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EPIGRAPH

The effective theory is only moderately successful in predicting behavior because, as we all

know, decisions are often not rational or are based on a defective analysis of the

consequences of the choice. That is why the world is such a mess.

—Stephen Hawking
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ABSTRACT OF THE THESIS

A Fully Bayesian Approach to Logistic Regression

by

Joanne L. Shin

Master of Science in Electrical Engineering
(Intelligent Systems, Robotics, and Control)

University of California, San Diego, 2015

Professor Todd P. Coleman, Chair

Binary logistic regression is often used in clinical applications to predict the oc-

currence of medical conditions that arise within a patient population. Point estimations

are often made to approximate the unknown regression weights. In doing so, information

about the underlying posterior distribution of the weights is lost. We propose a method

that views the logistic regression model from a Bayesian perspective and takes into con-

sideration the full posterior of the unknown regression coefficients when computing the

probability of belonging to the positive class. This method will be referred to as the Fully

Bayesian method. The Fully Bayesian method allows us to quantify the uncertainty in our

x



probability calculations. The work in this paper builds on Kim and Ma’s previous work

in which they demonstrated efficiently solvable fully Bayesian estimation techniques. By

solving a (convex) Kullback-Leibler divergence problem they were able to obtain a mapping

from any log-concave prior to its corresponding posterior distribution thus enabling one

to draw independent samples from the posterior with ease. Having the full posterior is

useful in revealing how credible a prediction is and can be utilized to define an abstain

strategy. The data set was created from a subsample of de-identified patient data from Kaiser

Permanente and consists of a highly imbalanced number of patients that have and have

not been diagnosed with asthma. The results show that the overall performance of a Fully

Bayesian scheme produces a higher measure of accuracy than the point estimate method.
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Chapter 1

Introduction

1.1 Background

Regression models are predictive models widely used across many disciplines and

applications. These models aim to fit some functional relationship between a number of

categorical dependent variables (regressors) to an independent variable. The relationship

between the dependent and independent variable determines the type of regression model. In

situations where the independent variable only takes on two states (binary classes), logistic

regression is often employed.

In clinical applications, binary logistic regression is a popular method for predicting

medical outcomes. The regressors are often seen to be a mixture of binary (yes or no)

and real valued measurements (heart rate, body mass index, age, etc.) [1]. The possible

outcomes are usually 1 or 0 indicating that a patient does or does not have a particular

disease or condition. To fit the model according to a particular data set, we need to estimate

the parameters involved - namely the weight of each regressor. The fitting phase will be

referred to as the learning phase and the data involved during the learning phase will be

1
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referred to as the training data. To test our model we hold out a portion of data that is unseen

by our model and this data is referred to as the testing data. As we will see in the following

section, a point estimation that minimizes the loss associated with logistic regression is made

to approximate the weight on each regressor. By performing a point estimation to learn the

regression weights information about the uncertainty of the estimation is lost. However, in

clinical domains one may want to ask - how credible is the outcome of the model?

1.2 Notation

The following notation will be consistently used throughout this document.

• Capitalization will be used to indicate random variables

• D represents the number of regressors/features (regressors and features will be used

interchangeably)

• ~x ∈ {0,1}D+1 represents the regressors in vector form,~x = [1 x1 x2 ... xD]

• y ∈ {0,1} represents the class label

• Class labels 0 and 1 are referred to as the “negative” and “positive” class

• ~w ∈ R D+1 represents the weights or coefficients in vector form, ~w = [w0 w1 w2 ... wD]

• Superscripts are used to indicate different samples (i.e. ~x(i) = [1 x(i)1 x(i)2 ... x(i)D ]

indicates the ith sample)

Other notation will be defined as needed.



Chapter 2

Fully Bayesian Decision-Making

2.1 Traditional Logistic Regression

Logistic regression assumes the following relationship between the conditional

probability of belonging to the positive class (p) and the regressors~x (2.1).

log
p

1− p
= w0 +w1x1 + ...+wDxD (2.1)

where

p = P(Y = 1|X =~x ;~w) (2.2)

Note that the semi-colon is used in the notation above to indicate that ~w is a deterministic

unknown variable. In the spirit of using logistic regression to model medical outcomes let

each sample represent different patients and let each outcome of belonging to the positive

class be analogous to a patient being diagnosed with a medical condition. All patients

3
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are assumed to be independent of one another. Every patient k has their own features and

probability of being diagnosed: (~x(k),y(k)), but all patients are assumed to share the same

weights (~w) on each regressor. Using a labeled set of training data the coefficients can be

estimated.

Before getting to how ~w is estimated, let us first set up the overall problem in more

detail. The relationship from (2.1) can be rewritten as (2.3) and (2.4).

P(Y = 1|X =~x(i) ;~w) =
1

1+ e−~wT~x(i)
(2.3)

P(Y = 0|X =~x(i) ;~w) =
1

1+ e~wT~x(i)
(2.4)

Since X ∈ {0,1}D+1, we can represent (2.3) and (2.4) compactly as (2.5).

P(Y = y(i)|X =~x(i),W = ~w) =
[

1

1+ e−~wT~x(i)

]y(i) [ 1

1+ e~wT~x(i)

](1−y(i))

(2.5)

The earlier assumption of each patient being independent allows us to represent the proba-

bility of all outcomes of every patient as the product of each individual outcome (2.7).

L(~w) = P(Y = y(1), ...,y(N)|X =~x(1), ...,~x(N) ;~w) (2.6)

=
N

∏
i=1

P(Y = y(i)|X =~x(i) ;~w) (2.7)

This is also known as the likelihood function (L(~w)) that is parameterized by ~w.
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2.1.1 Point Estimation

Given a set of labeled training data, the goal is to find the values of ~w that maximizes

(2.7). Note that (2.7) is not concave with respect to ~w and is therefore difficult to solve.

However the log-likelihood whose structure is the log-sum of exponents is well-known

to be concave [2]. Moreover, since log(u) is a monotonically increasing function the

maxima/minima is preserved (2.8) - (2.9). Maximizing the log-likelihood is equivalent to

minimizing the negative log-likelihood as shown in (2.10) - (2.11).

~w∗ = argmax
~w

L(~w) (2.8)

= argmax
~w

logL(~w) (2.9)

= argmax
~w

−
N

∑
i=1

y(i) log(1+ e−~w
T~x(i))− (1− y(i)) log(1+ e~w

T~x(i)) (2.10)

= argmin
~w

N

∑
i=1

y(i) log(1+ e−~w
T~x(i))+(1− y(i)) log(1+ e~w

T~x(i)) (2.11)

The negative log-likelihood is often referred to as the log-loss (2.12) - (2.13).

l(~w) =−L(~w) (2.12)

=
N

∑
i=1

y(i) log(1+ e−wT x(i))+(1− y(i)) log(1+ e~w
T~x(i)) (2.13)

Finding the optimal value ~w∗ in this manner is referred to as the Maximum Likelihood

Estimate (MLE). A penalty or regularization term is often added on to prevent over-fitting

by discouraging the values of ~w to grow impractically large (2.14). Imposing this structure

onto ~w is equivalent in a Bayesian sense of imposing some prior belief on the regression
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weights and interpreting the weights themselves as being a random variable. This equivalent

problem in a Bayesian sense is referred to as a Maximum a Posteriori (MAP) point estimation

problem and will be further explored in the next section.

~w∗ = argmin
~w

l(~w)+λR(~w) (2.14)

Let us shift to a Bayesian perspective and interpret the regression weights as being a random

variable. The choice of R(~w) determines the structure of the prior on W . For instance,

choosing an L2 regularizer corresponds to imposing a Gaussian prior on W whereas an L1

regularizer corresponds to imposing a Laplacian prior on W . Once ~w∗ is estimated, new

samples (~x(new)) can be classified as belonging to the positive class according to (2.15).

P(Y = 1|X =~x(new),W = ~w∗)≥ P(Y = 0|X =~x(new),W = ~w∗)

P(Y = 1|X =~x(new),W = ~w∗)≥ 1−P(Y = 1|X =~x(new),W = ~w∗)

Declare 1 if: P(Y = 1|X =~x(new),W = ~w∗)≥ 1
2

(2.15)

Note that when the costs associated with the two types of error are not equal, 1/2 can be

replaced by some threshold value, τ, where τ is a ratio of the costs.

2.2 Fully Bayesian Logistic Regression

As seen previously, the common Maximum Likelihood point estimation with a

regularization on ~w has an equivalence to a Bayesian MAP point estimate. This section is

primarily focused on the Bayesian interpretation of the point estimation problem. Although

point estimation is commonly used to estimate unknown parameters, there are fundamental
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limitations on how well a parameter can be estimated. For example, suppose we want to

estimate the regression weights in a logistic regression framework with D = 1 regressor.

Let P(W = ~w|X =~x(1), ...,~x(N),Y = y(1), ...,y(N)) ∼ N(0,σ2) be the posterior on W . For

short, let the posterior be π(~w). Figure 2.1 shows two possible Gaussian posteriors for W .

Although the green curve has a 95% credibility interval that is much wider than the blue

curve, the MAP point estimates are equal among the two curves (~w∗ = 10 shown in red). As

the name suggests - credibility intervals are useful in revealing how “good” or credible the

estimation is. If our point estimate came from the green posterior, relatively large changes in

the value that W takes on result in small changes in the probability of W . When evaluating

the posterior, it may seem as though any value of W within the 95% credibility interval of

~w∗ is suitable. However, large changes in the values that W takes on tend to result in large

enough changes in the probability of belonging to the positive class to make the decision

unstable (flip between 0 and 1).

We propose a Fully Bayesian logistic regression method that robustly learns the

posterior of W and takes the distribution along with its credibility intervals into consideration

when performing a classification task. Let us first assume that we are able to obtain the full

posterior distribution and in detail show how it is useful. Recall that the rule for classifying

a new sample~x(new) in a MAP point estimate framework is given by (2.15). Note that the

training data, I = (~x(1),y(1)), ...,(~x(N),y(N)), no longer provides any additional information

once W is learned. Thus, conditional independence leads us to (2.16).

P(Y = 1|I,X =~x(new),W = ~w) = P(Y = 1|X =~x(new),W = ~w) (2.16)

Let the posterior distribution on the weights be defined by (2.17).
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Figure 2.1: Two possible posterior distributions on W . Note although the two
distributions are different they have the same mode (shown in red).

π(~w) = P(W = ~w|I) (2.17)

The Law of Total Probability can be used to determine which weights are the most fitting

(2.19) - (2.20) by marginalizing out W . The marginal probability (2.18) is equivalent to

averaging the sigmoid function over the distribution of all values of W . According to the Law

of Large Numbers, the integral in (2.20) can be estimated by drawing many independently
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identically distributed (i.i.d) samples from π(~w) (2.21).

P(Y = 1|X =~x(new), I) (2.18)

=
∫
~w

P(Y = 1|X =~x(new),W = ~w, I)P(W = ~w|I)d~w (2.19)

=
∫
~w

1

1+ e−~wT~x(new) π(~w)d~w (2.20)

≈
(Zk)

M
k=1∼π

1
M

M

∑
k=1

1

1+ e−ZT
k ~x

(new) (2.21)

This method provides a different way of computing the probability of belonging to the

positive class by taking into consideration the distribution of the posterior on W . Note

that equation (2.21) is an average of P(Y = 1|X =~x(new),W = Zk), or the probability of

belonging to the positive class given that W takes on some value Zk. Thus, the Fully Bayesian

method can be interpreted as an average of a collection of point estimations. This allows us

empirically calculate the uncertainty of the probability of belonging to the positive class.

Let us revisit the two cases depicted by the blue and green curves in figure 2.1 using

the Fully Bayesian method for decision-making. When π(~w) is narrow (i.e. the blue curve in

figure 2.1) one would (most likely) see the distribution of P(Y = 1|X =~x(new),W = Zk), for

k = 1, ...,M looks similar to figure 2.2. Figure 2.2 shows that the empirical 95% credibility

interval is below the τ = 0.5 threshold. This suggests that our classifier’s decision for

X =~x(new) is fairly confident.
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Figure 2.2: For each sample of W at a fixed new sample X =~x(new), P(Y = 1|W =
Zk,X =~x(new)) changes. Thus, drawing M samples of W results in an estimated
distribution of P(Y = 1|W = Zk,X =~x(new)) for k = 1, ...,M

Now, imagine π(~w) is wide (i.e. the green curve in figure 2.1), then our histogram

would (most likely) resemble figure 2.3. Although the mode and average are well below the

0.5 threshold in figure 2.3, the empirical 95% credibility interval crosses 0.5. These cases

are indicative of our classifier being unsure or less confident about its decision. In these

cases, one might seek an alternative classification rule such as abstaining from making a

decision.

In many clinical settings where there is a high cost associated with making an error,

it is not uncommon to abstain from making a decision when the confidence of the prediction

is low [3]. In fact, Ferri and Hernandez-Orallo [4] measure the confidence of a decision by

equating it to the probability of belonging ot the positive class. They define a range of low

confidence by selecting a finite region near τ in which their classifier abstains. A problem
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Figure 2.3: The histogram above shows the empirical distribution of P(Y = 1|W =
Zk,X =~x(new)) for a fixed sample X =~x(new) and M samples from the posterior.
Note that the 95% credibility interval crosses the decision threshold, τ.

with this method is that it ignores the credibility of the probability measure itself. As a

result of the Fully Bayesian method, credibility intervals are readily available and can be

used in designing a more careful abstain strategy. Such a strategy would involve abstaining

when the 95% credibility interval is on the opposing side of a threshold value relative to

its probability of belonging to the positive class. An example of this will be shown in the

Experiments chapter.

2.2.1 Learning the Posterior

One of the main motivations behind developing point estimation methods is avoiding

the hassle of having to compute non-trivial integrals in learning the full posterior distribution.

However, one can approximate the full posterior distribution as well as any statistic belonging
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to it so long as a large number of samples from the posterior are attainable. A well-known

sampling method for attaining such samples is Gibbs Sampling [5]. A Gibbs Sampler is

a Markov Chain Monte Carlo (MCMC) algorithm. One of the biggest caveats of MCMC

algorithms is they tend to have unknown rates of convergence; meaning, there is no guarantee

on how long it will take to train such a classifier. Another significant problem arises from

changing the underlying probability distributions of interest. Since MCMC algorithms are

structured uniquely for specific probability distributions, altering these distributions often

entirely changes the structure of the algorithm.

Through recent work by Kim and Ma, [6], an efficient way to attain samples from

a posterior distribution has been developed that does not suffer from the same issues seen

in MCMC algorithms. As we will see, Kim, Ma and Mesa’s [7] results provide a robust

way sample from the posterior given any log-concave prior. To summarize their results

let us define a few terms. Let P and Q correspond to the prior and posterior distribution,

respectively, of the some random variable and let S be a map that pushes or transforms P

to Q. Kim and Ma state that if our likelihood and prior distributions are log-concave, then

there exists some diffeomorphism map S that will push P to Q. Moreover, the densities

corresponding to P and Q - p,q, respectively are related through (2.22).

p(u) = q(S(u))|det(JS(u))| (2.22)

This result allows us to draw samples from a (known) prior distribution and transform them

into samples drawn from its corresponding posterior distribution.

In further summary, the necessary details will be included to give an idea of how

the the map is attained. Let S∗ be the optimal or desired map that pushes P to Q and let all

other maps, S, push some P̃ that is not necessarily equal to P to Q as shown in figure 2.4 [6].
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Notice if P̃→ P̃ then S→ S∗, thus minimizing the “distance” between P̃ and P will lead to

finding the desired map. The Jacobian equation (2.22) restricts the search to only consider

positive-definite maps and guarantees the optimal map S∗ is unique. The optimization

problem that Kim and Ma formulate state exactly this (2.23), where the distance metric in a

probability sense is the well-known Kullback-Leibler (KL) divergence.

S∗ = argmin
S∈D+

D(P||P̃) (2.23)

Figure 2.4: Shows the mapping from P to Q by S∗, P̃ S and Q to P̃ by S−1 (where
S is not necessarily S∗)

In terms of the logistic regression framework, the posterior on W is the one of interest. Let

fW (~w) denote the probability density of W . Equation (2.23) becomes (2.24) - (2.25).
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S∗ = argmin
Sy∈D+

∫
~w∈W

fW (~w) log
fW (~w)
f̃W (~w)

d~w (2.24)

= argmin
Sy∈D+

logβy−
∫
~w∈W

fW (~w)T (Sy,~w) (2.25)

≈ argmax
Sy∈D+

1
M

M

∑
i=1

T̃ (Sy,Wi)

where W1,W2, ...,WM are drawn i.i.d from PW and

βy =
∫

v∈W
fY |W (y|~w) fW (v)dv (2.26)

T (Sy,~w) = log fY |W (y|S(~w))+ log fW (S(~w)) (2.27)

+ logdet(JS(~w))− log fW (~w)

Kim and Ma’s paper proceeds to approximate S as a linear basis expansion (2.28).

S(~w) = ∑
∀i

g jφ
( j)(~w) (2.28)

Where φ(i) ∈ R , g j ∈ R D (where D is the dimension of X) and A = [φ(1)(~w), ...,φ(K)(~w)]

are chosen to be orthogonal with respect to the prior distribution. By approximating S with a

linear basis expansion, we no longer need to search over all possible diffeomorphic functions.

Instead, the search is limited to the space of possible basis coefficients corresponding to

diffeomorphisms. The key terms with their corresponding dimensions are defined by (2.29)
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- (2.33).

F = [g1, ...,gK] (D × K) (2.29)

A(~w) = [φ(1)(~w), ...,φ(K)(~w)]T (K × 1) (2.30)

S(~w) = FA(~w) (D × 1) (2.31)

JA(~w) =

[
∂φ(i)

∂~w j
(~w)

]
i, j

(K × d) (2.32)

JS(~w) = FJA(~w) (D×D) (2.33)

Kim and Ma’s final optimization problem (denoted as (P4) in their paper) is represented by

(2.34).

F∗ = argmax
FJA(W1)�0,...,FJA(WM)�0

1
M

M

∑
i=1

T̃ (F,Wi) (2.34)

where again, W1,W2, ...,WM are drawn i.i.d. from PW and T̃ (F,~w) is defined by

T̃ (F,~w), log fY |W (y|FA(~w))+ log fW (FA(~w)) (2.35)

+ logdet(FJA(~w))− log fW (~w)

Since (2.34) or (P4) is convex it theoretically can be efficiently solved. However, the

number of constraints scales linearly with the number of samples we draw from the prior (M)

and in order to approximate the map well, a large number of samples drawn from the prior

are needed. As a result, the number of constraints become a computational bottleneck. More

recent developments by Mesa and Kim [7] resolve this issue by taking (P4) and turning it

into a distributed problem via the Alternating Direction Method of Multipliers (ADMM)
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(2.36).

min
F,Z,p,B

1
M

M

∑
i=1

g(pi)− logdet(Zi)+
1
2

ρ||Fi−B||22 (2.36)

+
1
M

M

∑
i=1

1
2

ρ||BAi− pi||22 +
1
2

ρ||BJi−Zi||22

s.t. BAi = pi : γi (d × 1)

BJi = Zi : λi (d × d)

Fi−B = 0 : αi (d×K)

where γi,λi and αi are Lagrange multipliers and g(pi) =− logq(pi). This allows us to form

the penalized Lagrangian (2.37).

Lρ(F,Z, p,B;γ,λ,α) =
1
M

M

∑
i=1

g(pi)− logdetZi (2.37)

+
1
M

M

∑
i=1

1
2

ρ||Fi−B||12 +
1
2

ρ||BAi− pi||22

+
1
M

M

∑
i=1

1
2

ρ||BJi−Zi||22 + γ
T
i (pi−BAi)

+
1
M

tr(γT
i (Zi−BJi))+ tr(αT

i (Fi−B))

ADMM allows us to separate (2.37) into sequential optimization problems for

Bk+1,Fk+1
i ,Zk+1

i , pk+1
i ,γk+1

i ,λk+1
i , and α

k+1
i for i = 1, ...,M as shown in (2.38)-(2.44).
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Bk+1 = argmin
B

Lρ(Fk
i ,Z

k
i , pk

i B;γ
k,λk,αk) (2.38)

Fk+1
i = argmin

Fi

Lρ(Fi,Zk
i , pk

i Bk+1;γ
k,λk,αk) (2.39)

Zk+1
i = argmin

Zi

Lρ(Fk+1
i ,Zi, pk

i Bk+1;γ
k,λk,αk) (2.40)

pk+1
i = argmin

pi

Lρ(Fk+1
i ,Zk+1

i , piBk+1;γ
k,λk,αk) (2.41)

γ
k+1
i = γ

k
i +ρ(pk+1

i −Bk+1Ai) (2.42)

λ
k+1
i = λ

k
i +ρ(Zk+1

i −Bk+1Ji) (2.43)

α
k+1
i = α

k
i +ρ(Fk+1

i −Bk+1) (2.44)

All the update terms above except pk+1
i are guaranteed to have a closed form solution and

can be found in the Appendix section of [7]. The update term, pk+1
i , is the only term that

is directly dependent on the likelihood and prior. The update corresponding to logistic

regression with a L1 penalty term is shown in (2.45)-(2.46)

pk+1
i = argmin

pi

g(pi)+
1
2

ρ||Bk+1Ai− pi||22 + γ
kT
i (pi−Bk+1Ai) (2.45)

g(pi),− logP(Y = y(1), ...,y(N)|X =~x(1), ..,~xN ,W = pi) (2.46)

− logP(W = pi)

=
N

∑
i=1

y(i) log(1+ e−pT
i x(i))+(1− y(i)) log(1+ epT

i x(i))+β||pi||1

where β corresponds to a regularization coefficient. An L1 penalty was chosen because

the data set used in the experiments was binary and sparse and it is well known that
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L1 regularizations are preferred in such situations. The ADMM dual form of (P4) is

computationally easier to handle. The number of constraints no longer scales with the

number of samples from the prior. Instead we have M optimization problems for each

update term. This is advantageous because the M optimization problems can now be solved

in parallel by commonly used Map-Reduce routines.



Chapter 3

Experiments

The objective was to provide comparisons (in performance and capabilities) between

a Fully Bayesian and traditional logistic regression classifier with and without an abstain

option.

3.1 Data

The data set was created using de-identified real patient data from Kaiser Permanente.

The medical condition we aimed to classify was asthma (ICD9: 493.00). The cases are

defined as patients that have been diagnosed with asthma and the controls are defined

as patients that have not been diagnosed with asthma. The data set contained 10,100

patients in which 100 were cases and 10,000 were controls. In the real patient population

it was observed that there were approximately 10x more control patients than case patents.

There were 10 features that characterized each patient shown in Table 3.1. Specifically,

these features were all various medications that are often administered to treat asthma or

asthma-like symptoms.

19
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Table 3.1: Feature Descriptions

1 Antiasthmatics
2 Asthma/COPD Therapy - Beta 2-Adrenergic Agents, Inhaled, Short Acting
3 Albuterol Sulfate
4 Beta-Adrenergic Agents
5 Albuterol Sulfate HFA 90 mcg/actuation aerosol inhaler
6 Glucocorticoids, Orally Inhaled
7 Asthma Therapy, Glucocorticoids
8 Beclomethasone Dipropionate
9 Beclomethasone Dipropionate 80 mcg/actuation aerosol inhaler
10 Albuterol Sulfate 2.5 mg/3 mL (0.083 %) solution for nebulization

In a binary classification task, an ideal classifier has the ability to correctly identify

the class label for a new observation. In practice this task is feasible when the distribution

of the samples belonging to each class do have not any overlap or can be separated by some

boundary. The simplest boundary is linear, but boundaries can take on hyperbolic, elliptic,

and many other geometries. Our data set is not separable; all samples that belong to the

positive class have twin samples that belong to the negative class. In other words, all the

distinct combinations of medications prescribed to the case group were also prescribed to

some patients in the control group. For our collection of case and control asthma patients, it

is not uncommon for the medications listed in Table 3.1 to be prescribed as treatment for

ailments that have similar symptoms to asthma. For instance, feature 2 is cross-referenced

as COPD or chronic obstructive pulmonary disease and features 3 and 5 (albuterol) are used

as a quick relief medication prescribed to treat breathing problems not limited to asthma.
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3.2 Error Metrics

The error metrics used were balanced accuracy [8] precision, recall and confusion

matrix:

Balanced Accuracy =
1
2

(
TP
P

+
TN
N

)
N = TN+FP

P = FN+TP

Precision (PPV) =
TP

TP+FP

Recall (TPR) =
TP

TP+FN

Predicted 0 Predicted 1
Truth 0 TN FP N
Truth 1 FN TP P

Note that balanced accuracy is equal to the traditional definition of accuracy when the data

set is balanced. It is particularly useful in characterizing the accuracy of an imbalanced data

set. For instance, if 99/100 of the patients belong to class 0, then the accuracy for a classifier

that classifies all patients as belonging to class 0 is 99%. Clearly, this is a bit misleading.

On the other hand, balanced accuracy for the same classifier equates to 0.5. Since balanced

accuracy considers the ratio of the correctly classified patients for each class separately it is

more useful over its traditional counterpart as a metric for error.
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3.2.1 Experiment

All scripts created for the experiment were created in Python. The sklearn Logistic

Regression package was used to create the point estimate model. Given a new patient, a

classifier declares them as a case if the probability of belonging to the case group (p) is

greater than the probability of belonging to the control group (1− p) or simply p > 0.5.

However, we would also like to introduce an option for the classifier to abstain from making

a decision when the uncertainty of a decision is high. Figure 3.1 depicts an ideal probability

distribution of p for patients belonging to each class. These distributions are ideal because

all the control patients have a low (p < 0.5) probability of belonging to the case group and

vice-versa.

Figure 3.1: An ideal histogram of the probability of belonging to the positive class
(p) for all the patients within the training set.

We trained logistic regression models using the Fully Bayesian and MAP point

estimation approach and observed the distribution of pFB and pMAP given a particular

patient as shown in figures 3.2 and 3.3, respectively. The patients from the training set were

fed back into each model to observe the ability of each classifier to identify patients it had
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already seen. Figure 3.2 shows the Fully Bayesian classifier was able to recover roughly

half the case patients and approximately 95% of the control patients. In contrast, figure

3.3 shows the point estimate classifier was unable to distinguish between case and control

patients; it believed all the patients belonged to the control group.

Let us define the credibility interval more formally. Let pFB +δ+ to be the upper

edge of the 95% credibility interval on pFB and let ∆τ be the difference between pFB +δ+

and the threshold (τ) where τ = 0.5 as shown in figure 3.4. When pFB +δ+ is above τ, then

∆τ > 0 and when pFB+δ is below τ, then ∆τ < 0. Although figure 3.2 shows approximately

half the case patients being below τ = 0.5, figure 3.5 shows that ∆τ > 0 for the majority of

the case patients. This implies the credibility interval of pFB straddles the threshold and

suggests that the credibility interval can be used to identify possible errors that the classifier

might make in identifying case patients.

Although the same argument can be made for the lower edge of the 95% credibility

interval when identifying control patients figures 3.2 and 3.3 show both classifiers are fairly

good at identifying control patients, thus we will focus our efforts in recovering case patients.
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Figure 3.2: The histogram of pFB for all the patients within the training set.

Figure 3.3: The histogram of pMAP for all the patients within the training set.



25

0 pFB � �� pFB ⌧ pFB + �+ 1

�⌧

Figure 3.4: ∆τ is defined as the distance from τ to the upper edge of the pFB’s 95%
credibility interval (pFB +δ+). When the cost of both errors are equal, τ = 0.5.

Figure 3.5: The fraction of patients belonging to class 0 or 1 (from training) whose
95% credibility interval on pFB exceeds the threshold (the black line).

3.2.2 Results: Declaring a Class for Each Patient

The first experiment conducted was without an abstain option. The full data set

of 10,100 patients was split up into a training (70%) and testing (30%) three times and

three separate trials were observed. In all three trials, the point estimate classifier was not

able to recall any of the case patients while the Fully Bayesian approach was able to recall

approximately 50% of the case patients as shown in Tables 3.2 - 3.3.
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Table 3.2: Summary of Error: Balanced Accuracy, Precision, Recall

Trial 1 Fully Bayesian Point Estimate
Balanced Accuracy 0.7535 0.5
Precision 0.2345 N/A
Recall 0.5278 0.0

Trial 2 Fully Bayesian Point Estimate
Balanced Accuracy 0.6850 0.5
Precision 0.1685 N/A
Recall 0.3947 0.0

Trial 3 Fully Bayesian Point Estimate
Balanced Accuracy 0.7293 0.5
Precision 0.1585 N/A
Recall 0.4815 0.0

Table 3.3: Summary of Error: Confusion Matrix

Trial 1
Fully Bayesian Predicted 0 Predicted 1
Truth 0 2932 62
Truth 1 17 19

Point Estimate Predicted 0 Predicted 1
Truth 0 2994 0
Truth 1 36 0

Trial 2
Fully Bayesian Predicted 0 Predicted 1
Truth 0 2918 74
Truth 1 23 15

Point Estimate Predicted 0 Predicted 1
Truth 0 2992 0
Truth 1 38 0
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Trial 3
Fully Bayesian Predicted 0 Predicted 1
Truth 0 2934 69
Truth 1 14 13

Point Estimate Predicted 0 Predicted 1
Truth 0 3003 0
Truth 1 27 0

The overall performance of the Fully Bayesian classifier according to precision-recall

outperformed the point estimate classifier during the first two trials. In the third trial the

precision-recall curve of the point estimate classifier performs better than the Fully Bayesian

classifier at various values of τ. Note that throughout our analysis, τ was set to 0.5 to reflect

weighing the cost of each type of error equally and the precision-recall curves are provided

to get a sense of the performance at different values of τ.

Figure 3.6: Precision-Recall curve for MAP point-estimation (blue) and Fully
Bayesian (blue) Logistic Regression for three separate trials.

3.2.3 Results: Allowing an Abstain Option

In this scenario, the classifier was allowed to abstain from classifying up to K patients

at no cost. Each abstention was then reviewed by a human expert that could correctly identify

the case and control patients. With this scheme in mind, the goal was to come up with

a strategy that abstains from making a decision when the classifier thinks it will make a
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mistake. The credibility interval was used to quantify when the classifier felt uncertain about

its decision. The Fully Bayesian classifier with an abstain option is given by Algorithm

1. Note that the algorithm was written to assume pFB is a n length vector containing the

probability of a patient belonging to the case group for n patients.

Algorithm 1 Fully Bayesian abstain rule
Require: pFB is a n length vector of probabilities for n patients where n≥ K and edgesUp-

per is an array with the upper edge of the 95% for each pFB

1: function FULLYBAYESIANABSTAIN(pFB, K,edgesUpper)
2: x← [patient 1, patient 2,..., patient n] . Sample indexes
3: ∆τ, abstain← [ ],[ ]
4: for i = 1,...,n do
5: if pFB[i]< 0.5 then
6: ∆τ← (edgesUpper[i] - 0.5) . add to list
7: xabstain← x[i] . add to list
8: ind← ∆τ.argsort() . sort ∆τ by descending order and return indexes
9: xabstain← xabstain[ind[:K]]

10: return xabstain

A similar scheme was defined for the MAP point estimate classifier where the K samples

closest to τ were abstained shown in Algorithm 2. The performance of the two classifiers

with an abstain option are summarized in figure 3.7.

Algorithm 2 MAP point estimate abstain rule
Require: pMAP is a n length vector of probabilities for n patients where n≥ K

1: function POINTESTIMATE(pFB, K)
2: x← [patient 1, patient 2,..., patient n] . Sample indexes
3: ∆τ← [ ]
4: ∆τ← |0.5− pMAP|
5: ind← ∆τ.argsort() . Descending; ind: sort index
6: xabstain← x[:K]
7: return xabstain
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Figure 3.7: Recall and balanced accuracy plotted versus the percentage of samples
abstained for three separate trials.

Figure 3.7 shows a comparison between the performance of the Fully Bayesian

classifier and the MAP point estimate classifier with abstain options for three separate

trials. Overall, leveraging the credibility interval (in the Fully Bayesian method) to identify

abstentions performs better than its point estimate counterpart. When we are only allowed

to abstain a few samples (less than 100), the steep slopes of the recall curves for the

point estimate classifiers (top row, blue lines) suggests that they are better at identifying

abstentions that result in case patients than the Fully Bayesian classifier. A smaller slope

indicates a smaller improvement in performance as more patients are abstained. Between

150 to 250 abstentions, both the abstain strategies are able to recover approximately an equal

number of case patients (approximately equal slope). The overall performance of the Fully

Bayesian classifier with an abstain option outperforms the point estimate classifier with an

abstain option because it is able to recognize some case patients on its own without a human

expert. These trends are also reflected in the overall measurement of balanced accuracy.



Chapter 4

Conclusion

The Fully Bayesian logistic regression framework offers credibility intervals that

can be used in a variety of different applications. This paper specifically illustrated a use

case where it is difficult for a classifier to identify the underrepresented class with real

patient data from a population of asthma patients. The credibility intervals were used to

provide an additional measure of confidence and gave us a more robust way in identifying

potential misclassifications. These misclassifications were abstained from being classified

in a scheme in which abstentions were reviewed by human experts that correctly identified

the class labels for all abstentions. Three trials were conducted and the results showed that

leveraging the credibility interval through the Fully Bayesian method outperformed the

traditional point estimation method overall under the assumption that the cost of each type

of error was equal.
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