×
v

M

⇒ ×
v

Γ×B

⇒
v

ΓB

where the circles denote subgraphs. In particular, both ΓA and ΓB are associated with the

Medusa M . By Corollary 11, δL contains all graphs in ρ(M). Furthermore, by Corollary

1, L contains both ΓA and ΓB.

We call the procedure that relates ΓB to ΓA described in the above lemma leaf shuffling.

The corollaries below follow immediately.

Corollary 12. If a plain-graph ΓA is contained in a 1-invariant L, and ΓB is formed from

ΓA by shuffling leaves, then ΓB is also contained in L.

Corollary 13. If a plain-graph Γ in a loopless 1-invariant L contains more than one

connected component, then none of these connected components is a tree.

Proof. Note that there are at least two leaves in a tree, if the tree is not an empty vertex.

If in Γ there is a connected component T that is a tree, then we can shuffle all leaves in

T to be joined to other connected components, while turning T into another tree with

at least one fewer vertex. This procedure can be iterated until all but one vertex in T

are shuffled to be joined to other connected components, which turns Γ into a graph Γ̃

containing an empty vertex. By Corollary 12, since L contains Γ, it also contains Γ̃, which

violates the lower bound on vertex degree. Therefore, such Γ cannot appear in loopless

1-invariants.

Proposition 10. If L is a nonzero minimal N -point loopless 1-invariant, then it contains

all trees with N vertices.

Proof. If L contains no plain-graphs with leaves, then the vertices in L have degree at least

2 (note that an empty vertex is disallowed by Proposition 7). Then the number of edges

∆ satisfies

∆ ≥ N. (B.15)
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Otherwise, consider a plain-graph Γ contains a leaf v and appears in L. If there exist

any other leaves in Γ, shuffle them to be adjacent to v. Iterate for the resulting graphs

until reaching a plain-graph Γ0 in which all leaves are adjacent to v. By Corollary 12, Γ0

is also contained in L. Denote the subgraph of Γ0 consisting of all leaves in Γ0 and v by

T , which is a particular type of tree usually called a star. Define Γ′ as a subgraph of Γ0

that is formed by deleting from Γ0 all vertices in T .

If Γ′ is not null, by Corollary 13, T cannot be disconnected from Γ′, since otherwise T

would be a tree disconnected from at least one other connected component in Γ0. Moreover,

since v is a leaf in Γ, Γ′ is joined to T by exactly one edge incident to v. Define NT as the

number of vertices in T and N ′ as the number of vertices in Γ′, then N = NT +N ′. Note

that there is no leaf in Γ′, and thus the vertices in Γ′ have degree at least 2. Therefore,

∆ ≥ (NT − 1) +N ′ + 1 = N. (B.16)

If Γ′ is null, then Γ0 = T and the original graph Γ is a tree. In this case, ∆ = N − 1,

which is lower than the bounds ((B.15) and (B.16)) for the other cases. By Corollary 12,

L contains T . The Galileon invariants presented in §3 realize this bound ∆min = N − 1.

In fact, any tree with N vertices can be turned into a star by shuffling leaves. Since L

contains the star with N vertices, it contains all trees with N vertices.

Next, we prove the uniqueness of the minimal term.

Proposition 11. The minimal N -point loopless 1-invariant with ∆ = N − 1 is unique up

to proportionality.

Proof. Let L1 and L2 be minimal N -point loopless 1-invariants with ∆ = N − 1. Let T be

a tree in L1 and L2, which exists by Proposition 10. Rescale L1 and L2 so that T appears

in each with unit coefficient. Then, T is not in L1 − L2. However, L1 − L2 is a minimal

N -point loopless 1-invariant. Therefore, Proposition 10 implies that L1−L2 vanishes.

Finally, we prove the existence of the minimal N -point loopless 1-invariant with ∆ = N−1:

Theorem 2. Any minimal N -point loopless 1-invariant is proportional to the sum with

unit coefficients of all trees with N vertices.

Proof. Let TN be a general tree with N •-vertices. Let T×N be a general tree with (N−1) •-
vertices and one × vertex. Let T ?N have two connected components, one of which is F ×
and the other is a tree TN−1. Let L, L× and L? be the sum with unit coefficients of all

TN , T×N and T ?N , respectively. Replacing a •-vertex in TN with a × produces a unique T×N ,

since vertices are labeled. Therefore, δ(L) is simply L×. Similarly, ρ(L?) = L×. Therefore,

δ(L) = ρ(L?) and L is 1-invariant, which is unique by virtue of Proposition 11.

It is shown in [13] that the Galileon-like term in spacetime dimension d = D + 1 ≥ N :

ε
i1···iN−1 kN ···kDε

j1···jN−1

kN ···kD∂i1φ∂j1φ∂i2∂j2φ · · · ∂iN−1∂jN−1φ, (B.17)

is invariant up to a total derivative. By Theorem 2, the sum with unit coefficients of

all trees with N vertices is proportional to (B.17), up to a total derivative. In fact, the

constant of proportionality is 1.
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B.3.2. Non-minimal Invariants

So far we have found the unique minimal 1-invariant for each N , that is with ∆ = N − 1.

In what follows we argue that any non-minimal 1-invariant (∆ > N − 1) is equal to an

exact 1-invariant up to a plain-relation (a total derivative). We begin with the following

definition:

Definition 17 (Frame). For Γ ∈ GN,∆, delete all edges incident to leaves; iterate this

procedure until reaching a graph Γf that contains no leaves. We call Γf the frame of Γ.

Note that, by definition, after deleting from Γ all edges that appear in Γf , each of the

connected components in the resulting graph is a tree. We also define:

Definition 18 (Frame Invariant). A loopless 1-invariant L =
∑k

i=1 αiΓi is a frame invari-

ant if the frames of Γi for all i = 1, . . . , k are identical.

For convenience, we define a map f on frame invariants, such that f(L) is the frame which

is common to all of the graphs contained in L.

By definition, the nonempty vertices in any frame have degree greater than 1. No

such vertex can be turned into a ×-vertex or be adjacent to a ?-vertex in a ?-graph associ-

ated with Γ. This means that terms with different frames cannot lead to cancellations in

the consistency equation. Therefore, a consistency equation naturally splits into multiple

consistency equations, each one a frame invariant. This is summarized in the lemma below:

Lemma 7. Any loopless 1-invariant is a linear combination of frame invariants.

The proofs presented in Proposition 10 and 11 and Theorem 2 are directly applicable to

frame invariants, from which we conclude:

Proposition 12. Up to proportionality, any loopless frame invariant L is equal to the sum

with unit coefficients of all plain-graphs that satisfy the following conditions:

(a) The plain-graph has a frame f(L).

(b) If there is more than one connected component in the plain graph, then none of them

is a tree.

Note that condition (b) follows directly from Corollary 13. Proposition 12 effectively pro-

vides an equivalent definition for frame invariants. Classifying all non-minimal 1-invariants

is thus reduced to classifying all non-minimal frame invariants. Furthermore, by Proposi-

tion 2, we can restrict our search to loopless frame invariants. In the following we will show

that any loopless frame invariant is equal to an exact invariant up to total derivatives. We

start with a useful lemma:

Lemma 8. Let Γ(`) ∈ G be an `-looped exact 1-invariant, such that all vertices with loops

have degree 2. Then ρ(0) ◦ θ(Γ(`)) is a loopless 1-invariant and is equal to Γ(`) up to a

plain-relation.
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Proof. Label the loops in Γ(`) from 1 to `. Note that ρ ◦ θ1(Γ(`)) = Γ(`) + ρ(`−1) ◦ θ1(Γ(`)).

Since θ1(Γ(`)) is a ?-ed plain graph, ρ ◦ θ1(Γ(`)) is a plain-relation. Hence ρ(`−1) ◦ θ1(Γ(`))

is 1-invariant. Define

L1 ≡ ρ(`−1) ◦ θ1(Γ(`)) = ρ ◦ θ1(Γ(`))− Γ(`),

L1 is by definition an exact 1-invariant up to a plain-relation ρ ◦ θ1(Γ`). Furthermore, all

graphs in L1 are (`− 1)-looped. Therefore, ρ ◦ θ2(L1) = L1 + ρ(`−2) ◦ θ2(L1). Define

L2 ≡ ρ(`−2) ◦ θ2(L1) = ρ ◦ θ2(L1)− L1,

which is also an exact 1-invariant up to plain-relations and consists of graphs that are

(`− 2)-looped. Iterating ` times, we obtain

L` = ρ(0) ◦ θ`−1 ◦ · · · ◦ ρ(`−2) ◦ θ2 ◦ ρ(`−1) ◦ θ1(Γ(`)) = ρ(0) ◦ θ(Γ(`)),

which is an exact 1-invariant up to plain-relations.

Theorem 3. A non-minimal frame invariant is an exact invariant up to a plain-relation.

Proof. It is sufficient to consider any loopless non-minimal frame invariant L(k) ∈ LN,∆,

with k the number of empty vertices in f(L(k)). Note that since L(k) is non-minimal, it is

not a tree and therefore k < N . We prove the theorem by induction on k.

1. k = 0: In this case, f(L(0)) = L(0). By construction, a vertex in a graph in L(0) is of

degree no less than 2, and thus L(0) is already exactly invariant.

2. If any L(k) with k < α is an exact invariant plus a plain-relation: Consider any

loopless non-minimal frame invariant L(α). Form an `-looped exact 1-invariant Γ(α)

from f(L(α)) by adding a loop to each empty vertex. By Lemma 8, ρ(0) ◦ θ(Γ(α))

is a loopless 1-invariant, equal to Γ(α) up to plain-relations. Using Lemma 7, ρ(0) ◦
θ(Γ(α)) =

∑
i Fi, where each Fi is a frame invariant with a distinct frame. Provided

α < n, there is exactly one Fi, say F̃ , with f(F̃ ) = f(L(α)), and all other Fi have

fewer than α empty vertices in f(Fi). Since all other Fi’s have fewer than α empty

vertices in f(Fi), they are exact 1-invariants up to a plain-relation, by the induction

hypothesis. But this means that F̃ is also an exact 1-invariant up to plain-relations.

By Proposition 12, since F̃ and L(α) share the same frame, F̃ is proportional to L(α)

and thus L(α) is also an exact 1-invariant up to plain-relations.

By induction, L(k) is exactly 1-invariant up to plain-relations for any 0 ≤ k < N .

From the above discussion, we can conclude: The set of all exact 1-invariants with all

looped vertices of degree 2 generates all non-minimal 1-invariants, up to plain-relations.

An example of these graphs for N = 3 and ∆ = 4 is shown in Figure 5.

We end our discussion of the linear shift symmetry with a summary of the full classi-

fication of 1-invariants:
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Figure 5: All 1-invariant terms up to total derivatives, with N = 3, ∆ = 4 and P = 1.

Theorem 4 (Classification of 1-invariants). The sum with unit coefficients of all trees

with n vertices is the unique 1-invariant with ∆ = N − 1 (up to proportionality and plain-

relations). The set of all graphs consisting of N vertices, with all vertices of degree higher

than 1 and any looped vertex of degree 2, generate all 1-invariants with ∆ > N − 1 (up to

plain-relations). There are no invariants with ∆ < N − 1.

B.4. Invariants from Superpositions

In this section, we describe a method of combining invariants to form other invariants.

Therefore, we will need to keep track of the degree of the polynomial shifts under which

the variation of various terms are taken. It is important to recall at this point that the

variation map δP depends crucially on P . Therefore, all the different types of graphs

depend on P as well. Until now, this dependence on P has been kept implicit. We will

now make it explicit by referring to graphs as P -graphs.

The method of combining invariants involves the notion of superposition, defined be-

low, which combines graphs with different values of P .

Definition 19 (Superposition of Graphs). Given a PA-graph ΓA and a PB-graph ΓB,

which each have the same value of N , the superposition of ΓA and ΓB is a P -graph formed

by applying the the following procedure:

1. If there is a ×-vertex in ΓB, replace the vertex in ΓA that has the same label as the

×-vertex in ΓB with a ×-vertex.

2. Add any ?-vertices in ΓB to ΓA.

3. Take all edges in ΓB and add them to ΓA, joining the same vertices as they do in ΓB.

4. Identify the resulting graph as a null graph if deg(×) is higher than P or there are

two ×-vertices.

The resulting graph is denoted by ΓA ∪ ΓB.

Note that ΓA ∪ΓB = ΓB ∪ΓA. Note that the above definition of superposition depends on

P . We will refer to such a superposition as a P -superposition.

Definition 20 (Superposition of Linear Combinations). Given the linear combinations

LA =
∑kA

i=1 ai Γ
A
i and LB =

∑kB
i=1 bi Γ

B
i , where ΓAi ,Γ

B
j are graphs with the same n, the

superposition of LA and LB is defined as

LA ∪ LB ≡
kA∑
i=1

kB∑
j=1

ai bj ΓAi ∪ ΓBj .
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B.4.1. Superposition of a P -invariant and an Exact Invariant

This section involves the construction of new invariants by taking the superposition of a

P -invariant with an exact invariant.

Lemma 9.

1. Given a P -graph Γ ∈ LN,∆ and a PE-graph ΓE ∈ LN,∆E
, where ΓE is an exact

PE-invariant,

ΓE ∪ δP (Γ) = δP+PE+1(ΓE ∪ Γ), (B.18)

where ∪ denotes (P + PE + 1)-superposition.

2. Given a P -graph Γ? ∈ L?N,∆ and a PE-graph ΓE ∈ LN,∆E
, where ΓE is an exact

PE-invariant,

ΓE ∪ ρ(Γ?) = ρ(ΓE ∪ Γ?), (B.19)

where ∪ denotes (P + PE + 1)-superposition.

Proof.

1. Operationally, a graph in the LHS of (B.18) is given by substituting one •-vertex,

v, in Γ with a ×-vertex and then adding the edges in ΓE to the result. Meanwhile,

the RHS is given by adding the edges in ΓE to Γ first before substituting v by a

×-vertex. Thus, (B.18) is violated only when a graph vanishes from one side and not

the other. A graph vanishes from the RHS if and only if the degree of the vertex v

in ΓE ∪ Γ is greater than P + PE + 1. If this condition holds, then the graph also

vanishes from the LHS by the rules of (P + PE + 1)-superposition. A graph could

also possibly vanish from the LHS if deg(v) > P in Γ. However, if deg(v) > P in Γ,

then deg(v) > P + PE + 1 in ΓE ∪ Γ since the degree of a vertex in ΓE is at least

PE + 1 (by Corollary 4). Therefore, the conditions for the vanishing of a graph from

either side of (B.18) are identical and thus the equation holds.

2. Once again, (B.19) is violated only when a graph vanishes from one side and not the

other. A graph vanishes from the RHS if and only if the degree of the ×-vertex in

ρ(ΓE ∪ Γ?) is greater than P + PE + 1. If this condition holds, then the graph also

vanishes from the LHS by the rules of (P + PE + 1)-superposition. A graph on the

LHS could also possibly vanish if deg(×) > P for a graph Γ× in ρ(Γ?). However,

then deg(×) > P + PE + 1 in ΓE ∪ Γ×, since the degree of a vertex in ΓE is at least

PE + 1 (by Corollary 4). Therefore, the conditions for the vanishing of a graph from

either side of (B.19) are identical and thus the equation holds.

Now we apply Lemma 9 to prove the main result:

Theorem 5. For fixed N , the superposition of a P -invariant and an exact PE-invariant

is a (P + PE + 1)-invariant.
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Proof. Denote the P -invariant by L =
∑k

i=1 biΓi and the exact PE-invariant by LE =∑kE
i=1 aiΓ

E
i . By Corollary 4, all vertices in ΓEi have degree greater than PE . Since L is a

P -invariant, there exists a linear combination of ?-graphs, L? =
∑k?

i=1 ciΓ
?
i , such that the

folowing consistency equation holds:

δP (L) = ρ(L?). (B.20)

Define L̃ ≡ LE ∪ L =
∑

i,j aibjΓ
E
i ∪ Γj . Then, using Statement 1 of Lemma 9:

δP+PE+1(L̃) =
∑
i,j

aibj δP+PE+1(ΓEi ∪ Γj)

=
∑
i,j

aibj ΓEi ∪ δP (Γj) =
∑
i

ai ΓEi ∪ δP (L)
(B.21)

Furthermore, define L̃? ≡
∑

i,j aicjΓ
E
i ∪Γ?j using (P +PE + 1)-superposition. Using State-

ment 2 of Lemma 9:

ρ(L̃?) =
∑
i,j

aicjρ(ΓEi ∪ Γ?j ) =
∑
i,j

aicjΓ
E
i ∪ ρ(Γ?j ) =

∑
i

aiΓ
E
i ∪ ρ(L?) (B.22)

Combining (B.20), (B.21) and (B.22) we have that δP+PE+1(L̃) = ρ(L̃?) and therefore

L̃ ≡ LE ∪ L is a (P + PE + 1)-invariant.

B.4.2. Superposition of Minimal Loopless 1-invariants

In this section we show that the superposition of Q minimal loopless 1-invariants results in

a (2Q − 1)-invariant. To prove this statement, we need to construct a linear combination

of Medusas in order to write down a valid consistency equation. This construction requires

intermediate ?-graphs called “hyper-Medusas”, which we now define:

Definition 21 (Hyper-Medusa). A hyper-Medusa is a loopless ?-graph with all ?-vertices

adjacent to the ×-vertex, such that the degree of the ×-vertex deg(×) and the number of

?-vertices N(?) satisfy deg(×) ≥ P + 1−N(?).

Lemma 10. Given Mh a hyper-Medusa, there exists a linear combination of Medusas LM
that satisfies ρ(0)(Mh) = ρ(0)(LM ).

Proof. Within the action of ρ(0), we can delete deg(×) +N(?)− P + 1 ≥ 0 ?-vertices and

then add the same number of edges in Mh , yielding a linear combination of ?-graphs with

exactly P + 1− deg(×) ?-vertices. These resulting graphs are Medusas.

The following definition will allow us to construct the desired hyper-Medusas:

Definition 22. Take Γ1 to be any ×-graph or ?-graph and for each i = 2, ..., Q, take Ti to

be any tree, such that Γ and Ti have the same value of n. Label the ×-vertex in Γ1 by v×

and define T×i to be the graph formed from Ti by replacing the vertex that is labeled by v×

with a ×-vertex. If v× is a leaf in Ti, then define T̃i to be the unique P = 1 Medusa that

is associated with T×i , otherwise T̃i = T×i . Then we define:

χ(Γ1 ∪ T2 ∪ · · · ∪ TQ) ≡ Γ1 ∪ T̃1 ∪ · · · ∪ T̃Q.
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Theorem 6. For fixed N , the superposition of Q minimal loopless 1-invariants is a (2Q−
1)-invariant.

Proof. By Theorem 2, any minimal N -point loopless 1-invariant is equal to the sum with

unit coefficients of all trees with N vertices, up to proportionality. Therefore, denote the

Q copies of the minimal loopless 1-invariants by L
(c)
n =

∑NN−2

αc=1 T
(c)
αc , for c = 1, . . . , Q. We

add an additional structure to all graphs in this proof: We color all edges in all graphs in

L
(c)
N by a distinct color (c). Throughout this proof, two graphs are equal if and only if they

are the same graph and, in addition, their edges are the same colors. Taking into account

this coloring, all of the plain-graphs in L ≡
⋃Q
c=1 L

(c)
N now have unit coefficients, and the

number of these plain-graphs is
(
NN−2

)Q
. Moreover, L is the sum over α1, . . . , αQ of all

such T
(1)
α1
∪T (2)

α2
∪ · · · ∪T (Q)

αQ
’s with unit coefficients. By Theorem 2, there is a unique linear

combination of Medusas
∑

βc
M

(c)
βc

satisfying

δ1

(
L

(c)
N

)
= δ1

NN−2∑
αc=1

T (c)
αc

 = ρ(0)

N(N−1)N−3∑
βc=1

M
(c)
βc

 ,

where each T
(c)
αc is a distinct tree and each M

(c)
βc

is a distinct P = 1 Medusa, consisting of

a subgraph tree and a disconnected subgraph F × . In the following, we take the limit

P →∞, so that no graph vanishes. Note that we have∑
α1

δ∞

(
T (1)
α1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

)
=
∑
α1

(
δ∞(T (1)

α1
)
)
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

=
∑
β1

ρ(0)
(
M

(1)
β1

)
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ
+
∑
α1

(δ∞ − δ1)(T (1)
α1

) ∪ T (2)
α2
∪ · · · ∪ T (Q)

αQ
. (B.23)

Define XL ≡
∑

β1,α2,...,αQ
M

(1)
β1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ
and XR to be the sum with unit

coefficients of all distinct graphs contained in
∑

β1,α2,...,αQ
χ(M

(1)
β1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ
). In

the following, we show that

ρ(0)(XL) = ρ(0)(XR). (B.24)

Since T
(c)
αc , αc = 1, . . . , NN−2, and M

(c)
βc

, βc = 1, . . . , N(N − 1)N−3, are all distinct from

each other, all elements in XL and XR have unit coefficient. Therefore, it will suffice to

show that any graph in ρ(0)(XR) is also in ρ(0)(XL), and vice versa.

RHS contains LHS: Let Γ× be a ×-graph in ρ(0)(XL). Then, Γ× is contained in

ρ(0)
(
M

(1)
β1
∪T (2)

α2
∪ · · ·∪T (Q)

αQ

)
for some β1, α2, . . . , αQ. The ?-graph, M

(1)
β1
∪T (2)

α2
∪ · · ·∪T (Q)

αQ

induces a unique χ
(
M

(1)
β1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

)
, such that all ×-graphs in ρ(0)

(
M

(1)
β1
∪ T (2)

α2
∪

· · · ∪ T (Q)
αQ

)
(including Γ×) are contained in ρ(0) ◦ χ

(
M

(1)
β1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

)
. Therefore,

Γ× is in ρ(0)(XR) and ρ(0)(XR) contains ρ(0)(XL).

LHS contains RHS: Let Γ× be a ×-graph in ρ(0)(XR). Then, Γ× is contained in ρ(0) ◦
χ
(
M

(1)
β1
∪T (2)

α2
∪ · · · ∪T (Q)

αQ

)
for some β1, α2, . . . , αQ. In particular, Γ× is contained in some
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ρ(0)
(
M

(1)
β′1
∪ T (2)

α′2
∪ · · · ∪ T (Q)

α′Q

)
with T

(2)
α′2
∪ · · · ∪ T (Q)

α′Q
in ρ(0) ◦ χ

(
T

(2)
α2
∪ · · · ∪ T (Q)

αQ

)
. Since

M
(1)
β′1
∪ T (2)

α′2
∪ · · · ∪ T (Q)

α′Q
is in XL, Γ× is in ρ(0)(XL) and ρ(0)(XL) contains ρ(0)(XR).

From (B.24) we obtain∑
β1,...,αQ

ρ(0)
(
M

(1)
β1

)
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ
= ρ(0) (XR) . (B.25)

Similarly, ∑
α1,...,αQ

(δ∞ − δ1)T (1)
α1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ
= ρ(0)

(
X̃R

)
, (B.26)

with X̃R given by the sum with unit coefficients of all graphs contained in∑
α1,...,αQ

χ
(

(δ∞ − δ1)T (1)
α1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

)
.

Therefore, by (B.23), (B.25) and (B.26), we conclude that

δ∞(L) =
∑

α1,...,αQ

δ∞

(
T (1)
α1
∪ T (2)

α2
∪ · · · ∪ T (Q)

αQ

)
= ρ(0)

(
XR + X̃R

)
. (B.27)

Finally, switch back to P = 2Q − 1. Then graphs with deg(×) > 2Q − 1 will vanish

simultaneously on both sides of (B.27), and thus, in P = 2Q− 1:

δ2Q−1(L) = ρ(0)
(
XR + X̃R

)
. (B.28)

Next we show that any graph, Γ, in XR + X̃R is a hyper-Medusa. By construction, Γ

results from the superposition of graphs with either a ×-vertex of degree 1 joined to a

?-vertex or a ×-vertex of degree larger than 1. Therefore, deg(×) in Γ satisfies deg(×) ≥
N(?) + 2 (Q−N(?)). So, with P = 2Q − 1, deg(×) ≥ P + 1 − N(?) and Γ is a hyper-

Medusa. Hence, by Lemma 10, there exists a linear combination, LM , of Medusas, such

that ρ(0)
(
XR + X̃R

)
= ρ(0) (LM ). Therefore, combined with (B.28), we obtain δ2Q−1(L) =

ρ(0)(LM ), which proves that L is a (2Q− 1)-invariant.

We end our search for P -invariants with a summary of all invariants that we found:

Theorem 7. For fixed N , the superposition of any exact PE-invariant with the superposi-

tion of Q minimal loopless 1-invariants results in a P -invariant, provided PE + 2Q ≥ P .8

We conjecture that the above theorem captures all P -invariants, up to total derivatives.

Since we have classified all exact invariants and all 1-invariants, it is straightforward to

construct the P -invariants in the above theorem for any specific case.

8This theorem applies even for PE < 0. Recall that, by Corollary 5, an exact P -invariant for P < 0 is

just any possible linear combination of plain-graphs. For example, the plain-graph consisting only of empty

vertices is an exact P -invariant for any P < 0.

– 62 –



Note that we have classified exact invariants and 1-invariants using the two parameters,

N (number of vertices) and ∆ (number of edges). Finite connected graphs can always be

embedded on a Riemann surface of some genus, in which case Euler’s theorem relates N , ∆

and the number of faces F of the embedding to the genus g of the surface. Therefore, one

could also use the parameters N and F instead to classify invariants9. Any finite graph

that can be embedded into a 2-sphere can also be embedded into a plane, and is known as

a planar graph. In particular, this is true for any graph with N ≤ 4 and also for any tree.

Furthermore, any superposition of planar graphs is again a planar graph. The number of

faces of these planar graphs is exactly the number of “loops” when the graph is interpreted

as a Feynman diagram10. One can check this statement for all of the examples in §4.4

since they were all generated by superposition of planar graphs. Note that, in §4.4, except

for P = 0 (which is a trivial case), all superpositions involve trees, so that all superposed

graphs are connected. For example, all of the graphs in Figure 2 have three faces when

embedded into a plane. Indeed, when interpreted as Feynman diagrams, these graphs

have three “loops”. In general, the superposition of Q minimal loopless 1-invariants yields

graphs have F “loops” as Feynman diagrams, where F is given by F = (Q − 1)(N − 1).

Theorem 7 says that these superpositions will be P -invariant for P ≤ 2Q−1. For example,

the superposition of three minimal loopless 1-invariants with N = 4 produces a 5-invariant

with 6 faces.

B.5. Unlabeled Invariants

So far we have been dealing entirely with labeled graphs, which represent algebraic terms

where each φ is given a distinct label. But we are primarily interested in invariants where

all φ’s are the same. These are represented by unlabeled graphs, that is, where isomorphic

graphs are identified with each other. One may wonder whether or not the labeled P -

invariants capture all of the unlabeled ones. The following proposition addresses this

question, and shows that our restriction to labeled P -invariants still allows us to find all

unlabeled P -invariants.

Proposition 13. Given an unlabeled P -invariant Lunlab, there exists a labeled P -invariant

Llab, such that Llab reduces to an integer multiple of Lunlab once the labels are removed.

Proof. Define L×unlab = δ(Lunlab), where δ(Lunlab) contains δ(Γunlab) for all Γunlab in Lunlab.

Label Lunlab (i.e., label the vertices from 1 to N) to form Llab. This labeling is fiducial

since we will eventually sum over all possible labelings. Do the same for L×unlab to form L×lab.

Define L×
lab′

= δ(Llab), which is a labeling of L×unlab, possibly distinct from L×lab. However,

if Γ×lab in L×lab and Γ×
lab′

in L×
lab′

reduce to the same Γ×unlab in L×unlab once the labels are

removed, then Γ×lab and Γ×
lab′

are simply related by a permutation. Therefore,∑
σ∈SN

σ ◦ δ(Llab) =
∑
σ∈SN

σ(L×lab) =
∑
σ∈SN

σ(L×
lab′

), (B.29)

where SN is the group of permutations on the N vertices.

9In principle, ∆ and F could also be used, but this seems less natural.
10Thanks to Kurt Hinterbichler for bringing this issue to our attention at the 2014 BCTP Tahoe Summit.
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Since Lunlab is P -invariant, there exists L?unlab such that δ(Lunlab) = ρ(L?unlab). Label

L?unlab to form L?lab and define L×
lab′′

= ρ(L?lab). Generically, there can be cancellations

between isomorphic graphs in L×
lab′′

, once the labels are removed, since one ×-graph can

be associated with more than one ?-graph. Therefore, L×
lab′′

is not necessarily a labeling

of L×unlab. Nevertheless, if αΓ×unlab appears in L×unlab with α 6= 0, then all of the graphs,

Γ×1 , . . . ,Γ
×
k in L×

lab′′
which are isomorphic to Γ×unlab appear in L×

lab′′
as a linear combination∑k

i=1 αi Γ×i with
∑k

i=1 αi = α. Conversely, if
∑k

i=1 αi Γ×i appears in L×
lab′′

, but the graph,

Γ×unlab, to which Γ×i reduces once the labels are removed, does not appear in L×unlab, then∑k
i=1 αi = 0. Therefore,

∑
σ∈SN

k∑
i=1

αi · σ(Γ×i ) =
k∑
i=1

αk
∑
σ∈SN

σ(Γ×lab) = α
∑
σ∈SN

σ(Γ×lab),

which implies ∑
σ∈SN

σ ◦ ρ(L?lab) =
∑
σ∈SN

σ(L×
lab′′

) =
∑
σ∈SN

σ(L×lab). (B.30)

Combining Eqs. (B.29) and (B.30) with the facts that σ ◦ δ = δ ◦ σ and σ ◦ ρ = ρ ◦ σ for

each σ ∈ SN , yields the desired labeled consistency equation:

δ

(∑
σ∈SN

σ(Llab)

)
= ρ

(∑
σ∈SN

σ(L?lab)

)
.

∑
σ∈SN σ(Llab) is P -invariant and reduces to N !Lunlab once the labels are removed.

C. Coset Construction

The standard technique for finding terms which are invariant under a nonlinear realization

of a symmetry is to use a coset construction [24–27]. In this appendix we explore the

connection between our invariant Lagrangians and this construction. Although we find

that the coset construction can reproduce some of the invariants that we have discovered,

using this method is computationally difficult when compared to the graphical method

introduced in this paper.

We first review the coset construction applied to the polynomial shift symmetry as

presented in [18, 28]. In dimension D, consider the polynomial shift transformations of the

Goldstone fields defined in (B.1), accompanied with space-time translations and spatial

rotations. Denote the corresponding generators by Z,Zi, . . . , Zi1...iP for polynomial shifts,

Pi for spacial translations, P0 for temporal translations, and J ij for spatial rotations. Note

that there are no boost symmetries. For the nonlinear realization of space-time symmetry,

the translation generators are treated as the broken generators [26, 27]. The Goldstone

fields transform as

δPiφ = ∂iφ, δZφ = 1, δZi1...ikφ =
1

k!
xi1 . . . xik , k = 1, . . . , P.
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The commutators between the operators can be readily calculated,

[Pi, Z] = 0,
[
Pi, Zi1...ik

]
= −i

∑
j

1

k
δjiZ

i1...̂...ik ,
[
Zi1...ik , Zj1...j`

]
= 0,

where ̂ means that the index j is omitted.

The commutators above given by the generators P0, Pi, J ij , Z and Zi1...ik , k = 1, . . . , P

define the Lie algebra of a Lie group G, and P0 and J ij correspond to the unbroken normal

subgroup H. Take left invariant differential N -forms on G/H to be N -cochains, and take

the coboundary operator d(k) to be the exterior derivative of differential forms. Denote the

group of N -cocycles by Zk = Ker d(k), and the group of k-coboundaries by Bk = Im d(k−1).

The Chevalley-Eilenberg cohomology group Ek(G/H) is defined to be

Ek(G/H) = Zk/Bk,

which is isomorphic to the Lie algebra cohomology Hk0(G/H;Z). (See [29] for details.)

We associate the generator Z with the Goldstone field φ. To each generator Zi1...ik ,

k = 1, . . . , P we associate a symmetric k-tensor field φi1...ik . Indices can be lowered or

raised by Kronecker delta symbols. The coset space is parametrized by

g = exp
(
iPi xi

)
exp

(
iZφ+ i

P∑
k=1

Zi1...ikφi1...ik

)
.

The Maurer-Cartan form is

−ig−1dg = Pidxi + Z(dφ+ φi dx
i) +

P−1∑
n=1

Zi1···in
(
dφi1···in + φi1···inidx

i
)

+ Zi1...iP dφi1...iP .

Therefore, the basis dual to the generators is

ωiP = dxi, ωi1···iP = dφi1···iP ,

ω = dφ+ φi dx
i, ωi1···ik = dφi1···ik + φi1···iki dx

i, k = 1, . . . , P − 1. (C.1)

Moreover,

dωiP = 0, dωi1···iP = 0,

dω = dφi ∧ dxi, dωi1···ik = dφi1···iki ∧ dx
i, k = 1, . . . , P − 1.

The inverse Higgs constraints [30, 31] imply the vanishing of ω and ωi1···ik (k < P ) in (C.1):

φi1···ik = (−1)k∂i1 · · · ∂ikφ, k = 1, . . . , P. (C.2)

Having reviewed the coset construction, we now present examples for P = 2 and 3 (the

P = 1 scenario is essentially the same as the Galileon case [28]).

P=2 Case: For N = 3, the cohomology group is trivial for D < 2. Therefore, let us start

with the simplest nontrivial case, D = 2. We are looking for a closed form involving the
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wedge of three ω’s, which are not ωP . There is one independent cohomology element, with

the lowest number of indices on ω’s:

Ω3 = εij ωab ∧ ωia ∧ ωjb = d
(
εijφab dφia ∧ dφjb

)
≡ dβ2.

These expressions can be extended to D ≥ 2:

ΩD+1 = εijs3...sD ωab ∧ ωia ∧ ωjb ∧ ω
s3
P ∧ · · · ∧ ω

sD
P ,

βD = εijs3...sD φab dφia ∧ dφjb ∧ dx
s3 ∧ · · · ∧ dxsD .

Taking the pullback of βD to the spacetime manifold and then applying the inverse Higgs

constraints in (C.2) gives a term proportional to

εijs3...sDεk`s3...sD ∂a∂bφ∂i∂k∂aφ∂j∂`∂bφ,

which is already contained in [18]. One can verify that this is equivalent up to integration by

parts and overall prefactor to the invariant in (4.10). That term was found to be invariant

for P = 3, and is therefore also invariant for P = 2.

Next, consider N = 4. The simplest nontrivial case is D = 3. We seek a closed 4-form

given as the wedge of four ω’s, which are not ωP . There is one independent cohomology

element, with the lowest number of indices on ω’s:

Ω′4 =εijk ωa ∧ ωia ∧ ωjb ∧ ωkb

=d

[
εijkφac

(
1

2
φac dφjb + φbc dφja

)
∧ dφkb ∧ dxi

]
≡ dβ′3

These expressions can be extended to D ≥ 3:

Ω′D+1 = εijks4...sD ωa ∧ ωia ∧ ωjb ∧ ωkb ∧ ω
s4
P ∧ · · · ∧ ω

sD
P ,

β′D = εijks4...sDφac

(
1

2
φac dφjb + φbc dφja

)
∧ dφkb ∧ dxi ∧ dxs4 ∧ · · · ∧ dxsD .

Taking the pullback of β′D to the spacetime manifold and then applying the inverse Higgs

constraints in (C.2) gives a term proportional to

εijs3...sDεk`s3...sD ∂(a∂bφ∂c)∂j∂`φ∂a∂bφ∂c∂i∂kφ.

One can verify that this is equivalent up to integration by parts and an overall prefactor

to the invariant in (4.7).

P=3 Case: Let us focus on N = 3. Again, we start with D = 2. There is one independent

cohomology element:

Ω3 = εij
(
ωab ∧ ωia ∧ ωjb + 2ωa ∧ ωib ∧ ωjab − 2ωa ∧ ωia ∧ ωjbb
− ω ∧ ωiab ∧ ωjab + ω ∧ ωiaa ∧ ωjbb

)
.

It is quite a challenge to determine the potential, β2, for this Ω3. One can appreciate the

power of the graphical method at this point: We have already determined that there is
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one independent 3-invariant with N = 3. Therefore, we can immediately conclude without

calculation that the pullback of β2 must be proportional to the invariant in (4.3) up to total

derivatives. Again, Ω3 can be generalized to D ≥ 2 by wedging the appropriate number of

ωP ’s on the end:

ΩD+1 = εijs3...sD
(
ωab ∧ ωia ∧ ωjb + 2ωa ∧ ωib ∧ ωjab − 2ωa ∧ ωia ∧ ωjbb
− ω ∧ ωiab ∧ ωjab + ω ∧ ωiaa ∧ ωjbb

)
∧ ωs3P ∧ . . . ∧ ω

sD
P .

References

[1] G. ’t Hooft, Naturalness, chiral symmetry, and spontaneous chiral symmetry breaking, NATO

ASI Series B 59 (1980) 135.
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