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ABSTRACT OF THE DISSERTATION

Energy and Spectral Efficiency in Wireless Heterogeneous Networks

By

Cemil Can Coskun

Doctor of Philosophy in Electrical and Computer Engineering

University of California, Irvine, 2017

Professor Ender Ayanoglu, Chair

The focus of this dissertation is investigating energy and spectral efficiency in wireless het-

erogeneous networks (HetNets). Our goal is to improve the energy efficiency and spectral

efficiency of the HetNets while satisfying the minimum rate requirements of the users. The

contributions of this dissertations are (i) to develop an energy-efficient base station deploy-

ment framework for HetNets, (ii) to increase energy efficiency of the HetNets while satisfying

minimum rate requirements of users, and (iii) to investigate energy efficiency-spectral effi-

ciency tradeoff in HetNets. First, we address the micro base station deployment problem

in HetNets. Although micro base station deployment increases the total capacity of the

network, increasing the number of micro base stations excessively may reduce the energy

efficiency of the network. Therefore, we examine the energy efficiency aspect of the micro

base station deployment problem. We propose a greedy deployment algorithm which is a

constant-factor approximation of the optimal solution. Second, we investigate the energy

efficiency of downlink transmission in multi-cell HetNets. Our objective is to satisfy the rate

requirement of users while maximizing energy efficiency of the network. We divide the prob-

lem into three subproblems: cell-center region boundary selection for fractional frequency

reuse (FFR), scheduling, and power allocation subproblems. We propose a three-stage al-

gorithm, and apply it iteratively until convergence. We demonstrate that significant gains

can be achieved in terms of energy efficiency and outage probability using the proposed al-

xii



gorithm. Third, we investigate the energy efficiency-spectral efficiency tradeoff in multi-cell

HetNets. Our objective is to maximize both energy efficiency and spectral efficiency of the

network while satisfying the rate requirements of users. We define our objective function as

the weighted summation of energy efficiency and spectral efficiency. We derive the Pareto

optimal solution that strikes a balance between the spectral efficiency and energy efficiency.
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Chapter 1

Introduction

Each year, new mobile devices such as smart phones, tablets, and phablets are introduced to

users [1]. In 2016, around 8 billion mobile devices were accessing mobile networks worldwide

and this number is expected to increase to 11.6 billion in 2021 [1]. Introduction of new and

smarter mobile devices with increasing numbers also increases the mobile data traffic volume.

These devices create around 8 exabytes of traffic per month and this number is expected

to increase to 50 exabytes per month in 2021 with 47% cumulative annual growth rate [1].

Therefore, network operators have to meet more than 6 times traffic demand within 5 years.

Several different solutions such as increasing spectral efficiency, expanding spectrum, and

increasing node density are considered in the literature to meet this demand [2]. In this

dissertation, small cell base station deployment, increasing energy efficiency, and increasing

spectral efficiency cases have been investigated.

Increasing spectral efficiency utilizes the existing resources more efficiently and also pro-

vides higher data rates to users with same bandwidth allocation. Therefore, solutions that

improve spectral efficiency help meet the increasing demand. However, the spectral effi-

ciency metric does not provide any information about the energy efficiency of the network.
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In fact, solutions that provides higher spectral efficiency usually works poorly in terms of

energy efficiency. Improving the energy efficiency of the network has both economical and

environmental benefits. Total worldwide electricity consumption of telecom operators are

growing [3]. In 2007, the worldwide electricity consumption of communication networks

increased from 203 TWh in 2007 to 334 TWh in 2012 and this trend is expected to con-

tinue [3]. By improving energy efficiency of the network, network operators can decrease

their operational costs. In addition, increased energy consumption in wireless networks also

causes the growth of greenhouse gases. Between 1970 to 2004, the emissions of greenhouse

gases increased by 70% [4]. These gases create a blanket over the earth surface and warm

the planet’s surface. Improving the energy efficiency of the network decreases the amount of

these gases in the atmosphere. Solutions that improve the spectral efficiency of the network

have to consider energy efficiency of the network to decrease operational costs and to reduce

negative environmental effects.

In this dissertation, heterogeneous networks are investigated to meet this increasing demand.

In heterogeneous networks, small cell base stations are deployed into the coverage area of the

macrocell base stations. Small cell base stations are preferred over the macrocell base stations

due to the fact that they consume significantly lower power than macrocell base stations, they

create less interference to the existing network, and they can provide significantly improved

data rate to their coverage areas [5,6]. These base stations also eliminate the coverage holes

in the network. In [5], it is shown that four times improvement in terms of throughput is

obtained by picocell deployment. In [7], it is shown that both energy efficiency and spectral

efficiency of the network can be improved with small cell base station deployment. Although

small cell base station deployment has its own benefits, each additional base station comes

with its capital and operational expenditures. Therefore, limiting the number of small cell

base stations to be deployed while satisfying the increasing demand is a problem that needs

to be investigated. In this dissertation, the small cell base station deployment problem is

examined in Chapter 2. Second important problem that is experienced with small cell base
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station deployment is the interference. Small cell base stations are deployed into the coverage

area of the macrocell base stations. Therefore, coverage area of small cell base stations

overlaps with the macrocell base stations. This structure is called an umbrella network [6].

Therefore, interference becomes a significant problem among these base stations. Several

intercell interference cancellation and mitigation techniques have been investigated in the

literature [8, 9]. Among different techniques, fractional frequency reuse (FFR) is important

in next-generation networks, due to its efficiency and low complexity [9]. In this dissertation,

FFR is addressed in Chapter 3 and Chapter 4 for energy-efficient resource allocation and

energy- and spectral-efficient resource allocation, respectively.

In Chapter 2, an energy-efficient base station deployment framework is developed for hetero-

geneous wireless networks. This chapter investigates capacity improvement of the network

with micro base station deployment. It shows that increasing the number of micro base

stations excessively may reduce the energy efficiency of the network. This chapter examines

the energy efficiency aspect of the micro base station deployment problem. This problem can

be divided into two subproblems: choosing feasible candidate micro base station locations

and selecting the optimum set of micro base stations among the candidate locations. The

proposed algorithm first chooses the subset of the feasible locations as candidate locations,

and then selects the micro base stations which maximize the energy efficiency of the network

iteratively. It is shown that the proposed algorithm is a constant-factor approximation of

the optimal solution. Simulation results demonstrate that the proposed algorithm improves

the energy efficiency of the network up to 12% for low-loaded scenarios and 98% for the

high-loaded scenarios.

Chapter 3 investigates the energy efficiency of downlink transmissions in heterogeneous net-

works (HetNets). Our objective is to satisfy the rate requirement of users while maximizing

the energy efficiency of the network. The fractional frequency reuse (FFR) scheme is em-

ployed to increase the energy efficiency of downlink transmissions and to eliminate outages

3



for the cell-edge users. The problem is formulated as the joint cell-center boundary selection

for FFR, scheduling, and power allocation. This formulation gives us a mixed discrete (se-

lection of the cell-center boundary selection for FFR and scheduling) and continuous (power

allocation) optimization problem which is hard to solve jointly. In order to solve this prob-

lem, a three-stage resource allocation algorithm is proposed. In the first stage, we propose

a dynamic method to determine the cell-center region boundaries. In the second stage, the

Lagrangian directed scheduler algorithm is employed to incorporate the rate requirements

of users. The third stage solves the power allocation subproblem using the Levenberg-

Marquardt method combined with dual decomposition. In order to make the base stations

further reduce intercell interference, interference pricing mechanism is applied. This scheme

penalizes the utility of a base station with the interference it creates. The performance of the

proposed algorithm is simulated in a Long Term Evolution (LTE) network simulation tool.

Numerical results reveal that significant gains in terms of energy efficiency can be achieved

with the proposed algorithm. The outage probability is also significantly reduced.

In Chapter 4, energy efficiency and spectral efficiency tradeoff in multi-cell heterogeneous

networks is investigated. Our objective is to maximize both energy efficiency and spectral

efficiency of the network while satisfying the minimum rate requirements of the users. The

objective function is defined as the weighted summation of energy efficiency and spectral

efficiency functions. The fractional frequency reuse (FFR) scheme is employed to suppress

intercell interference. We formulate the problem as cell-center boundary selection for FFR,

frequency assignment to users, and power allocation. The optimal solution of this prob-

lem requires exhaustive search over all cell-center radii, frequency assignments, and power

levels. A three-stage algorithm is proposed and applied consecutively until convergence.

First, the cell-center radius is selected for the FFR method in each sector. Second, the

frequency resources are assigned to users to satisfy their rate requirements and also maxi-

mize the objective function. Third, the power allocation subproblem is solved by using the

Levenberg-Marquardt method. Minimum rate requirements of users are also included in the

4



solution by using dual decomposition techniques. Simulation results show a Pareto-optimal

solution for energy efficiency and spectral efficiency. We present energy efficiency, spectral

efficiency, outage probability, and average transmit power results for different minimum rate

constraints. Among other results, in a particular setting, 13% energy efficiency increase

can be obtained in a multi-cell heterogeneous wireless network by sacrificing 7% spectral

efficiency.

In Chapter 5, all findings in this dissertation is summarized. In addition, future research

directions are also discussed. Contribution of this dissertation is presented with the corre-

sponding research directions.
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Chapter 2

A Greedy Algorithm for

Energy-Efficient Base Station

Deployment in Heterogeneous

Networks

2.1 Motivation

In the last two decades, the need for a fast and ubiquitous wireless network has increased to

unexpected levels. The popularity of the smartphones and mobile applications, as well as the

flat rate price policy of mobile operators show that this trend will continue. In order to meet

this increasing demand, network operators seek coherent solutions such as expanding the

spectrum, increasing node density per area, and deploying more, and smaller, cells [2]. Due

to the dense deployment of macro base stations (BSs) today, adding more macro BSs to the

cellular network significantly reduces the gain because of the elevated intercell interference.
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Heterogeneous networks (HetNets) are one of the enabling technologies that can provide

significantly improved data rates while creating less intercell interference to the existing

architecture. HetNets have attracted attention in the literature, see, e.g., [8, 10, 11]. These

works demonstrate that the deployment of HetNets is very promising to improve overall

capacity and it decreases the outages in the next generation wireless networks.

However, the deployment of more BSs increases the energy consumption of the network,

which is one of the nontrivial causes of the growth in the emission of greenhouse gases to

very high levels. As a result, green cellular communication has attracted attention, see,

e.g., [6, 12–14]. The main objective of the green cellular communication is to reduce energy

consumption as much as possible while satisfying the demand of users. Reducing the en-

ergy consumption in wireless networks is also preferred due to economical reasons such as

decreasing maintenance costs and longer battery life time for the mobile users.

In HetNets, each additional micro BS increases both the capital expenditures (CAPEX) and

operational expenditures (OPEX) of the system. CAPEX mostly consists of the infrastruc-

ture costs, e.g., BS equipment, site installation, etc. [15]. On the other hand, OPEX includes

other expenses such as electric bills, site lease, backhaul transmission lease, and operation

and maintenance costs [16]. Therefore, if the number of BSs which meet the network re-

quirements is lowered, both CAPEX and OPEX of the network automatically decrease. In

addition, over 80% of the power is consumed by BSs in mobile cellular networks [17]. Micro

BSs consume significantly lower power than macro BSs. Therefore, they are more desirable

over macro BSs to decrease the OPEX of the network. In accordance with this observa-

tion, the proposed algorithm limits the number of additional micro BSs while satisfying the

increasing traffic demand of the network.

Former works on HetNets have mostly concentrated on power control and resource allocation

problems, see, e.g., [9,18–20]. However, the deployment of micro BSs and the energy efficiency

aspects of the problem have not been investigated to their full potential. A similar study

7



in [21] investigates the area spectral efficiency (ASE) aspect of the micro BS deployment

problem. The authors of [21] deploy micro BSs to an area which is covered by macro BSs

to increase the ASE of the network. The cell boundaries are selected as candidate locations

because the authors observe that the ASE improvement increases with the coverage of the

BS. Then, a greedy algorithm is proposed to select micro BSs. The algorithm continues

to run until the ASE requirement is reached. Reference [21] considers cell edges as good

locations for the placement of new cells in order to increase ASE. However, cell edges may

not always be good candidates if energy efficiency of the network is considered. In addition,

the user distribution affects the energy efficiency of the network and the proposed algorithm

in [21] works poorly for the clustered user distribution scenarios. The algorithm we will

present in this chapter is designed to overcome this limitation. In [22], the authors aim to

minimize the outage of the network by deploying additional low power BSs. The authors

of [22] first deploy certain number of micro BSs to the network area, and then they iteratively

shift the location of these BSs. However, system characteristics, path loss and shadowing,

are strictly dependent on the location of the BSs. Although the proposed algorithm works

well for the test cases, obtaining these parameters in every iteration may be impractical in

real BS topologies. In [23], the authors investigate the energy efficiency of the micro BSs

on hexagonal grids. They demonstrate that the power savings depend on the network load.

Moderate gains are observed in fully loaded networks. In [23], micro BSs are located to the

cell edges to minimize the intercell interference. However, depending on the user distribution

in the network, larger gains can be obtained in terms of energy efficiency with different sets

of micro BSs.

In this chapter, the algorithm we present is not affected by the user distributions and can be

implemented in both clustered and dispersed networks. In addition, the proposed algorithm

considers the feasibility of the candidate locations and minimizes the effect of environmental

conditions. Moreover, this algorithm can be implemented in both hexagonal grid and real

BS topologies. Furthermore, the proposed algorithm finds the set of micro BS locations

8



that maximizes the energy efficiency of the network while satisfying the increasing capacity

demand of the network.

The remainder of the chapter is organized as follows. Section 2.2 introduces the system

model. Section 2.3 presents the problem and discusses the possible approaches to solve it.

Section 2.4 describes the proposed algorithm and compares the performance of the algo-

rithm with the optimal solution. Numerical results and the performance improvements are

presented in Section 2.5 and concluding remarks are made in Section 2.6.

2.2 System Model

In this section, the system model, power consumption of the BSs, and the energy efficiency

problem formulation are presented.

Consider a wireless network in which all mobile users are served by sets of macro and micro

BSs, denoted by BM and Bm, respectively. The subscript M is used to indicate macro

BSs and m is for micro BSs throughout the rest of the chapter. All BSs in the network

area are denoted by B, i.e., B = BM ∪ Bm. The mobile users are associated with the BS

which provides the highest signal strength at the location of the user. If more than one

BS provides equal power at the user location, the user selects one of the BSs randomly.

We assume that the mobile users always have data to transmit, and thereby they require

a bandwidth allocation. The signal-to-interference-plus-noise ratio (SINR) of a macrocell

associated user k on subcarrier n can be written as

γ
(n)
k =

P
(n)
M gk,b∑

b′∈BM ,b′ 6=b
P

(n)
M gk,b′ +

∑
b′∈Bm

P
(n)
m gk,b′ + σ2

(2.1)

where P
(n)
M and P

(n)
m are the transmit power of a macrocell M and a microcell m on sub-
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carrier n, respectively. We note that although in this chapter we focus on the downlink

communication, the same ideas can be applied for the uplink as well. The channel gain from

BS b to user k is denoted by gk,b. The channel gain includes path loss attenuation, shadow

fading, and multi-path fading components. The thermal noise effective over a subcarrier is

denoted by σ2. Similarly, the SINR for microcell user k on subcarrier n can be written as

γ
(n)
k =

P
(n)
m gk,b∑

b′∈BM
P

(n)
M gk,b′ +

∑
b′∈Bm,b′ 6=b

P
(n)
m gk,b′ + σ2

. (2.2)

For simplicity, we use the same symbol γ
(n)
k for SINR of both macro and microcell users. In

the sequel, the capacity of user k can be written as

C (k,B) =

Nk∑
n=1

W
(n)
k log2(1 + γ

(n)
k ) [bits/sec] (2.3)

where W
(n)
k denotes the bandwidth of subcarrier n of user k and Nk is the number of sub-

carriers assigned to user k. In this chapter, equal bandwidth scheduling is employed [24]. In

this scheduling, each BS shares its resources equally among its users. In LTE systems, the

smallest granularity which can be assigned to a user is a resource block with 12 subcarriers.

Therefore, if K users are associated with the BS b with NRB RBs, Kh = mod (NRB, K) of

the users get 12(bNRB/Kc+1) subcarriers, whereas the rest of the users receive 12bNRB/Kc

subcarriers. In this chapter, we assume that a BS allocates equal power on its subcarriers.

The energy efficiency of the network can be improved by either increasing the total capacity

of the network while consuming the same power or decreasing the consumed power of the

network and providing the same capacity. Traditional macro BSs provide better coverage

and data rate, however they consume significantly higher power than the micro BSs. In

addition, in densely deployed networks, this gain is substantially reduced due to intercell

interference. On the other hand, the transmission power of micro BSs is significantly less

than the macro BSs, thereby they cover less area. However, they consume less power and do
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not interfere with the other transmissions as severe as macro BS transmissions. Therefore,

they are more energy-efficient than the macro BSs especially in densely deployed networks.

For this reason, in this dissertation, micro BSs are deployed to the network as an underlay

for macro BSs to maximize the energy efficiency of the network and to satisfy the traffic

demand.

The power consumption of a BS consists of two parts. The first part is the static power

consumed by the BS with no transmission. The second part depends on the load and the

transmission power of the BS. There are several power consumption models proposed in the

literature, see, e.g., [25–27]. In this chapter, we use the power consumption model proposed

in [25]. It is given by

PM =P0,M + ∆MPtx (2.4)

Pm =P0,m + ∆mPtx

where PM , Pm, and Ptx are the average consumed power per macro BSs, micro BSs, and

transmission power, respectively. ∆M and ∆m scale the transmission power depending on

the load. P0,M and P0,m denote the static part of the power consumption of the macro and

micro BSs, respectively.

As stated earlier, we assume that users always have data to transmit with full buffer. In

addition, no power control algorithm is used. Therefore, BSs are fully utilized and ∆M and

∆m are constant for all BSs. Then, the energy efficiency of the network can be written as

ηEE (B) =

∑
k∈K

C(k,B)

NB · PM +Nb · Pm
[bits/Joule] (2.5)

where NB and Nb are the number of macro and micro BSs in the network, respectively.
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2.3 Problem Definition

In this section, we will first present the BS deployment problem. Then, we will discuss

possible approaches to solve the problem.

A network operator would like to improve the capacity of the network with additional micro

BSs to meet increasing traffic demand. In order to maximize the energy efficiency of the

network and to limit CAPEX and OPEX, the network operator would like to deploy the

micro BSs to optimum locations. In real-life scenarios, users are mobile and several user

distributions can occur with different probabilities. During the peak hours, more users are

active and total traffic of the network reaches to its maximum. However, most of the time

BSs are underutilized. In [28], the authors present that 49.2% of the time, the total traffic

of the network is below the 20% of the peak hour traffic. However, even if most of the time

the traffic demand is low, additional micro BSs are to be deployed for the peak hour traffic.

Existing BSs are sufficient during the off-peak hours and the additional BSs are needed

during heavy traffic. Therefore, operators must consider only the user distributions with

high load periods for the deployment. Therefore, we formulate the deployment problem as

max πrηEE (B)

s.t.
∑
k∈Kr

C (k,B) ≥ λ · Cr for all r ∈ R
(2.6)

where Cr denotes the network capacity when only macro BSs are deployed for scenario r. The

multiplier λ ≥ 1 is the desired capacity increase over the Cr. Symbol πr is the probability

that scenario r occurs, and R and Kr represent the set of scenarios and users in scenario r,

respectively.

Finding the optimal number of BSs and the position of the BSs are extremely complex
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problems. Similar problems have been studied in the literature under the facility location

research formulation [29]. Facility location problems focus on the optimal placement of

facilities to minimize the costs while providing service constraints. The relation between

the energy-efficient BS deployment and facility location problems is straightforward. One

approach to simplify this problem is to select the set of candidate locations in the network

area. These locations must be selected wisely to improve the performance of the algorithm.

After selecting these locations, the second part of the problem is the determination of the

optimal set of BSs among these candidates. Due to intercell interference, the individual and

cumulative performance of the BSs are not directly correlated. Especially, if the BSs are

located close to each other, the cumulative performance of the BSs can be worse than the

individual performance of each BS. Therefore, this optimization problem is a combinatorial

problem. It quickly becomes untractable when the number of scenarios and the candidate

locations are large. Thus, we propose a greedy algorithm which is described in the next

section.

2.4 Proposed Algorithm and Optimality Analysis

In this section, we first present the candidate selection and the greedy deployment algorithm,

and then discuss its performance.

2.4.1 Candidate Selection

The authors in [21] suggest that the boundaries of the existing cells can be good candidate

locations. However, authors in [21] do not consider the distribution of the users in the network

and the algorithm they propose works poorly especially when the users are clustered close

to macro BSs. In addition, these locations may not be available to deploy BSs depending
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on the landform and structures. Second approach can be selecting all feasible locations as

candidates. However, depending on the network size, these locations can be innumerably

many and even heuristic approaches will be impractical to implement. Therefore, some of

the feasible locations should be eliminated to improve the performance of the algorithm

in a smart way. In order to overcome these problems, in this dissertation, we divide the

network area into equal grids and select a candidate location in each grid. This approach

performs well for both clustered and dispersed networks. However, it does not guarantee

that a feasible location exists in every grid. In addition, if more than one feasible location

exists in a grid, selection of the candidate location is another problem to solve. Therefore,

the following approach is proposed in this dissertation. If all the neighboring grids of the

center grid have at least one feasible location, the candidate location which is closest to the

center of the grid is selected as a candidate. In cases where some of the neighboring grids

do not have any feasible location, the closest feasible location to the centroid of the center

grid and neighboring grids with no feasible location is selected as a candidate. An example

scenario is shown in Fig. 2.1. In this figure, feasible locations, candidate locations, and the

center of the centroid are denoted by empty triangles, filled triangles, and X, respectively.

In the first case, all neighboring grids have at least one candidate. Therefore, a feasible

location which is closest to the center of the grid is selected as the candidate. On the other

hand, in the second case, three of the neighboring grids do not have any feasible location.

Therefore, the feasible location which is closest to the centroid of these four grids is selected

as the candidate location. This approach limits the effects of the user distribution to the

performance of the proposed algorithm.

2.4.2 Deployment Algorithm

We propose a greedy algorithm that selects one micro BS to deploy in each iteration. The

algorithm selects the candidate micro BS which maximizes the weighted sum of the energy
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Figure 2.1: A candidate location selection example.

efficiency of all scenarios as next micro BS. This process continues until the required ca-

pacity of all scenarios are satisfied. In each iteration, the proposed algorithm assumes the

previously selected micro BSs are deployed, and then calculates the energy efficiency over

the updated set of BSs. This approach significantly reduces the complexity of the algorithm.

The complexity of the optimal solution increases polynomially with |R| and |BC | where BC

denotes the set of candidate micro BSs. The proposed algorithm solves the problem in linear

time. In this dissertation, we assume that one type of micro BSs is deployed, however this

work can be extended to cases where different types of BSs are to be deployed such as the

deployment of picocells and femtocells. The proposed algorithm is given next, under the

heading Algorithm 1.

Algorithm 1 Greedy Base Station Deployment Algorithm

1: Initialize Bm = ∅ and ηEE(B) = ηEE(BM)
2: while

∑
k∈Kr

C (k,B) < λ · Cr for all r ∈ R do

3: B = BM ∪ Bm
4: b = arg max

b∈BC

∑
r∈R

πr (ηEE(B ∪ b)− ηEE(B))

5: Bm ←− Bm ∪ {b}
6: BC ←− BC\{b}
7: end while

2.4.3 Optimality Analysis

The proposed algorithm is a greedy heuristic algorithm. Therefore, it does not guarantee that

the obtained solution is optimal. However, it is shown that in [30] if the greedy algorithm
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satisfies i) ηEE(∅) = 0, ii) ηEE is nondecreasing, and iii) ηEE is submodular, then it can

be claimed that the algorithm performs better than (e− 1)/e times the performance of the

optimal solution. The energy efficiency function violates the condition (ii). However, in [21],

it is shown that ASE satisfies all these three properties. ASE is defined as summation of total

capacity over an area times bandwidth. Therefore, over constant area and bandwidth, we

can claim that capacity also satisfies these three properties. If we assume that the number

of deployed micro BSs which satisfies the constraint is equal for the optimal solution and the

proposed algorithm, then we can state that ηEE performs better than (e − 1)/e times the

performance of the optimal solution.

2.5 Numerical Results

In this section, we first investigate the effects of the number of grids and number of active

users on the performance of the algorithm, and then compare the performance of the proposed

algorithm with the algorithm in [21]. A sample scenario for the deployment of macro BSs,

a set of candidate micro BSs, and user distribution are provided in Fig. 2.2. Ten macro BSs

are deployed in the 10x10km2 simulation area. In order to avoid the edge effects, we collect

the data over the 5x5km2 area in the center as suggested in [21]. For simplicity, we assume

that 15 different scenarios exist with equal probability. In order to observe the effect of the

number of active users on the performance of the algorithm, we create three different types of

scenarios: low-, moderate-, and high-loaded. Five of the scenarios are created as low-loaded

with 30 active users. Another five of the scenarios are created as moderate-loaded with 100

active users, and the rest five of the scenarios are created as high-loaded with 200 active users.

In all these scenarios, users are distributed uniformly over the observation area. All users

are associated with the BSs in the observation area. The simulation models and parameters

are provided in Table 4.2 [24]. We assume that 3-sector antennas are used for macro BSs

16



−5000 0 5000
−5000

−4000

−3000

−2000

−1000

0

1000

2000

3000

4000

5000

 

 
Macro BS
Candidate Micro BS
Users

Figure 2.2: Macro BSs, candidate micro BSs, and user distribution for a sample scenario.

and omnidirectional antennas are used in the micro BSs. Multiple antenna transmission is

not investigated in this chapter. The transmission and total operational powers for macro

and micro BSs are summarized in Table 2.2 [25].

In Fig. 2.3, we investigate the effects of the number of the grids on the performance of the

proposed algorithm. The edge length of the grids are decreased to the half in each case. We

start with 4 grids and increase the number of grids until it reaches 65536. The performance

of the algorithm significantly improves until the number of grids reaches 1024. However,

the increase is slowed down after 1024. Increasing the number of grids from 1024 to 65536

improves the energy efficiency of the algorithm by 1%. However, due to the increase of the

number of candidate locations, the complexity of the algorithm increases polynomially. After

a certain number of grids, increasing the number of grids does not improve the performance

of the algorithm notably and it requires a longer convergence time.

In Fig. 2.4, we compare the performance of three different types of user scenarios when the

number of grids is selected as 1024. When the number of active users in the network increases,

more micro BSs should be deployed to maximize the energy efficiency of the network. The
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Table 2.1: Simulation Parameters

Parameter Setting

Channel bandwidth 10 MHz
Total number of data RBs 50 RBs
User to Macro PL model 128.1 + 37.6 log10(d)
User to micro PL model 140.7 + 36.7 log10(d)
Effective thermal noise power −174 dBm/Hz
User noise figures 9 dB
Macro antenna gain 14 dBi
Micro antenna gain 5 dBi
User antenna gain 0 dBi
Macro- and microcell shadowing 8 dB and 10 dB
Traffic model Full buffer

Table 2.2: Power consumption models of different BS types

BS Type PM (W) Pm (W)

Macro 20W 865 −
Micro 1W − 38
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Figure 2.3: Grid size vs. average energy efficiency.

energy efficiencies of the network reach the maximum when 8, 20, and 28 micro BSs are

deployed for low-, moderate-, and high-loaded scenarios, respectively. In future networks, it

is expected that the number of active users in the network will be higher during the peak

hours. Therefore, more additional micro BSs can be deployed to improve the energy efficiency
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Figure 2.4: The number of active users vs. the energy efficiency.

of the network. In addition, the networks with more active users are more energy-efficient

than the others. This improvement is the combination of multi-user diversity and increasing

micro BS users.

Figs. 2.5(a)-(b) show the performance of the proposed algorithm and the algorithm in [21].

In this chapter, we particularly compare the energy efficiency gain and the total capacity

improvement of the network. Both algorithms start with no micro BS and in each iteration

one micro BS is deployed. In this simulation, moderate-loaded scenarios are considered.

The number of grids is chosen as 1024 for the proposed algorithm. As the number of micro

BSs is increased, the total throughput of the network increases monotonically. On the other

hand, the energy efficiency is shaped such that it monotonically increases up to a certain

point and then starts to decrease. In Fig. 2.5(a), 10 micro BSs are required for the proposed

algorithm, when λ is equal to 1.5. On the other hand, the algorithm in [21] cannot reach the

required capacity improvement, the maximum capacity improvement is slightly over 30%.

The total capacity improvements of the proposed algorithm is 36% better than the algorithm

in [21] when both algorithms reach their maximum. Similar energy efficiency improvement

is observed.
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Figure 2.5: Network total capacity (a) and energy efficiency of the system (b) are depicted
per iteration.

2.6 Conclusion

In this chapter, a greedy BS deployment algorithm is proposed to improve the energy effi-

ciency of the network. Imprudent increase of the number of micro BSs may harm the energy

efficiency of the network. The proposed algorithm first selects a set of feasible micro BS

locations wisely, and then greedily deploys a subset of them until the required capacity of

the network is satisfied. Due to the heuristic nature of the algorithm, the complexity of
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the algorithm is significantly reduced. The simulations show that the proposed algorithm

increases both the energy efficiency and the throughput of the network, while satisfying the

capacity requirements.

This chapter is reproduced based on the material in [31,32].

21



Chapter 3

Three-Stage Resource Allocation

Algorithm for Energy-Efficient

Heterogeneous Networks

3.1 Motivation

As discussed earlier, with the proliferation of the mobile devices such as smart phones,

tablets, and laptops, ubiquitous, fast, and reliable wireless connections are needed. A recent

study in [33] estimates that the number of mobile devices will reach 11.6 billion by 2020.

According to the same source, this will be accompanied by an increase in mobile data traffic

volume reaching a compounded annual growth rate of 53 percent between 2015 and 2020.

Motivated by the financial and ecological concerns, network operators are pursuing energy-

efficient solutions to keep their energy consumption at reasonable levels while satisfying this

demand. These solutions have been studied in the literature under the general description

“Green Communications,” see, e.g., [6] and the references therein.
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Resource allocation problem is an important research area in the field of game theory with

wide applications in wireless communication networks, see, e.g., [34–39]. This problem arises

when multiple agents or players with conflicting interests compete for the same resources.

For example, resource allocation in heterogeneous networks (HetNets) reflects a case such

that while each base station tries to maximize its utility by increasing its transmit power,

this creates an excessive interference in the system for the neighboring cells. In this chapter,

we employ interference pricing, which is introduced in [35–37]. Each base station is penalized

according to the interference it creates. The penalty factor increases if the interference leads

to outage of users in other sectors. The pricing algorithm defines the utility as the energy

efficiency of a sector minus the created interference to other sectors. This makes Macrocell

Base Stations (MBSs) decrease their transmission power, and the energy efficiency of the

network is further improved. In addition, due to the drop of the interference level, the outage

probability of users decreases.

Energy-efficient wireless networks have been widely investigated in the literature, see, e.g.,

[40–49] and the references therein. In [40], the authors formulate energy efficiency function

with predetermined weights to user rates and propose three resource allocation algorithms:

optimal, near optimal, and suboptimal. A suboptimal resource allocation algorithm is pro-

posed in [41] in which each user is first assigned with one subcarrier and then the rest

of the resources are assigned to minimize the power consumption. They show that en-

ergy efficiency function is quasiconcave for given subcarrier assignment. Then, multi-level

water-filling algorithm is used for power allocation. The scheduling problem in a single-cell

network is transformed into a fractional program in [42]. The water filling algorithm is

used for power allocation. In [43], an energy-efficient water-filling algorithm is proposed.

Energy-per-goodbit metric is defined for the optimization problem. However, all of these

works investigate the problem in single-cell single-tier networks. The proposed algorithm in

this chapter investigates resource allocation problem in multi-cell multi-tier networks. The

following works investigate the energy-efficient wireless networks in multi-cell networks. An
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iterative energy-efficient link adaptation framework is presented in [44]. This work considers

the circuit power and transmit power jointly to determine the optimal solution that maxi-

mizes the energy efficiency in a non-cooperative manner. A similar link adaptation algorithm

that considers interference to determine the transmit power levels is proposed in [45]. The

work in [46] investigates energy-efficient resource allocation in an Orthogonal Frequency Di-

vision Multiple Access (OFDMA) network. It is shown that the maximum energy efficiency

and spectral efficiency are achieved at the same point for the low-power regime. In [47], the

authors show that energy efficiency maximization problem is equivalent to spectral efficiency

maximization problem for small values of transmission power. However, rate requirements

of users are not considered in [47]. Works in [44–47] employ universal frequency reuse (FR)

and do not consider HetNet deployments. Contrary to these references, in what follows, we

present an algorithm in this chapter that determines the MBS and picocell transmit power

levels together in networks with Fractional Frequency Reuse (FFR).

Several interference cancellation and mitigation techniques have been investigated in the

literature such as FFR, opportunistic scheduling, and almost blank subframes [8, 9]. In

next-generation networks such as Long Term Evolution (LTE) and 5G, FFR has been iden-

tified as an efficient, and at the same time, a low-complexity method to mitigate intercell

interference [9]. Although FFR has been mostly studied in the literature for single-layer

networks, see, e.g., [50] and [51], its performance has not been investigated to its full poten-

tial in multi-tier networks. Recently, energy efficiency of heterogeneous cloud radio access

networks is investigated in [52], and the soft-FFR method is employed to mitigate the inter-

ference between the high- and low-power nodes. It has been shown that heterogeneous cloud

radio networks provide significant performance gain over both HetNets and cloud networks.

In [53], the authors propose an energy-efficient resource scheduling algorithm for hetero-

geneous coordinated multi-point (CoMP) transmissions. The proposed algorithm in [53]

converges quickly which is crucial in practical wireless systems. A novel multi-tier FFR

scheme has been proposed in [54] and [55], which have investigated its throughput and out-
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age probability in [54] and its spectral efficiency in [55] for constant cell-center boundaries.

In this chapter, we will also employ the same FFR scheme, but with dynamic cell-center

boundaries to maximize the energy efficiency.

The problems of energy efficiency maximization and satisfying rate constraints do not always

coincide. On the contrary, these problems usually contradict with each other. In order to

satisfy rate requirements of users, base stations may need to increase their transmission

power to energy-inefficient levels. In the literature, these two problems are studied in [43,

44,49]. However, none of these works considers intercell interference conditions that increase

the complexity of the problem. In this chapter, we address this problem in a multicell

environment in which the intercell interference is very critical.

The contributions of this chapter are as follows. We study energy efficiency maximization of

HetNets with rate constraints using the FFR scheme and propose a dynamic algorithm to

select cell-center radius, assign frequency resources, and solve the power allocation problem.

First, a dynamic method is proposed to determine cell-center radius. Second, frequency

resources are assigned to users considering the interference conditions and user rate require-

ments. As the majority of the network traffic is generated indoors [56], the first stage is

typically solved at a large time scale. However, in this chapter, we combine the first and

second stage and solve cell-center radius selection problem in small scale. Last, a Levenberg-

Marquardt method-based approach is implemented to solve the power allocation problem.

Dual decomposition techniques are used for minimum rate constraints of users. This reactive

approach helps us further improve the energy efficiency and satisfy the rate requirements

of users. Note that the third stage is updated more frequently at a smaller time scale. We

have previously proposed a gradient ascent based power allocation method to solve the en-

ergy efficiency maximization problem without considering rate constraints of users, constant

cell-center boundaries, and constant frequency assignments in [57]. In this chapter, we pro-

pose a Levenberg-Marquardt method-based approach to extend the framework to consider

25



E1 Macro: B
Pico: A,C,D

E2

Macro: C
Pico: A,B,D

Macro:
D
Pico:
A,B,C

E3

Macro: A
Pico: B,C

C3

C1

Macro: A
Pico: C,D

C2

Macro: A
Pico: B,D

A B C D

Figure 3.1: Dynamic cell-center region boundaries and spectrum assignments in a multi-tier
FFR scheme. The network layout assumes a uniform 19 cell hexagonal grid in which the
MBSs have three sector antennas and pico-BSs employ omnidirectional antennas.

Quality-of-Service (QoS) constraints and to increase the speed of convergence.

The remainder of this chapter is organized as follows. Section 3.2 introduces the system

model and base station power consumption models. Section 3.3 formulates the energy-

efficient resource allocation problem in HetNets. The proposed solution methods are pre-

sented in Section 3.4. Simulation results are presented to evaluate the performance gains in

Section 3.5 and concluding remarks are presented in Section 3.6.

3.2 System Model

In this section, we first present the system model and the multi-tier FFR scheme. We then

study a linearized base station power consumption model that will be used later to formulate

the energy-efficient resource allocation problem in Section 3.3.

Consider a cellular layout of 19 hexagonal cells as depicted in Fig. 3.1. As is commonly done

in the literature, we will use this layout together with the wrap-around technique, e.g., [57,58],

to model a cellular network of infinite dimensions. Assume that macrocells employ 3-sector
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Figure 3.2: Illustration of the proposed spectrum and power utilization of an MBS and a
cell-edge pico-BSs in Sector 1 with the multi-tier FFR scheme.

antennas and picocell base stations (pico-BSs) have omni-directional antennas. Spectrum

allocation in the macrocell and picocell tiers is fundamental to determine the interference

conditions and user rates at each tier. In densely deployed networks, intercell interference

becomes a significant problem, limiting the system performance. The FFR scheme provides

a solution by assigning the frequency resources in a coordinated manner such that high

interference conditions are avoided. In this chapter, we employ the FFR scheme depicted in

Fig. 3.1. We refer to the macrocell-associated users as MUEs and picocell-associated users

as PUEs. The MUEs can be categorized into cell-center and cell-edge users depending on

factors such as their received reference power, path loss, or traffic load within the sector [57].

In this process, the variable rth,s determines the cell-center region boundary of sector s. In

Section 3.4.1, we elaborate on the selection process of rth,s in detail. In terms of spectrum

allocation, the MBSs can allocate subcarriers in subband A to their cell-center users while

the cell-edge MUEs are assigned to either one of the remaining three subbands. For example,

in Sector 1, subband B is allocated to the cell-edge users. Pico-BSs in the cell-center region

are assigned to orthogonal channels with respect to the subbands that the MBS operates at.

This is to reduce the cross-tier interference as the cell-center pico-BSs are close to the MBS.

For example, cell-center pico-BSs operate at subbands C and D. Note that, in a typical

LTE deployment, the MBSs and pico-BSs have around 16 dB transmit power difference [59].

This would have detrimental effects for the cell-center PUEs in the downlink if they were not

assigned to orthogonal channels with the MBS. For the cell-edge pico-BSs, subband A can
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also be reused in order to increase the throughput. For example, cell-edge pico-BSs operate at

subbands A, C, and D in Sector 1. Note that the multi-tier FFR scheme depicted in Fig. 3.1

favors the cell-center PUEs and cell-edge MUEs that would have been exposed to severe

interference if, for example, universal FR had been employed. This also enables operation at

a lower interference region such that the energy efficiency of the downlink transmissions can

be significantly increased. This fact is demonstrated later in Section 3.5 through numerical

simulations. We test our findings in an LTE scenario. In LTE, the smallest scheduling

granularity is per resource block (RB) in which an RB consists of 12 subcarriers [59].

In this chapter, we employ constant power allocation across subbands. Let NA, NB, NC , and

ND denote the total number of subcarriers in subbands A, B, C, and D, respectively. The

total number of subcarriers is denoted by N , i.e., N = NA+NB+NC+ND. We introduce two

variables, ε and β, to determine transmission power levels of base stations. The parameter ε

denotes the ratio of the downlink transmissions of cell-edge MUEs to cell-center MUEs. This

parameter is introduced to favor either cell-center or cell-edge users that do not satisfy their

minimum rate requirements. This parameter is only defined for the MBSs. The variable β

scales the transmission power of the base stations. This parameter introduces energy savings

into the system. The corresponding spectrum and power utilization scheme is illustrated in

Fig. 3.2. The downlink transmission per subcarrier of an MBS M for cell-center MUEs in

Sector 1, PM , is given by

PM =
βsPmax,M

NA + εNB

, (3.1)

where Pmax,M is the maximum transmit power of an MBS. Similarly, for the cell-edge MUEs,

the MBS transmit power per subcarrier is εPM . It is straightforward to obtain the expressions

for Sectors 2 and 3 by replacing NB with NC and ND, respectively. In the picocell tier, the

downlink transmission across subcarriers is also considered to be constant. For example, the
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transmit power per subcarrier of a pico-BS P , PP , in Sector 1 can be expressed as

PC
P =

βPPmax,P

NC +ND

and PE
P =

βPPmax,P

NA +NC +ND

, (3.2)

where PC
P and PE

P denote the transmit power of a cell-center and a cell-edge pico-BS per

subcarrier, respectively. The maximum transmit power of a pico-BS is represented by Pmax,P .

For pico-BSs in Sectors 2 and 3, a similar expression can be obtained by simply replacing

the values of NC and ND with the respective subband values.

Let sector s consist of Ks active users, and KM,s and KP,s denote the sets of MUEs and sets

of PUEs, respectively. Let k be the index of user and n be the index of the subcarrier. The

vector CM,s consists of binary variables denoting whether or not MUE is in the cell-center

region, i.e., Ck
M,s = 1 if MUE k is located in the cell center region and Ck

M,s = 0 otherwise,

where Ck
M,s is the kth entry of the vector CM,s. Likewise, the vector CP,s consists of binary

variables Ck
P,s ∈ {0, 1} denoting whether or not PUE is in the cell-center region. The matrix

FM,s is |KM,s|×N and its (n, k)th element denotes whether or not the subcarrier is assigned

to MUE by a value of 1 or 0, respectively. The matrix F P,s is |KP,s| × N and its (n, k)th

element denotes whether or not the subcarrier is assigned to PUE by a value of 1 or 0,

respectively. The matrices R1 and R2 are N × |KM,s|, and the matrices R3 and R4 are

N × |KP,s|. The (n, k)th element of R1 and R2 is the throughput of MUE k on subcarrier

n when the user k is located in the cell-center and cell-edge regions, respectively. Likewise,

the (n, k)th element of R3 and R4 denotes the throughput of PUE k on subcarrier n when

the user k is located in the cell-center and cell-edge regions, respectively. The aggregate

throughput of a sector s can be expressed as

Rs =
∑

k∈KM,s

(Ck
M,sF

(k,:)
M,sR

(:,k)
1 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
2 )

+
∑
k∈KP,s

(Ck
P,sF

(k,:)
P,s R

(:,k)
3 + (1−Ck

P,s)F
(k,:)
P,s R

(:,k)
4 ).

(3.3)
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Note that X(n,:) corresponds to the nth row vector of the matrix X. Likewise, X(:,k) is the

kth column vector of the matrix X. Depending on the associated tier, region, and subband,

the throughput terms in (4.4) can be expanded using the definitions in (4.2) and (3.2) as

R
(n,k)
1 =∆n log2

(
1 +

PM g
(n)
k,M

I
(k,n)
1 +N0∆n

)
, R

(n,k)
2 = ∆n log2

(
1 +

εsPM g
(n)
k,M

I
(k,n)
2 +N0∆n

)
,

R
(n,k)
3 =∆n log2

(
1 +

PC
P g

(n)
k,P

I
(k,n)
3 +N0∆n

)
, R

(n,k)
4 = ∆n log2

(
1 +

PE
P g

(n)
k,P

I
(k,n)
4 +N0∆n

)
,

(3.4)

where X(n,k) is the entry on the nth row and kth column of the matrix X. The channel

gain between user k and MBS M and between user k and pico-BS P on subcarrier n are

denoted by g
(n)
k,M and g

(n)
k,P , respectively. The interference incurred by user k on subcarrier

n is denoted by I
(n,k)
j in (4.5), where j = 1, 2, 3, 4. The value of I

(n,k)
j can be calculated as

follows

I
(n,k)
j =


∑

M ′ 6=M,M ′∈B(n)M

P
(n)
M ′ g

(n)
k,M ′ +

∑
P∈B(n)P

P
(n)
P g

(n)
k,P for j = 1, 2

∑
M ′∈B(n)M

p
(n)
M ′g

(n)
k,M ′ +

∑
P ′ 6=P,P ′∈B(n)P

P
(n)
P ′ g

(n)
k,P ′ for j = 3, 4

(3.5)

where B(n)
M and B(n)

P denote the sets of MBSs and pico-BSs that transmit on subcarrier n,

respectively. The sets of interfering MBSs and pico-BSs differ based on the sector, associated

tier, and whether the UE is in the cell-center or cell-edge region. The transmit power of an

MBS M and a pico-BS P are represented by p
(n)
M and p

(n)
P , respectively. Likewise, these

power levels depend on the sector and transmission band. The thermal noise power per Hz

and bandwidth of a subcarrier are represented by N0 and ∆n, respectively, ∆n = 15 kHz

for LTE systems [59]. Notice that for the cell-edge PUEs that are assigned to Band A,

the interference term in R
(n,k)
4 includes the intra-sector interference contributions from the
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MBS M to a cell-edge PUE k in the same sector, that is PM g
(n)
k,m. Including these terms

enables us to balance the cross-tier interference while maximizing the sector energy efficiency.

Reference [60] presents an extensive survey on resource allocation methods with cooperating

BSs. Our paper, in particular, can be categorized as a case where base stations share their

channel state information (CSI), which are obtained through feedback channels, to coordinate

their power and scheduling assignments among cooperating cells. In this chapter, we assume

that there exists backhaul capacity to exchange CSI information among base stations.

Several base station power consumption models are proposed in the literature, see, e.g.,

[26, 61–64]. In [26], the authors provide a parameterized power model that especially con-

siders the effects of transmission bandwidth and number of transmission chains. In [61, 62],

the circuit power consumption is defined as a function of sum rate. In [63], the power con-

sumption of base station is defined as a summation of the transmit power dependent power

consumption and static power consumption. In [64], the authors propose a power model for

various types of base stations and the individual contributions of the different equipment,

such as the baseband unit, radio frequency transceiver, power amplifier, power supply unit,

and cooling devices, are considered for total power consumption. This model also captures

the power consumption during the sleep mode which is very crucial for next-generation net-

works [6]. In this chapter, base stations go into the sleep mode when they are not serving

any user. Therefore, we employ the model in [64] in this paper. The power consumption at

MBS M is given by

PMBS,M =


NTRX
M (P0,M + ∆MβsPmax,M) , if 0 < β ≤ 1,

NTRX
M Psleep,M , if β = 0,

(3.6)

where PMBS,M and P TX
M are the total power consumption at an MBS and RF transmit power,

respectively. NTRX
M is the number of transceiver chains and P0,M is the power consumption
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at the minimum nonzero output power at an MBS. The slope of the load-dependent power

consumption at an MBS is denoted by ∆M . When an MBS does not transmit, it is considered

to be in the sleep mode and its power consumption is captured in Psleep,M . In this model, the

total power consumption depends on the transmit power or the load. Therefore, it is referred

to as the load-dependent power consumption model [64]. Similarly, the power consumption

of pico-BS P is given by

PPBS,P =


NTRX
P

(
P0,P + ∆PβPP

TX
P

)
, if 0 < P TX

P ≤ Pmax
P ,

NTRX
P Psleep,P , if P TX

P = 0,

(3.7)

where PPBS,P , P0,P , Psleep,P , and P TX
P denote the total power consumption, power consump-

tion at the minimum nonzero output power, power consumption in the sleep mode, and RF

transmit power at pico-BS P , respectively. The number of transceiver chains at the pico-BSs

is denoted by NTRX,P . The slope of the load-dependent power consumption at pico-BS is

denoted by ∆P . In Table 3.1, we present the values of the linearized power consumption

model parameters for MBSs and pico-BSs. Using (3.6) and (3.7), the power consumed in

sector s can be expressed as

ψs(βs,βP,s) = PMBS +
∑

P∈BP,s

PPBS,P, (3.8)

where βP,s is the vector of all β parameters of all pico-BSs in sector s. The set of pico-BSs

in sector s is denoted by BP,s .

Using the aggregate throughput and power consumption expressions in (3.3) and (3.8), the

energy efficiency of sector s, in bits/Joule, is defined as

ηs(εs, βs,βP,s) =
Rs

ψs(βs,βP,s)
. (3.9)

Note that the MBS transmissions on Band A determine the cross-tier interference for the cell-
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edge PUEs in the same sector as well as the intercell interference. However, as the downlink

transmissions of the MBS and cell-center pico-BSs in the same sector are orthogonal, the

MBS transmissions do not affect the throughput of cell-center PUEs in the same sector. In

the next section, we formulate the energy efficiency maximization problem.

3.3 Joint Energy-Efficient Resource Allocation Prob-

lem

In this section, we develop the framework for a utility-based resource allocation algorithm in

which the objective is to maximize the energy efficiency while satisfying the rate requirement

of users. The energy efficiency maximization problem can be formulated as

max
x,βP ,C,F

∑
s∈S

ηs(xs,βP,s)

s.t. Ck
M,sF

(k,:)
M,sR

(:,k)
1 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
2 ≥ Rmin,k, (3.10a)

for all k ∈ KM,s, s ∈ S

Ck
P,sF

(k,:)
P,s R

(:,k)
3 + (1−Ck

P,s)F
(k,:)
P,s R

(:,k)
4 ≥ Rmin,k, (3.10b)

for all k ∈ KP,s, s ∈ S∑
k∈KM,s
CkM,s=1

F
(k,n)
M,s = 1 and

∑
k∈KM,s
CkM,s=0

F
(k,n)
M,s = 0 for all n ∈ NC

M,s, s ∈ S (3.10c)

∑
k∈KM,s
CkM,s=0

F
(k,n)
M,s = 1 and

∑
k∈KM,s
CkM,s=1

F
(k,n)
M,s = 0 for all n ∈ NE

M,s, s ∈ S (3.10d)

∑
k∈KM,s

F
(k,n)
M,s = 0 for all n /∈ NC

M,s ∪NE
M,s, s ∈ S (3.10e)

∑
k∈KpP,s
CkP,s=1

F
(k,n)
P,s = 1 and

∑
k∈KpP,s
CkP,s=0

F
(k,n)
P,s = 0 for all n ∈ NC

P,s, s ∈ S (3.10f)
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∑
k∈KpP,s
CkP,s=0

F
(k,n)
P,s = 1 and

∑
k∈KpP,s
CkP,s=1

F
(k,n)
P,s = 0 for all n ∈ NE

P,s, s ∈ S (3.10g)

∑
k∈KpP,s

F
(k,n)
P,s = 0 for all n /∈ NC

P,s ∪NE
P,s, s ∈ S (3.10h)

ε � 0 and 0 � β � 1 (3.10i)

0 � βP � 1 (3.10j)

where Rmin,k is the minimum rate constraint of user k. The sets of subcarriers assigned

to cell-center and cell-edge regions of MBS M in sector s are denoted by NC
M,s and NE

M,s,

respectively. Likewise, the sets of subcarriers assigned to cell-center and cell-edge regions of

pico-BSs in sector s are denoted by NC
P,s and NE

P,s, respectively. The set of sectors in the

simulations area is S. The set of PUEs that are associated with pico-BS P in sector s is

denoted by KpP,s. The vectors ε and β consist of εs and βs for all sectors in the network.

The vector βP consists of βP,s that denotes the power control variable for each pico-BSs in

the sector s. The notation ε � 0 means that each element of ε is greater than or equal

to 0. Throughout the rest of the chapter, the vector xs will be used for the (εs, βs) couple

and the vector x will be used for the vector couple (ε,β). Constraints (3.10a) and (3.10b)

ensure that minimum rate constraints of users are satisfied. Constraints (3.10c) and (3.10d)

guarantee that cell-center MBS resources assigned to cell-center MUEs and cell-edge MBS

resources are assigned to cell-edge MUEs, respectively. Constraint (3.10e) ensures that MBSs

do not assign any resources that are not available to themselves. Constraints (3.10f) and

(3.10g) guarantee that cell-center pico-BS resources assigned to cell-center PUEs and cell-

edge pico-BS resources assigned to cell-edge PUEs, respectively. Constraint (3.10h) ensures

that pico-BSs do not assign any resources that are not available to themselves. Constraints

(3.10i) and (3.10j) state that parameters ε, β, and βP,s are within the given limits.
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This resource allocation problem needs to be jointly solved over the cell-center radius, fre-

quency, and power domains to obtain the optimum solution. The problem is combinatorial

over the first two domains and is non-convex over the power allocation domain [65, 66].

Therefore, obtaining the global solution to this problem requires an exhaustive search which

is fairly impractical. For the power allocation problem, we have showed in [57] that for the

same cell-center radius and frequency domain allocation, the energy efficiency function of a

sector is quasiconcave over the power levels when the interference conditions are constant.

To benefit from this property in the next section, we propose a three-stage algorithm in

which the joint problem is divided into separate domains.

3.4 Proposed Solution

Our formulation in (3.10) enables us to develop an energy-efficient resource allocation al-

gorithm. Similar resource allocation algorithms have been studied in the literature, see,

e.g., [44,45], and Chapter 3 of [34]. In our proposed algorithm, we decouple the main problem

into three subproblems. First, we start by selecting three candidate cell-center boundaries

such that the cell-center and cell-edge MUEs are selected and the corresponding informa-

tion is sent to the pico-BSs, identifying their regions and subbands. Second, we solve the

frequency allocation problem for all candidate cell-center boundaries. Note that, the power

control parameters that are obtained during the last time instant are used to calculate the

Lagrangian function in this process. Then, among these candidate cell-center boundaries,

the one that maximizes the Lagrangian function is selected. Last, we calculate the power

control parameters for the MBS and the pico-BSs, consecutively. After each sector solves its

power allocation subproblem, the interference prices and power levels are distributed among

the network. By using this information, each sector first resets the cell-center radius, resolves

the frequency allocation, and finally recalculates the power levels. The proposed algorithm
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Algorithm 2 Proposed Energy-Efficient Resource Allocation Algorithm

1: Initialize: r
(0,c)
th,s = rr,s/2 (ε

(0)
s , β0

s ,β
(0)
P,s) = [1, 1,1]

2: r
(t,c)
th,s = r

(t−1,c)
th,s

3: Stage 1: Each sector determines r
(t,c−1)
th,s and r

(t,c+1)
th,s by using the cell-center radius

selection algorithm in Section 3.4.1.
4: for n := −1 to 1 do
5: Stage 2: For cell-center radius, r

(t,c+n)
th,s , the frequency assignment algorithm is solved

by using the algorithm in Section 3.4.2.
6: L(n)

s which is described in Section 3.4.3 is calculated for the given frequency assign-
ment.

7: Note that dual variables and power control parameters in previous time instant are
used during the Lagrangian function calculation.

8: end for
9: The cell-center radius and the frequency assignments that maximize the Lagrangian

function are selected.
10: Stage 3: For this cell-center radius and frequency assignment, the power control pa-

rameters are determined by the proposed power control algorithm in Section 3.4.3.
11: Go to Step 2 and repeat.

is presented under the heading Algorithm 2. In the sequel, we discuss each stage of the

proposed algorithm in detail.

3.4.1 The Cell-Center Region Boundaries

The first stage of the proposed algorithm determines the cell-center region boundary of

each sector. It is shown in [55] that over 10% throughput improvement can be achieved by

proper selection of the constant cell-center region boundaries. Further improvements can be

obtained by selecting the boundaries dynamically in each sector. For single-layer networks,

the cell-center boundary categorizes its users into the cell-center and cell-edge MUEs. MUEs

can typically be distinguished into cell-center and cell-edge users based on the reference signal

received power (RSRP) or reference signal received quality (RSRQ) measurements fed back

from UEs to MBSs. The RSRP signal indicates the path loss between the serving base

station and users, whereas the RSRQ measurement gives the ratio of the reference signal to

36



the interference. Since it is shown in [67] that the performance of both schemes are similar,

in this chapter, we also distinguish users into cell-center and cell-edge users based on the

RSRP measurements. If the RSRP of a user is higher than a threshold, it is considered to

be in the cell-center region, and vice versa.

For two-tier networks, the cell-center boundary also determines the available RBs for each

pico-BS. For example, consider the multi-tier FFR scheme depicted in Figure 3.1. If a pico-

BS is located in the cell-center region, the number of available RBs for this pico-BS reduces.

This frequency allocation alleviates the cross-tier interference between the cell-center MUEs

and cell-edge PUEs. On the other hand, if a pico-BS is located in the cell-edge region, all

subbands, except the subband which is used by cell-edge MUEs, are available to this pico-

BS. Therefore, when a pico-BS is located in the cell-center region, the available RBs and

correspondingly the total throughput of the pico-BS significantly decreases.

In two-tier networks, due to the high power difference of the reference signal between the

MBSs and pico-BSs, PUEs are typically located close to the pico-BS [68]. For this reason,

PUEs typically have low path loss values, or equivalently, high channel gains to their serving

pico-BSs. When the number of subbands available to the pico-BS is decreased, it can be

expected that the total throughput of PUEs will be reduced. However, due to the reduction

in the cross-tier interference, the signal-to-interference-plus-noise ratio (SINR) of the cell-

center MUEs increases subsequently. In [57], we proposed two different cell-center selection

algorithms. The first algorithm (CSSA2) is proposed to maximize the throughput and the

energy efficiency of the network at the cost of fairness. On the other hand, the second one

(CSSA3) maximizes fairness among users at the cost of throughput. In CSSA2, the MUE

that is closest to the MBS is selected to be in the cell-center region, while the rest of the MUEs

are in the cell-edge region. This algorithm achieves higher energy efficiency and throughput

while it leads to the starvation of some users, due to the lack of resources for cell-edge users.

There is even the possibility of some users not getting any resources when the network is
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crowded. On the other hand, CSSA3 achieves significantly higher fairness by sacrificing the

energy efficiency of the network. We will evaluate the performance of CSSA2 and CSSA3 in

Section 3.5. To benefit the advantage of both algorithms, we propose a new cell-center radius

selection method (CSSA1) that dynamically updates the radius. In heterogeneous networks,

shifting the cell-center radius is only effective if the new radius changes the region of an

MUE or a pico-BS. Otherwise, the change will be useless. Therefore, CSSA1 compares the

Lagrangian function of the previous cell-center radius with two cell-center radii: one more

MUE or pico-BS is included in the cell-center region and one MUE or pico-BS is excluded

from the cell-center region. The MUE or pico-BS that is going to be included in the cell-

center region is the closest MUE or pico-BS to the cell-center radius and located in the

cell-edge region for the previous cell-center radius. Likewise, the MUE or pico-BS that is

going to be excluded from the cell-center region is the closest MUE or pico-BS to cell-center

radius and located in the cell-center region. Note that RSRP measurements are used to

determine the users or pico-BSs that are going to change their region. In addition, only

the region of one MUE or pico-BS changes at each iteration. After that, CSSA1 selects the

cell-center radius that maximizes the Lagrangian function among these three radii. In order

to calculate the Lagrangian function, the frequency assignment problem needs to be solved.

Therefore, the frequency assignment problem that is going to be explained in Section 3.4.2

has to be solved for all these three radii. When the rate requirements of the users are small,

CSSA1 shrinks the cell-center radius and improves the energy efficiency of the network. On

the other hand, when the rate requirements of the users increase, a more fair cell-center

radius selection helps satisfy the rate requirements of users.

3.4.2 Frequency Assignment Problem

In the second stage of the problem, we determine the frequency assignments. There are

many scheduling methods discussed in the literature, see, e.g., [59, 69]. Each scheduler has
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an efficiency and fairness tradeoff. In general, both of these utilities cannot be increased at

the same time. In the LTE radio protocol stack, scheduling is handled by the medium access

control (MAC) layer [59]. The scheduler in each base station is responsible from the distri-

bution of frequency resources and this is left to the network operator for implementation.

Green scheduling schemes have been surveyed in [69] and references therein. These schemes

can significantly improve energy efficiency of the system and decrease the transmission pow-

ers. In this chapter, we propose a novel scheduling algorithm to satisfy the rate requirements

of users and to maximize the energy efficiency of the sector. For fairness purposes, we first

assign one RB to each user. Then, the rest of the resources are assigned to users that pro-

vide the highest improvement to the Lagrangian function which is described in Section 3.4.3.

When the rate requirements of the users are not satisfied, the dual prices significantly de-

crease the value of the Lagrangian function. Therefore, the proposed algorithm favors those

users that could not satisfy the rate requirement with the current assignment. On the other

hand, when the rate requirements of all users are satisfied, the proposed algorithm assigns

RBs to the user that provides the highest increase to the Lagrangian function. This user

is usually the one who has the best average channel gain among all users. We describe the

scheduler algorithm next.

Lagrangian Directed Scheduler (LDS): In the LDS, RBs are distributed among users

to maximize the Lagrangian function. Note that, we run this algorithm twice in the MBSs,

one for the cell-center MUEs and one for the cell-edge users, due to the fact that these users

do not compete for the same RB sets. In LTE standards, the smallest granularity is RB.

Therefore, we assign all subcarriers in one RB to one user during the scheduling process.

In the proposed scheduling algorithm, the scheduler first assigns one RB to each user. The

RB that has the best average channel gain among the available RBs is assigned to the user.

After that, if there are still unassigned RBs, the proposed algorithm calculates the increase

in the Lagrangian function for an RB and this RB is assigned to the user that provides the

highest improvement to the Lagrangian function. This process continues until all RBs are
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assigned to the users.

In the sequel, we will compare the proposed LDS with the Equal Bandwidth (EBW) scheduler

and Max-Min Fair (MMF) scheduler whose descriptions are given below.

EBW Scheduler: The EBW scheduler distributes RBs equally among users in the following

manner. Assume that there are K users and NRB RBs. These RBs are assigned to users such

that bNRB/Kc+ 1 RBs to Kh = mod (NRB, K) users and bNRB/Kc RBs to Ki = K −Kh

users.

MMF Scheduler: In the MMF scheduler, RBs are distributed among users to maximize the

minimum throughput. We adopt the scheduler that has been described in [70]. The primary

difference between these two algorithms is the scheduler granularity. The one described

in [70] allocates subcarriers to users, however the smallest granularity in the LTE standard

is RB. Therefore, we need to adopt the algorithm in [70] to work at the RB level. In the

MMF scheduler, each user is assigned the RB with the best average channel gain. We then

remove this user from the user set and the corresponding RB from the RB set. This process

continues until one of the sets is empty. If the user set is empty first, then the users are

sorted according to their actual rates with current assignment. Then the RB that has the

best channel is assigned to the first user and users are sorted again according to updated

rates. This process continues until all RBs are assigned.

3.4.3 Power Control Problem

The third stage of the proposed solution determines the power assignments such that the

optimal power levels are assigned to each subband in order to maximize the energy efficiency

and satisfy the rate requirements in the sector. Given the frequency assignments from the

previous stage, it remains to solve this power control problem. As we discussed earlier,
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this problem is non-convex over the power allocation subdomain and the solution requires

exhaustive search over all power control parameters. However, we showed that energy ef-

ficiency function ηs(xs,βP,s) is quasiconcave over the power control parameters εs and βs

in [57]. Therefore, when we divide the power allocation problem into |S| subproblems such

that each sector maximizes its own energy efficiency while satisfying the rate requirements

of its users where the number |S| corresponds to the number of sectors in the network, each

problem is quasiconcave and has a unique maximum over the power control parameters εs

and βs. In the maximization problem, the received interference is assumed to be constant.

In addition, the region of the users in the sector and frequency assignment of the users have

to be determined before calculating the power levels. After these steps, by using convex

optimization techniques, the optimal βs, εs, and βP,s that maximize the energy efficiency of

the sector s and satisfy the rate constraints of users can be obtained.

The pico-BSs are expected to become significantly dense to meet the increasing rate de-

mands [2]. Therefore, updating the power control parameters of MBSs and all pico-BSs in

the sector concurrently requires significant data exchange between base stations. This may

create congestion in the backhaul network. In addition, this process requires significant com-

putation time and may not be obtained in real time especially in denser networks. Therefore,

we split the power control problem into two subproblems. In the first part of the algorithm,

MBS determines optimum βs and εs. During this process, the power control parameters

of pico-BSs, βP,s, are assumed to be constant. In the second part of the process, pico-BSs

concurrently calculate their power control parameters for the determined βs and εs in the

first part. Note that each pico-BS assumes that the transmission power level of the other

pico-BSs in the sector are not changing during this process.
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MBS Power Control Problem

In the first part, MBSs determine the optimum power control parameters in each sector. Due

to the fact that each MBS tries to satisfy the rate requirement of its users, the transmission

power of the MBSs may increase imprudently. This not only reduces the energy efficiency of

the network, but also augments the intercell interference and elevates the outage probabilities

of the users in the other sectors. Therefore, we study the pricing mechanism to account for the

interference caused to the users associated with other base stations. The pricing mechanism

reduces the intercell interference by giving incentives to MBSs for decreasing their transmit

powers.

The pricing function penalizes the utility of an MBS based on the interference it creates. If

the interference leads to outage of the users in other sector, the penalty factor increases. Let

θs(xs) denote the pricing function of sector s. The energy efficiency maximization problem

with the pricing function per sector can be formulated as

max
xs

ηs(xs,βP,s)− θs(xs)

s.t. Ck
M,sF

(k,:)
M,sR

(:,k)
1 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
2 ≥ Rmin,k, for all k ∈ KM,s

Ck
P,sF

(k,:)
P,s R

(:,k)
3 + (1−Ck

P,s)F
(k,:)
P,s R

(:,k)
4 ≥ Rmin,k, for all k ∈ KP,s

εs ≥ 0 and 0 ≤ βs ≤ 1

(3.11)

Several pricing functions have been proposed in the literature. For example, in [38] and [39],

the authors propose to use θs(xs) = csβsP
max
M , where cs is a constant. The cost function

proposed in [38] and [39] penalizes the utility of an MBS with the total amount of power it

transmits. In this chapter, we pursue an alternative approach and penalize the interference

that an MBS creates. This type of pricing function was first proposed in [35–37]. In this
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approach, the pricing function is defined as

θs(x) =
∑
n∈NM

p
(n)
M

∑
l 6=k, l∈K(n)

∂ηs′

∂p
(n)
M

, (3.12)

where the transmit power of MBS M on subcarrier n is denoted by p
(n)
M . The set of subcarriers

that MBS M allocates for the cell-center and cell-edge regions is denoted by NM . Let K(n)

denote the set of users that are assigned to subcarrier n. Then, the set of users that MBS

m interferes on subcarrier n are represented by l ∈ K(n). Let a user l be in sector s′, then

the energy efficiency of the sector s′ is denoted by ηs′ . The term ∂ηs′/∂p
(n)
M denotes the

derivative of energy efficiency of sector s′ with respect to the transmit power of MBS M of

sector s. Thus, the penalty function (3.12) characterizes the marginal change in the utility

of a neighboring sector s′ per unit power change in MBS M of sector s. In addition, this

approach prevents the base stations from increasing their transmission power to very high

levels when the minimum rate requirement of one or more of their users cannot be satisfied

without causing outage of the other users. In LTE standards, the X2 interface provides a fast

and reliable backhaul link between base stations [59]. In this chapter, we use this interface for

three reasons: First, pico-BSs send the CSI for their users to MBS where these are processed.

Second, the CSI of users is distributed among MBSs. Third, for the pricing method, the

same interface distributes the interference prices between MBSs. The Lagrangian of the

problem in (3.11) can be written as

L(xs,βP,s,λ, νs, τs, ρs) =ηs(xs,βP,s)− θs(xs)−
∑

k∈KM,s

λk,s
(
Rmin,k − (Ck

M,sF
(k,:)
M,sR

(:,k)
1

+ (1−Ck
M,s)F

(k,:)
M,sR

(:,k)
2 )

)
−
∑
k∈KP,s

λk,s
(
Rmin,k

− (Ck
P,sF

(k,:)
P,s R

(:,k)
3 + (1−Ck

P,s)F
(k,:)
P,s R

(:,k)
4 )

)
+ νsβs + τs(1− βs) + ρsεs.

(3.13)
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For simplicity, we will use Ls for L(xs,βP,s,λ, νs, τs, ρs) throughout the rest of the chapter.

Since the downlink transmissions of an MBS M in sector s, p
(n)
M , are characterized by εs and

βs, we need to adopt (3.12). In addition, we need to include the effect of interference to the

rate constraints of users in other sectors. Therefore, the pricing function can be written as

θs(xs) =xTs
∑
s′∈S
s′ 6=s

(
∇xsηs′(xs′ ,βP,s′) +

∑
k∈KM,s′

λk,s′
(
Ck
M,s′F

(k,:)
M,s′R

(:,k)
1

+ (1−Ck
M,s′)F

(k,:)
M,s′R

(:,k)
2

)
+
∑

k∈KP,s′

λk,s′
(
Ck
P,s′F

(k,:)
P,s′R

(:,k)
3

+ (1−Ck
P,s′)F

(k,:)
P,s′R

(:,k)
4

))
.

(3.14)

Hence, the pricing function in (3.14) reflects the marginal costs of the variables ε and β. The

detailed expressions of the terms in (3.14) are given in the Appendix A.

For the solution, we will employ the Levenberg-Marquardt method. The Levenberg-Marquardt

method is a modification to the Newton method. The Newton method premultiplies the gra-

dient ascent direction by the inverse of the Hessian matrix. The motivation of the Newton

method is to find a suitable direction based on the quadratic approximation of a func-

tion, whereas the gradient ascent method seeks to find a linear approximation of a func-

tion. Consider the Lagrangian function in (3.13). Its quadratic approximation evaluated at

y
(l)
s = (ε

(l)
s β

(l)
s )T can be expressed as

g(y) = Ls +∇LTs (y− y(l)
s ) +

1

2
(y− y(l)

s )T∇2Ls(y− x(l)
s ), (3.15)

where ∇2Ls is the Hessian matrix of L evaluated at y
(l)
s . Note that we are going to use y

(l)
s

for (ε
(l)
s β

(l)
s ) pair for the Newton iteration l and the parameter x

(t)
s will be used for the same

pair at time instant t. The parameter updates that maximize g(y) are given by

y(l+1)
s = y(l)

s − µl(∇2L(l)
s )−1∇L(l)

s , (3.16)
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where the Newton search direction is dNl = −(∇2L(l)
s )−1∇L(l)

s . In general, convergence of

the Newton method is not guaranteed [71]. This is due to the fact that the Hessian can

be singular or the search direction, dNl , may not even give an ascent direction. Therefore,

even when the inverse of the Hessian matrix exists, it does not necessarily imply that L(l+1)
s

is greater than L(l)
s . However, when the starting point y

(0)
s is close enough to the optimal

y∗ such that ∇L(l)∗
s = 0 and ∇2L(l)∗

s is full rank, then the Newton method converges to

the optimal y∗ [71,72]. In order to address the convergence problem of the Newton method,

several methods have been proposed in the literature, see Chapter 8 of [71] and Chapter 5.2.4

of [72]. In this chapter, we employ the Levenberg-Marquardt method due to its guarantee of

convergence. With the Levenberg-Marquardt method, the parameter updates are given by

y(l+1)
s = y(l)

s − µl(∇2L(l)
s − ξI)−1∇L(l)

s , (3.17)

where dLMl = −(∇2L(l)
s − ξI)−1∇L(l)

s is the search direction evaluated at y
(l)
s and I is the

identity matrix. The constant ξ ensures all the eigenvalues of D = (∇2L(l)
s −ξI) are negative

such that D is negative definite. It is called as the damping or the Levenberg-Marquardt

parameter [71]. If the largest eigenvalue of ∇2L(l)
s is negative, then ξ will be equal to zero and

the Levenberg-Marquardt method reduces to the Newton method, that is dLM(l) = dN(l). Under

this condition, quadratic convergence is achieved. If the largest eigenvalue of the Hessian

is non-negative, then we take ξ = ωmax + σ, where ωmax is the largest eigenvalue of ∇2L(l)
s

and σ > 0 is a sufficiently large number. This operation forces the Hessian to be negative

definite. In our simulations, this offset is taken as σ = 1. The proposed approach using the

interference pricing method is depicted under the heading Algorithm 3, where lmax is the

maximum number of iterations and ε is a sufficiently small positive number to determine

when to exit the algorithm. The parameter αk,s in Step 10 is the positive scalar step size. In

addition, the controlled increase mechanism in Step 15 is used to update the power levels.

When the power level of the MBSs changes largely between two consecutive time instants,
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Algorithm 3 Proposed Power Control Algorithm with Pricing

1: % Each sector solves (3.11) by using the Levenberg-Marquardt Method
2: for l := 1 to lmax do
3: if ωmax = max(eig(∇2

yL
(l)
s )) < 0 then

4: ξ = 0.
5: else
6: ξ = ωmax + σ.
7: end if
8: dLMl = −(∇2L(l)

s − ξI)−1∇L(l)
s .

9: Update the power control parameters, y
(l+1)
s , using

y(l+1)
s = y(l)

s + µld
LM
l ,

10: Update the Lagrange multiplier, λ
(l+1)
k,s for all k ∈ KCM,s and KEM,s, using

λ
(l+1)
k,s =

[
λ
(l)
k,s + αk,s

(
Rmin,k − (Ck

M,sF
(k,:)
M,sR

(:,k)
1 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
2 )

)]+
.

11: if
∣∣∇LTs dLMl

∣∣ ≤ ε then
12: Break
13: end if
14: end for
15: x

(t+1)
s = (1− ζ)x

(t)
s + ζy

(l)
s

16: Price Update: Each user calculates interference prices and feeds these values back to its
base station.

17: Interference prices are distributed among base stations.

the interference pricing mechanism does not accurately model the effect of the interference

over the utilities of the other sectors [36]. The controlled increase mechanism in Step 15

prevents large changes of the power levels. In this step, the selection of small ζ slows down

the convergence of the algorithm. On the other hand, large ζ may cause large changes in

the power levels. Therefore, an adaptive algorithm is used to select ζ in this chapter. The

parameter ζ is equal to t/(2t+ 1) where t is the time instant [34]. When t goes to infinity ζ

will converge to 1/2.

Note that the Levenberg-Marquardt method guarantees convergence regardless of the start-

ing point [71, p. 312]. Using the Levenberg-Marquardt method, the parameters are updated

in Step 9 of Algorithm 3. The expression

√
(∇L(l)

s )TdLMl is called as the Newton incre-
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ment [73]. It is used as a stopping criterion in iterative line search algorithms [73]. Note

that this stopping criterion is also the condition to check whether a search direction dLMl is

an ascent direction or not, that is, to check if ∇L(l)T
s dLMl > 0 is true. The loop terminates

when the convergence condition is satisfied or the maximum number of iterations is reached.

In general, the main computational effort in Algorithm 3 is at Step 3 and Step 8 where

the eigenvalues of matrix ∇2L(l)
s and the inverse of matrix ∇2L(l)

s − ξI are calculated [71].

Using classical approaches such as the Gauss-Jordan elimination method, the computational

complexity of calculating eigenvalues and taking the inverse of an n×n matrix is O(n3). For

large-scale problems, this operation becomes prohibitively complex. Consider the central-

ized resource allocation approach where we solve for 57 (ε, β) pairs, one pair for each sector.

Taking the inverse of this big matrix would require O(1143) floating point operations (flops).

Fortunately, with the proposed distributed algorithm, we only need to calculate the eigen-

values of ∇2L(l)
s and take the inverse of ∇2L(l)

s − ξI, which are both 2×2 matrices, and these

calculations are straightforward. The computational complexity of finding the maximum

eigenvalue and updating power control parameters is O(n). Those steps require significantly

less amount of time. The computational complexity of updating the Lagrange multipliers is

independent from the number of power control parameters and it depends on the number

of users in the sector. Under these conditions, the computational complexity of both the

gradient and Levenberg-Marquardt methods are on the same order per iteration step. In

addition, due to the distributed nature of the algorithm, increasing the number of sectors in

the simulation area does not change the required time due to parallel processing. However,

the total required time increases linearly due to the fact that more sectors run the proposed

algorithm. Along with similar computational complexity, the Levenberg-Marquardt based-

method has significantly faster convergence rate compared to the gradient-based method.

The convergence properties of the algorithm are inherited from the detailed analysis in [57].

Also, note that the expressions of the gradient and Hessian of the energy efficiency function,

ηs, are presented in detail in the Appendix of [57].
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Picocell Power Control Problem

In the second part of the power problem, each pico-BS determines its own power control

parameter separately. When the power control parameters for MBS are selected, the problem

will be similar to the MBS power control problem. However, instead of two power control

parameters, we only need to determine one power control parameter for each pico-BS. During

this process, we assume that all power control parameters of other pico-BSs in sector s are

constant. Then, the energy efficiency maximization problem with pricing function for pico-

BS P can be formulated as

max
βP,s

ηs(xs,βP,s)− θs(βP,s)

s.t. Ck
M,sF

(k,:)
M,sR

(:,k)
1 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
2 ≥ Rmin,k, for all k ∈ KM,s

Ck
P,sF

(k,:)
P,s R

(:,k)
3 + (1−Ck

P,s)F
(k,:)
P,s R

(:,k)
4 ≥ Rmin,k, for all k ∈ KP,s

0 ≤ βP,s ≤ 1.

(3.18)

The pricing function, θs(βP,s), will be similar to the one in (3.14) except the derivatives are

calculated with respect to βP,s. Therefore, we do not repeat it here for simplicity.

The Lagrangian of the problem in (3.18) can be written as

Ls =ηs(xs,βP,s)− θs(βP,s)−
∑

k∈KM,s

λk,s
(
Rmin,k − (Ck

M,sF
(k,:)
M,sR

(:,k)
1

+ (1−Ck
M,s)F

(k,:)
M,sR

(:,k)
2 )

)
−
∑
k∈KP,s

λk,s
(
Rmin,k − (Ck

P,sF
(k,:)
P,s R

(:,k)
3

+ (1−Ck
P,s)F

(k,:)
P,s R

(:,k)
4 )

)
+ νP,sβP,s + τs(1− βP,s).

(3.19)

The optimum βP,s can be calculated by using the Levenberg-Marquardt method-based al-

gorithm similar to the algorithm that is described in Section 3.4.3. In Section 3.4.3, the

algorithm determines two power control parameters concurrently. However, we only de-
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termine one power control parameter in each pico-BS. Therefore, the complexity of this

algorithm is lower than the one in Section 3.4.3. In addition, this process is done concur-

rently at all pico-BSs in sector s and increasing the number of pico-BSs in sector does not

affect the required time for this calculation.

In this chapter, we are maximizing the energy efficiency of the network while satisfying the

rate constraints of users. This particular approach is beneficial for applications such as Voice-

over-IP, video call, streaming, and real-time gaming applications that require minimum rate

to perform properly. As we will show next in Section 3.5, when we enforce higher rates, the

energy efficiency of the network may decrease.

3.5 Simulation Results

In this section, first, we show the convergence behavior of the Levenberg-Marquardt method

at the first time instant. Second, we evaluate the performance of the proposed algorithm

in terms of energy efficiency, outage probability, and power consumption for different rate

constraints. Third, we compare the performance of the dynamic cell-center radius with

constant cell-center region boundary selection algorithms. Fourth, we assess the effect of

the scheduler on the energy efficiency and the outage probabilities. Fifth, we compare the

performance of the proposed algorithm with no power control and non-cooperative power

control algorithms in terms of energy efficiency and outage probabilities. Sixth, we study the

efficiency of the proposed algorithm by comparing it with an exhaustive search algorithm

over all possible cell-center radii and power levels.

For the FFR method, the spectrum allocation scheme is such that 14 RBs are assigned to

subband A. The remaining 36 RBs are divided into three equal segments and assigned to

subbands B, C, and D. The simulation layout is illustrated in Fig. 3.1. The simulation

49



area consists of 19 hexagonal cells with wrap-around edges. Single antenna transmission is

considered, i.e., NTRX,M = 1 and NTRX,P = 1 for all sectors. Two pico-BSs are randomly

generated in each sector. Although we present the results for the two pico-BS case, the

proposed algorithm can easily be implemented for a network that has more pico-BSs per

sector. Twenty users are generated in each sector. First, two users are generated within the

radius of 40 meters for each pico-BS. Then, the rest of the users are uniformly distributed

in the sector area. The highest RSRP method is used for the cell-association [68]. The

simulation parameters, distance constraints in generating new nodes, and the base station

power consumption values are given in Table 3.1 [24]. Furthermore, the initial values are

chosen as (ε(0),β(0),β
(0)
P ) = (1,1,1) where 1 is defined as a vector all of whose members are

equal to 1.

In the first part of the simulations, we assume that all MUEs in the network have the same

guaranteed-bit-rate (GBR) requirements, i.e., Rmin,k = Rmin, for all k ∈ KM,s ∪ KP,s and

s ∈ S. Six different rate constraints are considered, Rmin is equal to 16, 32, 64, 128, 256, and

512 kbits/sec (kbps). In the second part of the simulations, we compare the performance of

the proposed dynamic cell-center radius selection algorithm with the ones that are described

in [57]. In the third part of the simulations, we study the importance of the scheduler. The

LDS, the EBW scheduler, and the MMF scheduler described in Section 3.4.2 are considered

for no rate constraint and various rate constraint cases.

Fig. 3.3 depicts the average energy efficiency function of the network for each iteration

at first time instant when Rmin is equal to 0, 16, 32, 64, and 128 kbps. The average

energy efficiency of the sector increases significantly at the first iteration, then Levenberg-

Marquardt based-method updates the power control parameters every iteration until the

convergence. Convergence behavior is independent from the rate requirements of users and

in our simulations, it took around 20 to 25 iterations for convergence to be achieved.

Fig. 3.4(a) shows the energy efficiency of the network for the proposed algorithm when Rmin
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Table 3.1: Simulation Parameters

Parameter Setting

Channel bandwidth 10 MHz
Total number of RBs 50 RBs
Freq. selective channel model (CM) Extended Typical Urban CM
UE to MBS PL model 128.1 + 37.6 log10(d)
UE to pico-BS PL model 140.7 + 36.7 log10(d)
Effective thermal noise power, N0 −174 dBm/Hz
UE noise figures 9 dB
MBS and pico-BS antenna gain 14 dBi and 5 dBi
UE antenna gain 0 dBi
Antenna horizontal pattern, A(θ) −min(12(θ/θ3dB)2, Am)
Am and θ3dB 20 dB and 70◦

Penetration loss 20 dB
Macrocell and picocell shadowing 8 dB and 10 dB
Inter-site distance 500 m
Minimum MBS to user distance 50 m
Minimum pico-BS to user distance 10 m
Minimum pico-BS to MBS distance 75 m
Minimum pico-BS to pico-BS distance 40 m
Traffic model Full buffer
Power Consumption Parameters MBS: (130W, 75W, 46dBm, 4.7)
(P0, Psleep, Pmax, ∆) Pico-BS: (56W, 39W, 30dBm, 2.6)

5 10 15 20 25 30
Iterations

120

140

160

180

200

220

240

260

280

300

A
ve

ra
ge

 E
ne

rg
y 

E
ffi

ci
en

cy
 p

er
 S

ec
to

r 
(k

bi
ts

/J
ou

le
)

No GBR Constraints
GBR: 16 kbps
GBR: 32 kbps
GBR: 64 kbps
GBR: 128 kbps

Figure 3.3: The average energy efficiency of the network at the first time instant for lower
GBR requirements of users.

is equal to 0, 16, 32, 64, and 128 kbps. Note that in this range of Rmin values, the algorithm

uniformly improves the energy efficiency of the system. Not surprisingly, the improvement

decreases as Rmin increases. For the case without rate constraints, the energy efficiency

of the network is 2.2%, 6.9%, 12.6%, and 20.2% higher than the cases with Rmin is equal

to 16, 32, 64, and 128 kbps, respectively. For the lower rate constraints, the reduction in

energy efficiency is marginal due to the fact that the rate constraints of most of the users are
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Figure 3.4: The average energy efficiency per sector (a), the outage probabilities (b), and
average transmission power (c) for lower GBR requirements of users.

already satisfied at the energy-efficient optimum power level. Therefore, only small changes

are required to satisfy the rate constraints of the rest of the users. In Fig. 3.4(b), the
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outage probabilities of the network using the proposed algorithm are shown for the same

rate constraints. A user is assumed to be in outage if the actual rate of the user is less

than its rate requirement. The outage probabilities are very low for these rate constraints,

even for the early time instances that the transmission power levels of the base stations have

not converged. The highest outage probability is 0.5% when the rate requirement is 128

kbps. The efficiency of the proposed algorithm in terms of outage will become clear in the

sequel when higher rate constraints are forced. Fig. 3.4(c) illustrates the power savings of

the proposed algorithm. The average transmission power of the MBSs decreases every time

instant until the convergence. Due to the fact that the rate constraints of the users are low,

the proposed algorithm provides significant power savings. The average transmission power

decreases more than 20 dB when users do not have any rate requirements. When the rate

constraints are enforced, it leads to higher average transmission power and that is the main

reason of the smaller gain in energy efficiency by using the algorithm. On the other hand,

pico-BSs always transmit at the full power for the given rate constraints. Due to the fact

that the interference from the pico-BSs to MBS does not cause outages of the users and

pico-BSs reach their most energy-efficient case when they are transmitting at the full power,

the pico-BSs transmit at the full power.

In Fig. 3.5(a), the energy efficiency of the network is illustrated for higher rate constraints,

256 and 512 kbps. Different from the previous cases, the average energy efficiency of the

network now decreases in each time instant. The energy efficiency of the network drops 4.9%

and 27.3% from the first time instant to the last time instant when Rmin is equal to 256

and 512 kbps, respectively. The reason behind that is threefold. First, MBSs increase their

transmission power to energy-inefficient levels in order to satisfy the higher minimum rate

requirements of users. Second, the increased transmission power elevates the interference

to the users that are in other sectors and using the same subchannels. Due to the elevated

interference, base stations increase power levels to be able to support the minimum rate

requirements which gives rise to more interference and a chain reaction starts. Third, pico-
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Figure 3.5: The average energy efficiency per sector (a), the outage probabilities (b), and
average transmission power (c) for higher GBR requirements of users.

BSs decrease their transmission power in order to decrease the interference to MBSs. The

result is the reduction in energy efficiency manifested in Fig. 3.5(a). In Fig. 3.5(b), the
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outage probabilities of MUEs are shown for the higher rate constraints. As expected, the

outage probability of users increases for the higher rate requirements as compared to lower

rates shown in Fig. 3.4(b). At the first iteration, the outage probabilities are 7.9% and 27.0%

for GBR requirements 256 and 512 kbps, respectively. After 40 time instants, the outage

probabilities become 1.8% and 12.4% for the GBR requirements in the same order as before.

When the rate requirement of users increases, energy-efficient power levels cause significant

outages and that needs to be adjusted to decrease outage probabilities to tolerable levels.

If we continue to increase the rate requirements of users, that requires further sacrifice

from the energy efficiency of the network. This points out to the tradeoff between the

network energy efficiency and outage probability, which becomes more severe at higher GBR

requirements. Nevertheless, it is worthwhile to state that while an outage probability of

27.0% is unacceptable, 12.4% can be acceptable, pointing out to the fact that although

the algorithm does not improve energy efficiency for these high rates, it is useful for a

substantial reduction in outage probability. In Fig. 3.5(c), the average transmission power of

base stations is shown. When higher rate constraints are enforced; the average transmission

power of MBSs reaches the lowest level at the first time instant, and then it increases each

time instant until the convergence. In order to satisfy the rate requirements of the users,

MBSs need to transmit at higher levels compared to lower rate cases. Therefore, compared

to Fig. 3.4(c), the power savings of the network is significantly lower. For example, when

the GBR requirement is equal to 256 kbps, the power saving of the MBSs is less than 5 dB.

The power savings are even lower when the rate constraints are 512 kbps. The decline in the

power savings is the main cause of the decrease in energy efficiency. Yet, it is worthwhile to

note that there is a gain in transmitted power, although it does not translate into improved

energy efficiency. The transmission power of the pico-BSs decreases when the higher rate

requirement constraints are enforced. When the rate requirements of the users increase,

some of the MUEs will be in outage. In order to satisfy the rate requirement of these MUEs,

pico-BSs decrease their transmission powers and consequently the interference they create
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Figure 3.6: The average energy efficiency per sector (a) and the outage probabilities (b) for
different cell-center radius selection algorithms.

Table 3.2: The Outage Profile of the Different User Types

Nr. of users (Outage probability)
Minimum Cell-center Cell-edge PUE

GBR (kbps) MUE MUE

- 348 (0%) 616 (0%) 176 (0%)
16 358 (0%) 606 (0.2%) 176 (0%)
32 366 (0%) 598 (0.5%) 176 (0%)
64 396 (0.2%) 568 (0.5%) 176 (0%)
128 447 (0.4%) 517 (0.8%) 176 (0%)
256 482 (1.7%) 482 (2.5%) 176 (0.5%)
512 517 (10%) 447 (15.2%) 176 (12%)

to these users. For example, when the GBR requirement is equal to 512 kbps, the pico-BSs

decrease their transmission power more than 1 dB.
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In Table 4.3, we further investigate the relationship between the outage probability and

cell-center region boundaries. The users in the network are divided into three categories,

cell-center MUEs, cell-edge MUEs, and PUEs. Based on the minimum rate requirements,

the cell-center regions are dynamically adjusted. As we increase the GBR requirements, we

observe that the number of cell-center MUEs increases. As discussed in Section 3.4.1, the

proposed cell-center radius selection algorithm behaves similar to CSSA3 to share resources

more fairly among users. Although the FFR scheme decreases the interference that cell-

edge MUEs suffer from, due to the fact that they are located away from the MBS, they

encounter higher outage probabilities. When the minimum rate requirement of users is less

than 256 kbps, all PUEs in the network satisfy their rate requirement. However, when the

rate requirement is 512 kbps, 12% of PUEs cannot satisfy their rate requirement. As shown

in Fig. 3.5(c), the transmission power of the pico-BSs decreases when the rate requirement

is 512 kbps in order to decrease the interference on cell-center MUEs. Therefore, 12% of the

PUEs is in outage when GBR is 512 kbps.

In Fig. 3.6(a-b), we investigate the effect of the cell-center radius selection algorithms in

terms of energy efficiency and outage probabilities. The proposed cell-center radius selection

algorithm (CSSA1) is compared with the ones that are proposed in [57]. Our simulation re-

sults show that CSSA1 performs significantly better than CSSA3 in terms of energy efficiency

when the rate constraints are below 128 kbps. For example, when the GBR requirement is

equal to 16 kbps, CSSA1 performs 16% better than CSSA3 in terms of energy efficiency.

CSSA1 converges to CSSA3 to meet the rate constraints of more users when the rate con-

straints become aggressive. For example, when the rate constraints are 512 kbps, the selected

cell-center radii are the same for these two algorithms for most of the sectors in the network.

On the other hand, CSSA1 performs worse than CSSA2 in terms of energy efficiency when

users have nonzero rate requirements. CSSA1 selects a cell-center radius such that each user

is assigned at least one RB when users have nonzero rate requirements. However, CSSA2

does not consider the rate requirements of the users and for example 19.8% of the users are
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Figure 3.7: The average energy efficiency per sector (a) and outage probability of the network
(b) for the LDS, EBW, and MMF schedulers.

not assigned any resources for the given network. While this approach increases the energy

efficiency of the network, it causes unacceptable outage probabilities. For example, the en-

ergy efficiency of CSSA1 is 3.7% less than CSSA2 when the GBR requirement is 256 kbps.

However, the outage probability of CSSA1 is 1.8%, while CSSA2 is 21%. Thus, the outage

probability of CSSA2 is not acceptable. The proposed cell-center region selection algorithm

benefits from the advantages of both algorithms. It selects more aggressive cell-center radii

when the rate constraints are small. On the other hand, it selects more fair cell-center radii

when the rate constraints are higher.

Fig. 3.7(a) shows the average energy efficiency per sector for the LDS, the EBW, and the
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MMF schedulers. The LDS performs significantly better than the other two schedulers for

all GBR requirements. For example, when no GBR requirement is enforced, LDS performs

26% and 28.8% better than the EBW and MMF scheduler, respectively. When no GBR

requirement is enforced, the dual prices will always be zero. Therefore, after assigning one

RB to each user, the LDS will assign the rest of the RBs to the user that has the best

channel. This approach significantly increases the energy efficiency of the network. On

the other hand, the EBW scheduler performs better than the MMF scheduler when no GBR

requirement is enforced. The EBW scheduler disregards the rate requirement of users and the

channel quality between the user and the base station during the resource allocation process.

Each user obtains equal amount of RBs. Therefore, users with better channel qualities get

significantly better rates than the other users. On the other hand, the MMF scheduler

assigns most of the resources to the users with worse channel conditions to maximize the

minimum throughput. Therefore, when there are no GBR requirements, the throughput

and corresponding energy efficiency of the EBW scheduler are better than the ones for the

MMF scheduler. When we enforce rate requirements, LDS still performs significantly better

than the EBW and MMF scheduler. For example when the GBR requirement is 128 kbps,

LDS performs 34% and 132% better than the MMF and the EBW schedulers, respectively.

When the minimum rate requirements of users increase, LDS starts to assign resources to

users with worse channels in MBSs due to the dual prices. On the other hand, the minimum

rate requirement of the PUEs can be easily satisfied with fewer RBs. Therefore, the dual

prices will still be zero and most of the RBs are going to be assigned to the user with

the best channel. This approach increases the overall energy efficiency of the network. In

addition, when users have minimum rate requirements, higher power transmission levels are

necessary for the EBW scheduler to satisfy the rate requirements of users that are in outage.

Therefore, the energy efficiency of the sector decreases. In addition, the intercell interference

becomes the more significant problem because of these high transmission levels. Due to

the fact that the MMF scheduler assigns more resources to the user with worse channel
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conditions, less power might suffice to satisfy the rate requirement of these users. Therefore,

when users have nonzero minimum rate requirements, the MMF scheduler performs better

than the EBW scheduler in terms of energy efficiency. In Fig. 3.7(b), we compare the

outage probabilities of the network. Due to the fact that MBSs need to transmit in higher

transmission power levels to satisfy the rate requirements, the intercell interference becomes a

significant problem for the EBW scheduler. Due to the higher intercell interference and fewer

resource block allocation to users with worse channel conditions, the outage probability of the

EBW scheduler becomes significantly higher than the one for the LDS and MMF scheduler.

For example, the outage probability of the EBW scheduler is 13.2%, whereas the one for the

LDS is 1.7% and the MMF scheduler is 0.9% when the GBR requirement is 256 kbps. When

the rate requirement of the user increases the outages of the LDS becomes higher than the

MMF scheduler. The LDS assigns the RB to the user that provides highest increment to

the Lagrangian function. Therefore, more users will be in outage than the MMF scheduler

to have higher energy efficiency. These results indicate the significance of the scheduler

selection.

Fig. 3.8(a-b) illustrates the average energy efficiency per sector and outage probabilities of

the network for no power control, non-cooperative power control, and the proposed algorithm

with LDS. When the rate constraints are below 128 kbps, the proposed algorithm provides

gain over the non-cooperative power control algorithm in terms of energy efficiency. In

addition, both of them perform significantly better than the no-power control algorithm,

as expected. The outage probabilities of all three algorithms are at acceptable levels. It is

less than 10% when the GBR requirement is equal to 128 kbps. When the rate constraints

are low, the transmission power of the MBSs is relatively low and MBSs can satisfy the

rate requirements of almost all of their users without cooperation. The cooperation only

helps to improve the average energy efficiency of the network. However, when we have more

strict rate requirements, cooperation is required to satisfy rate requirements of the users.

For example, when the GBR requirement is equal to 256 kbps, the outage probability of the
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Figure 3.8: The average energy efficiency per sector (a) and outage probability of the network
(b) for no power control, non-cooperative power control, and the proposed algorithm with
the LDS scheduler.

non-cooperative algorithm is 17.3% and it is beyond the tolerable levels. On the other hand,

outage probabilities of the network are 6.2% for the full power transmission for the same case.

Due to the fact that the non-cooperative power control algorithm does not consider intercell

interference conditions during the resource allocation process, it leads to a large number of

users being at outage. The proposed power control algorithm decreases the network outage

probability to 1.7% when the GBR requirement is equal to 256 kbps. Although the outage

probabilities of the full-power case and the proposed algorithm are close, the energy efficiency

of the proposed algorithm is 62.5% better than the full power transmission when the GBR

requirements are equal to 256 kbps.
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Table 3.3: Simulation Results

Methods
Average Sector Energy
Efficiency (kbits/Joule)
(Outage Probabilities)

Required Time
(minutes)

0 kbps 128kbps 512kbps

The Proposed Algorithm 130.81(0%) 128.48(0%) 121.16(14%) 1.45
The Exhaustive Search Algorithm 131.11(0%) 128.71(0%) 121.19(14%) 9855

Table 3.3 shows the average energy efficiency per sector for the proposed algorithm and the

exhaustive search algorithm. For the purposes of this table, the proposed algorithm and

the exhaustive search algorithm are implemented over three sectors that are using the same

frequency bands (i.e., shown with the same color in Fig. 3.1) while the rest of the sectors

transmit in full power. The exhaustive search algorithm searches over all possible β and ε

pairs and cell-center radii over these three sectors. Due to the fact that searching over the

frequency domain increases exponentially with the number of RBs, we use the EBW sched-

uler for both the proposed algorithm and the exhaustive search algorithm and use the same

frequency allocation over all searches. Table 3.3 shows that the performance of the proposed

algorithm and the exhaustive search algorithm are very similar to each other. In addition,

when we increase the minimum rate requirements, the difference between the proposed algo-

rithm and the exhaustive search algorithm decreases. The difference between the proposed

algorithm and the exhaustive search algorithm is approximately 0.23% in terms of energy

efficiency when there are no minimum rate constraints. The difference becomes 0.18% and

0.02% when the minimum rate requirements are 128 kbps and 512 kbps, respectively. In ad-

dition, the outage probabilities of the network are the same for the proposed algorithm and

the exhaustive search algorithm and they are 0% and 14% when the rate requirements are

128 kbps and 512 kbps, respectively. In our simulation tool, while the proposed algorithm

obtains the results in 1.45 minutes, the exhaustive search algorithm requires 9855 minutes to

obtain the results. As we discussed in Section 3.4, when we increase the number of sectors

that implement the proposed algorithm, the required time increases linearly. On the other

hand, the required time increases exponentially for the exhaustive search algorithm and it
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requires decades to obtain results for the 19 cell hexagonal grid layout depicted in Fig. 3.1.

3.6 Conclusion

In this chapter, we studied the energy efficiency of HetNets. We have proposed an energy-

efficient resource allocation algorithm in which the cell-center radius selection, scheduling,

and power allocation problems are decoupled. The proposed algorithm maximizes the sec-

tor energy efficiency while satisfying the rate requirement of users. The interference pricing

mechanism is introduced to prevent selfish behavior of base stations. The proposed al-

gorithms employ the Levenberg-Marquardt method to solve the power allocation problem.

Furthermore, the effect of cell-center radius selection is investigated. Based on our simulation

results, we demonstrate that significant energy savings can be achieved, while the outage

probability is also reduced.

There is a range of GBR requirements our approach improves energy efficiency, outage prob-

abilities, and reduces average transmit power, substantially in some cases. For the tested

traffic mixes of the same GBR requirements, this range is 0, 16, 32, 64, 128 kbps within the

transmission parameters studied. Within the experimental parameters, for GBR require-

ments of 256 and 512 kbps, the energy efficiency becomes worse but the outage probability

improves. The improvement is such that the outage probability can move from an unac-

ceptable level to acceptable one. The transmit power improves but not uniformly, unlike

the parameters in the previous case. We note that in these simulation setups, the GBR

requirements for all users are considered the same. In a real-life situation, there will be a

mix of GBR requirements, and the effects of these higher GBR requirements will be less.

The newly introduced cell-center selection algorithm (CSSA1) performs better than the two

we proposed earlier, namely CSSA2 and CSSA3. The LDS performs better in terms of both

energy efficiency and outage probability. Interference pricing mechanism reduces outages
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significantly. The proposed approach achieves the same energy efficiency as the exhaustive

search whereas the exhaustive search takes an unacceptable amount of time.

This chapter is reproduced based on the material in [74,75].
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Chapter 4

Energy-Spectral Efficient Resource

Allocation Algorithm for

Heterogeneous Networks

4.1 Motivation

As discussed earlier in thesis, in recent years, the rapid increase of mobile devices such as

smart phones, tablets, and wearable computers and mobile applications brought the need

for higher throughput and the problem of coverage simultaneously. The capacity of the

wireless networks needs to increase to meet this demand. In [2], expanding spectrum and in-

creasing spectral efficiency are proposed among several solutions for this problem. Although

increasing spectral efficiency eliminates these problems, the spectral efficiency metric does

not provide any intuition about the efficiency of energy consumption. In fact, solutions that

improve spectral efficiency may be inefficient in terms of energy efficiency. The increased

energy consumption in wireless networks contributes to the growth of greenhouse gases. The
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information and communication technologies cause about 2 − 4% of all carbon footprint

generation [6]. This topic has been investigated in the literature under the theme of “Green

Communications,” see, e.g., [6] and the references therein. In this chapter, we investigate the

tradeoff between energy efficiency and spectral efficiency in multi-cell heterogeneous wireless

networks.

To meet the increasing throughput demand and eliminate coverage holes, heterogeneous

networks (HetNets) are investigated in the literature [5]. In [7], it is shown that both energy

efficiency and spectral efficiency can be improved with dense small cell deployment. Due to

the fact that low-powered base stations are deployed into the coverage area of a macrocell base

station (MBS), the coverage regions of MBS and small cells overlap. Therefore, interference

becomes a significant problem in HetNets. To overcome this problem, intercell interference

cancellation and mitigation techniques are investigated in the literature [8,9]. In this chapter,

we employ the fractional frequency reuse (FFR) scheme for multi-tier networks, studied in

[55,57]. FFR is preferred over other intercell interference solutions due to its low complexity.

In this scheme, a virtual cell-center radius is selected to divide the sector area into two regions

and then subbands are assigned to the base stations depending on their regions. In [55], same

cell-center radius is used in each sector independent of the user distribution. Our prior work

in [57] has employed the same FFR scheme, but the cell-center radii were selected depending

on the user distribution. In this chapter, we employ the same FFR scheme, however we

update cell-center boundaries dynamically depending on the requirements of users. A similar

approach is also used in our prior work in [75]. This approach helps us satisfy the rate

requirements of users and improve our objective. Although the FFR scheme mitigates some

portion of the interference in the network, intercell interference is still a significant problem.

To further suppress the interference, the pricing mechanism has been studied to maximize

the system utility in the literature, see, i.e., [35–38]. In [38], the transmission power times

a predefined constant is used for the penalty function. This method prevents base stations

from transmitting at high power levels. On the other hand, in [35–37], an interference-based
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penalty function is suggested. This approach lets the base stations transmit at high levels

if the utility decrease due to interference is less than the improvement of the system utility

with transmission power increase. In this chapter, we employ a similar method where each

base station is penalized with respect to the amount of interference it creates. This approach

prevents the base station from increasing its transmission power to levels that hurt the utility

of the other sectors which in turn causes a decrease of the total utility of the network.

As stated earlier, optimizing energy efficiency and spectral efficiency usually contradict with

each other [15]. Therefore, this tradeoff has attracted attention in the literature recently.

In [15], the authors show that the energy efficiency function is strictly quasi-concave over

spectral efficiency. In addition, it is shown that the power consumption minimization problem

and the maximization of the energy efficiency problem do not have to coincide. Therefore,

these problems should be investigated separately. In [76], the energy efficiency and spectral

efficiency tradeoff is investigated for OFDMA networks with optimal joint resource allocation

of transmission power and bandwidth. The authors show that when the cell size decreases,

the energy efficiency of the network increases. Papers [15, 76] study the energy efficiency

and spectral efficiency tradeoff for single-tier networks. When low-powered base stations are

deployed with MBSs, intra-cell interference becomes a significant problem. The proposed

algorithm in this chapter and [77] investigate energy efficiency and spectral efficiency tradeoff

for heterogeneous networks. In [77], the energy efficiency and spectral efficiency tradeoff has

been investigated in interference-limited networks. The authors show that the problem is

non-convex and NP-hard to solve. Therefore, they propose an iterative power allocation

algorithm which guarantees convergence to a local optimum. They define the problem as

maximizing energy efficiency of the network under minimum rate constraints. The proposed

algorithm in this chapter investigates maximizing the energy efficiency and spectral efficiency

simultaneously.

The aforementioned papers investigate energy efficiency and spectral efficiency functions
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separately. Another approach to investigate this problem is to combine these metrics un-

der one metric. For this purpose, multi-objective optimization techniques have been widely

investigated in the literature [78]. These techniques are successfully used to investigate

the energy efficiency and spectral efficiency tradeoff. The first approach to combine en-

ergy efficiency and spectral efficiency is the Cobb-Douglas production method [79, 80]. In

the Cobb-Douglas method, different powers of the energy efficiency and spectral efficiency

metrics are multiplied. In [79], it is shown that the metric that is obtained by using the

Cobb-Douglas production method is quasi-concave over the power function. By using the

same metric, authors in [80] investigate the relation between energy efficiency, spectral effi-

ciency, and the base station density. In [81], authors study the resource allocation problem in

downlink OFDMA multi-cell networks with a similar metric. Papers [80, 81] investigate the

problem for homogeneous networks. On the other hand, the algorithm we proposed in this

chapter investigates the energy efficiency and spectral efficiency tradeoff in heterogeneous

networks. Another method to combine energy efficiency and spectral efficiency metrics is

to sum these metrics with appropriate weights [82–84]. This method is called the weighted

summation model. The logarithm of the metric in the Cobb-Douglas method corresponds to

the weighted summation method of the logarithms of the spectral efficiency and energy ef-

ficiency metrics. Authors in [82] investigate the energy efficiency with proportional fairness

for downlink distributed antenna systems. The tradeoff between transmission power and

bandwidth requirement in single-tier single-cell networks is investigated in [83]. This paper

shows that the tradeoff between energy efficiency and spectral efficiency can be exploited by

balancing the occupied bandwidth and power consumption. Authors in [84] propose a novel

bargaining cooperative game for dense small cell networks. They show that both the energy

efficiency and the spectral efficiency of the network can be improved with cooperation among

base stations. In [84], the problem in the single-cell network is investigated. In this chapter,

we investigate the energy efficiency and spectral efficiency tradeoff in multi-cell multi-tier

networks. We also implemented weighted summation model to combine energy efficiency
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and spectral efficiency metrics. In our prior work [85], we investigated the same problem.

However, in [85], all resources are assigned to users during the frequency assignment process

and abandoning a resource block is not considered. In this work, we extend our work in [85]

and abandon the resource blocks depending on the network conditions.

In this chapter, we study the joint maximization of energy efficiency and spectral efficiency

in multi-cell heterogeneous wireless networks. The minimum rate constraints of users are

addressed. The weighted summation method has been implemented to combine energy effi-

ciency and spectral efficiency metrics. The given optimization problem is a mixture of com-

binatorial and non-convex optimization problems. The optimal solution requires checking

all possible cell-center radii, all possible frequency allocations, and all possible power levels

for all sectors in the network. Therefore, obtaining the optimum solution is extremely hard.

In this chapter, we propose a multi-stage algorithm whereby at each stage the solution is up-

dated while assuming the other network conditions are constant. We show the convergence

of the proposed algorithm. In the first stage, each sector selects the cell center radius that

maximizes its objective function. In the second stage, the frequency resources are assigned to

the users while considering the rate requirement of the users and the interference conditions

of the network. In the last stage, a Levenberg-Marquardt method-based power allocation

algorithm is implemented that considers the rate requirements of the users. We investigate

optimal and suboptimal power updates. In the optimal approach, the Levenberg-Marquardt

method-based algorithm updates all power control parameters in the sector concurrently.

In the suboptimal approach, the macrocell and the low-powered base stations update their

power control parameters separately. The proposed algorithm iteratively solves these three

stages until convergence.

The contributions of this chapter are as follows. First, we show that a Pareto optimal solution

exists such that the sacrifices in terms of spectral efficiency can be transformed into gain

in terms of energy efficiency or vice versa. Second, we investigate the relation between the
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energy efficiency and spectral efficiency tradeoff and minimum rate constraints of the users.

We show that maximizing energy efficiency of the network performs better than the spectral

efficiency maximization in terms of outages. Third, we show that fewer resource blocks are

allocated when we increase the minimum rate constraints of users or increase the weight of

the spectral efficiency in the objective metric.

The remainder of this chapter is organized as follows. Section 4.2 introduces the system

model, base station power consumption, and energy efficiency and spectral efficiency defi-

nitions. Section 4.3 formulates the resource allocation problem in HetNets. The proposed

algorithm is presented in Section 4.4. Simulation results are discussed in Section 4.5. Sec-

tion 4.6 concludes the chapter.

4.2 System Model

In this section, we first present our system model and describe the power consumption model

of the base station. Second, we define the energy efficiency and spectral efficiency metrics.

Consider a wireless network with a 19-cell hexagonal layout as depicted in Figure 4.1. The

edges are wrapped around to create the effect of an infinite network. In this chapter, we

employ the multi-tier FFR scheme described in [55, 57]. In each cell, one MBS is deployed

along with picocell base stations (Pico-BSs). MBSs employ 3-sector antennas, whereas om-

nidirectional antennas are used in Pico-BSs. The overall network area is divided into 57

sectors. Each sector is divided into two regions: cell center and cell edge. In the cell-center

region, macrocell associated users (MUEs) are allocated on Subband A in all sectors. On

the other hand, cell-edge MUEs are allocated on Subbands B, C, or D depending on their

sector. In order to limit intra-sector interference, cell-center picocell associated users (PUEs)

are allocated on the remaining two subbands that the MBS does not transmit on. Cell-edge
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Figure 4.1: Dynamic cell-center region boundaries in a multi-tier FFR scheme. The network
layout assumes a uniform 19 cell hexagonal grid in which the MBSs have three sector antennas
and Pico-BSs employ omnidirectional antennas.

Table 4.1: Spectrum assignment in a multi-tier FFR scheme

Base Station Type Sector 1 Sector 2 Sector 3

Cell-Center(C1) Cell-Edge(E1) Cell-Center(C2) Cell-Edge(E2) Cell-Center(C3) Cell-Edge(E3)
MBS A B A C A D
Pico-BS C and D A, C, and D B and D A, B, and D B and C A, B, and C

PUEs also use Subband A in addition to two subbands that cell-center PUEs are using. The

transmission powers of the Pico-BSs are significantly lower than the MBSs, therefore the

intra-sector interference from cell-edge Pico-BSs to cell-center MUEs will be limited. The

spectrum allocation is shown in Table 4.1.

In this chapter, we study constant power allocation across the subbands. The total band-

width of the network is divided into 4 disjoint subbands. The number of subcarriers in

subbands A, B, C, and D are denoted by NA, NB, NC , and ND, respectively. The total

number of subcarriers is denoted by N , i.e., N = NA + NB + NC + ND. In order to char-

acterize the power assignment of base stations, we introduce two power control parameters

β and ε. The parameter β is used to scale the transmission power of base stations. This

parameter is defined for both MBSs and Pico-BSs. On the other hand, the parameter ε is

only defined for MBSs and determines the ratio of the transmission power of MBSs on the

cell-edge and the cell-center subcarriers. We can write the signal-to-interference-plus-noise
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ratio (SINR) of MUE k on subcarrier n as follows

γ
(n)
k =

P
(n)
M g

(n)
k,M∑

M ′∈BM
M ′ 6=M

P
(n)
M ′ g

(n)
k,M ′ +

∑
P∈BP

P
(n)
P g

(n)
k,P +N0∆n

(4.1)

where P
(n)
M and P

(n)
P are the downlink transmit powers of macrocell M and picocell P on

subcarrier n, respectively. The channel gain between user k and MBS M on subcarrier n is

represented as g
(n)
k,M . The same gain between user k and Pico-BS P is g

(n)
k,P . The sets of MBSs

and Pico-BSs in the simulation area are denoted by BM and BP , respectively. The bandwidth

of a subcarrier n is represented by ∆n. The thermal noise power per Hz is N0. The SINR of

PUEs can be generated by using the same approach. The downlink transmission power of

MBS M for cell-center MUEs that are in sector s can be written as

PM =
βMPmax,M

N s
A + εsN s

B

, (4.2)

where Pmax,M is the maximum transmission power of the MBS M . The numbers of assigned

subcarriers on subband A and B in sector s are denoted by N s
A and N s

B, respectively. The

downlink transmission power for cell-edge users is εMPM . The downlink transmission power

of the MBSs in other sectors can be obtained by replacing N s
A and N s

B with the corresponding

number of subcarriers. The downlink transmission power of cell-center and cell-edge Pico-

BSs in Sector 1 are denoted by PC
P and PE

P , and are given by

PC
P =

βPPmax,P

N s
C +N s

D

, PE
P =

βPPmax,P

N s
A +N s

C +N s
D

. (4.3)

The numbers of assigned subcarriers on subband C and D in sector s are denoted by N s
C and

N s
D, respectively. For the Pico-BSs in other sectors, the transmission power can be calculated

similarly, by replacing N s
A, N s

C , and N s
D with the corresponding number of subcarriers.

Consider sector s to consist of KM,s MUEs and KP,s PUEs. The sets of MUEs and PUEs are
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denoted by KM,s and KP,s, respectively. We use index k for user k and index n for subcarrier

n. We define vector CM,s to show whether MUE is in the cell center or not. The size of this

vector is KM,s. If an MUE k is located in the cell center, Ck
M,s = 1, otherwise Ck

M,s = 0.

Likewise, the vector CP,s denotes whether PUE is in cell center or not. The size of CP,s is

KP,s. If PUE k is located in the cell center, Ck
P,s = 1, otherwise Ck

P,s = 0. The matrices

FM,s and F P,s denote whether the subcarrier n is assigned to user k or not. The size of

the matrices FM,s and F P,s are KM,s × N and KP,s × N , respectively. If the subcarrier n

is assigned to MUE k, the (n, k)th element of FM,s will be 1, otherwise it will be 0. The

same approach is used for frequency allocation of F P,s. The matrices R1 and R2 denote

the throughput of MUEs. The size of these matrices are N ×KM,s. The (n, k)th element of

matrix R1 is the throughput of MUE k on subcarrier n when MUE k is in the cell-center

region. The same element of R2 corresponds to the same value when the user is located in

the cell-edge region. The matrices R3 and R4 consist of the throughput of PUEs. The size

of these matrices are N × KP,s. The (n, k)th element of R3 and R4 is the throughput of

PUE k on subcarrier n when the user is in cell center and cell edge, respectively. Then, we

can calculate the aggregate throughput of the sector s as

Rs =
∑

k∈KM,s

(Ck
M,sF

(k,:)
M,sR

(:,k)
1 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
2 )

+
∑
k∈KP,s

(Ck
P,sF

(k,:)
P,s R

(:,k)
3 + (1−Ck

P,s)F
(k,:)
P,s R

(:,k)
4 ).

(4.4)

Note that X(n,:) and X(:,k) are the nth row vector of the matrix X and the kth column

vector of the matrix X, respectively. The throughput terms in (4.4) can be expanded by

using the definitions in (4.1) as

R
(n,k)
i =∆n log2

(
1 + γ

(n)
k

)
, for all i ∈ 1, 2, 3, 4, (4.5)

where X(n,k) is the entry on the nth row and kth column of the matrix X.
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4.2.1 Base Station Power Consumption Models

Modeling the energy consumption of the base stations has attracted some attention in the

literature, see, e.g., [26,63,64]. Several components contribute to the energy consumption of

the base stations such as power amplifier, power supply, cooling device, etc. A good model

must include the contribution of all components. In order to quantify the energy savings

properly, a load-dependent model is required. In this chapter, we use the power consumption

model that is described in [64]. In this model, the power consumption of the base station

is broken down into two parts: load-dependent and static power consumption. The load-

dependent part changes depending on the transmission power of the base station. On the

other hand, static power is independent of the transmission power and it will be consumed

if the base station is on. If the base station has no user to serve, then it goes into the sleep

mode. During the sleep mode, energy consumption of the base station is lower than the

static power consumption of the base station. This model is given by

PTotal =


NTRX (P0 + ∆ · PTX) 0 < PTX ≤ Pmax

NTRXPsleep Pout = 0

(4.6)

where PTotal, PTX , and Psleep are the overall power consumption of the base station, load-

dependent transmission power, and the power consumption during the sleep mode. The

maximum transmission power of the base station is denoted by Pmax. The number of the

transceiver chains is represented by NTRX . The slope of the load-dependent power consump-

tion is ∆. By using this model, the power consumption of the MBSs and Pico-BSs can be

written as

PM = NTRX,M (P0,M + ∆MPTX,M) and PP = NTRX,P (P0,P + ∆PPTX,P ) (4.7)
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where PM and PP denote the overall power consumption of MBS M and Pico-BS P , re-

spectively. The parameters P0,M and P0,P are the static power consumption at MBS M and

Pico-BS P , respectively. The transmission power of the MBS M and Pico-BS P are de-

noted by PTX,M and PTX,P , respectively. The numbers of transceiver chains for MBS M and

Pico-BS P are represented by NTRX,M and NTRX,P , respectively. The slopes of the power

consumption for MBS M and Pico-BS P are denoted by ∆M and ∆P , respectively. If no

user is associated with a base station, the corresponding base stations go into sleep mode.

The power consumptions of the MBS M and Pico-BS P during the sleep mode are denoted

by Psleep,M and Psleep,P , respectively.

4.2.2 Energy Efficiency and Spectral Efficiency Definition

Let ηs denote the energy efficiency of sector s which can be expressed as

ηs(ε,β) =
Rs

ψs(εs,βs)
, (4.8)

where the vectors ε and β denote the optimization variables of transmission power for all

sectors in the network. The scalar parameter εs is the ε value of the sector s. The vector

βs consists of all β values of the base stations in sector s. The total power consumption in

sector s is denoted by ψs(εs,βs) which can be calculated as

ψs(εs,βs) = PM +
∑

P∈NPico,s

PP , (4.9)

where NPico,s is the set of Pico-BSs in sector s. Thus, the energy efficiency ηs(ε,β) has the

unit bits/Joule.
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In the same fashion, we can calculate the spectral efficiency of the sector s as follows

νs(ε,β) =
Rs

Ws

, (4.10)

where Ws is the total bandwidth allocated by MBS and Pico-BSs in sector s. The unit of

νs(ε,β) is bits/s/Hz.

4.3 Problem Formulation

In this section, we develop a framework to investigate energy efficiency and spectral effi-

ciency tradeoff in multi-cell heterogeneous networks. Our objective is to maximize both

energy efficiency and spectral efficiency of the network while satisfying the minimum rate

requirements of users. As stated earlier, the problems of maximizing energy efficiency and

spectral efficiency of the network usually contradict with each other. Therefore, we introduce

a multi-objective optimization-based formulation to maximize energy efficiency and spectral

efficiency simultaneously. Multi-objective problems are usually solved by combining objec-

tives under a single objective. In that manner, we use the weighted summation method to

combine the energy efficiency and spectral efficiency metrics. However, the units of these

metrics are not the same. The unit of energy efficiency is bits/Joule and the unit of spec-

tral efficiency is bits/s/Hz. To ensure the units of these metrics are the same in weighted

summation form, we multiply the spectral efficiency function with Wtot/Ps. The parameter

Wtot is the total bandwidth of the network and Ps is the total amount of power consumption

of sector s when all BSs in this sector transmit at full power. A similar approach is also

used in [83]. In addition, we introduce the unitless parameter α, 0 ≤ α ≤ 1, to tune the

objective metric. This parameter helps us tune the network towards energy efficiency or

spectral efficiency depending on the network conditions. During the peak hours, increasing

spectral efficiency is more important than the energy efficiency to satisfy the demand of
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more users. On the other hand, during the off-peak hours, maximizing energy efficiency

becomes more important to decrease the energy consumption of the network. The objective

metric moves towards spectral efficiency when parameter α increases. On one extreme, when

α is 1, the problem becomes spectral efficiency maximization; on the other extreme, when

α is 0, the problem is energy efficiency maximization. Thus, α allows a service provider

to make a judicious decision between the two efficiency measures depending on their own

criteria. In addition, for constant α, when we increase Wtot, the weight of the spectral effi-

ciency function increases in the objective function. When there is sufficient bandwidth, the

objective function emphasis is on saving more bandwidth and maximizing the efficiency of

the occupied bandwidth. On the other hand, if we have sufficient power, the importance

of the energy efficiency in the objective function increases. A multi-objective optimization

problem employing the variables we specified above can be defined as follows

max
β,ε,C,F

∑
s∈S

(1− α)ηs(ε,β) + α
Wtot

Ps
νs(ε,β)

s.t. Ck
M,sF

(k,:)
M,sR

(:,k)
1 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
2 ≥ Rmin,k, for all k ∈ KM,s, s ∈ S

(4.11a)

Ck
M,sF

(k,:)
M,sR

(:,k)
3 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
4 ≥ Rmin,k, for all k ∈ KP,s, s ∈ S

(4.11b)∑
k∈KM,s
CkM,s=1

F
(k,n)
M,s ≤ 1 and

∑
k∈KM,s
CkM,s=0

F
(k,n)
M,s = 0 for all n ∈ NC

M,s, s ∈ S (4.11c)

∑
k∈KM,s
CkM,s=0

F
(k,n)
M,s ≤ 1 and

∑
k∈KM,s
CkM,s=1

F
(k,n)
M,s = 0 for all n ∈ NE

M,s, s ∈ S (4.11d)

∑
k∈KM,s

F
(k,n)
M,s = 0 for all n /∈ NC

M,s ∪NE
M,s, s ∈ S (4.11e)
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∑
k∈KpP,s
CkP,s=1

F
(k,n)
P,s ≤ 1 and

∑
k∈KpP,s
CkP,s=0

F
(k,n)
P,s = 0 for all n ∈ NC

P,s, p ∈ NPico,s, s ∈ S

(4.11f)∑
k∈KpP,s
CkP,s=0

F
(k,n)
P,s ≤ 1 and

∑
k∈KpP,s
CkP,s=1

F
(k,n)
P,s = 0 for all n ∈ NE

P,s, p ∈ NPico,s, s ∈ S

(4.11g)∑
k∈KpP,s

F
(k,n)
P,s = 0 for all n /∈ NC

P,s ∪NE
P,s, p ∈ NPico,s, s ∈ S (4.11h)

ε � 0 and 0 � β � 1, (4.11i)

where S is the set of all sectors in the simulation area. The minimum rate requirement

of user k is denoted by Rmin,k. The parameters NC
M,s and NE

M,s are the set of subcarriers

that are assigned to cell-center and cell-edge MUEs, respectively. Likewise, the parameters

NC
P,s and NE

P,s are the set of subcarriers that are assigned to cell-center and cell-edge PUEs,

respectively. The notation x � 0 forces that each element of vector x is greater than or equal

to 0. Constraints (4.11a) and (4.11b) ensure that rate constraints of the MUEs and PUEs

are satisfied, respectively. Constraints (4.11c) to (4.11h) guarantee that available resources

to a base station for a region are assigned to users that are associated with the base station

and in the corresponding region and unavailable resources are not assigned to these users.

Constraint (4.11i) guarantees that parameters ε and β are within the given limits.

The objective function in (4.11) is non-convex, therefore the optimal solution requires ex-

haustive search over all possible cell-center radii, frequency assignments, and power levels

for all sectors. To tackle this problem, we divide our problem into |S| subproblems so that

each sector maximizes its own objective function simultaneously. This resource allocation

problem still needs to be solved over the cell-center radius, frequency, and power domains

jointly. This problem is combinatorial over the first two domains and non-convex over the
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power allocation domain [65, 66]. Therefore, obtaining the optimum solution still requires

exhaustive search over all domains. Therefore, instead of solving these problems jointly, we

propose a three-stage algorithm that solves each problem consecutively. In the next section,

we will describe these stages and discuss the complexity and convergence analysis of the

proposed algorithm.

4.4 Proposed Solution

Our formulation in (4.11) enables us to develop an energy- and spectral-efficient resource

allocation algorithm. We first divide the problem in (4.11) into |S| subproblems such that

each sector maximizes own objective function. Then, the proposed algorithm decouples the

problem into three stages and solves them iteratively until convergence. In the first stage,

we select the cell-center radius to divide MUEs into two groups as cell-center MUEs and cell-

edge MUEs and also determine the available resources to the Pico-BSs depending on their

regions. Second, MBS and Pico-BSs assign frequency resources to their users. This stage

has two steps. In the first step, MBS and Pico-BSs assign the resource blocks to their users

to maximize the objective metric and satisfy the rate requirements of their users. In the

second step, the MBS and all Pico-BSs in the sector make a judicious decision to maximize

the overall objective among the following: abandon one of the assigned resource block from

all base stations, allocate one more resource block among the available ones, or protect the

current allocation. By this approach, the available resources to each sector are updated in

each iteration until the optimum allocation is found. Last, we determine the power control

parameters ε and βs in each sector concurrently. The minimum rate requirements of the users

are included in the power control subproblem by using dual decomposition techniques. After

these three stages, the MBS sends the updated information to the other base stations in the

network. Then, these stages are repeated in every sector until convergence. The proposed
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Algorithm 4 Proposed Energy- and Spectral-Efficient Resource Allocation Algorithm

1: Initialize: r
(0,c)
th,s = rr,s/2 (ε

(0)
s ,β0

s) = [1,1]

2: r
(t,0)
th,s = r

(t−1,0)
th,s

3: First, three-candidate cell-center region boundaries are selected by using the cell-center
radius algorithm in Section 4.4.1: r

(t,−1)
th,s , r

(t,0)
th,s , and r

(t,1)
th,s .

4: r
(t,0)
th,s = r

(t−1,0)
th,s . The cell-center radius r

(t,−1)
th,s is obtained by shrinking r

(t,0)
th,s , and r

(t,1)
th,s is

obtained by expanding r
(t,c)
th,s .

5: for c := −1 to 1 do
6: For cell-center radius, r

(t,c)
th,s , run the frequency assignment algorithm in Section 4.4.2

for each base station in the sector.
7: Calculate the Lagrangian functions, L(c)

s , which is described in the Section 4.4.3.
8: Note that while calculating the Lagrangian function, power control parameters that

are obtained at the end of the previous time instant are used.
9: end for
10: Among all three Lagrangian function, the maximum one is selected for the cell-center

radius and the frequency assignments.
11: Then, run the power control algorithm that is described in Section 4.4.3 to determine

the power control parameters.
12: Go to Step 2 and repeat until the convergence.

algorithm is presented under the heading Algorithm 4. The flowchart of this algorithm is

depicted in Figure 4.2. In the sequel, we discuss each step of the proposed algorithm in

detail.

4.4.1 The Cell-Center Region Boundaries

In the first stage of the proposed algorithm, we need to set the cell-center region boundaries

in each sector to select the region of the MUEs and also determine the available resources

to Pico-BSs. In [57], we showed that more than two times gain can be obtained in terms of

energy efficiency and throughput by proper selection of cell-center radii. In [57], we proposed

two cell-center radius selection algorithms. The first algorithm selects a cell-center radius to

maximize the throughput of the sector. The second algorithm aims to distribute resources

evenly among MUEs. However, neither of these algorithms considers the minimum rate

requirements of users. For example, when the minimum rate requirements of users are low,
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Figure 4.2: Flowchart of proposed algorithm in Algorithm 4.

the first algorithm is preferable over the second one to maximize the objective metric. On the

other hand, if users have higher rate requirements, the second algorithm should be selected

over the first one to satisfy the rate requirements of more users. Therefore, in order to

benefit from the advantages of both algorithms, we propose a dynamic cell-center selection

algorithm in this chapter. First, we will provide a useful observation.
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Observation 1. The resource distribution of the FFR scheme changes only when one of the

cell-center MUEs or cell-center Pico-BSs passes to the cell-edge region or vice versa.

When we expand or shrink the cell-center radius without changing the region of an MUE or

a Pico-BS, the region of all users and Pico-BSs will be the same. Therefore, the solution of

the frequency assignment and power assignment problems will be the same.

Therefore, KM,s+NPico,s+1 different cell-center radii can be selected for sector s. When the

number of users in the sector or the number of pico-BSs in the sector increases, exhaustive

search over all radii requires a significant amount of time. In addition, the frequency as-

signment problem that will be discussed in the next subsection needs to be solved for every

radius option. Therefore, we need to eliminate some of these radii choices judiciously. In

this chapter, we propose an iterative algorithm for cell-center radius selection. The pro-

posed algorithm compares the Lagrangian function of the current cell-center radius with

two cell-center radii: one more MUE or Pico-BS is included in the cell-center region from

the cell-edge region and one more MUE or Pico-BS is excluded to the cell-edge region from

the cell-center region. Among these three cell-center radii, the one that maximizes the La-

grangian function is selected as the cell-center radius. This approach decreases the number

of cell-center radii that will be checked in every iteration from KM,s + NPico,s + 1 to three.

Therefore, a significant amount of time will be saved by this approach. We used a similar

algorithm in our prior work [75].

4.4.2 Frequency Assignment Problem

In the second stage of the algorithm, frequency resources are assigned to users. In the

literature, several scheduling algorithms are discussed, see, e.g., [59]. Each scheduler has its

own priorities such as minimizing latency, maximizing fairness, etc. In [65], it is shown that

the optimal resource allocation among KM,s users and NC
M,s resource blocks requires K

NC
M,s

M,s
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searches. This approach is impractical in real time applications. Therefore, we propose a

two-step opportunistic scheduling algorithm in this chapter. Before discussing the proposed

scheduling algorithm, we will provide some useful theorems.

Theorem 4.1. The power consumption of a base station is minimized when the maximum

of Rmin,k/Rcurr,k, Rratio, is minimized where Rcurr,k is the current rate of user k when no

power control is implemented.

Proof: Let us compare two different cases of scheduling that consume equal amount of

power. Assume the minimum rate requirements of all users is satisfied with the current

power assignment and R1
ratio is bigger than R2

ratio, i.e., 1 > R1
ratio > R2

ratio. The power control

algorithm that minimizes the power consumption will increase both ratios to 1. While the

total power consumption of the first case is R1
ratio ·P , that of the second case will be R2

ratio ·P .

Therefore, less power will be consumed in the second case than the first case.

Theorem 4.2. The spectral efficiency of the resource block is maximized when a resource

block is assigned to a user that has the best average channel gain over the subcarriers of the

resource block.

Proof: The proof of this theorem is straightforward. When a user has the best average

channel gain over the subcarriers of the resource block, it has the highest capacity. Due to

the fact that the total bandwidth of the resource block will be the same for all users, the

user who has the highest channel gain will also provide the highest spectral efficiency for

that resource block.

The proposed scheduling algorithm has two steps. In the first step, the available resource

blocks are assigned to users. The proposed algorithm assigns the resource blocks to users

iteratively. In each iteration, one resource block is assigned to a user. Our priority is

satisfying the minimum rate requirements of more users. For this purpose, if there are

users that could not satisfy their rate requirement with the current assignment, assigning a
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resource block to one of these users is the most judicious choice. In order to maximize our

objective, we assign the resource block to the user that provides the largest improvement

in terms of the Lagrangian among the users that could not satisfy their rate requirement.

If all users satisfy their rate requirement with the current assignment, available resource

blocks are assigned to the user that provides the largest Lagrangian improvement among

all users. By this approach, first, the rate requirement of more users are satisfied. Second,

the power consumption of the network is minimized. Third, the spectral efficiency of the

network is maximized. During this step, power allocations in the previous time instant are

used to calculate the rates of the users with the current assignment. In the second step of the

algorithm, all base stations in a sector determine whether to protect the current assignment,

abandon one resource block, or assign one more resource block among the available but

unassigned ones. When a resource block is not allocated by any user in a sector, the intercell

interference to users in the other sector is lowered which increases the utility function of

the other sectors. In addition, fewer resource blocks are assigned by base stations in the

sector, therefore power assignment of other resource blocks increases. This may also increase

the spectral efficiency of the sector. In the next section, we present the two steps of the

opportunistic scheduling algorithm and then discuss the complexity of the algorithm.

Opportunistic Scheduler Algorithm: The opportunistic scheduler algorithm shares re-

source blocks among users to maximize the objective metric. Due to the fact that the cell-

center and cell-edge MUEs are allocated different subbands, this algorithm runs for both

sets separately. First, the proposed algorithm assigns a resource block to a user that pro-

vides maximum improvement to the Lagrangian function that is described in Section 4.4.3.

If the rate requirement of the corresponding user is satisfied with the current assignment,

this user is removed from the assignment set. The proposed algorithm continues to allocate

resource blocks to users in the assignment set. If the minimum rate requirements of all users

are satisfied with the current assignment (i.e., the assignment set is empty), the proposed

algorithm assigns the rest of the available resource blocks to users that provide the largest
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Lagrangian improvement. The resource allocation algorithm for cell-center MUEs is given

under the heading Algorithm 5. The same approach can be used for the cell-edge MUEs and

Pico-BSs.

Due to the interference conditions in the network, not assigning a resource block to any

user in the sector may improve the overall utility of the network. In addition, when a

resource block is not assigned by all base stations in a sector, the denominator of the spectral

efficiency function becomes smaller. This may also improve the spectral efficiency of the

sector. In order to benefit from these properties, we decide among the following three cases

in each iteration: abandoning one of the resource blocks from all base stations, allocating one

more resource block among the available ones, or protecting the current situation. For each

resource block, we calculate the utility function without assigning this resource block. In

addition, for each unassigned but available resource block, we calculate the utility function

when this resource block is assigned. Among all these cases the one that has the largest

Lagrangian function is selected as the current frequency resource allocation.

Complexity Analysis

In the first step of the scheduling algorithm, each base station calculates the rate of each

available resource blocks for each user in the sector. Therefore, the complexity of the first

step is O(NK) for each base station when there are N resource blocks to assign to K users.

In the second step, the complexity of the algorithm is different for MBSs and Pico-BSs. In

MBSs, the rate of each resource block is required to be recalculated for one more resource

block assignment and one more resource block abandonment. When we look at the formula

in (4.2), abandoning or assigning a cell-center resource block and cell-edge resource block

has affected the downlink transmission power of the MBS differently. Therefore, we have

to calculate different rates for all these cases. In the first step, the resource blocks are

already assigned to users, therefore we have to calculate the rate of each resource block for
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Algorithm 5 Proposed Frequency Allocation Algorithm

1: Initialize: FM,s = 0

2: NC,t
M,s = NC,t−1

M,s . NC,t−1
M,s is the frequency resources that are assigned at time instant t− 1

3: KC,UM,s = KCM,s

4: while NC,t
M,s and KC,UM,s are not empty do

5: k = arg max
k∈KC,UM,s

L(C,k,n)
s

6: F
(k,n)
M,s = 1

7: if F
(k,:)
M,sR

(:,k)
1 ≥ Rmin,k then

8: KCM,s ←− KCM,s\{k}
9: end if
10: NC,t−1

M,s ←− NC,t
M,s\{n}

11: end while
12: while NC,t

M,s is not empty do

13: k = arg max
k∈KCM,s

L(C,k,n)
s

14: F
(k,n)
M,s = 1

15: NC,t−1
M,s ←− NC,t

M,s\{n}
16: end while

these four cases. The complexity of this process becomes O(4N). On the other hand, the

effect of abandoning or assigning a resource block from different subbands on the downlink

transmission power will be the same. Therefore, the complexity of this process at Pico-BSs

is O(2N).

4.4.3 Power Control Problem

In the third stage of the algorithm, we determine the power levels on each subband that

maximize our objective metric and also satisfy the rate requirements of the users. Given

the cell-center radius vector and the frequency assignment matrix, we need to determine

the power control parameters βs and εs. We use convex optimization techniques to obtain

optimum β and ε parameters.

Lemma 1. The energy efficiency and spectral efficiency per sector expression (1−α)ηs(ε,β)+

αWtot

Ps
νs(ε,β) in (4.11) is quasiconcave in εs and βs.
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Proof: The proof is given in the Appendix B.

During obtaining optimum power control parameters, we assume that the power control

parameters of the other sectors are constant. Therefore, the interference conditions from

the other sectors are assumed to be constant. However, if the base stations increase their

transmission powers to high levels without considering the other sector, this harms the

transmissions in other sectors and causes outages and decrease in the overall utility. To

prevent this, we introduce the interference pricing mechanism. Several pricing algorithms

are discussed in the literature. In [38] and [39], each base station is penalized with the

transmission power level of the base station. The penalty term is a constant term times the

transmission power level of the base station. Although this approach forces the base stations

to decrease their transmission power, the penalty term will be independent of the interference

that the base stations create. Therefore, the improvement in overall network utility may not

reach its actual potential. For this reason, we use an interference-based pricing mechanism in

this chapter. The pricing mechanism penalizes each sector by the amount of the interference

it creates. This approach was first proposed in [35–37]. We use θs(εs,βs) to denote the

interference pricing function for sector s. The interference pricing function proportionally

increases with the interference that the base station creates. In addition, if the interference

causes the outages of users in other sectors, the penalty term becomes more severe.

Section 4.4.2 guarantees that constraints (4.11c) to (4.11h) are satisfied for each base station.

In addition, when the minimum rate requirement of the users increases, some users may not

be allocated any resources to decrease the overall outage probabilities of the network. When

this is the case, the minimum rate requirement of these users cannot be satisfied with the

power control algorithm. Therefore, we exclude these users from the power control problem

and define sets of MUEs and PUEs that are assigned to at least one resource block as KUM,s

and KUP,s, respectively. When we write the Lagrangian of the problem (4.11) for the remaining
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constraints and users, we obtain

Ls(xs) =(1− α)ηs(ε,β) + α
Wtot

Ps
νs(ε,β)− θs(εs,βs)−

∑
k∈KUM,s

λk,s
(
Rmin,k

−(Ck
M,sF

(k,:)
M,sR

(:,k)
1 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
2 )

)
+
∑
k∈KUP,s

λk,s
(
Rmin,k − (Ck

M,sF
(k,:)
M,sR

(:,k)
3 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
4 )

)
+τLMβM + τUM(1− βM) +

∑
P∈NPico,s

τLP βP +
∑

P∈NPico,s

τUP (1− βP ) + ρsεM .

(4.12)

For simplicity, we will use Ls(xs) for L(εs,βs,λ, τ
L
s, τ

U
s, ρs) throughout the rest of the

chapter.

In this chapter, the transmission power of the MBS M depends on βM and εM and the

transmission power of the Pico-BS P depends on βP . The interference pricing function

accounts for the interference that all base stations in the sector s are subject to. We define

a vector, zs = [βM εM β1
P . . . β

NP,s
P ] where NP,s is the number of Pico-BSs in sector s. Then,

we can write the interference pricing function as follows

θs(εs,βs) = zTs
∑
s′∈S
s′ 6=s

∇zsLs′(xs′). (4.13)

The pricing function reflects the marginal costs of the variables βM , εM , and βP s for all

Pico-BSs.

In each sector, there are 2 + NPicos power control parameters. In order to obtain the op-

timum power control parameters, we will employ the Levenberg-Marquardt method. The

Levenberg-Marquardt method is a variant of the Newton method. The Newton method

provides quadratic convergence. The quadratic approximation of the Lagrangian function in
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(4.12) can be expressed as

g(z) = Ls(xs) +∇Ls(xs)T (z− z(t,l)
s ) +

1

2
(z− z(t,l)

s )T∇2Ls(xs)(z− z(t,l)
s ), (4.14)

where l and t denote the Newton iteration and time instant, respectively. The Hessian

matrix of the Ls(xs) at z
(t,l)
s is denoted by ∇2Ls(xs). However, the Newton method does

not guarantee convergence [71]. The reason behind this is that the Hessian matrix can be

singular or the direction may not be correct. In order to overcome this problem, several

methods have been investigated in the literature [71, 72]. In this chapter, we employ the

Levenberg-Marquardt method due to its guarantee of convergence. Then, the power control

parameters that maximize g(z) can be obtained by

z(t,l+1)
s = z(t,l)

s − µl(∇2L(l)
s (xs)− ξI)−1∇L(l)

s (xs), (4.15)

where I is the identity matrix. The term ξI should be selected in such a way that all

the eigenvalues of D = (∇2L(l)
s (xs) − ξI) are negative. This approach guarantees that D

is negative definite. The parameter ξ should be selected larger than the highest positive

eigenvalue of the ∇2L(l)
s (xs). If all eigenvalues of ∇2L(l)

s (xs) are already negative, then ξ

should be selected as 0 and the Levenberg-Marquardt works as the Netwon method. The

proposed algorithm is depicted under the heading Algorithm 6. The parameter lmax is

the maximum number of iterations, and ε is a control parameter to determine when to

exit the algorithm when the change between two iterations is sufficiently small. We use

a controlled increase mechanism for the power control updates. If the difference between

the power control parameters during two consecutive time instants is large, this may cause

the interference pricing mechanism not to accurately estimate the interference prices [36].

Therefore, we employ the controlled increase mechanism in this chapter. The controlled

increase mechanism in Step 17 prevents the base stations from changing their transmission

powers by a large amount. Therefore, the estimation of the interference levels at the other

89



Algorithm 6 Proposed Power Control Algorithm with Pricing

1: Initialize: z
(t,0)
s = (ε

(t−1,lmax+1)
M β(t−1,lmax+1)T

s ) and set l = 0
2: % Each sector solves (4.12) by using the Levenberg-Marquardt Method
3: for l := 1 to lmax do
4: if ωmax = max(eig(∇2

zL
(l)
s (xs))) < 0 then

5: ξ = 0.
6: else
7: ξ = ωmax + σ.
8: end if
9: dLMl = −(∇2L(l)

s (xs)− ξI)−1∇L(l)
s (xs).

10: Update the power control parameters, z
(l+1)
s , using

z(t,l+1)
s = z(t,l)

s + µld
LM
l ,

11: Update the Lagrange multiplier, λ
(l+1)
k,s for all k ∈ KUM,s, using

λ
(l+1)
k,s =

[
λ
(l)
k,s + φk,s

(
Rmin,k − (Ck

M,sF
(k,:)
M,sR

(:,k)
1 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
2 )

)]+
.

12: Update the Lagrange multiplier, λ
(l+1)
k,s for all k ∈ KUP,s, using

λ
(l+1)
k,s =

[
λ
(l)
k,s + φk,s

(
Rmin,k − (Ck

M,sF
(k,:)
M,sR

(:,k)
3 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
4 )

)]+
.

13: if
∣∣∇LTs dLMl

∣∣ ≤ ε then
14: Break
15: end if
16: end for
17: z

(t,lmax+1)
s = (1− ζ)z

(t−1,lmax+1)
s + ζz

(t,lmax)
s

18: Price Update: Each user calculates interference prices and feds these values back to its
base station.

19: Interference prices are distributed among base stations.
20: Go to Step 2 and repeat.

sectors is accurate. However, the parameter ζ in Algorithm 6 should be selected optimally.

Small ζ slows down the algorithm and convergence takes too much time. On the other hand,

large ζ fails the purpose of the controlled increase mechanism. Therefore we use an adaptive

ζ in this chapter. The parameter ζ depends on the current time instant. It is selected as

t/(2t+ 1) [34].

90



Complexity Analysis

The main computational effort of the proposed algorithm is taking the inverse of the matrix

D = (∇2L(l)
s − ξI). Therefore, the complexity of the proposed power control increases

with the number of power control parameters. When the number of Pico-BSs in the sector

increases, the complexity of the algorithm increases with N3
Picos. For example, when there

are 2 Pico-BSs in each sector, the matrix becomes 4×4 and taking the inverse of this matrix

is straightforward. However, the Pico-BSs are expected to be significantly dense in the

future [2]. Taking the inverse of the matrix may not be feasible in real time. Therefore, to

overcome this problem, we also propose a suboptimal algorithm. The proposed suboptimal

algorithm significantly reduces the complexity of the algorithm and the complexity of the

algorithm will be independent of the number of Pico-BSs in the sector.

Suboptimal Power Control Algorithm

In the optimal algorithm, all base stations in the sector update their power control param-

eters together. Therefore, the optimal algorithm reaches the power control parameters that

maximize the Lagrangian function. However, this requires calculation of the inverse of matrix

D at every iteration. This becomes computationally costly when the number of Pico-BSs in

the sector increases. Therefore, we propose a suboptimal algorithm that calculates the power

control parameters of the MBS and Pico-BSs separately. Each base station assumes that the

power control parameters of the other base stations in the same sector are constant during

updates. The Hessian matrix D will become 2×2 for MBSs. In addition, Pico-BSs calculate

their own power control parameter. Each Pico-BS has only one power control parameter. In

simulation results, we will compare the performance of the suboptimal algorithm with the

optimal power control algorithm.
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4.5 Numerical Results

In this section, we evaluate the performance of the proposed algorithm. First, we investi-

gate the effect of the parameter α over energy efficiency and spectral efficiency. We show

that the proposed algorithm achieves the Pareto optimal solution for all α values. Second,

we investigate the effect of the parameter α on outage probabilities. We show that smaller

α (i.e., maximizing the energy efficiency of the network) performs better than maximizing

spectral efficiency in terms of outage probabilities for this particular setting. Third, we in-

vestigate the performance of the proposed frequency assignment algorithm. We evaluate the

usage rate of the subbands with different α values and rate constraints. We show that fewer

resource blocks are assigned to the users when α and rate constraints increase. Fourth, we

investigate the power consumption of the base stations with different α values and minimum

rate requirements. We show that MBSs and Pico-BSs show different behaviors with increas-

ing rate constraints. While average transmission powers of the MBSs increase with the rate

requirements of the users, the average transmission power of the Pico-BSs decreases. Last,

we study the performance of the optimum and suboptimal algorithms. We show that the

performance of the proposed suboptimal algorithm is close to the optimal algorithm.

First, we will describe our simulation environment. In the FFR method, we distribute the

50 resource blocks with the following approach. First, 14 resource blocks are assigned to

subband A, and then the remaining 36 are evenly distributed among the subbandds B, C,

and D. In our simulation area, 19 MBSs are deployed and each cell is divided into 3 sectors.

Therefore, our simulation area has been divided into 57 sectors. We use the wraparound

technique to avoid edge effects. In each sector, two Pico-BSs are randomly deployed. Both

MBS and Pico-BSs employ single antennas, i.e., NTRX,M = 1 and NTRX,P = 1. In each

sector, we generate 20 users. First, we generate two users within 40 meters radius of the

Pico-BSs. Then, the rest of the users are randomly generated under the settings in Table 4.2.

The highest RSRP method is used for the cell associations. Even though we generate two
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Table 4.2: Simulation Parameters

Parameter Setting

Channel bandwidth 10 MHz
Total number of RBs 50 RBs
Freq. selective channel model (CM) Extended Typical Urban CM
UE to MBS PL model 128.1 + 37.6 log10(d)
UE to Pico eNB PL model 140.7 + 36.7 log10(d)
Effective thermal noise power, N0 −174 dBm/Hz
UE noise figures 9 dB
MBS and Pico eNB antenna gain 14 dBi and 5 dBi
UE antenna gain 0 dBi
Antenna horizontal pattern, A(θ) −min(12(θ/θ3dB)2, Am)
Am and θ3dB 20 dB and 70◦

Penetration loss 20 dB
Macrocell and picocell shadowing 8 dB and 10 dB
Inter-site distance 500 m
Minimum MBS to user distance 50 m
Minimum Pico-BS to user distance 10 m
Minimum Pico-BS to MBS distance 75 m
Minimum Pico-BS to Pico-BS distance 40 m
Traffic model Full buffer
Power Consumption Parameters MBS: (130W, 75W, 46dBm, 4.7)
(P0, Psleep, Pmax, ∆) Pico-eNB: (56W, 39W, 30dBm, 2.6)
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Figure 4.3: The average energy efficiency versus average spectral efficiency per sector for
different α values.

users close to Pico-BSs, they are not forced to associate with the Pico-BSs. The rest of the

simulation parameters are given in Table 4.2 [24].

Figure 4.3 illustrates the average energy efficiency and the spectral efficiency of the sectors

for different α values for five cases. In the first case, users do not have any rate constraints.

For the other cases, the following rate constraints are enforced: 8 kbps, 32 kbps, 128 kbps,

and 512 kbps. As expected, the average energy efficiency of the network decreases with α
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for all cases. When users do not have minimum rate constraint and α is equal to 0, the

average energy efficiency of the network reaches its highest point and it becomes 484.83

kbits/Joule. When we increase α for this case, the energy efficiency of the network decreases

with α as expected. When α becomes 1 (i.e., the objective becomes maximizing the spectral

efficiency of the network), the average energy efficiency drops by 13%. When the parameter

α increases, the transmission power of the MBSs increases with α in order to increase the

spectral efficiency. For example, the average transmission power of the MBSs increases from

23.94dB to 29.68dB when α increases from 0 to 1. Although this change increases the spectral

efficiency of the network by 7%, it also causes the MBSs to work in the energy-inefficient

regions. In other words, by increasing α from 0 to 1, 13% energy efficiency sacrifice can

be turned into 7% gain in terms of spectral efficiency when users do not have any rate

requirements. On the other hand, the average transmission power of Pico-BSs is not affected

by α when users do not have minimum rate constraints and they always transmit at the

full power. Due to the fact that the power consumptions of Pico-BSs are less than those of

the MBSs and the distance between Pico-BSs and the associated users is low, both energy

efficiency and spectral efficiency of the Pico-BSs increase with parameter β within the given

ranges. In other words, the most energy-efficient state and the most spectrally-efficient

state coincide for these base stations. When users have minimum rate constraints, both

energy efficiency and spectral efficiency of the network decrease. The cumulative effect of

the following reasons cause this drop. First, in order to satisfy the rate requirements of users,

MBSs further increase their transmission powers to energy-inefficient levels. This increase

elevates the cross-tier interference from MBS to cell-edge Pico-BSs on Subband A and also

intercell interference in the network. Second, the frequency assignment algorithm favors

users that cannot satisfy their rate requirement. These users usually have worse channel

conditions than the other users. Therefore, both energy efficiency and spectral efficiency

are harmed by the change in frequency assignment. As a result of all these factors, both

energy efficiency and the spectral efficiency of the network decrease with the minimum rate
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Table 4.3: The outage probabilities of users for different α values

Outage probability
Minimum α = 0 α = 1

GBR (kbps) MUE PUE MUE PUE

8 0.8% 0% 1.1% 0%
32 1.7% 0% 2.4% 0%
128 3.1% 0.6% 4.3% 0.6%
512 9.6% 2% 12.3% 0.6%

requirements of the users. In addition, when we increase the minimum rate requirements of

the users, the effect of the parameter α on energy efficiency and spectral efficiency decreases.

For example, as specified earlier, 7% spectral efficiency loss can be turned into 13% energy

efficiency gain when users do not have any rate requirements. On the other hand, when the

minimum rate requirements of users are 512 kbps, 5% spectral efficiency loss can only be

turned into 4% energy efficiency gain. These results show that when users have minimum

rate requirements, the proposed algorithm prioritizes satisfying the rate requirements of more

users and the effect of parameter α on energy efficiency and spectral efficiency decreases. Note

from Figure 4.3 that for the no-rate-constraint-case, improving energy efficiency decreases

spectral efficiency and vice versa. Therefore, all points on this curve (ηs(ε,β), νs(ε,β)) are

Pareto optimal for 0 ≤ α ≤ 1.

Second, we investigate the relation between the parameter α and outage probabilities. In

Table 4.3, we investigate four cases, the minimum rate requirements of users are 8 kbps,

32 kbps, 128 kbps, and 512 kbps. The outage probability is not defined when users do not

have a minimum rate requirement. In our network, we have two different type of users:

MUEs and PUEs. First, we observe that when we increase the parameter α, the outage

probabilities of the MUEs increase with α for all four cases. For example, when the minimum

rate requirement of the users is 512 kbps, changing α from 0 to 1 increases the outage

probability of MUEs from 9.6% to 12.3%. Similar behavior can also be observed for the

other cases. When the parameter α increases, the transmission powers of MBSs and Pico-
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BSs increase with this parameter. For example, when we change the parameter α from

0 to 1, the transmission powers of the Pico-BSs increase from 27.7dBm to 28.4dBm for

the case that minimum rate requirements of the users are 512 kbps. Although this change

increases the average spectral efficiency of the network, cross-tier interference from Pico-BSs

to MUEs increases the outage probability of MUEs. In the same manner, the transmission

power increase of MBSs elevates the intercell interference and that is another reason of the

increased outage probabilities. On the other hand, the outage probabilities of the PUEs only

exists when the minimum rate requirements of users are high. However, even for the worst

case, only 2% of the PUEs could not satisfy their rate requirements. In the network, PUEs

are located close to their associated Pico-BSs and they have significantly better channel

conditions than the MUEs. In addition, the number of PUEs that are associated with each

Pico-BS is significantly lower. Therefore, more resource blocks are assigned to these users

on average. As a result, PUEs can satisfy their rate requirements easier than MUEs.

Figures 4.4(a-d) show the average usage rate of the subbands A by MBSs, subbands A

by Pico-BSs, subbands B, C, and D by MBSs, and subbands B, C, and D by Pico-BSs,

respectively. First, we observe that when we increase the minimum rate requirements of

the users, the usage of the resource blocks by MBSs decreases. The second part of the

proposed frequency assignment algorithm decreases the number of assigned resource blocks

and transmits on the fewer resource blocks. For example, MBSs use almost all assigned

resource blocks for all different α values when users do not have minimum rate requirements.

However, when users have minimum rate requirements, MBSs decide not to assign some of

the available resource blocks. When the minimum rate requirements of the users increase,

intercell interference becomes a more significant problem, due to the fact that base stations

increase their transmission power to satisfy the rate requirements of their users. In order

to alleviate the interference, base stations do not assign the resource blocks that do not

increase the energy efficiency and spectral efficiency while creating significant interference

to other base stations. Figure 4.4(b) illustrates that usage rate of subband A by Pico-BSs
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Figure 4.4: Average Usage Rate of Subband A by MBSs (a), Average Usage Rate of Sub-
band A by Pico-BSs (b), Average Usage Rate of Subbands B, C, and D by MBSs (c),
Average Usage Rate of Subbands B, C, and D by Pico-BSs (d) for different α values.

significantly decreases when we increase the minimum rate of the users. The reason for

this decrease is twofold. First, cell-edge Pico-BSs do not assign some resource blocks on

subband A to help satisfy the minimum rate constraints of the cell-center MUEs in the same

sector. Second, cell-center radii expand with the minimum rate requirements. Therefore,

the number of Pico-BSs that are located in the cell-edge region decreases and fewer Pico-BSs

will use subband A. Another important observation is when we increase the parameter α,

the usage of the resource blocks further decreases. In order to increase the spectral efficiency

of the network, base stations decide to transmit on the resource blocks that have better

channel quality and do not assign the others to increase the overall spectral efficiency of the

network. Therefore, when we increase α, the subband usage further decreases to improve

the spectral efficiency of the network.
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Figure 4.5: The average transmission power of MBSs and Pico-BSs for different α values for
different rate requirements.

Figure 4.5 shows the average power consumption of the MBSs and Pico-BSs for the following

cases: No rate requirement and rate requirements equal to 128 kbps and 512 kbps. Similar

observations can be made for the other rate requirements. As expected, when we increase

the minimum rate requirements, the transmission power of the MBSs increases. On the

other hand, under the same conditions, the transmission power of the Pico-BSs decreases.

The increase of the minimum rate constraints causes outage of the more MUEs. In order

to satisfy these users’ rate requirements, MBSs increase their transmission power, increase

the interference prices, and assign more resource blocks to these users. Elevated interference

prices force some of the Pico-BSs to decrease their transmission power to help satisfy the

rate requirements of more MUEs. Therefore, the average transmission power of the Pico-BSs

decreases with the minimum rate requirements. In addition, the average transmission power

of both MBSs and Pico-BSs increases with parameter α to increase the spectral efficiency of

the network.

Figure 4.6 compares the performance of the suboptimal and optimal power control algorithms

in terms of energy efficiency and spectral efficiency when the minimum rate requirements of

users are 128 kbps. The performance of both algorithms is similar. When α = 0, the optimal

algorithm performs 3.2% better than the suboptimal algorithm. On the other hand, when
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Figure 4.6: The average energy spectral efficiency of network for different α values when
minimum rate constraints are 128 kbps.

α = 1, the performance difference drops to 0.4%. In the suboptimal power control algorithm,

MBS and Pico-BSs update their power control parameters separately. The transmission

powers of the base stations increase with the parameter α, therefore the difference between

the performance of these algorithms decreases.

4.6 Conclusion

In this chapter, we studied the energy efficiency and spectral efficiency tradeoffs in multi-cell

heterogeneous wireless networks. We defined the problem as multi-objective optimization

and proposed a cell-center radius selection algorithm, a scheduling algorithm, and a power

control algorithm that solve these problems separately. The proposed algorithm also includes

the minimum rate requirements of users to the given problem. A dynamic cell-center radius

selection algorithm is proposed to determine the available resources to the base stations.

In addition, the proposed scheduling mechanism has distributed the resources to users in

order to satisfy the minimum rate requirements of them and also to maximize our objective

metric. Furthermore, we employed a Levenberg-Marquardt method-based power allocation

algorithm to solve the power control problem. Based on our results, first the tradeoff between
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energy efficiency and spectral efficiency can be adjusted via the weight of the multi-objective

function. We can obtain 13% improvement in terms of energy efficiency by sacrificing 7%

spectral efficiency. In addition, our results show that the most energy-efficient state and the

most spectral efficient state coincide for the Pico-BSs. Second, while we increase the spectral

efficiency of the network, it also increases the outage probabilities of the network due to the

increased intercell-interference. Third, we showed that the number of resource blocks that

are transmitted can be reduced by increasing the minimum rate constraints or the parameter

α. Fourth, we demonstrated that while the transmission powers of the MBSs increase with

the minimum rate constraints of the users, the transmission power of Pico-BSs decreases.

Last, we studied the optimal and a suboptimal power control algorithms. We showed that

these algorithms perform similarly and increasing the parameter α, shrinks the gap between

these algorithms.
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Chapter 5

Conclusion and Future Works

In this dissertation, we investigated energy efficiency and spectral efficiency in wireless het-

erogeneous networks. It is discussed that data demand of the users will increase tremen-

dously, therefore the network operators should prepare to meet this demand. First, benefits

of deploying more small cell base stations is discussed. Second, the environmental and eco-

nomical effects of spectral efficiency increase are pointed out and energy-efficient solutions

are addressed. Third, deployment of small cell base stations is examined and investigated to

solve the problem. In particular, deployment of the small cell base station, energy-efficient re-

source allocation in heterogeneous networks, and both energy- and spectral-efficient resource

allocation in heterogeneous networks are investigated in this dissertation.

In Chapter 2, energy-efficient base station deployment was investigated. Deployment of

microcell base stations can increase the throughput and energy efficiency of the network

tremendously if they are deployed in the appropriate amount. If they are deployed at too

large numbers, they can decrease the energy efficiency of the network. In this dissertation,

a greedy base station deployment algorithm was proposed for the base station deployment

problem. The proposed algorithm first selects a subset of feasible locations as candidate
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locations, and then greedily deploys these base stations to meet the required capacity in-

crease. The proposed algorithm performs better than the constant-factor approximation of

the optimum solution. In this dissertation, deployment and operational costs of the base

stations are not included into the problem. For example, depending on the terrestrial condi-

tions, the rental cost may vary. Therefore, as a future work, investigating the same problem

with including these costs and the total budget constraints would be an interesting and more

realistic problem.

In Chapter 3, the energy efficiency aspect of the small cell base station deployment was

investigated. The proposed algorithm separates cell-center radius selection, frequency as-

signment, and power allocation problems and solves them iteratively. First, an iterative

cell-center radius selection algorithm is proposed to find the optimum cell-center radius for

the FFR algorithm. Second, the frequency resources are assigned to users to maximize

the Lagrangian function. Last, optimum transmission power is obtained by a Levenberg-

Marquard based-method. It is shown that significant energy savings can be achieved with

reduced outage probabilities. In Chapter 3, single antenna transmission is considered only.

As a future work, considering multiple antenna transmission can be a new research direction.

Chapter 4 addressed energy efficiency and spectral efficiency tradeoff in multi-cell multi-

tier wireless networks. The problem is defined as a multi-objective optimization problem.

We defined the objective function as a weighted summation of energy efficiency and spec-

tral efficiency functions. We included the minimum rate requirements of the users in the

problem by dual decomposition techniques. We decoupled the problem as the cell-center

radius selection problem, a scheduling problem, and a power control problem. We proposed

a three-stage algorithm that solves these problems iteratively until convergence. In the first

stage, the cell-center radius is determined with a heuristic algorithm. The cell-center radius

is updated every iteration. In the second stage, frequency resources are assigned to the

users. In the third stage, optimum transmission powers are determined. It is shown that
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a Pareto optimum solution exists for energy efficiency and spectral efficiency. Sacrifices in

terms of energy efficiency can be transformed to gains in terms of spectral efficiency and

vice versa. In Chapter 4, outage probabilities of users are investigated and it is shown that

spectral-efficient solutions causes higher outage probabilities. In addition, the relation be-

tween resource allocation and minimum rate constraints are addressed. It is shown that fewer

resource blocks are assigned to users when the minimum rate constraints increase. Moreover,

it is demonstrated that transmission powers of the MBSs increase with the minimum rate

constraints while transmission powers of the Pico-BSs decrease.
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Appendix A

The Detailed Expressions of the

Terms

In what follows, we obtain an exact expression for the pricing function employed. Our goal

is to quantify how the utility of a sector s′ changes when there is a unit increase in the

variables ε and β of sector s. Let us rewrite the utility of sector s′ as

L(xs,λ, νs, τs, ρs) =ηs(xs)− θs(xs)−
∑

k∈KM,s

λl,s
(
Rmin,l − (C l

M,sF
(l,:)
M,sR

(:,l)
1

+ (1−C l
M,s)F

(l,:)
M,sR

(:,l)
2 )

)
−
∑
k∈KP,s

λl,s
(
Rmin,l − (C l

P,sF
(l,:)
P,sR

(:,l)
3

+ (1−C l
P,s)F

(l,:)
P,sR

(:,l)
4 )

)
+ νsβs + τs(1− βs) + ρsεs.

(A.1)

where KM,s′ denotes the set of MUEs associated with the MBS m′. The parameter Rmin,l is

the minimum rate constraint of user l. The region of MUE l whether in cell-center or not is

indicated by C l
M,s. The region of PUE l whether in cell-center or not is indicated by C l

P,s.
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Whether the subcarrier n is assigned to MUE l or not is indicated by F
(l,n)
M,s . Whether the

subcarrier n is assigned to PUE l or not is indicated by F
(l,n)
P,s . The parameters λl,s′ , ν

′
s, τ

′
s,

and ρ′s denote the Lagrange multiplier associated with the rate constraint of user l in sector

s′, the Lagrange multiplier associated with lower and upper bound on β′s, and the lower

bound on ε′s, respectively. If we denote the interference incurred by user l on subcarrier n is

I(l,n), by using the chain rule, we can write partial derivatives, ∂Ls′/∂ε′s and ∂Ls′/∂βs, as

∂Ls′
∂εs

=
∂Ls′
∂I(l,n)

· ∂I
(l,n)

∂p
(n)
M

· ∂p
(n)
m

∂εs
= −π(n)

k,l g
(n)
l,m ·

∂p
(n)
M

∂εs
,

∂Ls′
∂βs

=
∂Ls′
∂I(l,n)

· ∂I
(l,n)

∂p
(n)
M

· ∂p
(n)
M

∂βs
= −π(n)

k,l g
(n)
l,m ·

∂p
(n)
m

∂βs
,

(A.2)

where g
(n)
l,m is the channel gain of the interfering link between MBS M and user l on subcarrier

n. This term weights the interference created to the users in other sectors. The interference

price from user k in sector s to user l in sector s′ on subcarrier n can be expressed as

π
(n)
k,l = − ∂Ls′

∂I(l,n)
= (λl,s′ +

1

ψs′
) · ∆n

ln(2)
· γl

1 + γl
· 1

I(l,n) +N0∆n

, (A.3)

where γ
(n)
l denotes the SINR of user l on subcarrier n. Thus, we can rewrite (4.13) as

θs(ε, β) =
∑
n∈NM

εs
∑

l 6=k, l∈K(n)

π
(n)
k,l g

(n)
l,M ·

∂p
(n)
M

∂εs
+
∑
n∈NM

βs
∑

l 6=k, l∈K(n)

π
(n)
k,l g

(n)
l,M ·

∂p
(n)
M

∂βs
. (A.4)

Note that the MBS transmit power on subcarrier n depends on the subband. For the FFR

scheme in Fig. 4.1, it takes the value p
(n)
M = PM for the subcarriers allocated to the cell-center

region, whereas it is p
(n)
M = εPM for the subcarriers allocated to the cell-edge region.
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Appendix B

Proof of Quasiconcavity

In what follows, we prove that FEE−SE
s = (1− α)ηs(ε,β) + αWtot

Ps
νs(ε,β) is quasiconcave in

εs and βs. We will demonstrate the proof for one Pico-BS case for Sector 1 but it can be

extended to multiple Pico-BS case by using the same approach.

First, let’s rewrite the FEE−SE
s function

FEE−SE
s =(

(1− α)

ψs(βs)
+
αWtot

Ps

Ws

)(
∑

k∈KM,s

(Ck
M,sF

(k,:)
M,sR

(:,k)
1 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
2 )

+
∑
k∈KP,s

(Ck
P,sF

(k,:)
P,s R

(:,k)
3 + (1−Ck

P,s)F
(k,:)
P,s R

(:,k)
4 )).

(B.1)

The function FEE−SE
s is a quasiconcave if and only if the following property holds

zTs∇FEE−SE
s = 0 and zTs ∇2FEE−SE

s zs ≤ 0 (B.2)

where zs = [βM εM βP ]T .

First, we introduce new definitions for the proof, and then express the first and second order
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derivatives. Let Rs denote the aggregate throughput of sector s which is given by

Rs =
∑

k∈KM,s

(Ck
M,sF

(k,:)
M,sR

(:,k)
1 + (1−Ck

M,s)F
(k,:)
M,sR

(:,k)
2 )

+
∑
k∈KP,s

(Ck
P,sF

(k,:)
P,s R

(:,k)
3 + (1−Ck

P,s)F
(k,:)
P,s R

(:,k)
4 ),

(B.3)

where

R
(n,k)
1 =∆n log

(
1 +

βMa

b+ εMc

)
, R

(n,k)
2 =∆n log

(
1 +

εβMa

b+ εMc

)
,

R
(n,k)
3 =∆n log

(
1 +

βPd

f

)
, R

(n,k)
4 =∆n log

(
1 +

βPd

g

)
,

(B.4)

where a = Pmax,Mg
(n)
k,M/I

(n)
k,M , b = NA, c = NB, d = Pmax,Pg

(n)
k,P/I

(n)
k,P , f = NC + ND, and

g = NA+NC+ND. The term I
(n)
k,M corresponds to

∑
M ′∈BM
M ′ 6=M

P
(n)
M ′ g

(n)
k,M ′+

∑
P∈BP

P
(n)
P g

(n)
k,P+N0∆n and

I
(n)
k,P is

∑
M ′∈BM

P
(n)
M ′ g

(n)
k,M ′ +

∑
P ′∈BP
P ′ 6=P

P
(n)
P ′ g

(n)
k,P ′ +N0∆n. Using these definitions, the first derivative

of Rs with respect to βM is

∂Rs

∂βM
=
∑

k∈KM,s

(Ck
M,sF

(k,:)
M,s

∂R
(:,k)
1

∂βM
+ (1−Ck

M,s)F
(k,:)
M,s

∂R
(:,k)
2

∂βM
)

+
∑
k∈KP,s

(Ck
P,sF

(k,:)
P,s

∂R
(:,k)
3

∂βM
+ (1−Ck

P,s)F
(k,:)
P,s

∂R
(:,k)
4

∂βM
),

(B.5)

where

∂R
(n,k)
1

∂βM
=∆n

a

aβM + b+ cεM
,

∂R
(n,k)
2

∂βM
=∆n

aεM
b+ εM (c+ aβM)

,

∂R
(n,k)
3

∂βM
=0,

∂R
(n,k)
4

∂βM
=∆n

βP
βPd+ g

∂d

∂βM
.

(B.6)
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The second derivative of Rs with respect to βM is given by

∂2Rs

∂β2
M

=
∑

k∈KM,s

(Ck
M,sF

(k,:)
M,s

∂2R
(:,k)
1

∂β2
M

+ (1−Ck
M,s)F

(k,:)
M,s

∂2R
(:,k)
2

∂β2
M

)

+
∑
k∈KP,s

(Ck
P,sF

(k,:)
P,s

∂2R
(:,k)
3

∂β2
M

+ (1−Ck
P,s)F

(k,:)
P,s

∂2R
(:,k)
4

∂β2
M

),

(B.7)

where

∂2R
(n,k)
1

∂β2
M

= −∆n
a2

(aβM + b+ cεM)2
,

∂2R
(n,k)
2

∂β2
M

= −∆n
a2ε2M

(b+ εM (c+ aβM))2
,

∂2R
(n,k)
3

∂β2
M

= 0,
∂2R

(n,k)
4

∂β2
M

= −∆n
β2
P

(βPd+ g)2
∂d

∂βM
+ ∆n

βP
βPd+ g

∂2d

∂β2
M

. (B.8)

Similarly, the first derivative of Rs with respect to εM can be expressed as

∂Rs

∂εM
=
∑

k∈KM,s

(Ck
M,sF

(k,:)
M,s

∂R
(:,k)
1

∂εM
+ (1−Ck

M,s)F
(k,:)
M,s

∂R
(:,k)
2

∂εM
)

+
∑
k∈KP,s

(Ck
P,sF

(k,:)
P,s

∂R
(:,k)
3

∂εM
+ (1−Ck

P,s)F
(k,:)
P,s

∂R
(:,k)
4

∂εM
),

(B.9)

where

∂R
(n,k)
1

∂εM
= −∆n

acβM
(b+ cεM) (aβM + b+ cεM)

,

∂R
(n,k)
2

∂εM
= ∆n

baβM
(b+ cεM) (b+ εM (c+ aβM))

,

∂R
(n,k)
3

∂εM
= 0,

∂R
(n,k)
4

∂εM
= ∆n

βP
βPd+ g

∂d

∂εM
.

(B.10)
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The second derivative of Rs with respect to εM is given by

∂2Rs

∂ε2M
=
∑

k∈KM,s

(Ck
M,sF

(k,:)
M,s

∂2R
(:,k)
1

∂ε2M
+ (1−Ck

M,s)F
(k,:)
M,s

∂2R
(:,k)
2
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)

+
∑
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P,sF
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P,s

∂2R
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3
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P,s

∂2R
(:,k)
4

∂ε2M
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(B.11)

where

∂2R
(n,k)
1

∂ε2M
= ∆n

βMac
2 (aβM + 2 (b+ cεM))

(b+ cεM)2 (aβM + b+ cεM)2
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3
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(n,k)
4
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= −∆n

β2
P

(βPd+ g)2
∂d

∂εM
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βP
βPd+ g

∂2d

∂ε2M
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(B.12)

Similarly, the first derivative of Rs with respect to βP is

∂Rs

∂βP
=
∑

k∈KM,s

(Ck
M,sF

(k,:)
M,s

∂R
(:,k)
1
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M,s)F
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∂βP
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+ (1−Ck
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(:,k)
4

∂βP
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(B.13)

where

∂R
(n,k)
1

∂βP
=∆n

βM
βMa+ b+ cεM

∂a

∂βP
,

∂R
(n,k)
2

∂βP
=0,
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(n,k)
3

∂βP
=∆n

d

dβP + f
,

∂R
(n,k)
4

∂βP
=∆n

d

dβP + g
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(B.14)
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The second derivative of Rs with respect to βP is given by

∂2Rs

∂β2
P

=
∑

k∈KM,s

(Ck
M,sF

(k,:)
M,s
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(B.15)

where
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(B.16)

Similarly, the derivative of Rs with respect to βM and εM is
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(B.17)

where
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(B.18)
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Similarly, the derivative of Rs with respect to βM and βP is

∂2Rs

∂βM∂βP
=
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(B.19)

where
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(B.20)

Similarly, the derivative of Rs with respect to εM and βP is
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(B.21)

where
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(B.22)
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The gradient of FEE−SE
s can be expressed as

∇FEE−SE
s =



∂FEE−SE
s

∂βM
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=
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∂βM

1
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1
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1
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∂βP


. (B.23)

Consider that zT∇FEE−SE
s = 0, if we use (B.23), we will obtain

∂Rs

∂βM
z1 +

∂Rs

∂εM
z2 +

∂Rs

∂βP
z3 =

∂ψ(βs)

∂βM

1

ψ(βs)
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Then we can write the ∇2FEE−SE
s is given by
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When we expand the terms, we get
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In our extensive simulations, we have observed that zTs ∇2FEE−SE
s zs ≤ 0 is always satisfied.

Therefore, we conclude that FEE−SE
s is quasiconcave in βM , εM , and βP .
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