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ABSTRACT OF THE DISSERTATION

Computational Approaches to Expand the Applications

of Chromatin State Annotations

by

Thai Ha Vu
Doctor of Philosophy in Bioinformatics
University of California, Los Angeles, 2023

Professor Jason Ernst, Chair

Genome-wide mappings of chromatin marks such as histone modifications and open
chromatin sites provide valuable information for annotating the non-coding genome.
Computational approaches such as ChromHMM have been applied to discover the combinatorial
and spatial patterns of chromatin marks in a biosample, characterize them as chromatin states,
and subsequently annotate the biosample’s epigenome into chromatin states. As more
biosamples’ chromatin marks data are generated, it becomes more challenging to manually study
biological similarities and differences in the chromatin state maps across many biosamples. We
therefore have developed methods to derive epigenome annotations that incorporate data from
multiple biosamples and highlight notable epigenetic properties.

First, we introduced a large-scale application of ChromHMM that generates a universal
chromatin state map for the human genome that can be shared across cell types. In particular,

we trained ChromHMM with input data from >1,000 experiments in >100 human biosamples from



Roadmap Epigenomics and ENCODE projects. We denoted the resulting chromatin state map
the “full-stack’ annotation. We conducted comprehensive analyses to characterize the full-stack
states’ biological interpretations, and uncovered patterns of cell-type-specific and constitutive
regulatory activities in each state. The full-stack annotation, along with detailed state
characterizations, are useful for researchers in understanding the epigenetic contexts of genomic
loci of interests.

Building on this work, we developed and analyzed an analogous universal chromatin state
annotation for the mouse genome. We trained such an annotation using input data from >900
ChIP-seq/ATAC-seq or DNase-seq experiments from the Mouse ENCODE and ENCODE
projects, characterized the resulting states and related them with those from the human full-stack
model. Given the wide applications of mice as a model organism to study human disease
mechanisms, the mouse full-stack annotation is expected to be highly useful for researchers to
investigate the mouse epigenetic landscapes.

Lastly, we developed a method named CSREP to derive a genome-wide probabilistic
summary chromatin state map given data from a group of biosamples with common biological
properties. We validated CSREP’s output summary chromatin state maps for groups of samples
with shared tissue types from the Roadmap Epigenomics and EpiMap projects, and showed that
CSREP can better predict genomic locations of individual chromatin states in held-out biosamples.
We further showed an extension of CSREP where the summary chromatin state maps for two
groups of samples are used to prioritize differential chromatin state changes between the two
groups.

Overall, our work aims to derive genome-wide chromatin state annotations that can
aggregate and derive the patterns of epigenetic assays within and across different cell identities.
All methods we present can be widely applicable to newer and larger datasets that will be made

available in the future, while the data of chromatin state annotations we provide can be useful to



the larger community in understanding the regulatory patterns across the genome of human and

mouse organisms.
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Chapter 1. Introduction

Epigenomic marks such as histone modifications, open chromatin regions or DNA
methylation can correspond to different categories of gene regulatory elements (Barski et al.,
2007; Boyle et al., 2008; Thurman et al., 2012; Xie et al., 2013). Methods such as ChromHMM
(Ernst and Kellis, 2010, 2012) or Segway (Hoffman et al., 2012) were developed to learn the
recurrent combinatorial patterns of multiple chromatin marks across the genome of a biosample,
classify these patterns into chromatin states, and eventually generate a genome annotation for
that biosample. The resulting annotation maps out various regulatory elements such as
promoters, enhancers, or inactive domains, and is useful in understanding the epigenomic
contexts of biological phenomena. As epigenomic data becomes more abundant and diverse in
assays and profiled biosamples, new questions emerge.

The first question, which is addressed in Chapter 2, involves the possibility and
applicability of aggregating the patterns across epigenomic mappings for multiple cell and tissue
types, then learning a single chromatin state annotation shared across the input biosamples. This
requires training a chromatin state discovery tool (ChromHMM) such that input datasets from
different tissue types are stacked as independent tracks and the learned states are defined jointly
across tissue types. This approach was previously limited due to scalability challenges and is
different from the per-biosample learning that was widely used before. Here, we developed a
model using data from 1032 experiments in 127 biosamples from different human cell/tissue types
(ENCODE Project Consortium, 2012; Roadmap Epigenomics Consortium et al.), denoted as the
full-stack model. This results in a universal human genome annotation that is shared across cell
types, and the states can correspond to constitutive regulatory functions or rather cell-type-
specific activities. We conducted thorough analyses to characterize the states and uncover many
states with different cell-type-specific and sex-specific regulatory functions such as Brain-related
enhancers, embryonic stem cell (ESC)-related bivalent promoters, chromosome X-specific

quiescent regions, etc. We also used the full-stack annotation to analyze the epigenetic contexts
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of various classes of genetic variations such as cancer-associated somatic mutations, structural
variants, rare and common variants, etc. We argue, through reasoning and quantitative analyses
with external genome annotations, that the full-stack annotation offers complementary values to
existing biosample-specific annotations from Roadmap Epigenomics (Roadmap Epigenomics
Consortium et al.) and ENCODE consortia (ENCODE Project Consortium, 2012).

In Chapter 3, we extend the above-mentioned approach of genome annotation by training
an analogous stacked ChromHMM model on 901 Chip-seq/DNase-seq/ATAC-seq datasets from
26 mouse cell types from the Mouse ENCODE and ENCODE projects (Stamatoyannopoulos et
al., 2012; Yue et al., 2014). We conducted equivalent analyses as in the human model to
characterize the biological implications of the resulting states, and generate a mouse full-stacked
annotation (Vu and Ernst, 2022). We also analyzed the relationships between states from the
two organisms’ annotations and how the similarities and differences between the two models are
also reflected in functional conservation scores between the two species (Kwon and Ernst, 2021).

The human and mouse universal chromatin state maps have been adopted in various
projects where we collaborated with other labs to elucidate the epigenetic contexts of regions
involved in aging (Lu et al., 2022), mammalian maximum lifespan prediction (Li et al., 2021) and
Huntington’s disease.

Another challenge that emerges with more abundant epigenomic data is capturing
probabilistic summary chromatin state annotations for a group of related biosamples (such as
those with shared sex, tissue/cell type, case/control status, etc.). We developed a method named
CSREP for this purpose, which is presented in Chapter 4. CSREP trains an ensemble of
multivariate logistic regression classifiers that predicts state annotation in one biosample, given
the corresponding annotations in others of the same group. We can take the difference between
CSREP’s summary chromatin state maps for two groups of samples to derive a map of genome-
wide differential chromatin scores between these two groups. We conducted leave-one-out

analysis, using chromatin state annotation data from 11 cell/tissue groups from Roadmap
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Epigenomics (Roadmap Epigenomics Consortium et al.), to evaluate how well CSREP’s summary
chromatin state map for a group of samples can predict the genomic locations of individual
chromatin states in a held-out sample. Here, CSREP resulted in better prediction compared to a
baseline approach that simply counts state-frequency across input sample. We further showed,
through various analyses, that the differential chromatin scores outputted by CSREP for two
groups of samples can predict external assays that distinguish the two groups. For example,
CSREP differential scores between ESC and Brain sample groups better predict genomic
locations of Brain-specific or ESC-specific peaks of multiple chromatin marks (H3K27ac, H3K9ac
and DNase). Using CSREP, we generated the summary chromatin state maps for 11 cell/tissue
groups from Roadmap Epigenomics (Roadmap Epigenomics Consortium et al.) and 75 groups

from EpiMap (Boix et al., 2021).



Chapter 2. Universal annotation of the human genome through integration of over a
thousand epigenomic datasets

Abstract
Genome-wide maps of chromatin marks such as histone modifications and open

chromatin sites provide valuable information for annotating the nsn-coding genome, including
identifying regulatory elements. Computational approaches such as ChromHMM have been
applied to discover and annotate chromatin states defined by combinatorial and spatial patterns
of chromatin marks within the same cell type. An alternative ‘stacked modeling’ approach was
previously suggested, where chromatin states are defined jointly from datasets of multiple cell
types to produce a single universal genome annotation based on all datasets. Despite its potential
benefits for applications that are not specific to one cell type, such an approach was previously
applied only for small-scale specialized purposes. Large-scale applications of stacked modeling
have previously posed scalability challenges.

Using a version of ChromHMM enhanced for large-scale applications, we apply the
stacked modeling approach to produce a universal chromatin state annotation of the human
genome using over 1000 datasets from more than 100 cell types, with the learned model denoted
as the full-stack model. The full-stack model states show distinct enrichments for external
genomic annotations, which we use in characterizing each state. Compared to per-cell-type
annotations, the full-stack annotations directly differentiate constitutive from cell type specific
activity and is more predictive of locations of external genomic annotations.

The full-stack ChromHMM model provides a universal chromatin state annotation of the
genome and a unified global view of over 1000 datasets. We expect this to be a useful resource
that complements existing per-cell-type annotations for studying the non-coding human genome.
Introduction

Genome-wide maps of histone modifications, histone variants and open chromatin
provide valuable information for annotating the non-coding genome features, including various

types of regulatory elements (Barski et al., 2007; Boyle et al., 2008; Ernst et al., 2011; Thurman
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et al., 2012; Xie et al., 2013). These maps -- produced by assays such as chromatin
immunoprecipitation followed by high-throughput sequencing to map histone modifications or
DNase-seq to map open chromatin-- can facilitate our understanding of regulatory elements and
genetic variants that are associated with disease (Claussnitzer et al., 2015; Gjoneska et al., 2015;
Kheradpour et al., 2013; Lay et al., 2014; Lee et al., 2017; Taberlay et al., 2014; Varshney et al.,
2017). Efforts by large scale consortia as well as many individual labs have resulted in these
maps for many different human cell and tissue types for multiple different chromatin marks (Barski
et al., 2007; Consortium, 2007; ENCODE Project Consortium, 2012; Fernandez et al., 2015;
Kheradpour et al., 2013; Meuleman et al., 2015; Mikkelsen et al., 2007; Stunnenberg et al., 2016;
Q. Wang et al., 2020; Zhu et al., 2013).

The availability of maps for multiple different chromatin marks in the same cell type motivated the
development of methods such as ChromHMM and Segway that learn ‘chromatin states’ based on
the combinatorial and spatial patterns of marks in such data (Ernst and Kellis, 2010, 2012;
Hoffman et al., 2012). These methods then annotate genomes in a per-cell-type manner based
on the learned chromatin states. They have been applied to annotate more than a hundred diverse
cell and tissue types (Ernst et al., 2011; Meuleman et al., 2015; Libbrecht et al., 2019). Previously,
large collections of per-cell-type chromatin state annotations have been generated using either
(1) independent models that learn a different set of states in each cell type or (2) a single model
that is learned across all cell types, resulting in a common set of states across cell types, yet
generating per-cell-type annotations (in some cases per-tissue-type annotations are generated,
but we will use the terms cell-type and tissue interchangeably for ease of presentation). This latter
approach is referred to as a ‘concatenated’ approach (Supplementary Fig. 2.2.1) (Ernst and
Kellis, 2012, 2017). Variants of the concatenated approach attempt to use information from
related cell types to reduce the effect of noise, but still output per-cell-type annotations (Biesinger
etal., 2013; Zhang et al., 2016). These models that produce per-cell-type annotations tend to be

most appropriate in studies where researchers are interested in studying individual cell types.
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A complementary approach to applying ChromHMM to data across multiple different cell
types referred to as the ‘stacked’ modeling approach was also previously suggested
(Supplementary Fig. 2.2.1) (Ernst and Kellis, 2012, 2017). Instead of learning per-cell-type
annotations based on a limited number of datasets available in each cell type, the stacked
modeling approach can learn a single universal genome annotation based on the combinatorial
and spatial patterns in datasets from multiple marks across multiple cell types. This approach
differs from the concatenated and independent modeling approaches as those approaches only
identify combinatorial and spatial patterns present among datasets within one cell type.

Such a universal annotation from stacked modeling provides potential complementary
benefits to existing concatenated and independent chromatin state annotations. First, since the
model can learn patterns from signals from the same assay across cell types, a stacked model
may help differentiate regions with constitutive chromatin activities from those with cell-type-
specific activities. Previously, subsets of the genome assigned to individual chromatin states from
‘concatenated’ annotations were post-hoc clustered to analyze chromatin dynamics across cell
and tissue types (Ernst et al., 2011; Meuleman et al., 2015). However, such an approach does
not provide a view of the dynamics of all the data at once, which the stacked modeling provides.
Second, the stacked modeling approach bypasses the need to pick a specific cell or tissue type
when analyzing a single partitioning and annotation of the genome. Focusing on a single cell or
tissue type may not be desirable for many analyses involving other data that are not inherently
cell-type-specific, such as those involving conserved DNA sequence or genetic variants. For
example, when studying the relationship between chromatin states and evolutionarily conserved
sequences, if one uses per-cell-type chromatin state annotations from one cell type, many bases
will lack an informative chromatin state assignment (e.g. many bases are in a quiescent state),
while subsets of those bases will have a more informative annotation in other cell types. Third, if
one tries to analyze per-cell-type annotations across cell types, one would need a post-hoc

method to reason about an exponentially large number of possible combinations of chromatin
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states across cell types (if each of K cell types has M states, there are MX possible combinations
of states for a genomic position) many of which would likely lack biologically meaningful
distinctions. In contrast, for the stacked model, there will be a single annotation per position out
of a possibly much smaller fixed number of states (compared to MX). These states are directly
informative of cross-cell type activity, though the state definitions can be more complex. Finally,
annotations by the stacked modeling leverages a larger set of data for annotation, and thus has
the potential to be able to identify genomic elements with greater sensitivity and specificity.
Despite the potential complementary advantages of the ‘stacked’ modeling approach, it
has only been applied on a limited scale to combine data from a small number of cell types for
highly specialized purposes (Chronis et al., 2017; Mortazavi et al., 2013). No large-scale
application of the stacked modeling approach to many diverse cell and tissue types has been
previously demonstrated. This may have in part been due to large-scale applications of stacked
modeling raising scalability challenges not present in modeling approaches for concatenated and
independent annotations.
Here, we present a large-scale application of the stacked modeling approach with more than a
thousand human epigenomic datasets as input, using a version of ChromHMM for which we
enhanced the scalability. We conduct various enrichment analyses on the states resulting from
the stacked modeling and give biological interpretations to them. We show that compared to the
per-cell-type annotations from independent and concatenated models, the stacked model’s
annotation shows greater correspondence to various external genomic annotations not used in
the model learning. We analyze the states in terms of enrichment with different types of variation,
and highlight specific states of the stacked model that are enriched with phenotypically associated
genetic variants, cancer-associated somatic mutations, and structural variants. We expect the
stacked model annotations and detailed characterization of the states that we provide will be a
valuable resource for studying the epigenome and non-coding genome, complementing existing

per-cell-type annotations.



Results
Annotating the human genome into universal chromatin states

We used the stacked modeling approach of ChromHMM to produce a universal chromatin
state annotation of the human genome based on data from over 100 cell and tissue types from
the Roadmap Epigenomics and ENCODE projects (Fig. 2.1) (ENCODE Project Consortium, 2012;
Meuleman et al., 2015). In total we applied ChromHMM to 1032 datasets for 30 histone
modifications, a histone variant (H2A.Z), and DNase | hypersensitivity (Supplementary Fig. 2.2).
The set of cell and tissue types were the same as those for which per-cell-type annotations were
previously generated by applying the ‘concatenated’ modeling approach of ChromHMM (Ernst
and Kellis, 2012, 2017; Meuleman et al., 2015). We note that not all chromatin marks were profiled
in all cell or tissue types, but the stacked modelling can still be applied directly.

We focused our analysis on a model with 100 states (Methods). The number of states is
larger than typically used for models that generate per-cell-type annotations, which reflects the
greater information available when defining states based on data from many cell types. This
number of states was large enough to be able to capture some relatively cell-type-specific
regulatory activity, while being small enough to give distinct biological interpretations to each state
(Supplementary Fig. 2.3). We denote the model’s output chromatin state annotation the ‘full-
stack’ genome annotation.

Major groups of full-stack states

We characterized each state of the model by analyzing the model parameters (emission
probabilities and transition probabilities) and state enrichments for other genome annotations
(Fig. 2.2, 3A, Supplementary Fig. 2.4-7). The other genomic annotations include previous
concatenated chromatin state annotations (Supplementary Fig. 2.8-9), cell-type-specific gene
expression data (Supplementary Fig. 2.10-11), and various independent existing genomic
annotations (Fig. 2.3A). These independent genomic annotations included annotated gene

features, evolutionary constrained elements, and assembly gaps, among others (Methods).



These analyses led us to group the 100 full-stack states into 16 groups (Fig. 2.2A). One
group includes states associated with assembly gaps (GapArtf1) and alignment artifacts
(GapArtf2-3). Some other groups are associated with repressive or inactive states, including
quiescent states (Quies1-5) (low emissions for all datasets, except possibly weak signals in
H3K9me3), heterochromatin states associated with H3K9me3 (HET1-9), and polycomb
repressed states associated with H3K27me3 (ReprPC1-9). There is an acetylations group marked
primarily by high emission of various acetylation marks profiled only in IMR90 or ESC and ESC-
derived cells, while having weaker signals for enhancer or promoter associated marks such as
H3K4me1/2/3, H3K27ac, and H3K9ac (Acet1-8). We also identified weak and active candidate
enhancers groups (EnhW1-8 and EnhA1-20, respectively) associated with H3K4me1, DNase,
H2A.Z, and/or H3K27ac. Four groups are associated with transcriptional activities, including a
group of transcribed enhancers (TxEnh1-8), two groups of weak or strong transcription (TxWk1-
2, Tx1-8, respectively), and one group associated with exons and transcription (TxEx1-4). These
transcriptional activities groups are associated with at least one of these marks: H3K36me3,
H3K79me1, H3K79me2, or H4K20me1. Another group consists of two zinc finger (ZNF) gene
states associated with H3K36me3 and H3K9me3 (znf1-2). A DNase group consists of one state
(DNase1) with strong emission of only DNase | hypersensitivity in all profiled cell types. Three
groups are associated with promoter activities, marked by emission of some promoter marks such
as H3K4me3, H3K4me2, and H3K9ac. One promoter group was of bivalent states associated
with promoter marks and H3K27me3 (BivProm1-4). The other two promoter groups were flanking
promoter states (PromF1-7) and transcription start sites (TSS) states (TSS1-2) where the flanking
promoter states also show emission of H3K4me1.

Enrichments for external annotations supported these state groupings (Fig. 2.3A), as well
as further distinctions or characterizations among states within each group. For example, the state
GapArt1 had ~8 fold enrichment for assembly gaps and contained 99.99% of all assembly gaps

in hg19 (Fig. 2.3A). In previous concatenated models based on the Roadmap Epigenomics data
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(Meuleman et al., 2015), no specific state was associated with assembly gaps likely due to the
limited number of input chromatin mark signals compared to the number of states, leading to
assembly gaps being incorporated in the general quiescent state. The states in the zinc finger
gene group, znf1-2, had 20.8 and 68.6 fold enrichment for zinc finger named genes, respectively
(Fig. 2.3A). States in the Acet group had a lower average expression of proximal genes compared
to states in the enhancer and promoter groups (Fig. 2.3C) while higher compared to ReprPC and
HET groups. States in the transcription groups (TxEnh1-8, TxWk1-2, Tx1-8, TxEx1-4) were all at
least 2.1 fold enriched for annotated gene bodies; these gene bodies covered 88.8-97.5% of the
states. These states are associated with higher expression of genes across different cell types,
particularly when downstream of their TSS (Fig 3A, C, Supplementary Fig. 2.10-11). Distinctions
were seen among these states, for example, in terms of their positional enrichments relative to
TES (Fig. 2.3A, D, Supplementary Fig. 2.12). States in the flanking promoter group (PromF1-7)
showed 6.5-28 fold enrichment for being within 2kb of annotated TSS, with distinctions among
states in terms of their relative distance from the TSS (Fig. 2.3A, C, Supplementary Figure
2.12A). Genes whose TSS regions overlapped these states had higher average gene expression
across different cell types (Fig. 2.3A, C, Supplementary Fig. 2.10-11). These states differed
among each other in their enrichments with upstream or downstream regions of the TSS (Fig.
2.3E, Supplementary Fig. 2.12). The states in the transcription start site group (TSS1-2) had
enrichment values that peaked at the TSS (>= 100 fold enrichment) (Fig. 2.3A, E). States in
promoter-associated groups (TSS, PromF, BivProm), along with those in other groups, show
various enriched Gene-Ontology (GO) terms based on genes overlapping or proximal to each
state (Supplementary Fig. 2.13, Supplementary Data 2.1, Methods). For example, among
biological process terms, BivProm1 is most enriched for ‘embryonic organ morphogenesis’ genes,
while TSS1 is most enriched for ‘nucleic acid metabolic process’, consistent with the bivalent
(Bernstein et al., 2006) and the constitutively active nature of the two states, respectively. The

DNase-specific state DNase1, showed distinct enrichment for CTCF-specific chromatin states
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defined in a concatenated model for six cell types, compared to other full-stack states (Hoffman
et al.,, 2013) (Fig. 2.3F, Supplementary Fig. 2.14). These CTCF-specific states have previously
been suggested to be candidate insulators and may have other roles that CTCF has been
implicated in such as demarcating TAD boundaries (Dixon et al., 2012; McArthur and Capra, 2021;
Phillips and Corces, 2009; Wang et al., 2021). The DNase1 state may correspond to similar roles,
particularly where the CTCF-binding is relatively stable across cell types.

Compared to other full-stack state groups, those associated with promoters (TSS, flanking
promoters, bivalent promoters) and the DNase group showed lower average DNA methylation
levels across cell types (Supplementary Fig. 2.15). Among promoter-associated states, those
showing stronger enrichments with CpG Islands also showed lower methylation levels (Fig. 2.3A,
Supplementary Fig. 2.15), consistent with previous studies (Jones and Takai, 2001; Weber et
al., 2007). Some promoter-associated states (TSS1-2, PromF3-5, BivProm1-2) are among the
most enriched states at the center of binding regions of polycomb repressed complex 1 and 2
(PRC1 and PRC2) sub-units. In addition, several ReprPC and BivProm states are among the
most enriched states in windows surrounding binding regions of the EZH2 and SUZ12 subunits
of PRC2, consistent with these states’ association with H3K27me3 (Supplementary Fig. 2.16-
17). A detailed characterization of all states in terms of associated chromatin marks, genomic
elements and different associated per-cell-type chromatin states across cell groups can be found
in Supplementary Data 2.2-4. We expect it will serve as a resource for future applications using
the full-stack annotations.

We verified that enrichments computed based on hg19 were highly similar to those
computed for full-stack annotations mapped to hg38 (average correlation 0.99; Methods,
Supplementary Fig. 2.18), ensuring the applicability of state annotations in hg38. We also
confirmed that the full-stack annotations were generally more predictive of the positions of a
variety of external genome annotations considered in Fig. 2.3A than two sets of per-cell-type

annotations, a previous 18-state per-cell-type chromatin state annotation based on concatenated



models from 127 cell types (Meuleman et al., 2015), denoted the concatenated annotations, and
100-state per-cell-type annotations learned independently in each cell type, denoted the
independent annotations (Methods). As expected, since the full-stack model uses more data
representing more cell types, the full-stack annotations had greater predictive performance in
most cases (Supplementary Fig. 2.19-22, Supplementary Data 2.5). One of the exceptions to
this was lambin B1 associated domains from Tig3 human lung fibroblasts (Guelen et al., 2008),
where six independent annotations were more predictive, three of which are annotations for
fibroblasts. We note that these evaluations were done under the assumption that a chromatin
state annotation that is more predictive of well-established external genomic elements will also
be more informative of less well-established classes of elements. These results suggest that the
full-stack annotations will, in most cases, have greater information than any single concatenated
or independent annotations about localization patterns of some target genomic elements, with
likely exceptions when the target of interest is specific to a certain cell type. In such cases, the
corresponding cell type’s concatenated or independent chromatin state annotation may be more
predictive.
Stacked Model Differentiates Cell-Type-Specific from Constitutive Activity

While the major groups of states outlined above can correspond to states from
concatenated models (Ernst et al., 2011; Meuleman et al., 2015), the full-stack states provide
additional information. For example, the states can differentiate cell-type-specific from constitutive
activities. This cell type specificity in the full-stack states is reflected in the emission parameters
of cell types from different tissue groups (Fig. 2.2B,C, Supplementary Data 2.2 and 4) and the
overlap of concatenated chromatin state annotations from different cell types (Ernst and Kellis,
2015) (Supplementary Fig. 2.8-9, Supplementary Data 2.4).

Consistent with previous findings that enhancers tend to be relatively cell-type-specific
while promoters tend to be shared across cell types (Ernst et al., 2011; Heintzman et al., 2007),

enhancer states exhibited clearer cell-type-specific associations than those of the promoter states

12



(Figure 2C, Supplementary Data 2.2 and 4). On average, states of active enhancer and weak
enhancer groups (EnhA1-20, EnhW1-8) showed at least two-fold higher coefficients of variations,
in terms of emission probabilities for various marks, compared to states in the TSS, flanking and
bivalent promoter groups (Supplementary Fig. 2.23). The enhancer states differed among each
other in their associations with different cell/tissue types such as brain (EnhA6), blood (EnhA7-9
and EnhWk6), digestive tissue (EnhA14-15), and embryonic stem cells (EnhA18) (Fig. 2.1-2,
Supplementary Fig. 2.24-25). These differences in cell-type-specific activities are also
associated with different gene expression levels of overlapping genes with the states. For
example, some blood enhancer states (EnhA8, EnhA9, EnhWk6) overlapped genes with higher
average gene expression in cell types of the blood group, while some enhancer states specific to
digestive group or liver tissues (EnhA14, EnhA15) showed higher gene expression in the
corresponding cell or tissue types (Fig. 2.3C, Supplementary Fig. 2.10).

Other groups of states besides enhancers also had individual states with cell-type-specific
differences. For example, four of the nine states in the heterochromatin group (HET1-2,4,9)
showed higher emission probabilities of H3K9me3 in only subsets of cell types (states HET1-2
with IMR90 and Epithelial cells; state HET4 with adipose, mesench, neurospheres, ESC, HSC&B-
cells). State HET9 showed strong association as heterochromatin in ESC/iPSC groups, while
being mostly quiescent in other cell types based on concatenated annotations (Fig. 2.2C,
Supplementary Fig. 2.26, Supplementary Data 2.2 and 4). State PromF5 is associated with
putative bivalent promoter chromatin states in some blood and ESC-related cell types, but with
flanking promoter states in most other cell types (Supplementary Fig. 2.27, Supplementary
Data 2.2 and 4). In addition, some quiescent states (Quies1-2, Quies4-5) show weak signals of
H3K9me3 in specific groups of cell types (Supplementary Data 2.2 and 4). States in the
polycomb repressed and bivalent promoter groups (ReprPC1-9, BivProm1-4) also showed
differences in signals across cell groups, such as state ReprPC9, which showed H3K27me3

signals in only ESC/iPSC cell types (Supplementary Data 2.2 and 4). The ability of the stacked
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modeling approach to explicitly annotate both cell-type-specific and constitutive patterns for
diverse classes of chromatin states highlights a complementary advantage of this approach
relative to approaches that provide per-cell-type annotations.

Full-stack states show distinct enrichments for repeat elements

As the full-stack model showed greater predictive power for repeat elements than cell-
type-specific models (Supplementary Fig. 2.19-21), we next analyzed which states contributed
most to this power. The full-stack state enrichments for bases in repeat elements ranged from 10-
fold depletion to 2-fold enrichment (Fig. 2.3A). The top ten states most enriched with repeat
elements were chromatin states associated with H3K9me3 marks and in the heterochromatin,
artifact, quiescent, or ZNF genes groups (Fig. 2.4A-B). Repeats being consistently enriched in
H3K9me3-marked states is a natural mechanisms of cells to reduce the repeats’ risks to genome
integrity, since H3K9me3 is characteristic of tightly-packed DNA (heterochromatin) that is
physically inaccessible (Becker et al., 2016).

We also observed that individual full-stack states had distinct enrichments for different
repeat classes (Fig. 2.4C, Supplementary Fig. 2.28). For example, Acet1, a state associated
with various acetylation marks and H3K9me3 had a 23-fold enrichment for simple repeats largely
driven by (CA)n and (TG)n repeats which were 72 and 76 fold enriched and comprised 74% of all
simple repeats in this state (Supplementary Fig. 2.28). As (CA)n and (TG)n repeats are known
to be highly polymorphic in humans (Dib et al., 1996), this suggests the possibility that signal
detected in these regions may in part be due to technical issues related to deviations from the
reference genome. The two states in the artifact group, GapArtf2-3, had a particularly high
enrichment for satellite (181 and 145 fold, respectively) and rRNA repeat classes (75 and 580
fold, respectively) (Fig. 2.4C, Supplementary Fig. 2.28), likely associated with sequence
mapping artifacts. States in the transcription start site group, TSS1-2, were most strongly enriched
with low complexity repeat class (10.5-18 fold) and most notably GC rich repeats (195-303 fold),

consistent with these states being most enriched for windows of high GC content
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(Supplementary Fig. 2.28). Moreover, the TSS1-2 states are also most enriched with tRNA class
(50-61 fold) (Supplementary Fig. 2.28), consistent with tRNAs being short genes (Lowe and
Eddy, 1997).

We also saw specific states associated with the largest repeat classes of the genome,
SINEs, LINEs, and LTRs. SINE repeats were most enriched in state Tx5 (3.7 fold) (Fig. 2.5C),
which had high emission of H3K36me3 (Fig. 2.2A-B, Supplementary Fig. 2.4-5), consistent with
previous studies showing that SINEs are more enriched in gene-rich regions and in transcription-
related states based on concatenated annotations (Elbarbary et al., 2016; Ernst and Kellis, 2010;
Pehrsson et al., 2019). In contrast, LINEs are depleted in most transcription-related states,
reflecting the negative selection against long-sequence insertions in or near genes (Elbarbary et
al., 2016). LINEs are most enriched in state HET3 (3.4 folds) (Supplementary Fig. 2.28), and a
notable property of this state is it does not show signals of H3K27me3 and acetylation marks
across cell/tissue types. This property of HET3 is a pattern that would be difficult to recognize
without stacked-modeling, and was only shared with HET4 and HET9 among states in the
heterochromatin group. HET4 was also the second most enriched state in the heterochromatin
group for LINEs (2.0-fold) while HET9 was not enriched, but is distinct in that it identifies regions
where H3K9me3 is relatively specific to cell types in the embryonic and iPSC groups. LTRs are
most enriched in state HET5 (4.7 fold), and this state is marked by its highest signals of H3K9me3
compared to other states in the heterochromatin group (Fig. 2.4C, Supplementary Fig. 2.28).
LTRs showing strong enrichment with states associated with strong presence of H3K9me3 is
consistent with concatenated-model chromatin state analyses (Ernst and Kellis, 2010; Pehrsson
et al., 2019). We also confirmed that the increased predictive power of the full-stack model over
concatenated and independent annotations, which was previously seen for repeat elements
overall, also held for most of the individual repeat classes (Supplementary Fig. 2.29). Overall,

results of enrichment of full-stack state annotations for repeat classes offer further details in
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stratifying the states’ characteristics, and concurrently confirm and refine existing knowledge
about different repeat classes chromatin state associations.
Full-stack states show distinct enrichments for constrained elements and conservation states

Sequence constrained elements are another class of genomic elements that are not cell-
type-specific and for which the full-stack annotations showed greater predictive power than
concatenated and independent annotations (Supplementary Fig. 2.19-21). We next sought to
better understand the relationship between full-stack states and sequence conservation
annotations. We observed 10 states that had at least a 3.4 fold enrichment for PhastCons
elements (Fig. 2.4A). These states were associated with the TSSs or being proximal to them
(TSS1-2 and PromF4-5), transcription with strong H3K36me3 signals (TXEx2 and TxEnh4), or
enhancers associated with mesenchymal, muscle, heart, neurosph, adipose (EnhA2) (Fig. 2.4A-
B). In contrast, seven states (HET3-4,6-7,9, Quies4, Gap Artf2) were more than two-fold depleted
for PhastCons elements, which all had more than a 1.5 fold enrichment for repeat elements (Fig.
2.4A).

To gain a more refined understanding of the relationship between the full-stack chromatin
states and conservation, we analyzed their enrichment using 100 previously defined conservation
states by the ConsHMM method (Arneson and Ernst, 2019). These conservation states were
defined based on the patterns of other species’ genomes aligning to or matching the human
reference genome within a 100-way vertebrate alignment. We observed 29 different conservation
states maximally enriched for at least one full-stack state (Fig. 2.3B, Supplementary Fig.
2.30). These conservation states included, for example, ConsHMM state 1, a conservation state
corresponding to bases aligning and matching through all vertebrates and hence most associated
with constraint. ConsHMM state 1 had >= 10 fold enrichment for exon associated full-stack states
TxEx1-4 and TXxEnh4 (Supplementary Fig. 2.30A). Another ConsHMM state, state 28, which is
associated with moderate aligning and matching through many vertebrates and strongly enriched

around TSS and CpG islands, had a 44.5 and 47.8 fold enrichment for TSS-associated full-stack
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states TSS1 and TSS2, respectively (Supplementary Fig. 2.30A). Additionally, this conservation
state is consistently the most enriched conservation state for full-stack states associated with
flanking and bivalent promoters (Fig. 2.3B, Supplementary Fig. 2.30A). ConsHMM state 2,
which has high aligning and matching frequencies for most mammals and a subset of non-
mammalian vertebrates and previously associated with conserved enhancer regions (Arneson
and Ernst, 2019), showed >2.7 fold enrichment for some full-stack enhancer states for Brain
(EnhWk4 and EnhA6), ESC & iPSC (EnhA17,19 and EnhWk8), neurosph (EnhWk4, EnhA2,17),
and mesenchymal, muscle, heart, adipose (EnhA2) (Fig. 2.3B, Supplementary Fig.
2.30A). ConsHMM state 100, a conservation state associated with alignment artifacts, was 10.9
fold and 2.1 fold enriched for full-stack state znf2 and znf1, respectively (Fig. 2.3A-B,
Supplementary Fig. 2.30A). This is consistent with previous analysis using concatenated
annotations showing that ConsHMM state 100 was most enriched in a ZNF gene-associated
chromatin state (Arneson and Ernst, 2019). State znf2 also showed a 5.4-fold enrichment for
ConsHMM state 1 which contrasts with state znf1, which showed a 0.8 fold enrichment for
ConsHMM state 1, suggesting a stronger association of state znf1 with newly evolving ZNF genes
or those under less constraint. This difference is consistent with the znf2 state’s larger fold
enrichment for coding exons than znf1 (10.4 vs 1.1). The znf2 state also had a greater fold
enrichment for ZNF named genes in general (68.6 vs. 20.8 fold), with those enrichment stronger
and the difference greater when restricting to C2H2 annotated genes (86.8 vs. 25.1 fold) (Fig.
2.3A-B, Supplementary Fig. 2.31). Therefore, the full-stack annotation helped distinguish two
ZNF-gene associated states, which are associated with distinct conservation states. As this
example illustrates, the full-stack annotation captured conservation state enrichments that were
generally consistent with those seen in concatenated annotations, but could also identify
additional refined enrichment patterns.

Specific full-stack states show distinct enrichments and depletions for structural variants
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We also analyzed the enrichment of the full-stack states for overlap with structural variants
(SVs) mapped in 17,795 deeply sequenced human genomes (Abel et al., 2020), and focused on
the two largest classes of SVs, deletions and duplications. Abel et al., 2020 (Abel et al., 2020)
analyzed the enrichments of these deletions and duplications with concatenated-model chromatin
states in 127 reference epigenomes (Meuleman et al., 2015), and observed that ZNF gene and
heterochromatin states were enriched for deletions and duplications, with the enrichments being
stronger in regions annotated as these states (ZNF or heterochromatin) in larger number of cell
or tissue types (e.g. more constitutive HET/ZNF regions). Consistent with those previous results,
using the full-stack model, we observed that of the 13 states that were among the top 10
maximally enriched states for either deletions or duplications (1.18 fold or greater), seven were in
the heterochromatin group (HET1-2,4-7,9) and one was the znf2 state (Fig. 2.5A,
Supplementary Fig. 2.32). The enrichment of structural variation in HET states is consistent with
the notion that potentially larger effect structural variants would less likely experience negative
selection in these regions of the genome. As the znf2 state is most enriched for a conservation
state associated with putative alignment artifacts, this raises the possibility that technical issues
may be contributing to its SV enrichments (Supplementary Fig. 2.30). The other five states
included two artifact states (GapArtf2-3) and three quiescent states (Quies1-2,4) (Fig. 2.5A). The
quiescent states Quies1-2,4, despite the generally low frequencies for all marks, did have higher
emission probabilities for H3K9me3 compared to other chromatin marks (Fig. 2.5B).

The full-stack model was also more predictive of SV than concatenated and independent
ones (Supplementary Fig. 2.33-34, Supplementary Data 2.5). Additionally, we verified that the
full-stack annotations had higher AUROC in predicting duplications and deletions compared to
annotations obtained by ranking genomic bases based on the number of cell or tissue types that
a state was observed, as in the approach of (Abel et al., 2020) (Methods, Supplementary Fig.

2.35). These results show that the full-stack annotation can uncover enrichment patterns with SVs
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that are consistent with concatenated annotations, yet highlight states with greater predictive
power and offer a more refined chromatin annotation of the regions enriched with SVs.
Full-stack states gives insights into bases prioritized by different variant prioritization scores

Various scores have been proposed to prioritize deleterious variants in non-coding regions
of the genome or genome-wide. These scores are based on either conservation or on integrating
diverse sets of genomic annotations. Though the scores all serve to prioritize variants, they can
vary substantially from each other and it is often not clear the differences among the types of
bases that different scores prioritize. To better understand the epigenomic contexts of bases that
each score tends to prioritize, we analyzed the full-stack state enrichment for bases they prioritize.
As the scores we considered are not specific to a single cell type, the full-stack states have the
potential to be more informative for this analysis than concatenated or independent annotations.
We considered a set of 14 different variant prioritization scores that were previously analyzed in
the context of conservation state analysis (Arneson and Ernst, 2019). The 14 scores for which we
analyzed prioritized variants in non-coding regions were CADD(v1.4), CDTS, DANN, Eigen,
Eigen-PC, FATHMM-XF, FIRE, fitCons, FunSeq2, GERP++, LINSIGHT, PhastCons, PhyloP, and
REMM (Cooper et al., 2010; Davydov et al., 2010; Di lulio et al., 2018; Fu et al., 2014; Gulko et
al., 2015; Huang et al., 2017; loannidis et al., 2017; lonita-Laza et al., 2016; Pollard et al., 2010;
Quang et al., 2015; Rentzsch et al., 2019; Rogers et al., 2018; Siepel et al., 2005; Smedley et al.,
2016). For each of these scores, we first analyzed the full-stack state enrichments for the top 1%
prioritized non-coding variants relative to the background of non-coding regions on the genome
(Methods).

In the top 1% prioritized non-coding bases, 19 states were among the top five most
enriched states ranked by at least one of the 14 scores (Fig. 2.5C, Supplementary Fig. 2.36-37).
These 19 states include nine states in promoter-associated groups, five states in enhancers-
related groups, three states in the exon-associated transcription group, one polycomb repressed

state, and one DNase state (Fig. 2.5C). Seven scores (DANN, Eigen, Eigen_PC, funSeqg2, CDTS,
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CADD and REMM) had their top five enriched states exclusively associated with promoter and
TSS states, with enrichments ranging between 8.6 and 70 fold (PromF2-5, TSS1-2, BivProm1-
2,4) (Fig. 2.5C). In contrast, the fitCons score showed depletions for three of these states and
relatively weaker enrichment for the others. This difference might be related to fitCons’ approach
of prioritizing bases showing depletion of human genetic polymorphisms, potentially without
sufficiently accounting for the increased mutation rates in regions with high CpG content that are
observed in promoter-associated states (Supplementary Fig. 2.42) (Karczewski et al., 2020).
FIRE’s prioritized variants showed depletions in the bivalent promoter states (BivProm) and
PromF5, which have generally lower average gene expression across cell types (Fig. 2.3C). This
depletion is reflective of the fact that FIRE was trained to prioritize variants in cis-expression
quantitative trait loci (cis-eQTLs) in one cell type (LCL) (loannidis et al., 2017), and few eQTLs
are expected to be proximal to genes with limited or no expression in that cell type. Enhancer
states EnhA2-3,17 were among the states in the top five most enriched for FATHMM, GERP++,
LINSIGHT, PhastCons, and PhyloP prioritized non-coding variants. In contrast, FIRE, DANN and
CDTS were depleted for prioritized variants in all these enhancer states (Fig. 2.5C). FIRE and
fitCons showed strong enrichment for exon states (TxEx1-3), which are associated with coding
regions, even though coding bases were excluded in this analysis (Fig. 2.5C). FATHMM had the
greatest relative enrichment (~10 fold) for the primary DNase state (DNase1), which is associated
with a CTCF state from a concatenated model defined in six cell types (Hoffman et al., 2013), and
was the only score for which this state was among the top five most enriched states (Fig. 2.5C,
Supplementary Fig. 2.14, 36).

We conducted similar analyses based on top 5% and 10% prioritized non-coding variants
and observed relatively similar patterns of enrichments, though there did exist some differences
at these thresholds (Supplementary Fig. 2.36, 38-39). One difference was that alignment artifact
states GapArtf2-3 were among the top two most enriched states with top non-coding bases

prioritized by FATHMM-XF, while a number of other scores showed depletions for these states
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(Supplementary Fig. 2.36). In addition, we analyzed top 1%, 5%, and 10% prioritized variants
genome-wide from 12 of the scores (Methods) (Supplementary Fig. 2.37-40). Compared to the
non-coding analysis, we saw a majority of scores had exon-associated transcription states
(TxEx1-TxEx4) among the top five enriched states with top 1% variants genome-wide, while we
saw no enhancer state among the top five enriched states with top 1% variants by any score and
only one enhancer state among the top five by one score (GERP++) for top 5% and 10% variants.

Overall, this analysis showed that the scores tend to prioritize bases in different epigenetic
contexts. As the scores vary in the genomic features selected as input, and the predictive model
for scoring bases, it is expected that different methods may show higher scores for in different
classes of genomic contexts. By analyzing the state enrichments, one can gain some
expectations for what types of evaluation criteria different scores might perform better, but we
note that this analysis is not trying to directly conclude one method is preferred. Also, while in
general it is difficult to conclude confidently what enrichments are due to technical or biological
biases, by comparing enrichments across scores and considering what else is known about the
states, one can still gain insights into this. For example, the inconsistent enrichments of different
methods for prioritized variants in GapArtf2-3 states (Supplementary Fig. 2.36), along with these
states’ association with sequencing artifacts, is suggestive of technical biases. Similarly, DANN’s
top 1% non-coding bases showing enrichments in five heterochromatin states, while not showing
any enrichments in enhancer states, and no other scores showing enrichments in
heterochromatin states, is also suggestive of technical biases (Supplementary Fig. 2.37).

We verified that the full-stack annotation showed the highest AUROC in recovering the
top 1% non-coding variants compared to all 18-state concatenated annotations for all 14 scores
(Supplementary Fig. 2.41). Compared to all 100-state independent annotations, the full-stack
model showed the highest AUROC for 13 out of 14 scores in all 127 cell types (Supplementary
Fig. 2.41).

Full-stack states show distinct enrichments and depletions for human genetic variation
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We next analyzed full-stack states for their enrichment with human genetic sequence
variation. We calculated enrichments of full-stack states with genetic variants sequenced in
15,708 genomes from unrelated individuals in the GNOMAD database stratified by minor allele
frequencies (MAFs) (Karczewski et al., 2020). Across eleven ranges of MAFs, the state
enrichments ranged from a 2-fold enrichment to a 4-fold depletion (Supplementary Fig. 2.42).
As expected, the state associated with assembly gaps (GapArtf1) is most depleted with variants,
regardless of the MAF range. At the other extreme, state Acet1, which is associated with simple
repeats, is the most enriched state with variants for all ten minor allele frequency (MAF) ranges
that are greater than 0.0001, with fold enrichments between 1.8 and 2.0 (Supplementary Fig.
2.42). We verified that the high enrichment for state Acet1 was not specific to GNOMAD'’s calling
of variants as it had a 2.0 fold enriched with common variants from dbSNP (Methods)
(Supplementary Fig. 2.42). TSS and promoters associated states, PromF4 and TSS1-2, were
maximally enriched for variants in the lowest range of MAF (0 < MAF <= 0.0001), 1.5-1.7 fold.
The enrichment of variants for these states decreased as the MAF ranges increased, falling to
0.8-1.2 fold for variants of the highest range of MAF (0.4-0.5) (Supplementary Fig. 2.42). The
high enrichment for states PromF4 and TSS1-2 for rare variants, despite their being the most
enriched states with PhastCons conserved elements, can be explained by these states’ high
enrichment of CpG dinucleotides, which are associated with higher mutation rates (Fig. 2.3A,
Supplementary Fig. 2.42) (Karczewski et al., 2020). At the same time, purifying selection can
have a weaker impact on larger-effect rare variants than on larger-effect common variants. We
also observed the pattern of decreasing enrichments for variants with increasing MAF in other
states associated with transcriptional activities, enhancers, DNase, or promoters
(Supplementary Fig. 2.42). This pattern was not observed in most states from other groups such
as heterochromatin, polycomb repressed, quiescent, and acetylations only (Supplementary Fig.

2.42).
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To better identify states with a depletion of common variants that are more likely due to
selection, we ranked states based on their ratios of enrichments for the rarest variants (MAF <
0.0001) relative to the most common variants (MAF 0.4-0.5) (Fig. 2.5D). The states with the
highest ratio included a number of flanking promoter (PromF3-4) and exon-transcription states
(TxEx1,2,4) that were also associated with strong sequence conservation across species (Fig.
2.3B, Fig. 2.5D). These results are consistent with previous analyses supporting a depletion of
common human genetic variation in evolutionary conserved regions (Lindblad-Toh et al., 2011).
States associated with assembly gaps and alignment artifacts (GapArtf1-3), quiescent (Quies3),
or acetylations and simple repeats (Acet1) were most depleted for rare variants relative to the
common variant enrichment (Fig. 2.5D).

Full-stack states show enrichment for phenotype-associated genetic variants

We next analyzed the relationship between the full-stack states and phenotypic associated
genetic variants. We first evaluated the enrichment of the full-stack state for variants curated into
the Genome-wide Association Study (GWAS) catalog relative to a background of common
variation (Welter et al., 2014) (Methods). This revealed six states with at least a two-fold
enrichment (Supplementary Fig. 2.43). Four of these states, TxEx1-2,4 and TxEnh4, were all
transcription associated states that are >= 10-fold enriched with coding sequences and >=11 fold
for ConsHMM state 1, associated with the most constraint in a sequence alignment of 100
vertebrates (Fig. 2.3B). This observation is consistent with previous results that GWAS catalog
variants show enrichments for coding sequence and sequence constrained bases (Arneson and
Ernst, 2019; Hindorff et al., 2009; Lindblad-Toh et al., 2011). The other two states with greater
than two-fold enrichment for GWAS catalog variants relative to common variants were two
promoter states, PromF2-3 (Supplementary Fig. 2.43). On the other hand, four states were more
than two-fold depleted for GWAS catalog variants, and were associated with artifacts (GapArtf2-

3), or quiescent and polycomb repressed states with weak signals of H3K9me3 (Quies5) or
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H3K27me3 (ReprPC8) (Supplementary Fig. 2.43). Both Quies5 and ReprPC8 are highly specific
to chrX, 18.3 and 19.1 fold enriched respectively (Supplementary Fig. 2.43).

We also analyzed the full-stack state enrichments for fine-mapped variants previously
generated from a large collection of GWAS studies from the UK Biobank database and other
public databases (J. Wang et al., 2020). Specifically, we considered separately the fine mapped
variants from two fine-mapping methods, CAVIAR (Chen et al., 2015) and FINEMAP (Benner et
al., 2016), for 3052 traits. For each method and trait, we identified the single variants that had the
greatest probability of being causal at a set of distinct loci, and computed the enrichment of these
variants for the full-stack states relative to a background of common variants (Methods). Fold
enrichment results of full-stack states for the most likely causal variants were highly consistent
between fine-mapping methods (FINEMAP and CAVIAR) (Supplementary Fig. 2.44). The ten
states maximally enriched with fine-mapped variants relative to common variants, which were the
same states by both methods, included five states associated with flanking and bivalent promoter
activities (PromF2-5, BivProm4), an enhancer state associated with blood and thymus (EnhA9)
and an enhancer state associated with most other cell types except blood cell types (EnhA1), and
three highly conserved transcription-associated states (TxEnh4,6, TxEx4) (Fig. 2.5E). Notably,
five of 10 states maximally enriched with fine-mapped variants, PromF2-5, and BivProm4, were
associated with promoter regions and also among the 19 states most enriched with top 1%
prioritized variants by at least two of the 14 different variant prioritization scores (Fig. 2.5C, E).
These results show that there are agreements in the types of full-stack states preferentially
overlapped by phenotype-associated fine mapped variants and variants predicted to have greater
effects based on variant prioritization scores. We also confirmed that the full-stack model
consistently had higher AUROC in predicting locations of fine-mapped variants within a
background of common variants, compared to the concatenated and independent annotations in
all cell types (Supplementary Fig. 2.45-46).

Full-stack states show enrichments for cancer-associated variants
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In addition to investigating germline variants, we also investigated the enrichment of full-
stack states for somatic variants identified from whole genome sequencing of cancer samples.
We analyzed data of variants from four cancer types that have the largest number of somatic
variants in the COSMIC database (Tate et al., 2019): liver, breast, pancreas and
haematopoietic_and_lymphoid_tissue (Methods). Sixteen states were among the top 10 most
enriched with at least one type of cancer’s associated variants (1.2-1.4 fold in breast cancer, 1.2-
5.6 fold in lymphoid cancer, 1.2-5.4 in liver cancer, 1.4-4.2 in pancreas cancer) (Fig. 2.5F). Among
these 16 states, 15 states showed higher signals of H3K9me3 compared to most other chromatin
marks, including seven states in heterochromatin group (HET1-2, 4-7,9), four states in quiescent
group with weak emissions of H3K9me3 (Ques1-2,4-5), one state in the polycomb repressed
group with weak signals of H3K9me3 and H3K27me3 (ReprPC8), one state in the acetylation
group with signals of H3K9me3 and various acetylation marks (Acet1), two artifact-associated
states with higher signals of H3K9me3 and DNase relative to other marks (GapArtf2-3) (Fig.
2.5G). This pattern of H3K9me3-associated states being enriched with somatic mutations in
cancer was previously confirmed in multiple studies where H3K9me3 and other repressive
epigenetic features showed positive association with mutation density across different types of
cancer cells (Parker et al., 2012; Polak et al., 2015; Schuster-Bdckler and Lehner, 2012). One
possible explanation for this association is the more limited access of DNA mismatch repair
machinery in these regions due to the tightly packed nature of the genome in heterochromatin
(Martincorena and Campbell, 2015; Supek and Lehner, 2015). Notably, the GapArtf2-3 states,
which had strong satellite repeats enrichments (Fig. 2.4C, Supplementary Fig. 2.28) were the
top two most enriched states with somatic variants associated with liver, pancreas and
haematopoietic and lymphoid tissue (haem-lymphoid) cancers (2.0-5.6 folds enriched) (Fig. 2.5F,
Supplementary Fig. 2.47). We suspect that the enrichments in these putative alignment artifact
states are driven at least in part by false variant calls due to sequence mapping errors associated

with these regions. Similarly, enrichments of somatic mutations in haem-lymphoid cancer in state
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Acet1 is also suggestive of the possibility of false calls given this state’s combination of H3K9me3
and acetylation signal and enrichment for simple repeats (Fig. 2.2, 4C, Supplementary Fig.
2.42). We note that the presence of cancer variants is better recovered by full-stack annotation
as compared to the concatenated and independent chromatin state annotations for all four cancer
types (Supplementary Fig. 2.48-49).

Discussion
We demonstrated a large-scale application of the stacked modeling approach of

ChromHMM using over a thousand epigenomic datasets to annotate the human genome. In the
datasets, 32 chromatin marks and 127 reference epigenomes were represented. We note that
even though not every chromatin mark was profiled in every reference epigenome, we were still
able to directly apply the stacked modeling to such data. Previously, concatenated models were
applied to observed and imputed data (Ernst and Kellis, 2015), however, we chose not to use
imputed data as input to the full-stack model primarily since imputed data would still be based on
the same observed input data used in stacked-modeling. We conducted extensive enrichment
analyses of the states with various other genomic annotations and datasets, including gene
features, genetic variation, repetitive elements, comparative genomic annotations, and bases
prioritized by different variant prioritization scores. These analyses highlighted diverse enrichment
patterns of the states. Using these enrichments along with the model parameters, we provided a
detailed characterization of each of the 100 states in the model.

We grouped these 100 states into 16 groups that included promoters, enhancers,
transcribed regions, polycomb repressed regions, zinc finger genes among others. We also
highlighted important distinctions among states within the groups. In many cases, identifying
these distinctions was enabled by the full-stack modeling using data from multiple cell types for
genome annotation. For example, we identified enhancer and repressive states that were active
in different subsets of cell types. We also highlighted how different states in some of the groups

such as those associated with transcribed and ZNF genes showed distinct enrichments for
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conservation states. Overall, the full-stack model showed enrichment patterns supporting
observations based on concatenated or independent annotations, while providing a more detailed
stratification of genomic regions into chromatin states with more refined associations with other
genomic information. We provide extensive characterizations of full-stack states in
Supplementary Data 2.1-5 that we expect will be a resource in future applications of the full-
stack annotations.

The full-stack modeling has advantages to commonly used concatenated and
independent chromatin state annotations in several respects. First, the full-stack model learns
patterns of signals of the same or different assays across cell types, hence can provide a unified
view of all the data and directly uncover states that correspond to constitutive or cell-type-specific
activities. For example, a state from the model, HET9, was associated with only the mark
H3K9me3 specifically in ESCs and iPSCs even though this mark is typically associated with
constitutive repression. Second, the full-stack annotation consistently showed better recovery of
various genomic features compared to concatenated and independent annotations. This
improvement is expected since full-stack models can leverage information from multiple cell types
for genome annotations. Third, in cases where it is not desirable to focus on only one specific cell
or tissue for analysis, the full-stack modeling can bypass the need to pick one such cell or tissue
type or to consider a large number of different concatenated or independent chromatin state
annotations simultaneously. Such cases may arise when studying other genomic information that
is not inherently cell-type-specific such as genome variation and sequence conservation. Overall,
the full-stack model provides a universal annotation of the genome that can be viewed as a single
track in a genome browser or used for a variety of downstream bioinformatic analyses.

Despite these advantages, there are trade-offs in using the stacked modeling approach,
and we emphasize that the full-stack annotations should be considered a complement to and not
a replacement of the concatenated or independent annotations. Compared to typical

concatenated models, the full-stack model has increased model complexity because of the
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increased number of parameters from the larger number of states and input features, which can
make interpreting some model states relatively more difficult. Additionally, if one is interested in a
specific cell type, then corresponding concatenated or independent annotations can have
advantages in that all the annotations are directly informative about the chromatin state in the cell
type of interest. An additional trade-off is that with the stacked model, it is not possible to
incorporate additional data without relearning a model, while for a concatenated-model one can
annotate a new cell based on an existing model, provided that the set of marks in the new cell
type are the same as the existing model. We also note that post-hoc concatenated state
annotations can also be used for cross-cell type analyses, particularly on a per-state basis by
analyzing the frequency of a specific state across cell types or potentially in other ways. While
per-state analyses using concatenated annotations can be relatively straightforward and
informative, they give only partial and potentially oversimplified views of all the data, ignoring
distinctions among different states. Whether to use concatenated, independent or full-stack
annotations will depend on the specific application. Concatenated or independent annotations
may be preferable when one is interested in studying a specific cell type, while full-stack
annotations may be preferred in joint analyses of multiple cell types.

We expect many applications of the full-stack annotations that we generated here and
they have already begun to be applied in other work (Arneson et al., 2021; Horvath et al., 2021;
Li et al., 2021), which we expect to further elucidate the biological significance of different states.
The full-stack annotation can be used as a resource to interpret genetic variation. A possible
avenue for future work is to incorporate the full-stack annotation into scoring methods to better
predict genetic variants’ phenotypic influences. Given the increasing availability of epigenomic
datasets (Stunnenberg et al., 2016), future work could also learn new stack-models to incorporate
such data. The state characterizations (Supplementary Data 2.1-5) and analyses introduced
through this work will be useful in interpreting biological implications of new models’ states. Future

work can also include training and deriving the full-stack annotations for key model organisms
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such as mice. This work provides a new annotation resource for studying the human genome,
non-coding genetic variants, and their association with diseases.

Methods
Input data and processing

We obtained coordinates of reads aligned to Human hg19 in .tagAlign format for the
consolidated epigenomes as processed by the Roadmap Epigenomics Consortium from

https://egg2.wustl.edu/roadmap/data/byFile Type/alignments/consolidated/. In total we obtained

data for 1032 datasets and their corresponding input control data. The datasets correspond to
127 reference epigenomes, 111 of which were generated by the Roadmap Epigenomics
Consortium and 16 were generated by the ENCODE Consortium. Of the 1032 datasets, 979 were
ChlP-seq data targeting 31 different epigenetic marks and 53 were of DNase-seq
(Supplementary Fig. 2.2). For each of the 127 reference epigenomes there was a single ChlP-
seq input control dataset. For the 53 reference epigenomes that had a DNase-seq dataset
available, there was an additional DNase control file.

We next binarized the data at 200 base pair resolution using the BinarizeBed command
of ChromHMM (v.1.18). To apply BinarizeBed in stacked mode we generated a cell_mark_file
input table for ChromHMM with four tab-delimited columns. The first column had the word
‘genome’ for all datasets, the second column contained entries of the form ‘<EID>-<mark>" where
‘EID’ is the epigenome ID and ‘mark’ is the mark name, the third column specifies the name of
the corresponding file with aligned reads, and the fourth column is the name of the file with the

corresponding control reads. Each row in the table corresponds to one of the 1032 datasets.

In order to reduce the memory and time needed to execute BinarizeBed on a large number
of datasets, we split the cell_mark_file table into 104 smaller tables with each table having at most
10 entries corresponding to at most 10 datasets to be processed. This was done with a custom
script, but the same functionality has been included with the ‘-splitcols’ and ‘-k’ flags of

BinarizedBed in ChromHMM v1.22. We then ran BinarizeBed in parallel for each of these smaller

29



cell_mark_file tables and generated output into separate sub-directories. We ran BinarizeBed with
the option ‘-gzip’ which generates gzipped files.

To merge data from the 104 subdirectories from the previous step into files containing
binarized data of all datasets, we ran the command ‘MergeBinary’, which we added in v1.18 of
ChromHMM. We ran the command with the options ‘-gzip -splitrows’. The ‘-splitrows’ option
generates multiple files of merged binarized data for each chromosome, where, under the default
settings that we used, each file contains data for a genomic region of at most 1MB. Splitting each
chromosome into smaller regions allows the model learning step of ChromHMM to scale in terms
of memory and time to the large number of input data tracks (i.e. features) that we were using.
We used chr1-22, chrX, chrY, and chrM in the binarization and model learning.

We note that we chose not to use imputed data as input to the full-stack model. A main
reason is, as noted above, imputed data would still be based on observed data from the 1032
datasets used for stacked modelling. Another reason is that imputed data may have artificially
high correlations across the cell types, which can particularly be the case for marks that were
experimentally mapped in few cell types. This could potentially cause the stacked modeling to
devote many states that correspond to heavily correlated and less informative tracks of imputed

data.

Training full-stack model and generating genome-wide state annotations

We learned the full-stack chromatin state model for the 1032 datasets using the
LearnModel command of ChromHMM (v1.18). This version of ChromHMM includes several
options that we added to improve the scalability when training with large numbers of features.
One of these features was to randomly sample different segments of the genome for training
during each iteration, instead of training on the full genome. This sampling strategy was previously
used by ConsHMM (Arneson and Ernst, 2019), which was built on top of ChromHMM. We note

that this sampling procedure can also be applied to learn concatenated models, in which case
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there would be no requirement that the same segments are sampled in each cell type. However,
sampling can be unnecessary for typical instances of learning concatenated models, given that it
usually involves fewer different inputs to the model, fewer number of states, and in training these
models, ChromHMM is able to tolerate more parallel cores without reaching memory limits.

To learn the full-stack model with input data processed as outlined above, we used
ChromHMM'’s LearnModel command with the options ‘-splitrows -holdcolumnorder -pseudo -
many -p 6 -n 300 -d -1 -lowmem -gzip’. The ‘-splitrows’ flag informs ChromHMM that binarized
data for a chromosome is split into multiple files, which reduces the memory requirements and
allows ChromHMM to select a subset of the genome to train on for each iteration. The ‘-
holdcolumnorder’ flag prevents ChromHMM from reordering the columns of the output emission
matrix, which saves time when there are a large number of features.

The ‘-pseudo’ flag specifies that in each update of model parameters, ChromHMM adds
a pseudo count of one to the numbers of observations of transition between each pair of states,
presence and absence of each mark from each state, and initial state assignments of the training
chromatin state sequence. This prevents model parameters from being set to zero, which is
needed for numerical stability when some features are sparse and ChromHMM does not train on
the full genome in each iteration.

The -many’ flag specifies to ChromHMM to use an alternative procedure for calculating
the state posterior probabilities that is more numerically stable when there are a large number of
features. The procedure is designed to prevent all states from having zero posterior probability at
any genomic position, which can happen due to the limits of floating-point precision. The
procedure does this by leveraging the observation that only the relative product of emission
probabilities across states are needed at each position to determine the posterior probabilities.
Specifically, for each position, the procedure initializes the product of emission probabilities for all
features, i.e. the emission product, from each state to one. For each feature, the procedure then

multiplies the current emission products from each state by the emission probability of the feature
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in the state, and divides all the resulting products by their maximum to obtain updated emission
products. We iteratively repeat these steps of multiplication and normalization until all features
have been included into the calculation of relative emission products across states.

The “-p 6’ flag specifies to ChromHMM to train the model in parallel using 6 processors.
The ‘n 300’ flag specifies to ChromHMM to randomly pick 300 files of binarized data,
corresponding to 300 regions of 1 MB (or less if the last segment of the chromosome was
selected) for training in each iteration. The ‘-d -1’ option specifies to ChromHMM to not require an
evaluated likelihood improvement between iterations to continue training since evaluated
likelihood decreases are expected, as on each iteration the likelihood is evaluated on a different
subset of data. The ‘-lowmem’ flag has ChromHMM reduce main memory usage by not storing in
main memory all the input data and instead re-loading from disk when needed. The asymptotic

worst-case time and memory of the model learning is discussed in the Supplementary Data 2.7.

Choice of number of states

We trained full-stack models with 10-120 states, in 5 state increments, using the data and
procedure outlined above. For each of these models, we calculated an estimated Akaike
Information Criterion (AIC) (Sakamoto et al., 1986) and Bayesian Information Criterion (BIC)
(Neath and Cavanaugh, 2012) value based on a subset of the genome (Supplementary Fig. 2.3).
AIC and BIC are calculated based on the log likelihood for 300 random 1Mb regions outputted by
ChromHMM from the last training iteration. In general, both the AIC and BIC decrease as the
numbers of states increase, but with diminishing improvements. We also applied the
CompareModels command of ChromHMM (Ernst and Kellis, 2017) with the 100-state model as a
reference model, which reports, for each state of the 100-state model, the maximum correlations
of emission parameters between the state in the 100-state model and any state for each other
model (Supplementary Fig. 2.3C). We conducted a similar analysis with the emission

parameters of H3K4me1, hence for each state in each model, we obtained emission probabilities
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of H3K4me1 in 127 cell types. For this analysis, for each of the 19 tissue groups previously defined
(Meuleman et al., 2015), we calculated the correlation of each state’s H3K4me1 emission
parameters with a binary vector indicating if the cell type in each parameter is in the tissue group
(1) or not (0). We then report, for each tissue group, the maximum correlations among all states
in each model (Supplementary Fig. 2.3D). These analyses showed, for instance, that a state
corresponding to Brain-specific enhancers in the 100-state model, EnhA6, was well captured in
models with 55-states or more (correlation of >=0.98 with states in models with >=55 states and
correlation >=0.78 for H3K4me1-emissions with the Brain binary vector). A state characterized as
enhancers specific to Huvec cells in the 100-state model, EnhA20, was well captured in models
with 100 or more states (correlation >=1.00 based on all marks’ emission parameters).

Additionally, for models with 20, 40, 60, 80, 100 and 120 states, we also produced genome
annotations and then quantitatively compared the chromatin state annotations from models in
terms of their power to predict locations of various other genomic annotations not used in the
model training: Exon, Gene Body, TSS, TSS2kb, CpG Islands, TES, laminB1lads elements (listed
in section External Annotation Sources section). Specifically, we evaluated the predictive power
using the AUROCs that are calculated as described in a subsection below. Across different
genomic contexts, as the number of full-stack states increased, the AUROC increased, but with
diminishing improvements as the number of states increased (Supplementary Fig. 2.3A).

To balance the additional information available in models with an increased number of
states, while keeping the number of states manageable for interpretation and downstream
analysis, we choose to focus on a model with 100 states. We note that this choice is greater than
previously used for concatenated models (Ernst et al., 2011; Ernst and Kellis, 2010; Meuleman
et al., 2015), which reflects the additional information available for genome annotation based on

the large number of datasets spanning many cell types that we are using.

Lifting chromatin state annotations to hg38
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The full stack chromatin state annotations were learned directly in hg19, as this was the
assembly for which uniformly processed data from the Roadmap Epigenomics integrative analysis
was available. Learning full-stack annotation directly in hg19 allowed direct comparison with
existing concatenated annotations. We also generated a version of full-stack annotation in hg38
by lifting over the original annotation from hg19 to hg38. To do this, we first wrote the hg19
chromatin state annotation into .bed format such that each line corresponds to a 200bp interval.
We then used the liftOver tool (Kent et al., 2002) with default parameters to generate the
annotation in hg38. We did not annotate bases in hg38, if multiple bases in hg19 mapped to it. In
total, there are 1,186,379 200-bp segments that were not mapped from hg19 to hg38, of which
98.7% fall into an assembly gap and 99.6% fall into the full-stack state primarily associated
assembly gaps (GapArtf1) (Supplementary Fig. 2.50). In hg38 on chr1-22, X, and Y, 92.9% of
bases are annotated to a state, and that number increases to 97.1% when excluding assembly
gaps. We verified that we saw highly similar state fold enrichments for similar annotations
between hg19 and hg38 (Supplementary Fig. 2.18). The sources of external annotations from

hg38 are outlined in section “External annotation sources” below.

Summary sets of datasets

To construct a summary visualization of the emission parameters with a reduced set of
features that approximate the annotation from the full model, we applied a greedy search over
the 1032 input datasets as described in Supplementary Data 2.7. We applied this procedure to

reduce the 1032 input datasets to 80 summary datasets.

Identifying states with differential association of marks for individual tissue groups
For each state, we tested for combinations of the 8 most profiled marks, and 19 tissue
groups previously defined (Meuleman et al., 2015), whether the emission probabilities of features

associated with one chromatin mark and in one tissue group was significantly greater than those
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of features associated with the same mark and not in the tissue group. The eight marks that we
tested were H3K9me3, H3K4me1, H3K4me3, H3K27me3, H3K36me3, H3K27ac, H3K9ac, and
DNase. H3K27ac, H3K9ac and DNase were profiled in 98, 62 and 53 reference epigenomes,
respectively, and the remaining five marks in 127 reference epigenomes. For tests involving
H3K27ac, H3K9ac, and DNase, we excluded tissue groups for which there were no datasets. In
total, there were 14,200 tests among 100 states, 8 chromatin marks and 19 tissue groups. For
each combination of state, chromatin mark and tissue group being tested, we applied a one-sided
Mann-Whitney test to test whether the emission probabilities of the state for the features
associated with the tested mark in the tested tissue group are greater than those in other tissue
groups. The Bonferroni-corrected p-value threshold based on a significance level of 0.05 to

declare a test significant was 3.5e-6.

Computing coefficients of variation across different tissue groups

For each state, we looked into the emission probabilities of datasets associated with six
chromatin marks strongly associated with promoter and enhancer activities (DNase, H3K27ac,
H3K4me1, H3K4me2, H3K4me3, H3K9ac). We grouped these datasets based on their
associated chromatin mark and tissue groups, and calculated the average emission probabilities
of datasets in each chromatin mark-tissue group combination. For each state and chromatin mark
combination, we then calculated the coefficient of variation across different tissue groups, in terms
of average emission probabilities from the previous step. For each group of states, we averaged
the resulting coefficients of variation across states of the same group. The results show the
average coefficients of variation of emission probabilities across different tissue groups for each

state group-chromatin mark combination.

Computing fold enrichments for other annotations
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All overlap enrichments for external annotations were computed using the ChromHMM
OverlapEnrichment command. We used the “-b 1’ flag, which specifies a binning resolution of the
annotations. This -b 1’ flag is necessary when computing enrichments based on the hg38 liftOver
annotations, which no longer respects the 200bp segment coordinate intervals from hg19.
Including this flag gives the same results when applied to annotations from hg19 with 200bp
segments, though with extra computational costs. We also included the ‘-lowmem’ flag to specify
the lower memory usage option. The ChromHMM command OverlapEnrichment computes fold
enrichment between chromatin states and provided external annotations relative to a uniform

genome-wide background distribution. More specifically, the fold enrichments are calculated as:

#SX  #SX
FE. - X _ HS _ #SX - #G
%S #S #X HS - #X

#G  #G

where

FE, s: fold enrichment of state s in genomic context x

#S: number of genomic positions belonging to the state S

#X: number of genomic positions where genomic context X is present

#SX: number of genomic bins that overlap both state S and genomic context X

#G: number of genomic positions in the entire genome

Enrichment and estimated probabilities of overlap with 25-state concatenated annotations

We obtained per-cell type chromatin state annotations based on a 25-state ChromHMM
model learned using the concatenated approach for 127 reference epigenomes, which we will
refer to as cell types for ease of presentation, from the Roadmap Epigenomics project (Ernst and
Kellis, 2015; Meuleman et al., 2015). This model was trained based on imputed data for 12-marks.
We hereafter refer to this model as the CT-25-state model. As per the design of the concatenated
approach of ChromHMM, CT-25-state model generates per-cell-type chromatin state annotations

for each of the 127 cell types, and the 25 states’ characteristics are shared across 127 cell types.
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For each of these 127 cell types, we calculated overlap enrichments between the 100 full-stack
states and the CT-25-states, resulting in 127 tables of size 100-by-25. We summarized this
information by reporting, for each of the 100 full-stack states, and 127 cell types, the state in CT-
25-state model that is maximally enriched, resulting in a 100-by-127 table (Supplementary Fig.
2.8). We also provided detailed comments about the patterns of maximum-enriched-states
observed across 127 cell types for each full-stack state in the Supplementary Data 2.4 to serve
as a resource for future applications. We also reported, for each of the 100 full-stack states and
each concatenated-25-state, the maximum and median values of fold enrichments across 127
cell types (Supplementary Data 2.4).

In addition, we also estimated for each combination of (1) CT-25 state, (2) cell type group
and (3) full-stack state, the probability that a genomic position being annotated as the
corresponding full-stack state will overlap with the corresponding per-cell type state in a cell type
from the corresponding cell group. The 19 groups of cell types were previously defined by the
Roadmap Epigenomics Consortium (Meuleman et al., 2015). To compute the target estimate
probabilities, for each full-stack state, we sampled 100 genomic bins (each of length 200bp) that
are assigned to that full-stack state. Second, in each of the 127 cell types, we report the frequency
that the sampled regions of each full-stack state overlapped with each CT-25-state. We repeated
such a process 21 times. We then calculated the average frequencies of overlap between each
full-stack state and each CT-25-state, across 21 random samplings and across the cell types in
each group (Example: Blood, ESC). This results in a table of size 100 full-stack states by 475
combinations of CT-25 states and 19 cell groups, with each cell showing the values of estimated
probabilities (Supplementary Fig. 2.9). These values, along with detailed comments about
patterns of these overlap probabilities for each full-stack state, are available in Supplementary

Data 2.4.

Receiver operator characteristic curve analysis for predicting external annotations
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To evaluate how well the chromatin state annotations from different ChromHMM models
can inform us about the position of external genomic annotations, we computed the Receiver
Operator Characteristic (ROC) in a procedure as follows: First, we divided the genome into 200bp
bins, and randomly partitioned 50% of the bins for training and the remaining 50% for testing.
Second, we computed the enrichment of the target external annotation with each chromatin state
on the training data, and ranked states in decreasing order of such enrichments. We used this
ranking of states to iteratively add genomic bases assigned to the states as our predictions of
bases that overlap the target annotation in the testing dataset. Based on the overlap of the
predictions and the target annotation at each iteration, we plotted ROC curves and summarized

the information by computing area under the ROC curves (AUROC).

Concatenated and independent annotations used to compare against full-stack annotations

In evaluating how predictive the full-stack model is at annotating external genomic
elements, we compared the full-stack model to two sets of per-cell-type chromatin state
annotations in terms of their ability to predict external annotations. One set of annotations was
the 18-state ChromHMM from Roadmap Epigenomic Project (Meuleman et al., 2015), which was
based on a model trained using the concatenated approach and observed data of six chromatin
marks (H3K4me1, H3K4me3, H3K9me3, H3K27ac, H3K27me3 and H3K36me3) in 98 cell types.
In this model, we have a common set of state definitions across cell types, but unique state
annotations for each cell type. The second set of annotations were based on models learned
independently in each of the 127 cell types. In learning these models, we partitioned the 1032
datasets used to learn the full-stack model into 127 subsets based on their associated cell type.
For each of the 127 cell types, we applied ChromHMM to learn a 100-state ChromHMM model
using only the observed data in the corresponding cell type. The number of states is similar to
that in the full-stack model, to control for this variable in the evaluation. This process generates

127 models, each used to generate independent annotations in one cell type. The independent
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model learning approach of ChromHMM differs from the concatenated approach because the
model parameters (state emission, transition, and initial probabilities) are different for different cell
types, while state parameters in concatenated model are shared across cell-types. However,
these two approaches both produce chromatin state annotations on a per-cell type basis. We
learned these independent models with the same ChromHMM parameters as described above
for the full-stack model, with the exception of using the ‘-init random’ flag to randomly initialize
models’ parameters. Even when we specified the number of states to ChromHMM as 100,
however, we note that due to the large number of states relative to the input tracks, for some of

these models, fewer than 100 distinct states ended up being assigned to positions in the genome.

Computing fine-mapped variant enrichment

To compute enrichment of full-stack states for phenotypically associated fine-mapped
variants, we downloaded data on fine-mapped variants for 3052 traits from CAUSALdb (J. Wang
et al., 2020). Specifically we obtained posterior probabilities of variants being causal based on
two fine-mapping methods, FINEMAP (Benner et al., 2016) and CAVIAR (Chen et al., 2015),
which do not use epigenomic annotations as part of the fine mapping procedure. For each method
and trait combination, we separately partitioned the provided set of potential causal variants into
distinct loci. To form the distinct loci, we merged neighboring variants into the same loci until there
was at least TMB-gap between the two closest variants from different loci. Separately for each
fine-mapping method, trait, and locus combination, we selected the single variant with the highest
posterior probability of being causal. For each fine-mapping method, we took the union of variants
across 3052 traits, and then calculated the fold enrichments for the union of these lead variants
with stacked ChromHMM states relative to the enrichment with a background set of common
variants from dbSNP build 151 (hg19). To do this, we separately computed the enrichments of
both of these sets relative to a genome-wide background, and then divided the enrichment of the

foreground set (lead fine-mapped variants) by the enrichment of the background set (common
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variants). The dbSNP variants were obtained from the UCSC genome browser (Navarro Gonzalez

etal., 2021).

Computing structural variant enrichments

To compute enrichment of the full-stack states for structural variant enrichments, we
obtained data of structural variants from (Abel et al., 2020). We used the B38 call set, which was
in hg38 and used for the analysis presented in (Abel et al., 2020). We filtered out structural
variants that did not pass the quality control criteria of (Abel et al., 2020). We then separately
considered structural variants annotated as either a deletion or a duplication, for which there were,
112,328 and 28,962 sites respectively.

Since the structural variants were defined in hg38, we computed their enrichment for
ChromHMM state annotations from full-stack, concatenated and independent models that were
lifted over from hg19 to hg38, following the procedure outlined above. Next, we followed the
enrichment analysis procedure outlined above to compare full-stack vs. concatenated and
independent chromatin state annotations’ power in recovering structural variants.

To compare the power of full-stack state annotations vs. concatenated state annotation
frequency, we utilized the 15-state concatenated chromatin state annotation for 127 cell types
(reference epigenomes) from Roadmap Epigenomics Consortium. We followed the analysis
outlined in (Abel et al., 2020), for each of the 15 concatenated-model states, we annotated
genomic positions based on the number of cell types in which the state is present (ranging from
0 to 127), resulting in 15 state frequency annotations per genomic position. We then applied the
procedure above for each concatenated-model state to compare the predictive power of the

state’s annotation frequency against the full-stack annotation.

Computing enrichments with cancer-associated variants
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We obtained data of somatic mutations associated with different types of cancer from
COSMIC non-coding variants dataset v.88 in hg38 (Tate et al., 2019). We selected from this
dataset variants that were from whole-genome sequencing. We filtered out variants that overlap
with any of the following: the hg38 black-listed regions from the ENCODE Data Analysis Center
(DAC) (Amemiya et al., 2019), hg38 dbSNP (v151) set of common variants from the UCSC
genome browser database, or regions annotated as coding sequence (‘CDS’) based on
GENCODE v.30 hg38 (Harrow et al., 2012) gene annotations. We decided to restrict this analysis
to the four cancer types with most number of variants present in the dataset in hg38: liver
(1,351,417), pancreas (500,930), haematopoietic and lymphoid tissue (354,501), and breast
(323,751). We then lifted over these sets of variants from hg38 to hg19, resulting in 1,351,159,
500,798, 354,351, and 323,685, variants respectively. To obtain a background set of genomic
locations for the enrichment analysis, we filtered from the genome the same set of hg38
annotations of black-listed regions, common variants, and coding sequences as we did for the
foreground of COSMIC mutations. We then lifted over these remaining positions from hg38 to
hg19 to obtain the background. We calculated the enrichment of chromatin states with cancer-
associated variants by first calculating the enrichment values of chromatin states with filtered
variants associated with each of the four cancer types, and the enrichment values with
background set of genomic bases, all relative to the whole genome. We then divided the cancer-

associated variant enrichment values by the background bases enrichments.

Gene ontology enrichments

We calculated the GO enrichments of genes being in proximity to each full-stack state annotation
using GREAT (McLean et al., 2010). For each full-stack state, we reported the 5 GO Biological
Process and 5 GO Molecular Function with lowest FDR-corrected p-values, ranked by GREAT
(McLean et al., 2010). All bar plots showing the top GO terms and negative log 10 p-values of

enrichments with full-stack states are available in Supplementary Data 2.1.
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External annotations sources
The sources for external annotations for enrichments analyses, not given above, were as follows
(all download links are listed in Supplementary Data 2.8):

e Annotations of CpG islands, exon, gene bodies (exons and introns), transcription start
(TSS), and transcription end sites (TES), 2kb windows surrounding TSSs (TSS2kb) in
hg19 and hg38 were RefSeq annotations included in ChromHMM (v1.18) and
originally based on annotations obtained from the UCSC genome browser on July 26th
2015.

e Lamina associated domains were for human embryonic lung fibroblasts that were
included in ChromHMM (1.18), which were lifted over to hg19 from hg18 positions
originally provided by (Guelen et al., 2008).

e Annotations of assembly gaps in hg19 and hg38 were obtained from the UCSC
genome browser and correspond to the Gap track.

e Coordinates of zinc finger genes correspond to non-overlapping coordinates from
GENCODE’s hg19 gene annotation, v30 (Harrow et al., 2012). ZNF named genes
were those whose gene named contained ‘ZNF’. The list of C2H2-type genes were
from https://www.genenames.org/.

e Annotations of coding sequences in hg19 and hg38 correspond to coordinates of
genes whose feature type is ‘CDS’ from GENCODE’s hg19 and hg38 gene annotation,
v30 (Harrow et al., 2012).

e Annotations of pseudogenes in hg19 and hg38 correspond to coordinates of genes
whose gene type or transcript type contained ‘pseudogene’ from GENCODE’s hg19
and hg38 gene annotation, v30 (Harrow et al., 2012).

e Annotations of repeat elements were obtained from UCSC genome browser

RepeatMasker hg19 tracks.
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Concatenated ChromHMM chromatin state annotations were obtained from the

Roadmap Epigenomics Consortium through http://compbio.mit.edu/roadmap

(Meuleman et al., 2015). These include data of the 18-state models based on observed
data and the 25-state chromatin model based on imputed data for 98 and 127
reference epigenomes, respectively.

CTCF- concatenated chromatin states were based on the ChromHMM chromatin state
annotations for six human cell types (GM12878, H1ESC, Helas3, Hepg2, Huvec,
K562) for a 25-state model from the ENCODE integrative analysis (Ernst and Kellis,
2012; Hoffman et al., 2013). We extracted coordinates of regions annotated to the
‘Ctcf’ and ‘CtcfO’, both associated with CTCF signal and limited histone mark signal.
Blacklisted regions were those provided by the ENCODE Data Analysis Center (DAC)
for hg19 and hg38 (Amemiya et al., 2019).

ConsHMM conservation state annotations for human (hg19) were those from (Arneson
and Ernst, 2019).

Annotations of human genetic variants and their allele frequency were from GNOMAD
v2.1.1 (Karczewski et al., 2020). The dataset includes 229 million SNVs and 33 million
indels from 15,708 genomes of unrelated individuals, which are aligned against the
GRCh37/hg19 reference.

GWAS catalog variants were obtained from the NHGRI-EBI Catalog, accessed on
December 5th, 2016 (Welter et al., 2014).

Coordinates of CpG sites profiled across cell types were obtained from DNA
Methylation data in Roadmap Epigenomic portal.

Data of G/C content at 5bp resolution from UCSC Genome Browser, file

hg19.gc5Base.txt.gz.
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e Data of binding regions of proteins of the polycomb repressive complexes were
downloaded from the ENCODE portal (Davis et al., 2018). Download links are listed

in Supplementary Data 2.8.

Analysis of gene expression across states

To analyze the relationship between gene expression and the full-stack states, we
downloaded gene expression data from the Roadmap Epigenomics Consortium (Meuleman et
al., 2015). Specifically, we downloaded a matrix of gene expression values, in RPKM (Reads Per
Kilobase Million), for protein coding genes for 56 reference epigenomes that were among the 127
used as part of the full-stack model. In total, we obtained expression values for 19,795 Ensembl
protein coding genes.

The gene expression data was obtained from

(https://fegg2.wustl.edu/roadmap/data/byDataType/rna/expression/57 epigenomes.exon.RPKM.p

c.gz). We also obtained the corresponding genomic coordinates for these genes from

(https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/Ensembl v65.Gencode v10.

ENSG.gene_info). For this analysis, we filtered out genes that are not classified as protein-coding.

We transformed the gene expression values by adding a pseudo-count of 1 to the raw counts in
RPKM, and taking the log of the resulting values.

For each full-stack-state and 56 reference epigenomes, we calculated the average gene
expression of all genes overlapping with the state, taking into account the genes’ length. For each
gene g we denote its length L, and expression E,. We let s; denote the state assigned at the 200-
bp bin i and G; denote the set of genes overlapping the 200bp bin i. Let B; denote the set of
200bp bins that are assigned to state s. The average normalized expression with state s then

becomes:
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We also calculated for each state the average and coefficient of variation of these
averages across reference epigenomes. We used the BEDTools (Quinlan and Hall, 2010)
bedtools intersect command to obtain the chromatin state assignments for 200bp segments that
totally or partially overlap with any gene. To obtain average gene expressions of a state in a cell
type group as presented in Fig. 2.3C, we averaged the reported bp-normalized average gene
expressions of the corresponding state across cell types within the group.

We also analyzed average gene expression values for each state as a function of the
position of the state annotations relative to TSS, following a procedure similar to what was used
previously (Ernst et al., 2011). We first identified a gene’s outer transcription start site (TSS) based
on the reported coordinates of the gene and strand in the gene annotation file noted above. For
each 200bp bin that is within 25kb upstream or downstream of an annotated TSS, including those
that directly overlap with an annotated TSS, we determined the assigned full-stack state at this
bin, and the position of the bin relative to those TSSs. Bins directly overlapping an annotated TSS
were at position 0. If the gene was on the positive strand, the segments’ genomic coordinates
lower than the TSSs’ correspond to upstream regions at negative points (minimum value: -
250000), while genomic coordinates higher than the TSSs’ correspond to downstream regions at
positive points (maximum value: 25000). If the gene is on the negative strand, the upstream and
downstream positions are reversed. For each state and each 200-bp bin position relative to TSS,
we determined the subset of genes where there is a 200bp bin annotated to that state at that
position relative to their TSSs, and calculated their average expression. This produces a 100-by-
251 table for one reference epigenome, corresponding to the number of full-stack states and 200-
bp segments intersecting the 50kb windows surrounding genes’ TSSs and one segment directly
overlapping the TSSs. We then smoothed the averaged expression data spatially by applying a

sliding window with a window size of 21, i.e. each segment’s smoothed gene expression is the
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average of data in that segment and 21 surrounding genomic segments. Data of average gene
expression in the first and last 10 segments within the 50kb window are not included in the window
of smoothed data. We averaged results of 56 tables corresponding to 56 reference epigenomes
as the final output from this procedure.
Computing average DNA methylation levels

The DNA methylation analysis was conducted based on Whole Genome Bisulfite
Sequencing data from Roadmap Epigenomics (Meuleman et al., 2015). The fraction DNA
methylation values was obtained from

https://egg2.wustl.edu/roadmap/data/byDataType/dnamethylation/\NGBS/FractionalMethylation.

tar.gz. For each combination of 37 reference epigenomes with DNA methylation available and
100-full-stack states, the average fractional DNA methylation in that reference epigenome was
computed for all CpG bases with a non-missing DNA methylation value overlapping the full-stack

state annotation.

Computing enrichment for bases prioritized by variant prioritization scores

To compute state enrichments for bases prioritized by different variant prioritization
scores, we followed the approach of (Arneson and Ernst, 2019). We obtained coordinates of
bases containing prioritized variants based on 14 different methods as processed and described
in (Arneson and Ernst, 2019). The scores were Eigen and Eigen-PC version 1.1, funSeq2 version
2.1.6, CADD v1.4, REMM, FIRE, fitCons, CDTS, LINSIGHT, FATHMM-XF, GERP++, phastCons,
phyloP and DANN (Cooper et al., 2010; Di lulio et al., 2018; Fu et al., 2014; Gulko et al., 2015;
Huang et al., 2017; loannidis et al., 2017; lonita-Laza et al., 2016; Pollard et al., 2010; Quang et
al., 2015; Rentzsch et al., 2019; Rogers et al., 2018; Siepel et al., 2005; Smedley et al., 2016).
For 12 of the 14 scores, we separately considered prioritized variants genome-wide and in non-
coding regions only. Two of the variant prioritization scores, LINSIGHT and FunSeq2, were

defined only in the non-coding regions, so these scores were only used in the non-coding region
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analysis. As described in (Arneson and Ernst, 2019), the regions included in the non-coding
analysis were defined as the bases where both LINSIGHT and FunSeq2 provided scores, which
was 90.4% of the genome. For both the non-coding and whole genome analysis we computed
the enrichment for bases ranked in the top 1%, 5% or 10% using the variant prioritization scores.
We note that because of ties in some scores, the score-threshold above which we classified the
bases as prioritized was chosen to be as close as possible to the target percentage (1%, 5% or
10%). We also note that if there were any bases with missing values for any particular score, then
that base was assigned with the minimum values of such scores.

Enrichment values for the whole genome were computed as described above with the
OverlapEnrichment command from ChromHMM. For computing enrichments restricted to non-
coding regions, we first calculated enrichment of the non-coding prioritized variants relative to the
whole genome and the enrichment of non-coding regions as defined above relative to the whole
genome. We then divided these two enrichment values to obtain the enrichment of prioritized non-

coding variants within non-coding regions.

Data availability
Full-stack  chromatin  state  annotation of the genome are available at

https://qgithub.com/ernstlab/full_stack ChromHMM _annotations. The code used to analyze the

output of ChromHMM and characterize the states is provided under the open source MIT license
at (Vu and Ernst, 2021b). An archival version of this code is available at (Vu and Ernst, 2021a)
under the MIT license. The software ChromHMM version 1.18 is available under the GPL 3 license
at (Ernst). The most up-to-date version of ChromHMM is available at

https://ernstlab.biolchem.ucla.edu/ChromHMM/. All links to download publicly available data for

analyses in this paper are listed in Supplementary Data 2.8.
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Figure 2. 1: lllustration of full-stack modeling annotations.

48



The figure illustrates the full-stack modeling at two loci. The top track shows chromatin state
annotations from the full-stack modeling colored based on the legend at right. Below it are signal
tracks for a subset of the 1032 input datasets. Data from seven (DNase | hypersensitivity,
H3K27me3, H3K36me3, H3K4me1, H3K4me2, H3K4me3, and H3K9me3) of the 32 chromatin
marks are shown, colored based on the legend at right. These data are from 15 of the 127
reference epigenomes each representing different cell and tissue groups. The loci on left
highlights a genomic region for which a portion is annotated as constitutive promoter states
(TSS1-2). The loci on the right panel highlights a region for which a portion is annotated as a brain
enhancer state (EnhA6), which has high signals of H3K27ac in reference epigenomes of the
group Brain. The concatenated model annotations for these loci from these and additional

reference epigenomes can be found in Supplementary Figure 2.24.
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Figure 2. 2: Full-stack state emission parameters.

(A) Each of the 100 rows in the heatmap corresponds to a full-stack state. Each of the 1032
columns corresponds to one dataset. For each state and each dataset, the heatmap gives the
probability within the state of observing a binary present call for the dataset’s signal. Above the

heatmap there are two rows, one indicating the cell or tissue type of the dataset and the other
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indicating the chromatin mark. The corresponding color legends are shown towards the bottom.
The states are displayed in 16 groups with white space between each group. The states were
grouped based on biological interpretations indicated by the color legend at the bottom. Full
characterization of states is available in Supplementary Data 2.1-5. The model's transition
parameters between states can be found in Supplementary Figure 2.6. Columns are ordered
such that datasets profiling the same chromatin marks are next to each other.

(B) Each row corresponds to a full-stack state as ordered in (A). The columns correspond to the
top 10 datasets with the highest emission value for each state, in order of decreasing ranks,
colored by their associated chromatin marks as in (A).

(C) Similar to (B), but datasets are colored by the associated cell or tissue type group. On right,

the cell or tissue groups primarily associated with some of the enhancer states is noted.
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Figure 2. 3: Full-stack states enrichments for external genomic annotations.
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(A) Fold enrichments of full-stack states with external genome annotations (Methods). Each row
corresponds to a state and each column corresponds to one external genomic annotation: CpG
Islands, Exons, coding sequences, gene bodies (exons and introns), transcription end sites
(TES), transcription start sites (TSS), TSS and 2kb surrounding regions, lamina associated
domains (laminB1lads), assembly gaps, annotated ZNF genes, repeat elements and PhastCons
constrained element (Methods). The last row shows the percentage of the genome that each
external genome annotation covers. The heatmap colors are column-normalized, i.e. within each
column, the color of the cells are such that highest values are colored red and lowest values are
colored white.

(B) Each row indicates the ConsHMM state (Arneson and Ernst, 2019) that has the highest
enrichment fold in each full-stack state as ordered in (A). Legends of the ConsHMM state groups
indicated with different colors are shown below the heatmap in (A), and descriptions of select
ConsHMM states curated from (Arneson and Ernst, 2019) are available in Supplementary Data
27.

(C) Average weighted expression of genes that overlap each full-stack state in different groups of
cells (Methods). Each column corresponds to a cell group indicated at the bottom. Each row
corresponds to a state, as ordered in (A).

(D-E) Positional enrichments of full-stack states relative to annotated (D) transcription end sites
(TES) and (E) transcription start sites (TSS). Positive coordinate values represent the number of
bases downstream in the 5’ to 3’ direction of transcription, while negative values represent the
number of bases upstream. Each line shows the positional enrichments in a state. Lines are
colored as indicated in (A).

(F) Enrichments of full-stacks states with concatenated chromatin states associated with CTCF
and open chromatin, but limited histone modifications in six cell types (Hoffman et al., 2013)

(Methods). The six cell types are indicated along the bottom of the figure. States are displayed
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horizontally in the same order as (A). The DNase1 state showed the strongest enrichment for the

concatenated chromatin states associated with CTCF and open chromatin in all six cell types.
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Figure 2. 4: Full-stack states enrichments with conserved elements and repeat classes.

(A) The first ten rows show the states most enriched with PhastCons elements and concurrently
least enriched with RepeatMasker repeat elements, ordered by decreasing enrichments with
PhastCons elements. The bottom ten rows show the states most enriched with repeat elements
and concurrently least enriched with PhastCons elements, ordered by increasing enrichments
with repeat elements. The columns from left to right list the state ID, the percent of the genome
that each state covers, and the fold enrichments for repeat elements and PhastCons elements.
(B) Heatmap of the state emission parameters from Fig. 2.2A for the subset of states highlighted
in panel (A). The colors are the same in Fig. 2.2A.

(C) Fold enrichments of full-stack states with different repeat classes (Methods). Rows

correspond to states and columns to different repeat classes. Only states that are most enriched
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with at least one repeat class are shown. Fold enrichment values that are maximal for a given are

shown in dark red. Other fold enrichments greater than one are shaded light red.
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Figure 2. 5: Full-stack states’ relationship with human genetic variants.

(A) Enrichments of full-stack states with duplication and deletion structural variants from (Abel et
al., 2020). Only states that are in the top ten most enriched states are shown. Top five fold-
enrichments for each class of structural variants are colored in increasing darker shades of red
for higher ranked enrichments. Enrichment values below one, corresponding to depletions, are
colored yellow. The columns from left to right are the state label, percent of genome the state
covers, the fold enrichment for deletions, and fold enrichment for duplications.

(B) Emission probabilities corresponding to states in (A). The coloring is the same as Fig. 2.2A.
The figure highlights how states most associated with structural variants generally had higher
emission of H3K9me3 compared to other chromatin marks.

(C) Enrichments of full-stack states with top 1% prioritized bases in the non-coding genome by
14 variant prioritization scores previously analyzed (Armeson and Ernst, 2019). Only states that
are among the top five most enriched states by at least one score are shown. The top five
enrichment values for each score are colored in increasing darker shades of red for higher ranked
enrichment values. Enrichment values below one, corresponding to depletions, are colored in
yellow. The columns from left to right are the state label, percent of the genome covered, the 14
score enrichments, and a detailed description of the state.

(D) Log base 10 of ratios of states’ enrichment with GNOMAD variants (Karczewski et al., 2020)
with the lowest MAFs (< 0.0001) vs. GNOMAD variants with the highest MAFs (0.4-0.5). States
are ordered as in Fig. 2.2A. Top five states with the highest and lowest enrichment ratios are
labeled to the right.

(E) States most enriched with fine-mapped phenotypic variants against the background of
common variants. Fine-mapped phenotypic variants were identified by either CAVIAR (Chen et
al., 2015) or FINEMAP (Benner et al., 2016) (Methods).

(F) State enrichments with somatic mutations associated with four cancer types in the non-coding

genome. Only states that are among the ten most enriched with variants from at least one cancer
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type are shown. States in the top five are colored according to their ranks. The top five enrichment
values for each cancer type are colored in increasing darker shades of red for higher ranked
enrichment values. The columns are the state label, the percent of the genome the state covers,
and the fold enrichments of variants from breast, haematopietic and lymphoid, liver, and pancreas
cancer types.

(G) Emission probabilities corresponding to states in (F), as subsetted from Fig. 2.2A. The
coloring is the same as Fig. 2.2A. The figure highlights how states with the greatest enrichments
for cancer-associated variants tend to have higher emission probabilities for H3K9me3 compared

to other chromatin marks.
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Supplementary Information
Supplementary Data 2.1: GO terms associated with each full-stack states
- Each figure shows the 5 GO Biological Process and 5 GO Molecular Function terms
most significantly enriched in each full-stack state. State Quies3 did not have a list of
enriched GO terms because there was no output from GREAT for regions associated
with state. Therefore, there are 99 figures corresponding to 99 full-stack states with
output from GREAT.
Supplementary Data 2.2: Summary characterizations of full-stack states
- Full characterization of the full-stack states, with detailed comments summarizing states’
characteristics
- Emission parameters of the full-stack states.
- Top 100 highly emitted datasets associated with each full-stack state, colored by the
marks associated with the datasets (similar to Fig. 2.2B)
- Top 100 highly emitted datasets associated with each full-stack state, colored by the cell
groups associated with the datasets (similar to Fig. 2.2C)
- Different genome context enrichments with full-stack states: Excel version of figures 3A-
B, Supplementary Figure 2.18.
- Excel version of Supplementary Figure 2.31: Enrichment of all full-stack states for
ConsHMM states.
- Excel version of Supplementary Figure 2.30: Full-stack states and maximum enriched
ConsHMM state.
- Excel version of Supplementary Figure 2.7: Statistically significant tissue—group
specificity in full-stack states.
Supplementary Data 2.3: Full-stack states enrichments with repeats, prioritized variants,
common variants, structural variants, CTCF, PRC1-PRC2, GWAS catalog variants, sex

chromosomes, fine-mapped variants, cancer-associated variants.
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- Excel version of Supplementary Figure 2.28: Full stack states enrichments with
RepeatMasker classes of repeats and CG content.

- Excel version of Supplementary Figure 2.37: Enrichment of all full-stack states for top
1% bases prioritized by variant prioritization scores.

- Excel version of Supplementary Figure 2.32: Full-stack states enrichments with
structural variants.

- Excel version of Supplementary Figure 2.42: Full-stack states enrichments with variants
from GNOMAD stratified by minor allele frequencies, common variants and CG
dinucleotides.

- Excel version of Supplementary Figure 2.14: Full-stack states enrichments with CTCF
associated chromatin states.

- Excel version of Supplementary Figure 2.17B: Neighborhood enrichments of full-stack
states with binding sites of PRC1 and PRC2 complexes.

- Excel version of Supplementary Figure 2.16: Full-stack states enrichments with
Polycomb Repressive protein complexes PRC1 and PRC2.

- Excel version of Supplementary Figure 2.43: Full-stack states enrichments with GWAS
catalog variants and sex chromosomes.

- Excel version of Supplementary Figure 2.44: Full-stack states enrichment values for fine-
mapped variants at phenotype associated loci.

- Excel version of Supplementary Figure 2.47: Full-stack states enrichments with cancer-
associated somatic mutations in the non-coding genome.

Supplementary Data 2.4: Full stack states’ association with concatenated annotations for
multiple cell types.

- Excel version of Supplementary Figure 2.9: Estimated probabilities of concatenated
chromatin states overlapping with full-stack states. Detailed comments about full-stack

states’ characteristics through this analysis are provided.
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- Excel version of Supplementary Figure 2.8: Full-stack states maximum-enrichments with
annotated chromatin states in 127 reference epigenomes. Detailed comments about full-
stack states’ characteristics through this analysis are provided.

- Maximum enrichments of full-stack states and 25-state concatenated annotations for
127 cellftissue types (reference epigenomes).

- Median enrichments of full-stack states and 25-state concatenated annotations for 127
cell/tissue types (reference epigenomes).

Supplementary Data 2.5: Data of AUROC comparison between full-stack annotation and
concatenated and independent annotations in predicting different genomic contexts

- Data accompanying Supplementary Figure 2.19-21: AUROC comparison of full-stack
annotations and concatenated and independent annotations in predicting external
genome contexts

- Data accompanying Supplementary Figure 2.34-35: AUROC comparison of full-stack
model annotations and 18-state concatenated annotations and 100-state independent
annotations in predicting structural variants of type deletions and duplications.

- Data accompanying Supplementary Figure 2.29: AUROC comparison of the full-stack
and concatenated and independent chromatin state annotations at predicting different
classes of repeat elements.

- Data accompanying Supplementary Figure 2.45-46: AUROC comparison of full-stack
model annotations and the 100-state independent annotations and 18-state
concatenated annotations in predicting fine-mapped variants.

- Data accompanying Supplementary Figure 2.41: AUROC comparison of the full-stack
model annotations and concatenated and independent model annotations at predicting
top 1% non-coding bases prioritized by various variant prioritization scores.

Supplementary Data 2.6: Summary characteristics of ConsHMM states

- Descriptions of select ConsHMM states mentioned in the main text
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- Excel version of Supplementary Figure 2.30C: Enrichment of all full-stack states for
ConsHMM states.
Supplementary Data 2.7: Supplementary Information about the full-stack model analysis
- Naive-Bayes greedy search for representative datasets for characterization of the full-
stack states.
- Asymptotic worst-case time and memory usage of stacked model
Supplementary Data 2.8: Download links for annotation data used throughout the

manuscript
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Chapter 3. Universal chromatin state annotation of the mouse genome

Abstract
Genome-wide chromatin states learned from integrating genome-wide maps of multiple

epigenetic marks within the same cell type have been widely used to generate genome
annotations of individual cell types. An alternative strategy based on ‘stacked modeling’ can
provide a single ‘universal’ chromatin state annotation based jointly on data from many cell types.
In human, such an approach was recently demonstrated and the resulting chromatin state
annotation, denoted full-stack, was shown to have complementary advantages to per-cell-type
annotations. However, an analogous annotation has not been previously available in mouse. Here,
we produce a chromatin state annotation for mouse based on 901 datasets assaying 14 chromatin
marks in 26 different cell or tissue types. To characterize each chromatin state, we relate the
states to other external annotations and compare them to analogously defined states in human.
We expect the full-stack chromatin state annotation for mouse will be a useful resource for
studying the genome of this key mammalian model organism.

Introduction
Mouse is widely adopted as a model organism for human for many reasons including their

genetic and physiological proximity to humans, relatively short life span, and availability as test
subjects for genetic manipulations (Vanhooren and Libert, 2013; Aitman et al., 2011; Periman,
2016). A wealth of epigenomic datasets in mouse, include maps of histone modifications and
variants and sites of accessible DNA, has accumulated thanks to efforts from different consortia
and individual labs, which can be used to annotate the mouse genome, including non-coding
regions (Kazachenka et al., 2018; Stamatoyannopoulos et al., 2012; Yue et al., 2014; Zhu et al.,
2021; Hon et al., 2013; Tsai et al., 2009; Rugg-Gunn et al., 2010). This type of data has previously
been integrated methods such as ChromHMM and Segway (Ernst and Kellis, 2010, 2012;
Hoffman et al., 2012; Libbrecht et al., 2021) to generate chromatin state maps for various
organisms including different mouse and human cell and tissue types (Yue et al., 2014; ENCODE

Project Consortium, 2012; van der Velde et al., 2021; Bogu et al., 2015; Sugathan and Waxman,
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2013; Gorkin et al., 2020). These chromatin state maps have traditionally been used to annotate
genomes in a per-cell-type manner using either the ‘independent’ or ‘concatenated’ modeling
approaches (for ease of presentation, we will refer to tissue types also as cell types) (Ernst and
Kellis, 2017; Libbrecht et al., 2021).

Recently, we applied an alternative ‘stacked’ modelling approach of ChromHMM to learn
chromatin states from over 1000 human datasets representing more than 100 cell types, to
generate a universal annotation of the human genome that can annotate all human cell types (Vu
and Ernst, 2022). This modeling provided a single annotation of the genome per position based
on data from all the input cell types. Such an annotation, denoted full-stack annotation, offers
complementary advantages to per-cell-type annotations, such as differentiating constitutively
active regions from cell-type-specific ones and simplifying genome annotations across cell types
through a single annotation shared across cell types as opposed to one for each. Additionally, the
full-stack annotation allows researchers to bypass picking a single cell type for analyses or
conducting analyses separately for every cell type. This can be particularly useful in studies
involving data that is not inherently cell-type-specific such as analyses of genetic variants or
conserved DNA sequence. However, an analogous full-stack annotation has not been previously
available in mouse.

To address this, we train a full-stacked model with ChromHMM using input data from >900
mouse datasets of 14 chromatin marks from 26 mouse cell type groups (Methods). We analyze
these states with respect to their enrichments with external datasets and annotations to provide
detailed characterizations for each state. We also analyze to what extent each state is conserved
in human. We expect the mouse full-stack annotations along with the provided biological
characterizations will be a useful resource for studying this key model organism.

Results
We learned the mouse full-stack model by applying ChromHMM to over 900 mouse

epigenomic datasets, similar to how it was previously applied in human (Ernst and Kellis, 2012;
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Vu and Ernst, 2022) (Methods, Fig. 3.1, Fig. 3.S1). We used a 100-state model for consistency
with the previously analyzed human full-stack model.

We manually grouped these 100 states into 16 groups. One of the groups contains states
associated with assembly gaps or alignment artifacts (mGapArtf), the latter of which are often
marked by signals of both open-chromatin mark (ATAC or DNase) and heterochromatin mark
H3K9me3 (Fig. 3.1). Another group, Quiescent group (mQuies), consists of states associated
with minimal signals of any chromatin marks. We defined a Heterochromatin (mHET) group
primarily associated with H3K9me3, and a Zinc finger genes (mZNF) group associated with both
H3K36me3 and H3K9me3. We also defined a Polycomb repressed group (mReprPC) associated
with primarily H3K27me3, and another group associated with both open chromatin marks (DNase
and/or ATAC-seq) and polycomb-repressed-associated mark H3K27me3 (mReprPC_openC).
We also defined a group of states associated with just open chromatin (mOpenC), based on
DNase-seq and ATAC-seq signals relative to other chromatin marks.

We defined three groups of states associated with enhancers: active enhancers (mEnhA),
weak enhancers (mEnhWk), and transcribed enhancers (mTxEnh). States in the mEnhA group
were associated with open chromatin, H3K27ac and H3K4me1. States in the mEnhWk group
(mEnhWKk) also showed association with those marks, but at lower levels compared to those in
mEnhA group. States in mTxEnh group showed signals of open chromatin (ATAC and/or DNase),
H3K4me1, H3K27ac and transcription-associated marks (H3K36me3 or H3K79me2/3).

In addition to mTxEnh group, we defined three additional transcription groups:
transcription (mTx), transcription and exons (MTXEXx), and weak transcription (mTxWKk). States in
the mTx group are associated primarily with the transcription marks H3K36me3 and/or
H3K79me2/3. Meanwhile, states in transcription and exon group (mTxEx) are associated with
both open chromatin and transcription marks. States in the mTxWk group are associated with low

levels of the transcription marks.
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We also defined three promoter-associated groups: bivalent promoters (mBivProm),
promoter flanking (mPromF) and transcription start sites (mTSS). States in these groups generally
had relatively high levels of H3K4me2 and H3K4me3, and for some of them also H3K4me1 and/or
open chromatin marks. mBivProm states were also associated with the repressive mark
H3K27me3. States in the mTSS group tended to have weaker H3K4me1 levels.

Within each group, there were differences among individual states, such as the magnitude
of the emission probabilities associated with specific chromatin marks, or their association with
different cell type groups (Fig. 3.1). For example, different states in the active (mEnhA) and weak
enhancer (mMEnhWKk) groups have enhancer associated marks that were specific to different cell
type groups such as the brain, blood, immune, liver, and embryo (Fig. 3.1C). Detailed descriptions
of each state’s chromatin mark signals and cell-type-specific activities are provided in
Supplementary Data 3.1.

We also conducted various enrichment analyses to further characterize the states (Fig.
3.2A). Enrichments with external annotations further highlight the distinctions among states from
different groups, as well as among those within the same group. For example, the state
mGapArtf1 overlapped with 99.9% of annotated assembly gaps in mm10 (6.6-fold) (Fig. 3.2A).
States mGapArtf1 and mGapArtf3 jointly overlapped with 82.1% of the blacklisted regions from
ENCODE (5.4 and 5.0-fold, respectively) (Fig. 3.2A). States in promoter-associated groups
(mTSS, mPromF, mBivProm) showed relatively high enrichments with regions within 2kb of
annotated TSSs (9.4-26.7 fold, Fig. 3.2A). These states vary in their enrichments with regions
upstream and downstream of annotated TSSs (Fig. 3.2D, Supplementary Figure 3.2). Three
states from the TSS group (MTSS1-3) had the strongest enrichment for TSS (59.2-159.9 fold).
These three states along with mBivProm2 were strongly enriched with CpG Islands (101.1-159.2
folds, Fig. 3.2A). States in the transcription associated groups (mTx, mTxWk, mTxEnh, mTxEx)
all had enrichments greater than 2.4-fold for annotated gene bodies. States in the transcription

and exon group (mTxEx1-3) showed the highest enrichments for annotated exons (11.3-13.7

66



folds, Fig. 3.2A) and regions surrounding annotated TESs (Fig. 3.2E, Supplementary Figure
3.2). States mOpenC6-7, which had strong constitutive DNase-seq and/or ATAC-seq signal while
having relatively limited histone modification signals, had the strongest enrichments with CTCF
binding sites in multiple cell types (geometric mean 146- and 98- fold for states mOpenC6-7,
respectively) (Fig. 3.1, 2F, Supplementary Data 3.2).

Additionally, we analyzed the enrichment of full-stacked states for different chromosomes.
This uncovered three states in the polycomb repressed group (mReprPC4-6) that were highly
enriched on chromosome X (8.9-11.4 fold, Supplementary Figure 3.3), likely related to
H3K27me3-associated chromosome X inactivation (Wutz, 2011; Yen and Kellis, 2015). We also
found chromosome Y strongly enriched for mGapArtf1 state (6.4 fold, corresponding to 96% of
chrY) (Supplementary Figure 3.3).

We also analyzed the states’ enrichments for different classes of repeat elements (Smit
et al., 2015). For the two largest classes of repeats, Long interspersed nuclear elements (LINE)
and long tandem repeats (LTRs) (Supplementary Figure 3.4-5), the most enriched states were
both in the HET group (mHET9,7) (2.7 and 3.3 fold). Satellite and rRNA had the strongest
enrichments for the mGapArtf3 state, 22.5 and 95.5 fold, respectively.

We also related the full-stack states to average expression of overlapping genes
(Methods). States in the transcription-associated groups (mTxEnh, mTx, mTxEx), along with
those related to promoter (mPromF and mTSS groups) showed higher average gene expression
across cell types compared to other groups (Fig. 3.2C). State mTxEx3 showed the highest gene
expression of all states.

Additionally, we analyzed the mouse full-stack states’ association with per-cell-type
chromatin state annotations defined across 66 reference epigenomes from 12 unique cell type
groups and 7 developmental stages, based on 8 marks (Supplementary Figure 3.6-7,
Supplementary Data 3.4) (Gorkin et al., 2020). This revealed, for example, that state mEnhA17

showed the strongest enrichments with per-cell-type active enhancer states across all
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developmental stages for liver (Supplementary Figure 3.6-7, Supplementary Data 3.4), which
is consistent with this state’s highest signals in enhancer-associated chromatin marks (H3K4me1,
H3K27ac) for liver datasets (Fig. 3.1). State mTSS2 was most enriched with per-cell-type active
promoter states in all reference epigenomes (Supplementary Figure 3.6-7, Supplementary
Data 3.4), consistent with its association with individual chromatin marks (Fig. 3.1).

In addition, we analyzed how the mouse full-stack states correspond to those of an
analogous previously defined full-stack model in human (Vu and Ernst, 2022). We evaluated the
enrichments of each mouse full-stack state with each human full-stack state after mapping the
human annotations to those for mouse (Methods, Supplementary Figure 3.8-9, Supplementary
Data 3.3). Twenty-two out of 100 mouse states showed >50-fold enrichment with at least one
human state (Supplementary Figure 3.9, Methods) (Vu and Ernst, 2022), and these states’
biological implications highlight strong correspondence of states from the human and mouse
models. For example, mouse state mTxEx3 showed 378.8-fold enrichment for human state TxEx4
— the largest enrichment across any pair of states— (Supplementary Figure 3.9,
Supplementary Data 3.3). These two states showed the highest average gene expression
across multiple mouse and human cell types, respectively (Vu and Ernst, 2022) (Fig. 3.2C). All
13 mouse states in the promoter groups (mPromF, mBivProm, mTSS states) showed strong
enrichments with human full-stack states that are also promoter-associated, with 12 of these
mouse states showing >90-fold enrichment (Supplementary Figure 3.9, Supplementary Data
3.2). Mouse states mOpenC6-7, which are associated with constitutive open chromatin CTCF
elements (Fig. 3.2F, Supplementary Data 3.2), showed the strongest association with the human
DNase state, which was also constitutively marked by DNase and CTCF in human (Vu and Ernst,
2022). However, there exist differences between states from the two organisms’ models. For
example, in the mouse model, seven states in the mOpenC group (all except mDNase6-7), which
we characterized as showing cell-type-specific signals of open chromatin, did not show strong

enrichment for specific human states (Supplementary Figure 3.8-9, Supplementary Data 3.3).
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We also evaluated each full-stack state’s average human-mouse LECIF score, which
quantifies conservation at the functional genomics level between the two species (Fig. 3.2B)
(Kwon and Ernst, 2021) (Methods), which ranged from 0.04 (mHET9) to 0.71 (mBivProm3) (Fig.
3.2B, Supplementary Figure 3.9). All 14 mouse states that had an average LECIF score >= 0.5
also had a >50-fold enrichment with a human full-stack state, highlighting that mouse states with
high LECIF score show concordance with specific human states. In addition, we looked at each
state’s enrichment for sequence constraint eleements as defined by PhastCons (Siepel et al.,
2005). Across all states, the states’ enrichments for PhastCons elements and average LECIF
score showed overall consistency (Spearman correlation 0.70; p-value: 3.8e-16). We found 10
mouse states that are among the top 20 states based on average LECIF score, enrichments for
PhastCons element and for a specific human full-stack state (Supplementary Data 3.1, Fig.
3.89). Among these states, seven are associated with promoter activities (mBivProm1-3, mTSS1-
3, mPromF1), two states are characterized by strong exon enrichments and constitutive
transcriptional activities (MTxEx2-3), and one state (MEnhA3) corresponds to constitutively strong
enhancers (Supplementary Figure 3.9). Interestingly, a few states stand out as associated with
either high sequence constraint or functional conservation (LECIF score), but not in both. For
example, constitutive DNase-candidate insulator states mOpenC6-7 are among top 20 with
highest average LECIF scores yet had lower (Phastcons) sequence constraint enrichment
(ranked 50, 59) (Supplementary Figure 3.9).

Discussion
We introduced the mouse full-stacked annotation to provide a single chromatin state

annotation per genomic position based on over 900 epigenomic datasets representing 26 different
cell type groups. The mouse full-stacked model and its characterization is analogous to the
previous human full-stack model (Vu and Ernst, 2022) (Data Availability, Supplementary Data
3.1). As discussed previously in the context of the human genome annotation (Vu and Ermnst,

2022), the full-stack model has a number of advantages, such as being able to differentiate
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constitutive from cell type-specific annotations and simplifying the overall genome annotation in
that there is a single genome annotation per position. However, this does come at a trade-off of
a more complex set of model parameters. The full-stack annotation is not meant to replace
existing per-cell-type annotations, but rather to complement them and the most appropriate
annotation will likely depend on the application (Vu and Ernst, 2022). We expect the full-stack
model to serve as an additional resource for work that leverages the mouse as a model organism
to gain insight into human biology and disease.

Methods
Input data and processing

We obtained data of ENCODE Project Portal (The ENCODE Project Consortium et al.,
2020; Stamatoyannopoulos et al., 2012; Yue et al., 2014), and restricted the downloaded files to
those with ‘File analysis title’ starting with ‘ENCODE4’ and ‘File assembly’ of ‘mm10’. In total, we
downloaded data of read alignment (.bam files) for 901 experiments, 114 of which were DNase-
seq, 83 were ATAC-seq and 704 were ChlP-seq data targeting 12 chromatin marks representing
26 cell type groups (Supplementary Data 3.1). For each .bam file resulting from a ChIP-seq
assay, we extracted the corresponding control .bam file by matching the .fastq files of reads from
the ChIP-seq assay with the control reads. As the DNase-seq or ATAC-seq experiments did not
have paired control .bam files, we assumed a uniform background read distribution. Links to
download all input data for the stacked model are provided in Supplementary Data 3.1.

We then constructed the cell_mark_file input table required by ChromHMM BinarizeBam
such that there are four tab-delimited columns in the table. The first column is set as ‘Genome’
across all rows. The second column denotes the experiment names of the form ‘<Biosample term
name>_<Experiment target> <Experiment accession>’, where ‘Biosample term name’,
‘Experiment target’ and ‘Experiment accession’ correspond to the cell type, histone
mark/DNase/ATAC profiled and the accession code of such experiments, respectively from the

metadata from ENCODE. The third column contains the experiments’ .bam file names. The last
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column contains the matched control .bam file names, which is left blank for DNase-seq or ATAC-
seq experiments, since we assumed a uniform background distribution for these assays.

Using this cell_mark_file input table, we next binarized the data at 200 base pair resolution
using the BinarizeBam and MergeBinary commands of ChromHMM (v.1.23), following the
procedures of (Vu and Ernst, 2022).

Training full-stack modeling and generating genome-wide state annotations

We learned the mouse full-stack chromatin state model for the 901 datasets using the
LearnModel command of ChromHMM (v.1.23). We applied the same set of flags as in learning
the human full-stack model (-splitrows -holdcolumnorder -pseudo -many -p 6 -n 300 -d -1 -
lowmem -gzip), described in Vu and Ernst, 2022 (Vu and Ernst, 2022). We specified the number
of states to be the same as in the human model (100 states) (Vu and Ernst, 2022).

Enrichment and estimated probabilities of overlap with per-cell-type chromatin state annotations

We obtained per-cell-type 15-chromatin state annotations for 66 reference
epigenomes/cell types from Gorkin et al., 2020 (Gorkin et al., 2020), with download links provided
in Kwon and Ernst, 2021 (Kwon and Ernst, 2021). For simplicity, we use reference epigenome
and cell types interchangeably, and we refer to the chromatin state segmentation that is used to
annotate the individual reference epigenomes as per-cell-type annotations. This model was
trained using the concatenated modeling approach from data of 8 chromatin marks measured in
12 cell type groups at up to 8 distinct stages during mouse fetal development (Gorkin et al., 2020).
We applied the same procedure as outlined in Vu and Ernst, 2022 (Vu and Ernst, 2022) to obtain
two types of summary results of the relationship between mouse full-stack states’ association with
states in per-cell-type annotations. First, for each full-stack state, we report, for each of the 64
reference epigenomes, the chromatin state from the per-cell-type model that is maximally
enriched in the full-stack state (Vu and Ernst, 2022). Second, for each of the 12 tissue types, we
report the estimated probabilities of each full-stack state overlapping with each of the 15 states in

the per-cell-type model (Vu and Ernst, 2022). These results, along with detailed comments about
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the observed patterns of overlap between each full-stack state and per-cell-type state, are
available in Supplementary Data 3.4. Data of all per-cell-type annotations are in mm10 (Gorkin
et al., 2020).

Average gene expression associated with each full-stack state

We obtained data of gene expression for 19 tissue types in mouse from (Shen et al., 2012)
(http://chromosome.sdsc.edu/mouse/download/19-tissues-expr.zip). The provided data contains
two gene expression datasets for each tissue type, corresponding to two replicates. We converted
the gene expression values for the 19 tissues into log, (FPKM + 1) values, where FPKM
(Fragments per kilo base of transcript per million mapped fragments) were the provided values
from the source data, and we added a pseudo count of 1 for each value.

Since the gene expression data was provided in mm9, we lifted the mouse full-stack
annotation from mm10 to mm9. To do so, we first wrote the full-stack annotation in mm10 into
a .bed file such that each line corresponds to a 200-bp segment. We then used the liftOver tool
with default parameters to convert the 200-bp segments from mm10 to mm9. We filtered out
regions in the lifted-over mm9 annotation that were mapped from >= 2 distinct segments in mm10.

For each full-stack state and each of the gene expression dataset (there are 38 of them
with 2 replicates for each tissue type), we calculated the average gene expression of all genes
that overlap with the state, while taking into account the genes’ length. We followed the same
procedure described in Vu and Ernst, 2022. In particular, within a dataset, let the length and
expression of gene g be denoted L, and E,, respectively. Let B; be the set of 200-bp genomic
segments i’s that are assigned to state s in the mouse full-stack annotation, in mm9. Let G;
denote the set of genes that overlap with genomic segment i. The gene-length-normalized
average expression for state s is calculated as done previously (Vu and Ernst, 2022):

E
ZiEBS ZgEGi ﬁ

1
ZiEBS decig

avg exp bp normalized ; =
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We then obtained the average gene expression for each full-stack state in each dataset.
To calculate the average gene expression for the states in each of the 19 tissue types, we
averaged the calculated average expression across the two replicate datasets for the same tissue
type.
External annotation sources
The sources for external annotations for enrichment analyses are as follows (all download links
are listed in Supplementary Data 3.1).
o Annotations of CpG islands, exon, gene bodies (exons and introns), transcription start
(TSS), and transcription end sites (TES), 2kb windows surrounding TSSs (TSS2kb) in mm10 were
RefSeq annotations included in ChromHMM (v 1.23) and originally based on annotations obtained
from the UCSC genome browser (Rosenbloom et al., 2015; Kent et al., 2002) on July 26", 2015.
. Annotation of coding gene regions correspond to coordinates of genes whose feature type
is ‘CDS’ from GENCODE mm10 gene annotation, vM25 (Frankish et al., 2019), accessed on
February 3", 2022.
o Annotation of assembly gaps in mm10 were obtained from the UCSC genome browser
and correspond to the Gap track (Rosenbloom et al., 2015; Kent et al., 2002), accessed on
February 3", 2022.
. Annotations of pseudogenes in mm10 correspond to coordinates of genes whose gene
type of transcript type contained ‘pseudogene’ from GENCODE’s mm10 gene annotation, vM25
(Frankish et al., 2019).
. Blacklisted regions were downloaded from ENCODE project portal in mm10 from
(Amemiya et al., 2019).
o Annotations of different repeat classes were downloaded from UCSC genome browser

repeat masker track in mm10, accessed on Jan. 14™ 2022 (Smit et al., 2015).
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o Annotations of Zinc finger genes in the mouse genome correspond to the coordinates of
genes whose name contained ‘Zfp’ based on GENCODE mm10 annotation vM25 (Frankish et al.,
2019).

o Annotations of different chromosomes’ coordinates were downloaded from UCSC
genome browser's data of chromosome sizes in mm10, from https://hgdownload-
test.gi.ucsc.edu/goldenPath/mm10/bigZips/mm10.chrom.sizes (Kent et al., 2002; Rosenbloom et
al., 2015).

. LECIF scores measure that human-mouse conservation at functional genomics level, and
were downloaded in version 1.1 from https://github.com/ernstlab/LECIF (Kwon and Ernst, 2021).
For each full-stack state, we reported the average LECIF score of overlapping genomic bases
with the state

o CTCF peaks data were downloaded as bed files format from Mouse ENCODE Project
(Yue et al., 2014; Stamatoyannopoulos et al., 2012). We only included data files that has ‘File
analysis title’ starting with ENCODE4 based on the metadata. In total, we obtained data of CTCF
peaks for 42 ChIP-seq experiments from profiling CTCF in 28 unique biosamples. Details and
download links for CTCF peaks data is available in Supplementary Data 3.1.

o PhastCons conserved elements (Siepel et al., 2005) based on the 60-way multi-species
sequence alignment were downloaded from the UCSC genome browser
(https://hgdownload.soe.ucsc.edu/goldenPath/mm10/database/phastConsElements60way.ixt.gz
)-

Data Availability
Mouse full-stack chromatin state annotation are available at

https://github.com/ernstlab/mouse_fullStack_annotations in mm10. The code to analyze the full-
stack states are available at https://github.com/ernstlab/mouse_fullStack_annotations. All

download links for input for the mouse full-stack model are available in Supplementary Data 3.1.
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Figure 3. 1: Mouse full-stack state emission parameters.
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(A) Each of the 100 rows in the heatmap corresponds to a mouse full-stack state. Each of the 901
columns corresponds to one input dataset. For each state and each dataset, the heatmap gives
the probability within the state of observing a binary present call for the dataset’s signal. Above
the heatmap, one color bar indicates the assay/chromatin mark measured by each dataset. The
other color bar shows the cell type groups associated with each dataset. The corresponding color
legends are shown towards the bottom. The states are displayed in 16 groups with white space
between each group, and grouped based on biological interpretations indicated by the color
legend at the bottom. Full characterization of states is available in Supplementary Data 3.1. The
model’s transition parameters between states can be found in Supplementary Figure 3.1.
Columns are ordered such that datasets profiling the same chromatin marks are next to each

other.

(B) Each row corresponds to a full-stack state as ordered in (A). The columns correspond to the
top 10 datasets with the highest emission value for each state, in order of decreasing ranks,
colored by their associated chromatin marks as in (A).

(C) Similar to (B), but datasets are colored by the associated cell type groups. The tissue groups

primarily associated with some of the enhancer states are noted inside the heatmap.
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Figure 3. 2: Mouse full-stack states enrichments for external genomic annotations.
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(A) Fold enrichments of mouse full-stack states with external genome annotations (Methods).
Each row corresponds to a state and each column corresponds to one external genomic
annotation: coding sequences, CpG lIslands, Exons, gene bodies (exons and introns),
transcription end sites (TES), transcription start sites (TSS), TSS and 2kb surrounding regions,
assembly gaps, pseudogenes, blacklisted regions, repeat elements, annotated Zpf genes and
PhastCons conserved elements (Methods). The last row shows the percentage of the genome
that each external genome annotation covers. The heatmap colors are column-normalized, i.e.
within each column, the colors of the cells are such that highest values are colored red and lowest
values are colored white.

(B) Each row indicates the states’ average LECIF score, indicating functional human-mouse
conservation based on epigenetic annotations (Kwon and Ernst, 2021) (Methods). The list of
states with top average LECIF scores and highest enrichments with PhastCons elements is in
Supplementary Data 3.1 and Supplementary Data 3.2.

(C) Average weighted expression of genes that overlap each full-stack state in different groups of
cells (Methods). Each column in the heatmap corresponds to a cell group indicated at the top.
Each row corresponds to a state, as ordered in (A).

(D-E) Positional enrichments of full-stack states relative to annotated (D) transcription start sites
(TSS) and (E) transcription end sites (TES). Positive coordinate values represent the number of
bases downstream in the 5’ to 3’ direction of transcription, while negative values represent the
number of bases upstream. Each line shows the positional enrichments in a state. Lines are
colored corresponding to the state group as indicated in (A).

(F) Geometric mean and geometric standard deviation of enrichments of full-stacks states CTCF
elements across 28 cell types from ENCODE (ENCODE Project Consortium, 2012) (Methods).
States are displayed vertically in the same order as (A). The DNase6-7 state showed the strongest
enrichment for CTCF elements in all observed cell types. The geometric mean and standard

deviation are calculated such that for each state, fold enrichment values of O are replaced by the
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state’s minimum non-zero value. The fold enrichment values accompanying this plot are available
in Supplementary Data 3.2.

Supplementary Information

Supplementary Data 3.1: Metadata and download links for input data used for model learning,
CTCF elements.

Supplementary Data 3.2: Summary characterizations of mouse full-stack states.
Supplementary Data 3.3: Mouse full-stack states’ average LECIF scores, enrichments with
human full-stack states, repeat classes, chromosomes and CTCF elements.

Supplementary Data 3.4: Mouse full-stack states’ relationships with per-cell-type annotations

(supporting supplementary figures 6-7)
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Chapter 4: A framework for group-wise summarization and comparison of
chromatin state annotations

Abstract
Genome-wide maps of epigenetic modifications are powerful resources for non-coding

genome annotation. Maps of multiple epigenetics marks have been integrated into cell or tissue
type-specific chromatin state annotations for many cell or tissue types. With the increasing
availability of multiple chromatin state maps for biologically similar samples, there is a need for
methods that can effectively summarize the information about chromatin state annotations

within groups of samples and identify differences across groups of samples at a high resolution.

We developed CSREP, which takes as input chromatin state annotations for a group of
samples. CSREP then probabilistically estimates the state at each genomic position and derives
a representative chromatin state map for the group. CSREP uses an ensemble of multi-class
logistic regression classifiers that predict the chromatin state assignment of each sample given
the state maps from all other samples. The difference of CSREP’s probability assignments for two

groups can be used to identify genomic locations with differential chromatin state assignments.

Using groups of chromatin state maps of a diverse set of cell and tissue types, we
demonstrate the advantages of using CSREP to summarize chromatin state maps and identify

biologically relevant differences between groups at a high resolution.

The CSREP source code is openly available at http://github.com/ernstlab/csrep.

Introduction
Genome-wide maps of chromatin marks such as histone modifications and variants

provide valuable information for annotating non-coding genome features (Barski et al., 2007;
Ernst et al., 2011; Zhu et al., 2013; Xie et al., 2013). Efforts by large consortia and individual labs
have produced chromatin state maps for many cell and tissue types (Roadmap Epigenomics
Consortium et al., 2015; ENCODE Project Consortium, 2012; Zhu et al., 2013; Xie et al., 2013).
A popular representation of such data is chromatin states defined by the combinatorial and spatial
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patterns of multiple marks, which are generated by methods such as ChromHMM and Segway
(Libbrecht et al., 2021; Ernst and Kellis, 2010, 2012; Hoffman et al., 2012), and correspond to
diverse classes of genomic elements including various types of enhancers and promoters.

Chromatin state maps have been produced for hundreds of different biological samples.
In many cases there are multiple samples representing similar cell and tissue types (Boix et al.,
2021; Roadmap Epigenomics Consortium et al., 2015). In such cases, to simplify analyses and
visualizations, it may be desirable to have a single chromatin state annotation that summarizes
the annotations for all samples in a pre-defined sample group of interest. A straightforward
approach to this task is to take the most frequent chromatin state assigned at each position across
samples in the group. However, when the number of samples in a group is small or the number
of states is large, such an approach can be particularly vulnerable to noise. Furthermore, such an
approach does not consider additional information available about the different chromatin states.
For example, if a location was assigned to three different states in three samples, the summary
annotation among these three states based on the frequency-based method would be arbitrary.
However, by leveraging information about the co-occurrence of state assignments genome-wide,
there is additional information to predict the most likely chromatin state annotation for a new
sample from the group.

A related challenge is to identify differences in chromatin state annotations between two
groups at a high resolution and on a per-state basis. Several methods have been developed for
comparing chromatin state annotations between groups of samples, but typically either work at a
coarse resolution, or do not identify differences on a per—chromatin-state basis. For instance,
ChromDiff (Yen and Kellis, 2015) presents a statistical testing framework to uncover pre-defined
broad regions such as gene bodies with significant differences for specific chromatin states across
the two groups, but was not specifically designed for detecting differences at the resolution of the
chromatin state annotations. EpiAlign (Ge et al., 2019) scores the alignment patterns between

two user-input sequences of chromatin state annotations in two samples, hence is also most
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applicable for comparing broad domains that encompass multiple chromatin state segments.
Another method, chromswitch (Jessa and Kleinman, 2018) also offers a framework to score the
differential chromatin state annotations within broader user-specified input genomic locus, and is
not designed for detecting chromatin state differences genome-wide at the same resolution of the
annotations. EpiCompare (He and Wang, 2017) is primarily a webtool that can be used for
detecting cell-type-specific chromatin state differences in terms of enhancer or promoter states,
but does not support detecting differences for individual states or other types of chromatin
states. SCIDDO (Ebert and Schulz, 2021) conducts fast genome-wide detection of differential
chromatin domains between two groups of samples while incorporating a measure of similarity
among states. However, as SCIDDO provides a single differential score per position, it does not
directly answer the question of which chromatin states change at each genomic position. Another
method, dPCA (Ji et al., 2013), works directly on chromatin mark signals and does not quantify
state differences across groups of samples.

To effectively summarize the chromatin state annotations for a group of samples and
prioritize the chromatin state differences between two groups on a per-state basis, at high
resolution, we introduce CSREP. CSREP leverages both the information about the input samples’
chromatin states at a position, as well as information of states’ co-occurrences in different
samples within the same group across the genome. CSREP does this by first generating
probabilistic estimates of chromatin state annotations to summarize a group of samples using an
ensemble of multi-class logistic regression classifiers. These classifiers predict the state
assignment in a sample at a position, given the annotations in other samples at the corresponding
genomic position. From those predictions, CSREP is then able to produce a single summary state
assignment per position. Furthermore, CSREP can use the difference of summary probabilistic
predictions for two groups of samples to quantify the difference in state assignments between the
two groups on a per-state basis, e.g. one genome-wide score track per chromatin state. CSREP’s

ability to summarize chromatin states for a group of samples beyond simple counting is a unique
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feature of CSREP relative to existing methods for detecting differential chromatin states or
domains mentioned above. CSREP is also distinguished from these existing methods by a
combination of (1) considering differential chromatin state annotations at the resolution of the
input annotations instead of over broad domains, (2) generating outputs genome-wide instead of
at user-specified loci, and (3) providing state-specific and directionally meaningful scores for all
states.

Using CSREP, we generate the summary chromatin state maps for 11 groups of
tissue/cell types from Roadmap Epigenomics Project (Roadmap Epigenomics Consortium et al.,
2015), and for 75 groups from the EpiMap Portal (Boix et al., 2021), which can be easily viewed
on genome browsers (Data Availability). We show that CSREP can better predict chromatin
state assignments in held-out samples than a counting-based baseline method. We also verify
that the resulting summary chromatin maps show correspondence with the group’s average gene
expression profile. Additionally, we show that CSREP’s differential scores can recover differential
epigenetic signals on chromosome X between Male and Female samples. We also show that
CSREP differential scores between samples from two different tissue groups can predict regions
of differential peaks for various chromatin marks. The CSREP implementation is designed to be
user-friendly and includes a detailed tutorial, available at https://github.com/ernstlab/csrep. We
expect CSREP will be a useful tool for summarizing chromatin state maps within groups and
finding differences across groups. Additionally, we expect the summary annotations for different
tissue groups that we generated with CSREP to be a useful resource.

Results
CSREP method overview

CSREP takes as input chromatin state maps for a group of samples learned in such a way
that annotations for different samples have an internally-consistent set of defined chromatin states
(Ernst and Kellis, 2010, 2012). We note that the input is presented in BED file format, with each

file containing the chromatin state map for one sample. CSREP then generates as output (1) a
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summary probabilistic chromatin state assignment matrix and (2) a summary state map track for
the group. The summary state assignment matrix represents the probabilities of each state being
present at each genomic position in a new sample of that group. To generate these, CSREP takes
a supervised learning approach, leveraging information about the co-occurrence of states from
the different samples across the genome. Specifically, for each group of input samples, CSREP
trains an ensemble of N multi-class logistic regression classifiers (Hastie et al., 2009), where N is
the number of samples in the group, to generate probabilistic predictions for each chromatin state
at each position (Fig. 4.1A, Methods). We used multi-class logistic regression classifiers since
they provide well calibrated probabilities, are robust, and relatively fast to train. Each classifier is
trained with /abels based on the chromatin state assignments from one sample and features
based on the chromatin states in other samples for the same genomic positions. Each classifier
then makes a probabilistic prediction of the chromatin state assigned at each genomic position in
the target sample. The chromatin state input features to each logistic regression classifier are
represented with a one-hot-encoding of the chromatin states. The classifiers are trained on
randomly selected genomic positions that constitute 10% of the genome, while the predictions
are calculated genome-wide. The resolution of predictions is the same as that of input samples’
chromatin state maps (200bp with default settings for ChromHMM). The prediction results for
each sample’s chromatin state map are represented in a matrix with rows corresponding to
genomic positions and columns chromatin states. The values in each row sum to 1, representing
the probabilities of state assignments at a genomic position. The probabilistic summary of a group
is based on averaging the prediction output matrices for each sample in the group. These
probabilistic predictions are then used to generate a summary chromatin state map for the group
of samples by assigning the state with maximum assignment probability to each genomic position
(Fig. 4.1A, Methods).

CSREP’s summary probabilistic predictions can be directly used to generate differential

chromatin state maps for two groups with multiple samples, where the input samples from both
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groups share the same internally-consistent set of defined chromatin states. This is achieved by
subtracting the summary chromatin state assignment matrices of one group (first group) from the
other’s (second group) (Fig. 4.1B, Methods). At each genomic position, CSREP’s chromatin
differential scores for individual chromatin states are bounded between -1 and 1. A score of 1 for
state S means state S was predicted to be the annotation for the first and second groups with
probability 1 and 0, respectively, and vice versa for -1 (Fig. 4.1B, C, Supplementary Figure 4.1).
Overall, in addition to summarizing the state assignments for groups of samples, CSREP can
calculate scores of differential chromatin state assignments for pairs of groups at the resolution
of the input chromatin state maps.

CSRERP is predictive of chromatin states on held-out samples

We applied CSREP to a compendium of 18-state chromatin state maps for 64 samples
(reference epigenomes) from 11 tissue groups generated by the Roadmap Epigenomics Project
(Roadmap Epigenomics Consortium et al., 2015). The tissue groups include embryonic stem cells
(ESCs), induced pluripotent stem cells (iPSC), ESC-derived cells, blood & T-cells, HSC & B-cells,
epithelial, brain, muscle, heart, smooth muscle and digestive. The numbers of input samples for
each tissue group range from 3 to 12 (Supplementary Data 4.1). We provide CSREP’s genome-
wide summary probabilistic and state assignments for the 11 tissue groups (Data
availability). Given our computing configuration, the run-time for CSREP to jointly preprocess
input data for all 64 samples was ~40 minutes, and then the time to output the predictions for
each group ranged from ~1 to 3 hours (Supplementary Figure 4.2, Methods).

We first visualized CSREP’s summary chromatin state maps for groups of samples from
digestive and heart tissue groups, which have 10 and 3 samples, respectively (Fig. 4.2A,
Supplementary Figure 4.3-6). We arbitrarily selected four 500-kb regions and for each group,
and visualized the input chromatin state maps and CSREP’s output probabilistic state estimates
and summary state map at such genomic windows. We observed expected correspondences

between the groups’ input and output chromatin state assignment estimates (Fig. 4.2A,
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Supplementary Figure 4.3-6). We also visualized CSREP’s summary chromatin state maps at
the loci of two genes that had distinctly higher expression in Digestive and Brain cell types,
LGALS4 and MT3, respectively, which highlighted the corresponding groups’ differences in the
summary chromatin state maps (GTEx Consortium, 2020) (Supplementary Figure 4.7-9).

To quantitatively evaluate CSREP’s summary output for a group of samples, we evaluated
the accuracy of CSREP’s summary probabilistic chromatin state predictions in a leave-one-out
cross-validation analysis. In particular, for each chromatin state, we calculated Area Under the
Receiver Operating Characteristic curve (AUROC) for predicting genomic locations assigned to
the state in a held-out sample, based on the summary chromatin state maps generated from data
in other samples from the group (Methods). We compared the performance of CSREP against a
baseline method, denoted base_count (short for counting-based baseline method), which counts
each state’s frequency across input samples at each genomic position (Methods).

CSREP showed strong predictive performance for chromatin states in left-out samples
with average AUROCSs across 64 samples varying from 0.871 to 0.993 for the 18 states. Across
the 18 states, CSREP consistently had better AUROC in recovering individual states compared
to the baseline method base_count (Fig. 4.2B). The average AUROC improvements by CSREP
compared to base_count ranged from 0.003 (for state 18_Quies) to 0.157 (for state 4_ TssFInkD).
Larger performance improvements by CSREP relative to base_count were observed for all
chromatin states when there are fewer input samples in the group (Supplementary Figure 4.10).
CSREP summary chromatin state maps’ association with gene expression

Transcription start sites (TSS) are marked by various histone modifications and variants
that can correlate with transcription (Kimura, 2013; Soboleva et al., 2014). Here, we evaluated
how CSREP’s summary state map for a tissue group is predictive of the group’s gene expression
profiles at TSS of genes. First, we obtained gene expression data for available samples for the
11 tissue groups as above and calculated the average protein-coding gene expression for each

group (Methods). Of the 11 groups, 8 had gene expression data available for at least one sample
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(Methods). We then calculated the Spearman correlation between (1) the group’s average
expression for protein coding genes and (2) CSREP’s summary state assignment probabilities for
state 1_TssA (active TSS state) at the corresponding genes’ TSSs. We did the same evaluation
for base_count. CSREP had significantly higher correlations than base_count (Fig. 4.2C, paired
t-test p-value < 0.0062, average 0.65 vs. 0.59, Methods). We next extended this analysis for a
larger dataset for 552 samples in 75 groups from EpiMap repository based on state 1_TssA from
the same 18-state annotations (Boix et al., 2021) (Methods). The 75 groups were previously
formed based on tissue types and developmental stages with the number of samples per group
ranging from 3 to 38 (Methods, Supplementary Data 4.1). Of the 75 groups, 65 also had gene
expression data available for at least one sample. Across these 65 groups, again CSREP had
significantly higher correlations than base_count (Fig. 4.2C, paired t-test p-val < 2.2e-16, average
0.63 vs. 0.59, Methods). Overall, CSREP’s summary chromatin state maps at TSS for the TssA
state show significantly higher correspondence with gene expression levels compared to the
base_count method.
CSREP detects differential chromatin regions associated with different sexes

We next investigated the performance of CSREP at identifying biologically meaningful
chromatin state changes between groups of Male and Female samples based on its ability to
prioritize chromatin state differences on chromosome X (chrX) relative to autosomal
chromosomes. Specifically, we applied CSREP to calculate differential chromatin state
scores between 25 Female and 44 Male samples from Roadmap Epigenomics (Methods) (Yen
and Kellis, 2015; Ge et al., 2019) by subtracting CSREP’s summary state probability matrix for
the Female samples from the corresponding matrix for the Male samples.

We analyzed CSREP’s differential scores for all chromatin states across autosomal
chromosomes and chrX (Fig. 4.3A, Supplementary Figure 4.11-12). Three states with the
largest magnitude of difference in mean Male-Female differential scores between chrX and

autosomes were states 13_Het (heterochromatin, marked by H3K9me3), 17_ReprPCWk (weak
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polycomb repressive complex) and 18_Quies (quiescent). In contrast, active promoter/enhancer
states showed minimal difference in the distribution of Male-Female differential scores for chrX
vs. autosomes (Fig. 4.3A, Supplementary Figure 4.11-12). In chrX, compared to autosomal
chromosomes, the distribution of differential scores for states 13_Het and 17_ReprPCWk showed
a larger tail of negative values. ChrX’s average score minus the autosomes’ average score values
for states 13_Het and 17_ReprPCWk were -0.039 and -0.054, respectively (Supplementary
Figure 4.12), implying that on chrX, Female samples are more often assigned to these states
compared to Male samples. State 18 _Quies showed the opposite trend with a difference of 0.11
(Fig. 4.3A, Supplementary Figure 4.12). These results are consistent with sex-specific chrX
inactivation, which is used in Female mammals to achieve dosage compensation between the
two sexes (Wutz, 2011; Yen and Kellis, 2015).

We next compared the performance of CSREP and other methods in recovering
annotated transcription start sites (TSSs) on chrX, using the above-mentioned states, given
varying numbers of input samples (Methods, Fig. 4.3B). To do this, we randomly selected 30
subsets of size n Male and n Female samples from the set of available 44 Male and 25 Female
samples, where n is varied within the set of 3, 5, 9, 12 or 15 samples. Given each set of input
Male and Female samples, we calculated the AUROC when using differential chromatin scores
between Male and Female groups to predict locations overlapping annotated TSSs on chrX,
against the background of those overlapping all annotated TSSs in the genome (Methods). The
methods we compared CSREP against include SCIDDO, the count difference from base_count,
the Mann-Whitney U test (used by ChromDiff (Yen and Kellis, 2015)), and the Fisher’s exact test
(used by EpiCompare (He and Wang, 2017)) (Methods). The Mann-Whitney U and Fisher’s exact
tests were applied at each genomic position, using two sample groups’ chromatin state
annotations at the respective position. We considered other related methods for detecting
differential chromatin domains not appropriate for direct comparison against CSREP (Methods).

We observed that CSREP showed the largest advantage over other methods, as measured by
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AUROCs, when the number of input samples from Male and Female groups is relatively small,
e.g. 3 samples in each group (Fig. 4.3B). As the number of input samples from each group
increases sufficiently, the overall performance advantage of CSREP relative to base_count,
Mann-Whitney U test and Fisher's exact test goes away. In all cases, CSREP showed better
performance compared to SCIDDO (Ebert and Schulz, 2021) (Fig. 4.3B). Overall, CSREP
showed the clearest advantage over other approaches when the number of samples is relatively
small, which occurs frequently in practice.

CSRERP differential scores recover differential chromatin mark peaks

We next analyzed how well CSREP’s, base-count’s and SCIDDQ’s differential chromatin
state scores can predict genomic regions overlapping differential signals of DNase |
hypersensitivity (DNase), H3K9ac and H3K27ac between samples from embryonic stem cell
(ESC) and brain. DNase and H3K9ac signals were not used for learning the 18-state model used
to annotate the two groups’ input samples, providing an independent validation. While H3K27ac
was used in learning the input chromatin state maps, since all the methods being compared
(CSREP, base_count, SCIDDO, Mann-Whitney U test based on ChromDiff and Fisher’'s exact
test based on EpiCompare) had access to the same chromatin state maps as input, and H3K27ac
is a well-established mark of cell-type specific activity (Creyghton et al., 2010), we still considered
H3K27ac in the evaluations of methods’ performance.

For each of the three chromatin marks, we first obtained a set of bases that overlap with
peaks in all samples from ESC but not in any from the Brain group and vice versa (Methods,
Supplementary Data 4.1). We then calculated CSREP and base_count differential chromatin
scores by subtracting the summary chromatin state map of Brain from that of the ESC. Additionally,
we applied SCIDDO, Mann-Whitney U test (ChromDiff's approach) and Fisher's Exact test
(EpiCompare’s approach) to the same set of input data (Methods). We evaluated, in terms of
AUROC, how well the methods prioritize regions overlapping bases in the ESC-/brain-specific

sets of peaks (Methods). For CSREP, base_count, Mann-Whitney U test and Fisher’s exact test,
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we conducted separate evaluations for each chromatin state, but did not for SCIDDO since it
outputs one score track that measures the overall difference across the chromatin state landscape
between the two groups.

Across the different marks and groups (ESC-specific or Brain-specific peaks) we
evaluated, CSREP’s differential scores from either promoter- or enhancer- associated states
result in the highest AUROCSs, with few exceptions (Fig. 4.4, Supplementary Figure 4.13). For
example, for identifying Brain-specific H3K9ac peaks, CSREP had an AUROC of 0.717 based on
the evaluation with state 9 _EnhA1, an active enhancer state, while the maximum AUROCs
achieved for base_count, Mann-Whitney U test, Fisher's exact test and SCIDDO were 0.617,
0.636, 0.601 and 0.564, respectively. In total across the six evaluations, among the top-3 highest
AUROCs per evaluation, 15 of the 18 AUROCs were based on CSREP’s differential scores for
individual chromatin states (Fig. 4.4). The AUROCs for states not usually associated with these
marks (transcription, heterochromatin, repeats/ZNF gene, quiescent, polycomb repressed states)
tended to be near 0.5 or in some cases lower (Supplementary Figure 4.13). These analyses
suggest that CSREP differential scores tended to better correspond to locations of individual mark
differences between two groups of samples genome-wide, compared to other approaches. Even
though SCIDDO incorporated a measure of dissimilarity among states, it showed lower AUROCs
compared to the maximum obtained by CSREP. This is potentially because SCIDDO outputs one
score per genomic bin to measure the general difference across all states, while CSREP
generates state-specific scores. Hence, CSREP should have better power to predict regions
associated with differential signals of marks that are present in only specific states (e.g., H3K27ac
is present in enhancer states but not in repressive states). Additionally, this may also be because
CSREP produces scores that show the direction of differences (with positive/negative scores
implying one group’s higher state assignment probabilities compared to the other’s) while

SCIDDO'’s scores do not have a specific direction associated with them.
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Discussion
Here, we proposed CSREP, a method for probabilistically summarizing the chromatin

state maps from a group of samples. CSREP achieves this by training multi-class logistic
regression models to predict the chromatin state annotations of one sample using data from
others, and then averaging the prediction probabilities across all samples in the group. CSREP
outputs the probabilities of each chromatin state being assigned to each genomic position, at the
same resolution that chromatin states are annotated. We applied CSREP to generate summary
18-state chromatin state assignment probability matrices for 11 groups of cell and tissue types
from Roadmap Epigenomics Project (Roadmap Epigenomics Consortium et al., 2015), and 75
groups of samples stratified by cell and tissue types and developmental phases from EpiMap
(Boix et al., 2021), and have made them publicly available (Data Availability, Supplementary
Data 4.1).

Our analyses reveal that CSREP’s probabilistic summary of state assignments better
predicts the chromatin states of held out samples compared to the counting-based baseline
approach. We also showed that CSREP’s summary assignment probabilities of state 1_TssA at
TSS were well correlated with the average gene expression of the group, and significantly higher
than those achieved by the counting-based baseline.

CSREP can also be used to directly quantify the difference in chromatin state maps
between two groups with multiple samples, at the resolution of the input annotations. CSREP
produces differential scores for each chromatin state at each genomic position, which represent
the difference in probabilities that samples from two input groups are assigned to each specific
state. Therefore, CSREP differential scores are bounded (-1 to 1), interpretable with respect to
specific chromatin state changes, and indicative of the direction of change, which contrasts it with
other approaches that provide a single score showing magnitude of difference per genomic
position. We used CSREP to compare the chromatin state annotations between Male and Female

samples from Roadmap Epigenomics (Roadmap Epigenomics Consortium et al., 2015), and
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showed that CSREP can better predict regions overlapping genes’ TSS on chrX, particularly when
there are few samples in each group. CSREP’s differential scores for states associated with active
enhancers and promoters  better  recovered tissue-group-specific  peaks  of
DNase/H3K27ac/H3K9ac signals compared to alternative approaches, suggesting that CSREP
provides useful additional information for analyzing epigenomic changes across tissue types.

Here, we presented applications of CSREP on samples that were grouped based on cell
and tissue types and based on sex. In general, CSREP assumes the dominant signal of any
variation between groups is associated with the grouping variable of interest. In cases in which
the experimental design used to collect the data cannot ensure this, other known covariates can
be used to detect if there are potential confounders.

CSREP works directly off of chromatin state annotations, which makes CSREP agnostic
to the specific methods used to produce those annotations. Some methods for learning chromatin
state annotations have the option to expose posterior probability estimates of annotations.
However, in general it is not clear how well calibrated those estimates will be, and assuming
accurately determined posterior probability estimates are available as input would also make
CSREP less generally applicable. A possible direction for future work would be to extend CSREP
to make use of posteriors or possibly other information that CSREP does not directly consider,
such as the individual mark signal in each sample.

We note that CSREP’s summary chromatin state maps offer complementary benefits to
the recently developed universal chromatin state annotation, which provides a single integrative
annotation of the genome based on a model defined from over a 1000 epigenomic datasets from
over 100 cell and tissue types (denoted the full-stack model) (Vu and Ernst, 2022). The full-stack
model jointly captures activity across many diverse cell and tissue types and hence can capture
annotations corresponding to both constitutive and cell-type-specific activities (Supplementary
Figure 4.1). CSREP, on the other hand, provides a more direct and focused chromatin state

annotation representative specifically of the individual input samples’ annotations.
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To facilitate the use of CSREP, we provide an implementation of CSREP as a snakemake
pipeline (Mdlder et al., 2021; Késter and Rahmann, 2012) with a detailed tutorial that only requires
users to modify parameters in a yaml file. The program can be run either on local computers or
on computing clusters, in which case snakemake will optimize the workflow for execution.

We expect CSREP to be a useful tool and the CSREP output we provided to be a valuable
resource for summarizing chromatin state maps from groups of samples, and for prioritizing

regions with differential chromatin state changes across pairs of groups of samples.
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Methods
CSREP’s summarization of a group of samples

Let G denote the number of genomic bins across the genome, S the number of chromatin
states, and N the number of samples in the target group of samples. Let C; ,, denote the chromatin
state assigned to sample n at genomic position i, which can take one value of 1,2,...,S. Let N,
denote the set of samples not including n, i.e. N, ={1,..., N} — {n}. In general, CSREP is an
ensemble of N multi-class logistic regression classifiers such that for each sample n, CSREP
trains a classifier to predict the chromatin state map of this sample based on features from the
remaining samples (N, ). The predictor variables for such a model include one-hot encoding
chromatin state maps of the N — 1 samples (all samples in the group except n) and an intercept
term, resulting in (N — 1) X S + 1 predictor variables. The response variable is the chromatin state
of the target sample n, which can take one value of 1, 2,...,S.

In the multi-class logistic regression model, let X; denote the vector of predictor variables
at position i, which has length (N — 1) x S + 1 and takes values {0,1}. The last entry of X; is 1,
corresponding to the intercept term. Let Y; denote the value of the response variable at position i,
which takes values {1,2,..., S}. Since the input chromatin state maps that we used segmented the
genome into 200-bp bins, we refer to each genomic position as one 200-bp window in the genome.
We randomly selected genomic positions for the training data set, such that these positions
constitute 10% of the genome. We chose 10% as the training proportion because increasing this
parameter does not result in considerable increase in model accuracy at the cost of increased
runtime (Supplementary Figure 4.14). Given the training data set, for each state s € {1, ..., S —
1}, the multi-class logistic regression model learns a coefficient vector B; with length
(N —1) xS + 1, corresponding to the number of predictor variables. The probability of sample n’s

chromatin state s being assigned at position i is then calculated as:
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The model is implemented using Python’s sklearn, pybedtools package and snakemake
(Dale et al., 2011; Quinlan and Hall, 2010; Mdlder et al., 2021; Késter and Rahmann, 2012). A
L2-norm penalty with the default regularization strength of 1.0 was used for training. CSREP
applies the model to generate predictions of genome-wide probabilistic chromatin state map for
sample n, which is presented in a matrix of size G x S. The output matrices from N predictions
for N samples are then averaged, so at each genomic bin, the sum of state assignment
probabilities across S states is 1. In addition, the chromatin state with the maximum probability in
each row is recorded to produce a single representative chromatin state map for the entire group
of samples.
CSREP'’s application to prioritizing differential chromatin state changes between two groups of
samples

To calculate differential chromatin state maps between two groups of samples, group1
and group2, CSREP first calculates the probabilistic chromatin state map matrices for each group
as described above, denoted as R, and R,, respectively. After this, CSREP subtracts the two
matrices to represent the differential chromatin state map between group1 and group2 (denoted
D;,), i.e.D;; = R; — R,. We note that we used signed and not absolute difference here and
thus the score ranges from -1 to 1. A score on row i and column s of D;,, denoted D, ; 5, being -
1 means group2 is estimated to have probability 1 of being assigned to state s at position i while
group1 has probability of 0. Additionally, since CSREP assigns S scores of differential chromatin
maps to each genomic position i, corresponding to S states, CSREP can uncover specific
chromatin state changes. For example, if D;,; = 0.8 when s = 1 while Dy, ;s = —0.8 when s =
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2, we can infer that at position i, group1 is likely to be in state 1 while group2 is likely to be in state

2.

Primary data sources

We analyzed genome-wide 18-state chromatin state annotation for 64 reference
epigenomes from the Roadmap Epigenomic Project Portal (Roadmap Epigenomics Consortium
et al., 2015) and 552 from the EpiMap portal (Boix et al., 2021). We will refer to each reference
epigenome as a sample. State annotation data for samples from Roadmap Epigenomics and
EpiMap were in hg19. The 18-state model was shared between Roadmap Epigenomics and
EpiMap, and was trained based on data of 6 chromatin marks: H3K4me1, H3K4me3, H3K27ac,
H3K27me3, H3K36me3 and H3K9me3. We assigned 64 samples from Roadmap Epigenomics
into 11 groups based on the accompanying metadata’s tissue group labels. These groups include
Blood & T-cell, Brain, Digestive, embryonic stem cells (ESC), ES-deriv, Heart, induced pluripotent
stem cells (iPSC), Muscle, Skin, smooth muscle (Sm_Muscle) and HSC & B-cell. We assigned
the biosamples from EpiMap into 75 distinct groups based on the metadata corresponding to
unique combination of: extended biosample summary (tissue and sub-tissue types) and life stage
(adult or embryonic, any biosamples with samples of unknown life stage filtered out from the
analyses). We only analyzed groups of samples from EpiMap with at least 3 biosamples. Among
sample groups from Roadmap Epigenomics, the number of samples per group ranged from 3 to
12, while the corresponding range for samples from EpiMap is 3 to 38. Details about the samples’

ID, groups and other metadata are provided in Supplementary Data 4.1.

Using CSREP, we generated summary chromatin state maps for chromosomes 1-22 and
X for the 11 groups from Roadmap Epigenomics and 75 groups from EpiMap using input data in
hg19. We ran CSREP on a high-performance compute cluster where each job was allocated 4
cores with 4 GB of memory per core. The run-time for CSREP to jointly preprocess input data for

all 64 samples from Roadmap Epigenomics was ~40 minutes, and then the time to output the
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predictions for each group ranged from ~1 to 3 hours (Supplementary Figure 4.2, Methods).
We then used liftOver from the UCSC genome browser to lift the summary state maps for all
groups from either Roadmap Epigenomics or EpiMap from hg19 to hg38. This procedure first
finds a one-to-one mapping for a subset of 200-bins between hg19 and hg38, i.e. if there are
multiple bins from hg19 that got mapped to the same bin in hg38, those bins would not be included
into the annotations. Then, we map both the state assignment probabilities and the summary
state annotations for each bin in hg19 to the corresponding bin in hg38. Source code for the

liftOver procedure, along with a detailed tutorial, is provided at https://github.com/ernstlab/csrep.

Evaluation of CSREP in representing a group’s chromatin state maps

We evaluated CSREP and an alternative baseline approach called base_count (defined
below) for predicting representative chromatin state maps. We conducted this evaluation through
a leave-one-out cross validation framework. Given a group with N samples, for each sample
indexed n, we evaluated the prediction of chromatin state map for sample n when the state maps
of the other N — 1 samples were used as the input for generating the predictions. For these
evaluations we used the data for the 64 samples from the 11 tissue groups from the Roadmap

Epigenomics Project (Roadmap Epigenomics Consortium et al., 2015) described above.

Base_count method: Let C,;; = 1 if in sample n, at genomic position i, the
observed chromatin state is s, and C,;; = 0 otherwise. The base_count approach
represents the group’s chromatin state map by calculating the frequency of state s being

assigned at the i position (BC;s) across the samples. In particular:

Zgz 1 Cnis
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where N is the number of samples. Similar to CSREP, the output matrix for base_count

method is of size G x S, with the sum of values in each row being 1, where G and S
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represent the number of genomic bins and the number of states, as explained in the main

Methods.

Calculating the ROC curves of prediction for a single chromatin state’s
location: In each round of cross-validation, one sample with index n is held-out. We then
used CSREP and base_count to get the summary probabilistic chromatin state map for
the group using input data from the remaining N — 1 samples. For each state s, CSREP
and base_count output the summary probability that each 200-bp genomic bin gets
assigned to the state s. We divided the [0,1] probability range into 500 equal-width
windows with lower bounds [ € {0,0.002, ...,0.998}. Within each probability window, any
genomic positions with assignment probability for the state s being no less than the
window lower bound (I) will be predicted as being in state s for sample n. Given the true
chromatin state map in sample n, we then calculated the cumulative true positive rates
and false positive rates of the prediction at each probability threshold [ to obtain the ROC

curve. This analysis is repeated for each chromatin state, resulting in S ROC curves.

Evaluating CSREP’s summary chromatin state maps’ association with gene expression

We obtained gene expression data from the Roadmap Epigenomics Consortium
(Roadmap Epigenomics Consortium et al., 2015), which was available as a matrix of values in
RPKM (reads per kilobase million) for genes in a subset of the samples from
https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/57epigenomes.RPKM.pc.gz.

We  obtained the accompanying gene annotation information  from
https://egg2.wustl.edu/roadmap/data/byDataType/rna/expression/Ensembl_v65.Gencode_v10.E
NSG.gene_info.gz.

We filtered out genes that were not annotated as protein-coding, then transformed the
gene expression matrix by adding a pseudo-count of 1 to the RPKM counts, and finally log-

transformed the resulting values. We also only included genes that were on chromosomes 1-22
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and X in hg19 for this analysis, resulting in 20,787 distinct TSSs whose associated gene
expression was available. For each of the 11 groups of samples in Roadmap Epigenomics, we
obtained the group’s average gene expression profile by averaging over the gene expression
values across all available samples in the group, i.e. samples that are both in the group and
among the samples whose expression data was available. Among the 11 groups, 8 groups (all
except for groups HSC & B-cell, iPSC and Sm_Muscle) had available gene expression data from
the available samples. We then calculated the Spearman correlation of the summary chromatin
state assignment probabilities for the 1_TssA state at positions that overlap with the 20,787
annotated TSSs and their corresponding average gene expression for each group.

For EpiMap, we obtained data of quantile-normalized protein coding genes’ expression
from

https://personal.broadinstitute.org/cboix/epimap/rnaseq data/merged gn log2fpkm.pc.mtx.gz,

which is available as values in log2(FPKM), along with data of samples’ ID and genes’ Ensembl
ID. We utilized the same genes’ annotation information as provided by Roadmap Epigenomics,
and only included protein-coding genes on chromosomes 1-22 and X in hg19. This resulted in
18,543 distinct TSSs whose associated gene expression was available from EpiMap. Among the
75 groups, 10 groups (SMTH.Digestive, HSC.MPP, EYE.EMB, EPTH.BREAST.EPITH,
CA.UCEC, CA.RCC, CA.MYELOMA, BRN.EMB.BRN, BRN.CAUD.NUC, BONE.EMB) had no
available gene expression data. We followed the same procedure mentioned above for the
remaining 65 groups to obtain the Spearman correlation between a group’s average gene
expression and summary state assignment probabilities for the 1_TssA state.

We used a paired t-test to compare the correlations resulting from CSREP against those
from base_count, with the alternative hypothesis that CSREP’s correlations with gene expression
are higher than base_count’s.

Applications of existing methods for detection of differential chromatin state domains across two

sample groups
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In this section, we denote a chromatin state as the learned states that represents the
combinatorial patterns of chromatin mark signals, outputted by methods such as ChromHMM and
Segway (Libbrecht et al., 2021, Ernst and Kellis, 2010, 2012, Hoffman et al., 2012). A chromatin
state annotation then denotes the assignment of chromatin states (e.g. active promoter,
enhancer, quiescent states, etc.) to each genomic bin (or equivalently, genomic position), which
are outputted by methods that discover chromatin states and conduct genome segmentation and
annotation (e.g. ChromHMM and Segway) (Libbrecht et al., 2021, Ernst and Kellis, 2010, 2012,
Hoffman et al., 2012). Additionally, a genomic region or domain denotes a window along the
genome that can span one or multiple genomic bins for which the chromatin state segmentation
and annotation is defined. We note that CSREP is designed to output one differential score with
respect to each chromatin state s at each genomic bin i. CSREP generates output genome-wide
instead of at specific user-defined genomic region. The output of CSREP, therefore, is a matrix
of size G x S, where S denotes the total number of chromatin states and G denotes the total
number of bins in the genome.

Similar to CSREP, the difference between base_count’s summary chromatin state maps
for two groups of samples can be used to calculate the base_count’s differential chromatin scores
to compare against those generated by CSREP. In addition, we compared CSREP’s differential
chromatin state scores to three additional differential scores based on the approaches used from
existing methods: SCIDDO, ChromDiff, and EpiCompare (Ebert and Schulz, 2021; Yen and Kellis,
2015; He and Wang, 2017) (see below). We decided not to apply EpiAlign or chromSwitch to
compare against CSREP since these methods are intended for cases where users are interested
in measuring the differential chromatin state maps at a particular broad region of the genome
(spanning multiple bins of chromatin state assignments) (Ge et al., 2019; Jessa and Kleinman,
2018). Meanwhile, CSREP scores the genome-wide differential chromatin state maps at the same
resolution as the input annotations (e.g. 200bp bins here). We did not compare CSREP against

dPCA (Ji et al., 2013) since it aims at scoring genomic regions’ differential epigenetic patterns
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directly from the chromatin signal data, while CSREP aims to uncover differential chromatin

domains from input chromatin state maps.

SCIDDO: To run SCIDDO, we followed the tutorial provided by the author on
Github  https://github.com/ptrebert/sciddo/blob/master/testdata/tutorial.md (Ebert and
Schulz, 2021), and generated a list of differential chromatin domains between two
conditions, where each domain can be one genomic bin of chromatin state (200-bp bin)
or multiple bins. SCIDDO’s output contained overlapping differential chromatin domains
with different values of SCIDDO scores. For each genomic bin, we averaged the SCIDDO
differential scores across overlapping differential chromatin domains, and assigned 0 to
genomic bins not reported in SCIDDO’s output, implying no differential signals in
chromatin states between the two groups.

ChromDiff: ChromDiff's provided implementation is specifically designed to
calculate differential scores for annotated genes (Yen and Kellis, 2015). Therefore, we
could not directly use ChromDiff software to obtain differential scores at the same
resolution as CSREP (200bp in all presented analyses). Instead, we directly implemented
the same statistical test as used in the ChromDiff paper, the Mann-Whitney U-test, to
determine differences in the number of samples from each group being annotated as a
state s at each genomic position i (Yen and Kellis, 2015). For example, if 3 out of 5
samples in group 1 and 0 out of 7 samples in group 2 are annotated as state s at position
i, then we applied the Mann-Whitney U test with two input vectors [1,1,1,0,0] and
[0,0,0,0,0,0,0] for state s at position i. The test was implemented using Python’s scipy
package, and the alternative hypothesis (one-sided vs. two-sided test) was set based on
the analysis purpose (see sections below about evaluating CSREP’s differential scores in
various analyses). The statistical test’s output p-values of 1.0 imply no difference and of

0.0 imply highest difference between two groups. We converted such p-values into
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differential score by the function score = 1 — p,414e, SO that the scores are bounded [0,1],
with higher value implies more differences across the two groups. The output of ChromDiff
is a matrix of size G x S, where G is the total number of genomic bins, and S is the number
of chromatin states.

EpiCompare: As EpiCompare (He and Wang, 2017) only supports comparisons
of specific groups of states (enhancer and promoter state groups only), we could not
directly compare CSREP with EpiCompare. However, we did reimplement the Fisher’s
exact test, which is a statistical test supported by EpiCompare. Specifically, for each
genomic bin i and chromatin state s, a contingency table is constructed indicating the
number of samples from each group that are annotated as state s (or not as state s). We
then applied Fisher’s exact test using Python’s scipy package to evaluate the significance
of differential annotations between the two groups. The alternative hypothesis to the
Fisher's exact test was set based on the application purpose (see sections below about
evaluating CSREP’s differential scores in various analyses). The differential scores were
also obtained by the function score = 1 — p,414, 10 €nsure that higher scores imply higher

levels of difference across the two groups.

Evaluating CSREP'’s differential chromatin state maps between Male and Female groups in

recovering chromosome X- associated genomic regions

For evaluating chromatin state differences between Male and Female groups with respect

to chromosome X and autosomes, we obtained data for samples whose sex is annotated as either

Male or Female (not ‘Unknown’ or ‘Mixed’), according to the provided metadata for the samples

with 18-state chromatin state maps from Roadmap Epigenomic Project (Roadmap Epigenomics

Consortium et al., 2015). In total, there are 44 Male samples and 25 Female samples. We then

generated 30 sets of 3 male samples (randomly chosen from 44 Male samples) and 3 Female

samples (randomly chosen from 25 Female samples). We calculated the differential chromatin

scores for the 30 sets of samples using CSREP, base_count and SCIDDO, Mann-Whitney U test
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(based on ChromDiff) and Fisher’s exact test (based on EpiCompare) (see Applications of existing
methods for detection of differential chromatin state domains across two sample groups). For
each set of input samples from Male and Female groups, we used the two-sided statistical tests
for ChromDiff and EpiCompare, and obtained the absolute values of CSREP and base_count
differential chromatin scores. Then, we obtained a list of annotated TSSs for protein-coding genes
from the accompanying metadata of genes’ coordinates and strand provided by the Roadmap
Epigenomics project. For each set of 3 male and 3 Female samples, we obtained the differential
chromatin scores from each method, as outlined above, for regions that overlap these TSSs, and
divided the score range window into 100 equal-width bins. The score ranges from CSREP,
base_count, Mann-Whitney U test and Fisher's exact test is [0, 1] and from SCIDDO is
[0, maximum value]. We then applied the same procedure as outlined in the above section (titled
‘Calculating the ROC curves of prediction for a single chromatin state’s location’) to obtain true-
[false- positive rates and AUROC:s in predictions of TSS-overlapping regions on chromosome X,
among all genomic regions overlapping annotated TSSs on the autosomes and chrX. We
repeated the same analysis for a total of 30 sets of n male and n Female samples, withn €
{3,59,12,15}. We note that not all 30 rounds of application of SCIDDO to calculate differential
chromatin scores ran successfully, due to software failure. In particular, all applications of
SCIDDO with 30 input sets of 15 male and 15 Female samples (n = 15) failed. For such cases,

we report the average AUROCSs for only successful runs of SCIDDO (Fig. 4.3B).

Evaluating CSREP’s differential chromatin state map in recovering regions associated with
differential chromatin mark signals

To evaluate recovering differential chromatin mark signals, we first downloaded the
available broad peaks of DNase, H3K9ac and H3K27ac for samples from the ESC and Brain
groups from Roadmap Epigenomics Project at

https://egg2.wustl.edu/roadmap/data/byFile Type/peaks/consolidated/broadPeak. A full list of
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links to data used in this analysis is provided in Supplementary Data 4.1. For each of the three
chromatin marks and each cell group (ESC or Brain), we used bedtools intersect (Quinlan and
Hall, 2010) to obtain a set of peaks that are shared across all samples in the respective cell group.
We then used bedtools subtract function to derive peaks that are present in ESC samples and
missing in Brain samples, and vice versa. We treated these ESC-specific, Brain-specific
chromatin peaks as the ground-truth for this analysis. The number of base pairs overlapping
peaks for each group range from 2,735,377 bp (ESC-specific H3K9ac peaks) to 85,995,111 bp
(Brain-specific H3K27ac peaks) (Supplementary Data 4.1).

We generated differential chromatin state scores from CSREP and base_count for the
ESC and Brain groups for Roadmap Epigenomics, by subtracting their probabilistic chromatin
state predictions for Brain from those for ESC. We also applied the Mann-Whitney U test (based
on ChromDiff) and Fisher’s exact test (based on EpiCompare) for the two groups of samples for
each chromatin state (see section Applications of existing methods for detection of differential
chromatin state domains across two sample groups). For the task of predicting ESC-specific
peaks, Mann-Whitney U test (ChromDiff) and Fisher’s Exact test (EpiCompare) were applied such
that ESC samples were used as the foreground (first) sample set, and Brain samples as the
background (second) set. The foreground and background sample sets were reversed for the
task of predicting Brain-specific peaks. P-values were obtained from these two methods using
one-sided test, with the alternative hypothesis that a state s is more likely to be annotated at
position i in the foreground samples than in the background samples. The differential scores
Mann-Whitney U test (ChromDiff) and Fisher Exact test (EpiCompare) were converted as score =
1 —pValue, so that higher score (bounded in [0,1]) implies higher magnitude of difference
between the two groups of samples. The differential chromatin score matrices from CSREP,
base_count, Mann-Whitney U test (ChromDiff) and Fisher’s exact test (EpiCompare) methods are

of size G xS, and denoted Dcsrep, Dpcs Dyannw @nd Drisper, respectively, where Desrepis,
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Dgcis» Dyannw is» Drisneris denote the corresponding methods’ differential score for state s at
genomic position i, respectively. We also obtained SCIDDO scores, which measure genome-wide
differential chromatin patterns between the two groups. We denote the genome-wide SCIDDO
score vector as Dscippo, and Dscippo,; @s the score at genomic position i.

To use D¢srgp OF Dpc to calculate the ROC for genome-wide prediction of bases
associated with ESC-specific or Brain-specific chromatin marks’ peaks, we divided the score
range window [—1,1] into 200 equal-width bins with lower bounds ! € {—1,-0.99,...,0.99}. To
calculate ROCs for predicting bases in ESC-specific peaks, for each state s and each differential
score lower-bound [, we defined genomic positions where the differential scores for state s being
greater than or equal to [, denoted {i: D__; ; > l}. We compared such predictions with the ground-
truth peaks described above to obtain the true- and false-positive rates of prediction for state s.
To calculate ROCs for predicting bases associated with DNase/H3K9ac/H3K27ac Brain-specific
peaks, first, we reversed the sign of D.szgp and Dg., resulting in differential score matrices where
positive values for state s at position i implies that the respective position (i) has a higher
probability of being in state s in Brain compared to ESC. Then, we applied a similar procedure as
outlined above to calculate CSREP’s and base_count’s ROCs.

We applied a similar procedure as outlined above for CSREP and base_count to calculate
ROC curves based on Dy gnnw, Drisher @nd Dscippo, €Xcept using ranges of differential scores
other than [—1, 1]. For Mann-Whitney U test and Fischer’s exact test, the range was [0,1]. For
SCIDDO, the scores range was based on the observed minimum and maximum scores across
the genome. We then applied the same procedure as for CSREP and base_count scores in each
state to obtain the ROCs, as mentioned above.

Data availability
The summary chromatin state maps (the chromatin state assignment matrices and the

corresponding state annotation) for 11 tissue groups in Roadmap Project and 75 groups in

EpiMap Portal are available for download with links from https://github.com/emstlab/csrep, and
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can be viewed on UCSC Genome Browser with the track hub Ilink from

https://github.com/ernstlab/csrep. The summary state maps for samples in Roadmap

Epigenomics and EpiMap are provided for both hg38 and hg19.

Figures
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Figure 4. 1: Overview of CSREP.
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(A) CSREP uses an ensemble of multi-class logistic regression models. In each model, the
chromatin state map at the target sample is predicted based on the one-hot encoding of chromatin
state assignments at the corresponding genomic positions in other samples. Multi-class logistic
regression outputs the probabilities that each genomic position (row) in the target sample will be
assigned to each state (column). CSREP averages the prediction matrices for target samples, to
output the summary state assignment probability matrix. Sam.: sample; P(S; = s): probability that
genomic position i is annotated as state s. (B) The operations to obtain differential chromatin
state assignment scores between two groups with multiple samples. CSREP calculates the
summary chromatin state assignment matrices for two groups and then subtracts one group’s
summary matrix from the other’s to obtain differential chromatin scores. Differential chromatin
scores are bounded between -1 (brown) and 1 (blue). (C) Visualization of CSREP’s output in a
genomic region (hg19, chr5:156,012,600-156,022,400). The top of the subpanel shows the
CSREP’s summary chromatin state probabilities for 18 states across seven Brain reference
epigenomes. Each track shows the probabilities of assignment for one state, as named and
colored on the left. The middle subpanel shows the 18-state chromatin state maps for 7 Brain
samples and 5 ESC samples from Roadmap Epigenomics (Roadmap Epigenomics Consortium
et al., 2015), and the CSREP’s output summary chromatin state maps for each group, outlined in
black. States are colored as in legends at the left of this subpanel. The last subpanel shows the
differential chromatin scores when ESC’s summary state probabilities are subtracted from Brain’s.
Each track shows one state’s differential scores. Scores between 0 and 1 are colored black, while
those between -1 and 0 are colored grey. This region is also shown in an expanded format in

Supplementary Figure 4.1.
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Figure 4. 2: Performance of CSREP in summarizing multiple samples’ chromatin state
maps from a group.

(A) Visualization of one arbitrarily selected 500-kb region (chr5: 42,821,109-43,321,109, hg19).
The first 10 tracks show chromatin state maps of 10 samples of the Digestive group from the
Roadmap Epigenomics Consortium, which were input to CSREP. The following track shows the
summary chromatin state map from CSREP, which shows strong agreement with the input. States
are colored based on the legend on the lower left. In the following 18 tracks, each track shows
CSREP’s probabilities of assignment for each of 18 states, with the state annotations shown in

the legend on left.
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(B) Boxplots showing the CSREP and base_count methods’ average, range and 25, 75%
quantiles of the AUROCs across 64 samples, for each of the 18 chromatin states. The AUROCs
were calculated in leave-one-out cross validation analysis where we used a group’s summary
probabilistic chromatin state map to predict genomic locations of individual chromatin states in a
left-out sample from the same cell/tissue group (Methods). States 1-18 (x-axis) are annotated as
in (A).

(C) Boxplots showing the Spearman correlations between a group of samples’ (1) summary
probabilities of state 1_TssA (active TSS) at annotated TSSs, and (2) the corresponding group’s
average gene expression (Methods). We obtained the correlations for 8 groups of cell types from
the Roadmap Epigenomics Project, and 65 groups from EpiMap. Each dot shows the Spearman
correlation for data from a group of samples. Results of paired t-test to compare CSREP vs.
base_count’s output correlations are shown on top. The alternative hypothesis for the t-test is that

correlations resulted from CSREP are higher than those from base_count (Methods).
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Figure 4. 3: CSREP shows signals of differential chromatin state scores in chrX when
comparing Male and Female samples.

(A) Each subpanel shows the histogram of CSREP’s differential scores in autosomes and chrX,
for states associated with heterochromatin (13_Het), weak polycomb repressed domains
(17_ReprPCWKk), and quiescent regions (18_Quies), active transcription start site (1_TssA). The
x-axis shows differential scores, with positive values implying Male samples have higher
probabilities of being in the state compared to Female samples, and vice versa for negative values.
Histograms of scores for all states are in Supplementary Figure 4.11. (B) AUROCS of recovering
regions overlapping annotated TSSs on chrX, using differential chromatin scores of three states
as in (A), outputted by CSREP, base_count, SCIDDO, Mann-Whitney U test (based on ChromDiff)
and Fisher's Exact test (based on EpiCompare) for Male and Female groups (Methods). The
AUROCs based on Mann-Whitney U test showed close values with those based on base_count,
hence the plotted average AUROCs from these two methods were overlapping. We calculated
the AUROCSs using different sets of input Male and Female samples, with varying numbers of
samples in each group (x-axis). For each number of samples (x-axis), we conducted the analysis
for 30 sets of Male and Female input samples (Methods). The plots show the average (dots) and

standard deviation (error bars) of the AUROCSs across the 30 sets of input samples. SCIDDO did
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not successfully generate output for the case of 15 input samples, thus no results are reported for

that.

AUROC:s for predicting Brain-/ESC- specific peaks of chromatin marks
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Figure 4. 4: Evaluation of recovery of differential chromatin marks signals between ESC
and Brain.

The table shows AUROC:s for differential scores’ predictions of genomic regions associated with
differential peak signals for one chromatin mark, from left to right: DNase, H3K27ac and H3K9ac.
For each chromatin mark, it shows the AUROCS of predicting signal peaks observed in Brain and
ESC exclusively (Brain-spec and ESC-spec, respectively). Differential scores outputted by
CSREP, base-count, Mann-Whitney U test (used by ChromDiff) and Fisher’s exact test (used by
EpiCompare) are shown for active promoter and enhancer associated chromatin states (rows). In
each category of comparisons (a chromatin mark in either ESC or Brain), the top three scores
that show the highest AUROCSs are in bold and underlined. Along the bottom is the AUROC for
SCIDDO. Only active promoter and enhancer states are expected to be associated with
differential DNase, H3K27ac and H3K9ac signals, but the AUROCs corresponding to all states
are shown in Supplementary Figure 4.13.

Supplementary Information

Supplementary File 4.1: Metadata and download links of data used in the chapter.
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SUPPLEMENTARY FIGURE 4. 3: VISUALIZATION OF CSREP’S INPUT AND OUTPUT DATA FOR AN ARBITRARY 500-KB
GENOMIC WINDOW (CHR5: 42,821,109-43,321,109, HG19).

SUPPLEMENTARY FIGURE 4. 4: VISUALIZATION OF CSREP’S INPUT AND OUTPUT DATA FOR AN ARBITRARY 500-KB
GENOMIC WINDOW (CHR12:79,237,500-79,737,500, HG19).

SUPPLEMENTARY FIGURE 4. 5: VISUALIZATION OF CSREP’S INPUT AND OUTPUT DATA FOR AN ARBITRARY 500-KB
GENOMIC WINDOW (CHR10:2,290,673-2,790,673, HG19).

SUPPLEMENTARY FIGURE 4. 6: VISUALIZATION OF CSREP’S INPUT AND OUTPUT DATA FOR AN ARBITRARY 500-KB
GENOMIC WINDOW (CHR2:109,461,695-109,961,695, HG19).

SUPPLEMENTARY FIGURE 4. 7: VISUALIZATION OF CSREP’S INPUT AND OUTPUT DATA FOR A GENOMIC WINDOW
OVERLAPPING THE LGALS4 GENE (CHR19:39,292,311-39,303,740, HG19).

SUPPLEMENTARY FIGURE 4. 8: VISUALIZATION OF CSREP’S INPUT AND OUTPUT DATA FOR A GENOMIC WINDOW

OVERLAPPING THE MT3 GENE (CHR16:56,623,267-56,625,000, HG19).
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SUPPLEMENTARY FIGURE 4. 9: GENE EXPRESSION PROFILE FOR GENES LGALS4 (TOP) AND MT3 (BOTTOM), AS
SHOWN ON UCSC GENOME BROWSER.

SUPPLEMENTARY FIGURE 4. 10: RELATIONSHIP BETWEEN THE NUMBER OF SAMPLES AND AUROCS FROM USING
SUMMARY CHROMATIN STATE MAP TO PREDICT GENOMIC LOCATIONS OF
INDIVIDUAL CHROMATIN STATES.

SUPPLEMENTARY FIGURE 4. 11: HISTOGRAM OF CSREP DIFFERENTIAL CHROMATIN SCORES BETWEEN MALE AND
FEMALE GROUPS OF SAMPLES, IN AUTOSOMES AND IN CHROMOSOME X.

SUPPLEMENTARY FIGURE 4. 12: MEAN AND VARIANCE OF THE CSREP DIFFERENTIAL SCORES BETWEEN MALE
AND FEMALE GROUPS OF SAMPLES, IN AUTOSOMES AND IN CHROMOSOMES.

SUPPLEMENTARY FIGURE 4. 13: EVALUATION OF RECOVERY OF DIFFERENTIAL CHROMATIN MARKS SIGNALS
BETWEEN ESC AND BRAIN.

SUPPLEMENTARY FIGURE 4. 14: EFFECTS OF VARYING GENOME PROPORTION USED FOR TRAINING IN CSREP ON

ACCURACY AND RUNTIME.
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Supplementary figures for chapter 2
Universal annotation of the human genome through integration of over a
thousand epigenomic datasets

Concatenated model

E e Concatenated
i T i T T 5 T ‘model training

Full-stack
T > model training
Fu”-staCl-( - Reference Assembld Fix F. equence nlu\m;>

segmentation —
Supplementary Figure 2. 1: lllustration of concatenated model training vs. stacked model
training.
The top of the figure illustrates the concatenated modeling approach where a chromatin state
annotation is produced for each cell type based on the data in that cell type using a common set
of chromatin state definitions. In contrast, the stacked modeling approach produces a single
chromatin annotation of the genome based on all the data.
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Supplementary Figure 2. 2: Mark and tissue group distribution of the input data tracks.
(A) Counts of input tracks associated with different chromatin marks. There are five marks that
were profiled in all 127 reference epigenomes, while some marks, largely acetylation marks, were
profiled in few reference epigenomes. In total there were 1032 input tracks, including 53 DNase-
seq datasets and 979 ChiP-seq datasets. (B) Count of input tracks associated with different tissue
groups previously defined (Meuleman et al., 2015).
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AIC and BIC of models with different numbers of states
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C Maximum correlations of emission parameters of full-stack states with any state in other models
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Supplementary Figure 2. 3: Evaluation of full-stack model’s number of states.

(A) AUCs of full-stack models with varying number of states in recovering external genomic
annotations. The Supplementary Figure 2.hows the AUC of full-stack models with 20, 40, 60, 80,
100, and 120 states at predicting the genomic locations of multiple different external genomic
annotations (CpG Islands, lamina associated domains (laminB1lads), Exon, Gene body, TES,
TSS, and TSS2kb regions) (Methods). As the number of chromatin states increases, the AUC
increases, but the level of the AUC increases diminishes. (B) The estimated AIC-BIC curves for
models with the number of states ranging from 10 to 120 (5 states apart). We calculated the AIC
and BIC based on ChromHMM'’s output reporting the log-likelihood of observed data for 300 1-
Mb regions. Neg2_log_lIh: -2 * negative log likelihood of observed data. (C) Maximum correlations
of emission parameters between each state in the 100-state model and any state for each other
model. This is output from ChromHMM’s CompareModels command. Rows correspond to the
states of the 100-state model. Columns correspond to models with varying numbers of states.
Values are the maximum correlation of any state from the model in the column (with varying
number of states) with the state from the 100-state in the row. The 100-state model is boxed. This
analysis can be effective at establishing some biologically motivated lower bounds on the number
of states. For example, state EnhA20, a HUVEC specific enhancer state, is not captured in models
with fewer than 100 states. (D) Maximum correlations of emission parameters associated with
H3K4me1 (an enhancer mark available in all cell types) and the binary vector indicating whether
the cell type associated with an emission parameter is in a tissue group (1) or not (0). The rows
correspond to different tissue groups from Roadmap Epigenomics Consortium (Meuleman et al.,
2015). The columns correspond to different models with varying numbers of states. The values
show the maximum correlations mentioned above across all states within a model. The 100-state
model is boxed. The last column shows the maximum correlations observed for each tissue type
(each row) across all the models.
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Emission matrix of 80 representative experiments used to summarize the states
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Supplementary Figure 2. 4: Emission probabilities of 80 datasets chosen to summarize the
full-stack model.

Each row in the heatmap corresponds to a full-stack state. Each of the 80 columns corresponds
to an dataset that has been chosen to represent the space of 1032 datasets. These datasets were
chosen through a greedy search of features that optimize prediction of the full-stack annotation
using Naive Bayes with the selected features (Methods, Supplementary Data 2. 8). For each
state and each dataset, the heatmap gives the probability within the state of observing a binary
present call for the dataset’s signal. States are displayed in 16 groups as in Figure 2.2A. Color
legends for the emission values, the state groups, chromatin mark, and tissue group are shown
at the bottom.
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Average emission probabilities by chromatin mark
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Supplementary Figure 2. 5: Full-stack states emission probabilities, averaged by
chromatin marks.

Each column corresponds to an individual chromatin mark or the group of acetylation marks. The
heatmap shows for each state the average emission probabilities of datasets associated with
each chromatin mark or with the group of acetylations. Color legends for the emission values, the
state groups, and chromatin mark are shown at the bottom.
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Full-stack states’ transition probabilities
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Supplementary Figure 2. 6: Full-stack states transition probabilities.

Each row and each column correspond to a full-stack state, ordered based on their associated
state group. The heatmap shows for each state assigned at a current genomic position (rows) the
probabilities of transitioning to another state (columns) at the subsequent genomic position. Color
legends for the emission values, the state groups are shown at the bottom.
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Tissue-group statistically significantly more highly emitted in full-stack states
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Supplementary Figure 2. 7 : Statistically significant tissue—group specificity in full-stack
states.

The columns correspond to the eight most frequently profiled chromatin marks (H3K9me3,
H3K4me1, H3K4me3, H3K36me3, H3K27me3, H3K27ac, H3K9ac, and DNase | hypersensitivity).
The rows correspond to states that for at least one chromatin mark show statistically significant
higher emission probabilities for one tissue group compared to others (Methods). Statistical
significance is based on one-sided Mann-Whitney tests at a Bonferroni-corrected p-value
threshold of 3.5e-6. The entries in the grid shows the tissue groups reaching significance for each
chromatin mark-full-stack state combination.
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Supplementary Figure 2. 8: Full-stack states maximum-enrichments with annotated
concatenated-model chromatin states in 127 reference epigenomes.

Each row corresponds to one of 127 reference epigenomes from the Roadmap Epigenomics
Consortium (Methods). Each column corresponds to a state of the full-stack model. Each color
entry corresponds to a reference epigenome- full-stack state combination. The color corresponds
to the chromatin state from the 25-state model annotating the respective reference epigenome
that is most enriched with the respective full-stack state. The figure highlights how some full-
stack states are maximally enriched with the same concatenated-model chromatin states across
all the reference epigenomes; for example, states znf1 and znf2 are maximally enriched with ZNF
Gene state in all 127 reference epigenomes’ 25-state concatenated annotation. At the same time,
other full-stack states are enriched for distinct concatenated states, for example state EnhA8--
characterized as a blood enhancer state based on emission probabilities-- is most enriched with
activate/flanking enhancer in cell types of the groups Blood&Tcell, HSC&B-cell, while being most
enriched with poised promoter and weak enhancer states in other cell types. Detailed description
of each full-stack state enrichment patterns with concatenated states can be found in
Supplementary Data 2. 5.
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Per-cell-type 25-state in different cell groups
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Supplementary Figure 2. 9: Estimated probabilities of concatenated-model chromatin
states overlapping with full-stack states.

The figure shows estimated probabilities of concatenated chromatin state assignments
overlapping with full-stack state annotations conditioned on the cell group of the concatenated
annotations. This figure is also provided as an excel file in Supplementary Data 2. 5 where it is
accompanied with detailed comments about each full-stack state. The figure is based on a 25-
state per-cell type chromatin state model (Ernst and Kellis, 2015), and 19-previously defined
tissue groups for the 127 reference epigenomes (Meuleman et al., 2015). Each row corresponds
to a combination of per-cell type state (among 25 states) and tissue group, as denoted in the first
two columns and legend. Rows corresponding to the same concatenated-model state are
grouped together. The first two columns show the colors of tissue groups and concatenated-
model state, respectively, as indicated in legends on the right, and matching with the colors in
Supplementary Figure 2.8, except we changed concatenated-model quiescent 25-state from
white to blue for better visibility. The 100 following columns correspond to 100 full-stack states.
Values in the heatmap correspond to the estimated probability a genomic position annotated as
a full-stack state (column) is also annotated as a concatenated-model state in a cell type from the
corresponding tissue group (row) (Methods). The last two columns show the minimum and
maximum probabilities observed for each per-cell type state for any combination of tissue group
and full-stack state. The heatmap colors correspond to the 25-state’s colors and are scaled such
that the maximum probability values in each block are colored darkest (as seen in the right most
column). The figure complements Supplementary Figure 2.8 in providing information on how
each full-stack state can correspond to different 25-per-cell type states in different groups of cells,
hence stratifying full-stack states’ characteristics in more details. For example, full-stack state
ReprPC8 shows high probabilities of overlapping ReprPC state in ESC-related cell groups (ESC,
iPSC, and ES-derived), and quiescent state in other cell groups.

132



Full-stack states’ average gene expression in 56 cell types
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Supplementary Figure 2. 10: Full-stack states’ average gene expression in different cell
types.

Each row corresponds to one of the 100 full-stack states grouped into state groups as indicated
by the legend at the bottom. Each column corresponds to one of 56 cell types whose gene
expression data were available from Roadmap Epigenomics (Meuleman et al., 2015). The
columns are grouped based on their associated tissue group as indicated by the legend at the
bottom. Each column shows the average expression of genes in the respective cell type that
overlap with each full-stack state, weighted by the extent of the overlap and the gene length
(Methods). The figure highlights how states in the transcription and exon group show consistently
high gene expression across all cell types, while cell-type-specific enhancer states tend to show

higher gene expression in the cell types corresponding to those states.
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Average gene expression for full-stack states as a
function of distance from annotated TSSs.
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Supplementary Figure 2. 11: Full-stack states’ average gene expression as a function of
distance from TSS.

Each row corresponds to a full-stack state. Each column corresponds to a 200-bp bin within 25kb
relative to annotated TSS, such that TSS is at position 0. Positions downstream of TSS in the
direction of transcription have positive coordinate values, and those upstream have negative
values. The heatmap shows for each state and position relative to the TSS, the average
expression, across 56 cell types, of genes that have the state annotation at such position relative
to the TSS (Methods). The figure highlights that states in the transcription group tend to have
higher gene expression compared to other states, and the average gene expression is usually
larger toward the downstream of genes. The figure also shows that for TSS and flanking promoter
states, the average gene expression is relatively higher around the TSS compared to other
positions.
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Supplementary Figure 2. 12: Positional enrichments of full-stack states around annotated
transcription start sites and transcription end sites.

The Supplementary Figure 2.hows positional fold enrichments for positions within 2kb of
annotated (a) transcription start sites (TSS) and (b) transcription end sites (TES). Each column
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corresponds to one 200bp window as indicated at bottom. Positive coordinate values represent
the number of bases downstream in the 5’ to 3’ direction of transcription, while negative values
represent the number of bases upstream. Enrichments are calculated based on a genome-wide
background. Color scale of enrichments is indicated at right for each panel. State groups’ color
legends are shown at right.
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Top gene ontology enrichment terms for flanking promoter states
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Top gene ontology enrichment terms for TSS states

TSS1

G0:0003723 RNA binding

G0:0090304 nucleic acid metabolic process

G0:0045814 negative regulation of gene expression, epigenetic
GO0:0006139 nucleobase-containing compound metabolic process

E G0:0034641 cellular nitrogen compound metabolic process
él G0:0006342 chromatin silencing
G0:0003676 nucleic acid binding

G0:1901363 heterocyclic compound binding

G0:0097159 organic cyclic compound binding

G0:0031492 nucleosomal DNA binding

negLogl0_p

TSS2

GO:0006335 DNA replication-dependent nucleosome assembly
G0:0045814 negative regulation of gene expression, epigenetic
G0:0034462 small-subunit processome assembly

G0:0006342 chromatin silencing

G0:0000183 chromatin silencing at rDNA

GO_term

G0:0031492 nucleosomal DNA binding
G0:0042605 peptide antigen binding
G0:0003755 peptidyl-prolyl cis-trans isomerase activity

G0:0031491 nucleosome binding

G0:0016859 cis-trans isomerase activity

T T T T

» v D 2
neglog10_p

0 -
5

Supplementary Figure 2. 13: Top GO terms for states in promoter-associated states.

Each subpanel corresponds to a full-stack state (state names are shown in the plot title). In each
subpanel, the top 5 most significantly enriched GO Biological Process and GO Molecular Function
terms are shown on the y-axis (showing a total of 10 GO terms). The length of horizontal bars
show the negative log10 (p value) of the GO enrichment, based on the Binomial Test and
outputted by GREAT (McLean et al., 2010). The equivalent plots for all full-stack states are
available in Supplementary Data 2. 2.
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Supplementary Figure 2. 14: Full-stack states enrichments with CTCF associated
chromatin states.
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(A) The heatmap shows enrichment values for the full-stack states (rows) and a chromatin state
that corresponds to CTCF with open chromatin and limited histone modification signal from
concatenated annotations in six different cell types (columns). CTCF signals were included as
input for training these concatenated chromatin state models (Methods). Coloring of enrichments
is column specific. (B) Similar to (A), except showing enrichments for a state associated with
CTCF datasets with limited open chromatin and limited histone modification signals.
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Average DNA methylation in different cell types

Cell groups

State groups

Supplementary Figure 2. 15: Full-stack states’ average DNA methylation in different cell
types.

Each row corresponds to one of the 100 full-stack states grouped into state groups as indicated
by the legend at the bottom. Each column corresponds to one cell type whose DNA methylation
data were available from Roadmap Epigenomics. The columns are grouped based on their
associated tissue group as indicated by the legend at the bottom. Each column shows the
average DNA methylation level in the respective cell type that overlaps with each full-stack state
(Methods). Among promoters-associated states, those most enriched with CpG islands also
show lowest average DNA methylation levels (Figure 2.3A), consistent with expectation (Jones
and Takai, 2001; Weber et al., 2007). The lower DNAme levels of IMR90 compared to other cell
types might be related to a technical batch effect since it was one of two original WGBS datasets
collected (Lister et al., 2009).
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Enrichments with polycomb repressed protein groups PRC1 and PRC2
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Supplementary Figure 2. 16: Full-stack states enrichments with Polycomb Repressive
protein complexes PRC1 (green column headers) and PRC2 (orange column headers).
The heatmap shows enrichment values for the full-stack states (rows) and the binding sites of
subunits of PRC1 and PRC2 in different cell types (columns) that were available from ENCODE
project (Methods). Coloring of enrichments is column specific with highest and lowest enrichment
values in each column are colored red and white, respectively. The first two columns show state
names, and their percentage of genome coverage. The last row shows the percentage of genome
coverage for each type of PRCs.
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Top enriched states with PRC1 and PRC2
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Neighborhood enrichments with PRC1 and PRC2: ranked states by descending enrichments
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Supplementary Figure 2. 17: Enrichments of selected full-stack states with PRC1 and
PRC2.

(A) A subset of Supplementary Figure 2.16 showing fold enrichment of full-stack states for
binding sites of polycomb repressive protein complexes in different cell types from ENCODE
(Methods). The column names highlighted in green (PRC1) and orange (PRC2) show the subunits
of PRCs (BMI1, RING1 and RNF2 in PRC1, and EZH2, SUZ12, EED in PRC2) and the cell types
where the PRCs were profiled in the second and first rows of column names, respectively. Each
corresponding row corresponds to a state, and only states that were among the top three with
greatest enrichments for at least one category of PRC complexes are shown. Top enrichment
values are colored red based on the rank of the state for each score as indicated in the color
legend at the bottom. Some states that show strong consensus across cell types in enrichments
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with PRC1 and PRC2 include ReprPC1, BivProm1-2, PromF4-5, TSS1-2. ReprPC1 and
BivProm1-2 all show strong signals of H3K27me3. (B) Neighborhood enrichments of full-stack
states with binding sites of PRC1 and PRC2 complexes. In each subpanel, each column
corresponds to a 200-bp bin across the 20,000-bp regions overlapping and surrounding annotated
PRC1&2 subunit complexes. Within each column, the top 10 states most enriched at the
corresponding 200-bp position (within the 20,000bp window) are shown, in descending order of
enrichments, and colored based on the state groups as presented throughout the paper.
Supplementary Data 2.4 accompanies this figure to show full state names and rankings.
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hg19 state enrichments with hg19 genome contexts hg38 (liftedOver) state enrichments with hg38 g
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Supplementary Figure 2. 18: Comparison of hg19 and hg38 full-stack states enrichments
with annotated genomic contexts.

146



The heatmaps show enrichment values for the full-stack states (rows) and different external
genome annotations from Figure 2.3A (columns) in hg19 (A) and hg38 (B) (Methods). Panel (A)
is similar to Figure 2.3A, but we present it here for better comparison with the hg38 enrichment
heatmap. Results in (B) are based on (1) lifting over the full-stack annotation from hg19 to hg38
(Methods), and (2) doing enrichment analysis with annotated genome contexts derived from
various databases in hg38 (Methods). In each heatmap, coloring of enrichments is column
specific with highest and lowest enrichment values in each column are colored red and white,
respectively. The first two columns of each heatmap show state labels and their percentage of
genome coverage. The last row of each heatmap shows the percentage of genome coverage for
each type of genome contexts. Below the heatmap in (B) is the correlation of the enrichments
across states based on hg19 and hg38 for each corresponding annotation column as well as the
average of them.
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Supplementary Figure 2. 19: ROC comparison of full-stack model annotations and the 18-
state concatenated model annotations for predicting various external genomic
annotations.

Each panel shows the ROC curves from using the full-stack model annotations and 98 chromatin
state annotations from a concatenated model to predict different external genomic annotations
(Methods). The concatenated annotations are from a previously learned 18-state concatenated
model (Meuleman et al., 2015). The full-stack annotations’ ROC curves are in black, and 98
concatenated annotations’ ROCs are in red. The respective genomic contexts for panels A-M are
assembly gaps, CpG lIslands, lamina associated domains (laminB1lads), phastCons elements,
pseudogenes, exons, gene bodies, transcription end sites (TES), transcription start sites (TSS),
2kb regions surrounding transcription start sites (TSS2kb), ZNF genes, repeat elements in UCSC
Genome Browser’s repeatMasker track and coding sequences.
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Supplementary Figure 2. 20: AUROC comparison of the full- stacked and the concatenated
and independent chromatin state annotations at predicting various external genomics
annotations.

(A) AUROC values for ROC curves in Supplementary Figure 2.19. The x-axis represents
different genomic contexts. The box-plots show AUROC of the 127 100-state annotations based
on models learned independently in 127 cell types at predicting locations of the external
annotations. The blue dots show the AUROC for the full-stack chromatin state annotations. (B)
Similar to (A), but showing AUROC values for ROC curves in Supplementary Figure 2.21. but
the boxplots show the AUROC values for 98 18-state annotations based on concatenated models
in 98 cell types. The red dots show the AUROC for the full-stack chromatin state annotations.
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Supplementary Figure 2. 21: ROC comparison of full-stack model annotations and the 100-
state independent model annotations for predicting various external genomic annotations.
Each panel shows the ROC curves from using the full-stack model annotations and the 127
independent model chromatin state annotations to predict different external genomic annotations
(Methods). The independent models were 100 state models learned separately using all available
data from each cell type. The full-stack annotations’ ROC curves are in black, and independent
annotations’ ROCs are in blue. The respective genomic contexts for panels A-M are assembly
gaps, CpG Islands, lamina associated domains (laminB1lads), PhastCons elements,
pseudogenes, exons, gene bodies, transcription end sites (TES), transcription start sites (TSS),
2kb regions surrounding transcription start sites (TSS2kb), ZNF genes, repeat elements from all
classes and families in UCSC Genome Browser’s repeatMasker track and coding sequences.
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Supplementary Figure 2. 22: AUROC comparison of the full-stack and concatenated and
independent chromatin state annotations at predicting CTCF-specific chromatin states.
Box-plots show AUROC of (A) 127 100-state independent and (B) 98 18-state concatenated
model annotations, which did not include CTCF, at predicting bases in sets of CTCF-associated
chromatin states. In both panels, the x-axis represents sets of chromatin states associated with
CTCF signal and limited histone modification signal in one of six cell types from a previously
published chromatin state model that included CTCF (Hoffman et al., 2013) (Methods). CtcfO
corresponds to a state that also had open chromatin signals, while state Ctcf lacked those signals.
The dots colored (A) blue and (B) red show the AUROC for the full-stack chromatin state
annotations, which were not trained using CTCF signals data.
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Group H3K27ac | H3K4mel | H3K4me2 | H3K4Ame3 | H3K9ac
weak enhancers
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Supplementary Figure 2. 23: Coefficient of variations of emission probabilities across
different cell groups.

Average coefficient of variations for the five enhancer and promoter state groups of full-stack
states (rows) and six chromatin marks that are associated with enhancer and promoter activities.
For a mark and state group combination, the coefficient of variation for the mark emission was
computed separately for each state and then averaged among states in the group. The enhancer
and weak enhancer group showed greater than two-fold higher coefficient of variations compared
to the promoter group.
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Supplementary Figure 2. 24: lllustration of the full-stack annotations at two distinct loci.
Two loci representing regions that are in transcribed and active promoter states across cell types
(left), and in an enhancer state specifically in brain (right). The loci correspond to those presented
in Figure 2.1. The top track shows the full-stack state annotations. The following tracks show
concatenated annotations from 18-state models based on observed data (Meuleman et al., 2015).
The cell types are ordered based on their associated cell groups. A color legend for the states is
shown along the bottom.
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Supplementary Figure 2. 25: lllustration of full-stack cell-type-specific enhancer states.
(A-C) The first track in each panel demonstrates the full-stack state annotation. Each of the
following tracks show chromatin state annotations from a 18-state concatenated model
(Meuleman et al., 2015). The individual reference epigenomes IDs and their tissue groups are
labeled on left. The chromatin state coloring is labeled on right. (A) A genomic region
(chr5:157340200-157342000) annotated to an active enhancer state in digestive cells in the full-
stack model (EnhA14). (B) A genomic region (chr5:156679900-156686500) annotated to blood
enhancer states in the full-stack model (EnhWk6 and EnhA8). (C) A genomic region
(chr5:156227000-156231000) annotated as an ESC/iPSC-specific enhancer state in the full-stack
model (state EnhA18).
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Demonstration of the state transitions for full-stack state HET9
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Supplementary Figure 2. 26: lllustration of full-stack heterochromatin state HET9.

The figure captures the concatenated chromatin state maps for various reference epigenomes,
and the corresponding full-stack chromatin state maps at region chr17:21772099-21791900. The
first 66 tracks show chromatin state annotations from a 25-state concatenated model for 66
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reference epigenomes (equivalently, in this paper, cell types) (Ernst and Kellis, 2015). The
individual reference epigenomes IDs and their tissue groups are labeled on the left. The chromatin
state colors are explained on the right. The last track, shown in full mode to display all state labels
on the right, corresponds to the full-stack chromatin state map at this region. State HET9 is
characterized, based on our analysis, as an ESC-group-related heterochromatin state (Figure
2.2C, Supplementary Figure 2.8-9, Supplementary Data 2. 3, 5). Detailed characterizations of
all full-stack states are in Supplementary Data 2. 3.
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Demonstration of the state transitions for full-stack state PromF5
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Supplementary Figure 2. 27: lllustration of full-stack flanking promoter state PromF5.

The figure captures the concatenated chromatin state maps for various reference epigenomes,
and the corresponding full-stack chromatin state maps at region chr10:33621649-33627350. The
first 66 tracks show chromatin state annotations from a 25-state concatenated model for 66
reference epigenomes (equivalently, in this paper, cell types) (Ernst and Kellis, 2015). The
individual reference epigenomes IDs and their tissue groups are labeled on the left. The chromatin
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state coloring is labeled on the right. The last track, shown in full mode to display all state labels
on the left, corresponds to the full-stack chromatin state map at this region. State PromF5 is
characterized, based on our various analyses as state frequently found at flanking promoter
regions with some upstream bias, and sometimes, this state overlaps with regions of bivalent
promoters in Blood-related and ESC-related groups (Blood & T cells, HSC & B cells, ESC, iPSC
and ES-deriv) (Supplementary Figure 2. 8-9, Supplementary Data 2. 3, 5). Detailed
characterization of all full-stack states are in Supplementary Data 2. 3-5.
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Supplementary Figure 2. 28: Full stack states enrichments with RepeatMasker classes of
repeats (A), low-complexity repeats and GC content (B), simple repeats (C).
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This is an extended version of Figure 2.4C. In each panel, the rows correspond to full-stack
states. The second column reports the percentage of the genome that each full-stack state
occupies. In (A), columns 3-21 correspond to different repeat classes. In (B), columns 3-7
correspond to 5bp windows in the genome are stratified by the number of G/C bases in them,
columns 8-10 correspond to regions enriched with C-rich, G-rich, and GC-rich low complexity
sequences, respectively, and column 11 shows enrichments for all low complexity sequences
from RepeatMasker. States TSS1-2 are most enriched with Low complexity repeat class, which
is consistent with these states having a high enrichment (19-20 fold) for windows in which all
bases are a G or C. In (C), columns 3-4 correspond to simple repeats of repeated (CA) and (TG)
sequences, and column 5 shows enrichments for all simple repeats. State Acet1 is most enriched
with simple repeats and this enrichment is mostly driven by enrichments with repeated CA and
TG dinucleotides. In each panel, the values in all columns except the first and second columns
correspond to fold enrichment for different repeat contexts in the full-stack states. Values are
colored on a column-specific color scale. The last row gives the percentage of the genome that
each repeat class occupies.
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AUROC of full-stack and 100-state independent annotations in
recovering different classes of repeat elements
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Supplementary Figure 2. 29: AUROC comparison of the full-stack, concatenated and
independent chromatin state annotations at predicting different classes of repeat

elements.

Box-plots showing AUROC of the (A) 127 100-state annotations from independent models and
(B) 98 18-state annotations from a concatenated model at predicting bases in different repeat
classes labeled on the x-axis. The dots colored (A) blue and (B) red show the AUROC for the full-
stack chromatin state annotations.
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state
max_enrich
consHMM _state

GapArtfL_| 7.7 | 96-AM_SPrim
GapArtf2 8.1 | 96-AM_SPrim
GapArtf3 | 7.2 | 95-AM_SPrim

Quiest | 16 [[30:AM_SMam] High align and match frequencies for a few primates

Quies2 . . . . .

e T 1 ;:m:::: High align and march for mammals, but missing notable subsets
Quiesd 4.6 | 86-AM_Prim

Quiess SN High align and match frequencies for primates
ZoaM P Putative artifact
BE-A,_Prim High align and match frequency for all vertebrates
High align and match for mammals
93-AM_SPrim High align and match for mammals and some non-mammals

82-AM_Prim
93-AM_SPrim

93-AM_SPrim

100-artifact B
69-AM_Prim

82-AM_Prim

100-artifact ConsHMM_state Characterization based on Supp. Data. File 1 from Arneson & Ernst, 2019

Most conserved. High align and match frequency with all vertebrates' genomes. Most enriched for CDS, UTRs, exons of protein
coding genes with preference for 1st and 2nd codon position, canonical splice-site.

Acet2 2.5 | 100-artifact
Acet3 1.9 | 75-AM_Prim

Conserved enhancers. Most enriched for TES of protein coding genes, enhancer-group chromatin states in ct-spec annotations

Acetd | 2.0 | 14-AM_Mam Eniched for CDS and exons of protein coding genes with 3rd codon position preference; DHS in non-exons

Acets | 1.6 | 75-AM_Prim
Acet6 | 2.1 | 9-AM_Mam

Conserved enhancer and DNase (top2 most enriched with enhancer-related and DNase states in ct-spec annotations)

Acet? 2.6 | 14-AM_Mam

2 Most enriched state for TxEnh5' and TxEnhW chromatin states in ct-spec annotations
Acet8 1.6 | 75-AM_Prim

EnhWk1 2.2 5-AM_Mam
Enhwk2 2.7
EnhWk3 2.8 5-AM_Mam

Strongest signals of overlapping TSS and promoter states in ct-spec annotations, CpG islands, Low Complexity class and family
Repeats, DHS in non-exons

EnhWkd | 3.7 [2-AM_nonMam| 82-AM_Prim |Moderate conservation (align and match with primates); ReprPC state in ct-spec annotations
EnhWK5 | 1.4 | 75-AM_Prim ;
Zohwie | 16 | 13:AM Mam 75-AM_Prim | Most enriched state for RNA, scRNA, snRNA and srpRNA class and family repeats
EnhWk7 | 1.5 | 77-AM_Prim M_ﬁil‘l Maost enriched state for LTR class and ERVL-MaLR, PiggyBac, and TcMar-Mariner family repeats
E:::X? ii z';ralm':::"' 77-AM_Prim | Most enriched state for SINE class, and Alu family repeats and Tx5' and TxWk chromatin states
EnhA2 | 5.7 |2-AM_nonMam| 86-AM_Prim | Most enriched state for LINE class, L1 family repeats, and Quies chromatin statein ct-spec annotations
h . -
::h:: :'3 :zm_m:: 100-artifact Alignment artifacts. Most enriched state for TSS, Exons, TES of pseudogenes, ZNF/Rpts chromatin statein ct-spec annotations.
EnhAS 3.2 | 5-AM_Mam tRNA class and family repeats, protein-DNA complex assembly genes

e w 93-AM_SPrim | Most enriched state for HET chromatin statein ct-spec annotations, ERV1 and ERVK family repeats

EnhA8 2.3 | 15-AM_Mam 95-AM_SPrim |Most enriched state for simple and rRNA class and family and acro and telo family repeats
EnhA9 . -
znr;uuo ;2 1:_:,3,"‘,““?: 96-AM_SPrim | Most enriched state for assembly gaps, centr family repeats

EnhA11 1.7 | 77-AM_Prim
EnhA12 2.1 | 14-AM_Mam
EnhA13 1.6 9-AM_Mam
EnhA14 | 2.2 | 14-AM_Mam
EnhA15 | 1.5 | 6-AM_Mam
EnhA16 19 100-artifact
EnhA17 | 6.4 [2-AM_nonMam|
EnhA18 2.2 | 94-AM_SPrim
EnhA19 3.0 |2-AM_nonMam|
EnhA20 21 | 5-AM_Mam
TxEnh1l 2.6 6-AM_Mam

TxEnh2 2.2
TxEnh3 2.3 | 82-AM_Prim
TxEnh4. 15.9
TxEnh5 9.5
“TxEnh6 5.6
TxEnh7 2.4
TxEnh8 5.6
24 | 7-AM_Mam
6.7
19

2.0 | 77-AM_Prim
2.1 | 75-AM_Prim

4.0 | 77-AM_Prim
5.9 7-AM_Mam

2.8 [3-AM_nonMam|

znfl 3.0 | 79-AM_Prim
nf2 10.9 | 100-artifact
DNasel [ 3.1

7.8_|2-AM_nonMam

38 | 5-AM_Mam

27 | 6-AM_Mam
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Supplementary Figure 2. 30: Full-stack states enrichments with conservation states.

(A) The first column gives the label of the full-stack states. The second column shows the
maximum fold enrichment for each full-stack state for any ConsHMM state defined to annotate
nucleotides based on sequence conservation patterns (Arneson and Ernst, 2019) (Methods). The
third column shows the ConsHMM state that had the highest fold-enrichment in each full-stack
state. One notable ConsHMM state is state 1 (1-AM_allVert), representing regions with high
probabilities of aligning and matching the human reference genome for all vertebrates and the
most enriched for exons. Full-stack states in the transcription-exon group (TxEx) are all maximally
enriched with ConsHMM state 1. Another notable ConsHMM state, state 28 (28-AM_SMam), was
the ConsHMM most strongly enriched for overlapping annotated TSS. Consistent with this, this
state is also the maximum-enriched ConsHMM state in many full-stack states in TSS and
Promoter flanking groups. (B) Characterizations of notable ConsHMM states. (C) Enrichments of
full-stack states for each ConsHMM state from a 100-state model based on a 100-way vertebrate
alignment (Areson and Ernst, 2019). Rows (vertical) correspond to different full-stack states. The
header row gives the ConsHMM state labels, where ConsHMM states are placed in groups
previously defined based on their patterns of sequence alignment with other vertebrates (Arneson
and Ernst, 2019), colored as in (A). The second column (horizontal) shows the percentage of the
genome that each full-stack state falls into. Each of the remaining columns (horizontal)
corresponds to one ConsHMM state. Values in the columns are colored on a column specific
coloring scale. The last row (vertical) in the heatmap gives the percentage of the genome that is
covered by each ConsHMM state. The corresponding excel file for this figure is provided in
Supplementary Data 2. 7.
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Enrichment of full-stack states major ZNF gene states

State
Genome %

ZNF* C2H2 gene
ZNF* not C2H2

GapArtfl 11.86

GapArtf2

GapArtf3
Quies1
Quies2
Quies3 12.23
Quies4

uies5

Acetl 0.18| 1.09] 1.00] 1.42
Acet2 0.85] 0.37| 0.24] 0.73
Acet3 2.65| 0.40| 0.28] 0.74
Acetd 0.40[ 0.38] 0.41[ 0.25
Acet5 0.86| 0.32] 0.30] 0.36
Acet6 0.38
Acet? 0.19
Acet8 0.45

EnhWk1 1.54[ 0.59] 0.35[ 1.30
EnhWk2 0.35] 0.66| 0.64] 0.75
Enhwk3 0.83| 0.72] 0.62] 1.02
EnhWk4 222 0.59] 0.42| 1.08
EnhWk5 0.99[ 0.60[ 0.49] 0.91
EnhWk6 0.59| 0.72| 0.62] 0.99
EnhWk7 0.48| 0.50| 0.58| 0.21
EnhWk8 1.37(0.42] 0.28] 0.84]

EnhAl 0.18[ 0.73] 0.88] 0.28
EnhA2 0.33[ 0.80[ 0.85] 0.61
EnhA3 0.19| 0.82| 1.00] 0.20
EnhA4 0.30[ 0.54] 0.58| 0.37
EnhA5S 0.71| 0.55| 0.47| 0.77
EnhA6 0.56[ 0.91] 0.98] 0.65
EnhA7 0.39] 0.50] 0.39] 0.80
EnhA8 0.25] 0.71] 0.56] 1.09
EnhA9 0.16] 0.89] 1.14| 0.07

EnhA10 0.39[ 0.92] 1.03] 0.61
EnhA11 0.72[ 0.73[ 0.78] 0.55
EnhA12 0.33| 0.31] 0.24] 0.50

0.65] 0.41] 0.35] 0.57

0.39] 1.14] 1.40| 0.27
039 1.95| 2.14| 1.24
0.25] 3.15] 3.76] 1.05
0.27| 1.47] 1.76] 0.58
0.50{ 1.42| 1.69] 0.61
0.19] 1.14| 1.44| 0.11
027 1.28| 1.59| 0.24
0.24[ 1.22] 1.41] 0.57
2.80( 1.71]| 1.84] 1.37
0.84|1.27] 1.2 12T
0.82 2.24] 2.25] 2.11
158 1.74[ 1.88] 1.28
051 1.64] 2.03] 0.32
0.47| 2.70| 3.01] 1.55
0.94] 2.17] 2.51| 1.03
111 171 1.79] 1.58
0.82[ 191 2.13] 1.23
0.68[ 1.29] 1.40] 0.92
0.27| 2.61| 2.97| 1.27
056 2.45| 2.85| 1.10
0.66 2.60[ 3.14] 0.94
0.10[ 2.17] 2.55] 0.91
0.41]20.83]| 25.12| 8.91

0.15[_0.87] 0.66] 1.44]
0.16( 0.50] 0.34] 0.95
0.29( 0.82] 0.80] 0.83
0.13[1.28] 113] 1.78
0.20[ 0.81] 0.76] 0.91
0.14( 1.23] 1.34] 0.85
0.15( 3.39] 3.95| 1.60
0.19( 4.78] 5.61| 2.20
0.14[ 2.27] 2.34] 2.19
0.13[ 4.34[ 5.14] 2.05
0.16[ #41[ 5.24] 1.76
0.12 3.75] 4.31| 1.98
0.11[ 2.13] 2.27| 1.76
Base % 100 0.73] 0.57| 0.18

Supplementary Figure 2. 31: Full-stack states enrichments with different subsets of ZNF
genes.
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The rows correspond to full-stack states. The first column presents the state labels, the second
presents the percentage of the genome that each state occupies, and the remaining three
columns enrichments for different subsets of zinc finger genes. The first of these is all genes with
a ZNF symbol. The second is the subset of ZNF genes also annotated as C2H2 genes and the
third those that are not C2H2 genes. The values correspond to the full-stack states’ fold
enrichment for the ZNF gene families. Values are colored on a column-specific color scale. The
last row gives the percentage of the genome that each type of ZNF gene family occupies
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Enrichment of full-stack states with structural variants

] glg| 8
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Supplementary Figure 2. 32: Full-stack states enrichments with structural variants.
The rows correspond to full-stack states. The first column presents the state labels, the second
presents the percentage of the genome in hg38 that each state occupies, and the last two columns
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correspond to two different types of structural variants: deletions and duplications. The values
correspond to the full-stack states’ fold enrichment for the structural variant type. Values are
colored on a column-specific color scale. The last row gives the percentage of the genome that
each type of structural variants occupies.
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A ROC curves in predicting deletions B ROC curves in predicting duplications

full_auc = 0.6267063 / full_auc = 0.5607425
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Supplementary Figure 2. 33: Comparison of full-stack model annotations and the 100-state
independent model annotations in predicting structural variants of type deletions and
duplications.

(A) ROC curves for the full-stack model and the 127 100-state independent models’ chromatin
state annotations at predicting bases covered by deletions (Methods). The full-stack model’s
annotation ROC curve is in black and the 127 100-state independent models’ annotation ROCs
are shown in blue. (B) Similar plot as (A), but for duplications. (C) Comparison of the AUROC in
predicting structural variants. The x-axis represents different types of structural variants. The box-
plots show AUROC for 127 100-state independent models’ in predicting deletions and
duplications. The blue dots show the AUROC of the full-stack chromatin state annotation.
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A ROC curves in predicting deletions B ROC curves in predicting duplications

full_auc = 0.6267063 full_auc = 0.5607425
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Supplementary Figure 2. 34: Comparison of full-stack model annotations and 18-state
concatenated model annotations in predicting structural variants of type deletions and
duplications.

(A) ROC curves for the full-stack model and 98 concatenated models’ chromatin state annotations
at predicting bases covered by deletion (Methods). The full-stack model’s annotation ROC curve
is in black and the 98 18-state annotations from concatenated models ROCs are shown in red.
(B) Similar plot as (A), but for duplications. (C) Comparison of the AUROC in predicting structural
variants. The x-axis represents different types of structural variants. The box-plots show AUROC
of 98 18-state concatenated models’ in predicting deletions and duplications. The red dots show
the AUROC of the full-stack chromatin state annotations in predicting bases in each type of
structural variant.
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A ROC curves in predicting deletions B ROC curves in predicting duplications
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Supplementary Figure 2. 35:Comparison of full-stack states vs. state-specific annotations
in predicting structural variants of types deletions and duplications.

We followed the procedure outlined in (Abel et al., 2020) to compute the enrichments between
annotations associated with one chromatin state and structural variants. In particular, we utilized
15-state chromatin state annotation for 127 reference epigenomes from Roadmap Epigenomics
Consortium. Then, for each of the 15 states, we stratified genomic positions based on the number
of cell types in which the state is present (ranging from 0 to 127), resulting in 15 state-specific
models’ annotations (Methods). (A) ROC curves for the full-stack model and 15 state-specific
models’ annotations at predicting bases covered by deletions (Methods) The full-stack model’s
ROC curve is in black, and state-specific models’ ROCs are shown in blue. (B) Similar plot as (A),
but for duplications. (C) Comparison of the AUROC in predicting structural variants. The x-axis
represents different types of structural variants. The box-plots show AUROC of 15 state-specific
models’ annotation in predicting deletions and duplications. The blue dots show the AUROC of
the full-stack chromatin state annotations in predicting respective types of structural variants.
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Supplementary Figure 2. 36: Enrichment of selected full-stack states with prioritized
variants, non-coding genome.
Extended version of figure Figure 2.5C showing fold enrichment of full-stack states for genomic
bases prioritized in the (A) top 10% (B) top 5%, and (C) top 1% among non-coding bases by 14-
different variant prioritization scores previously curated in (Arneson and Ernst, 2019) (Methods).
Only states that were among the top five with greatest enrichments for at least one score are
shown. Top enrichment values are colored red based on the rank of the state for each score as
indicated in the color legend at the bottom. Depletions are shown in yellow.
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Supplementary Figure 2. 37: Enrichment of all full-stack states for top 1% bases prioritized
by variant prioritization scores.

Extended version of figure Figure 2.5C showing the enrichment values of all full-stack states for
genomic bases prioritized in the top 1% prioritized bases (A) in non-coding genome, and (B)
genome-wide, by various variant prioritization scores. Coloring of enrichments is column specific.
The second column in each heatmap, to the right of the state labels, shows the percentage of the
background region (non-coding genome in (A) and whole genome in (B)) that each full-stack state
covers. The last line in both heatmaps gives the actual percentage of the background region that
is covered by each set of prioritized variants, which can differ from 1% exactly because of how
ties of prioritization scores among bases were handled.
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Supplementary Figure 2. 38: Enrichment of all full-stack states for top 5% bases prioritized
by variant prioritization scores.
Analogous to Supplementary Figure 2.37, but for top 5% prioritized bases.
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Supplementary Figure 2. 39: Enrichment of all full-stack states for top 10% bases
prioritized by variant prioritization scores.

Analogous to Supplementary Figure 2.37 and Supplementary Figure 2.38, but for top 10%
prioritized bases.
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Supplementary Figure 2. 40: Enrichment of selected full-stack states with prioritized
variants, whole genome.

A similar figure to Supplementary Figure 2.36, except showing the top enriched states for
prioritized variants from the whole genome not restricted to non-coding regions. Fold enrichment
of full-stack states for genomic bases prioritized in the (A) top 10% (B) top 5%, and (C) top 1%
bases by 12-different variant prioritization scores (Methods). Only states that were among the
five with greatest enrichment for at least one score are shown. Top enrichment values are colored
red based on the rank of the state for the score as indicated in the color legend at the bottom.
Depletions are shown in yellow.
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Supplementary Figure 2. 41: Comparison of the full-stack model annotations against the
concatenated and independent model annotations at predicting top 1% non-coding bases
prioritized by various variant prioritization scores.

The box-plots show AUROC of the (A) 127 100-state annotations from independent models and
(B) 98 18-state annotations from concatenated models at predicting locations of the top 1% non-
coding prioritized variants. In both panels, the x-axis represents different groups of top 1% non-
coding bases prioritized variants previously curated in (Arneson and Ernst, 2019), based on 14-
different variant-prioritization scores (Methods). The (A) blue and (B) red dots show the AUROC
for the full-stack chromatin state annotations.

181



A Enrichment of full-stack states with GNOMAD variants B CG Sites
enrichments

maf 0.4 0.5

maf 0.1 0.2
maf 0.2 0.3
maf 0.3 0.4

% Genome
maf_0_0.0001

maf_0.01_0.05
maf_0.05_0.1

maf_0.005_0.01

state
maf_0.001_0.005

maf_0.0005_0.001

maf_0.0001_0.0005

<
]
£
£
8
|
o
@
B
&
il
]
g
H

= [% Genomg

GapArtfl 0.25 0.35 0.34 0.34 0.33

o
2
kS

0.1 1.9

0.8 0.75 0.72 0.65 0.58 0.57 0.58 0.55

Acet1 02| 21

0.73

0.75 0.68 0.67 0.68 0.63 0.64

0.72 0.67
0.76 0.67 0.66

0.8 0.73 0.72 0.69 0.64 0.68




Supplementary Figure 2. 42: Full-stack states enrichments with variants from GNOMAD
stratified by minor allele frequencies, common variants (A) and CpG dinucleotides (B).

In each subpanel, each row corresponds to a full-stack state. The first column gives the state
labels, the second gives the percent of the genome that each state covers. The heatmap colors
are on a column specific coloring scale. The last row shows the percentage of the genome that
each group of variants occupy. (A) The last column shows the enrichment of full-stack states with
common variants from UCSC Genome Browser’ snp151 track (Methods). Other columns show
fold enrichments of full-stack states for GNOMAD variants with the specified ranges of MAF, which
are ordered in increasing MAF (Karczewski et al., 2020). (B) The last column shows fold
enrichment of full-stack states with CpG dinucleotides. The three states showing highest
enrichment if variants of lowest MAF (0 < MAF <= 0.0001) (TSS1-2, PromF4) are also the states
most enriched states with CpG dinucleotide sites, likely reflecting the higher mutation rates
associated with CpG dinucleotide sites (Karczewski et al., 2020). We note the distinction between
this panel, which shows the enrichments of states with CpG dinucleotide sites, and
Supplementary Figure 2.28B, which highlights the relative higher enrichments of TSS-associated
states with regions that are rich with G, C or both nucleotides and hence with low-complexity
repeat class.

183



background:
genome

background:
common snps

background:

genome

state

% background

gwas_catalog

TxEnh1

TxEnh2

TxEnh3

TxEnh4.

TxEnh5

TxEnh6

TxEnh7

TxEnh8

% background

gwas_catalog bg:

p151_common

ucsc_sn|

autosomal

93.07

chrX

chrY

0.355
0.131
0.235
1.317
0.044
0.028
0.004
0.035
0.319
0.384
0.174
0.581
0.047
0.831
0.000
0.000
0.003
0.008
0.001
0.003
0.000
0.011
0.094
0.024
0.018
0.201
0.001
0.000
0.002
0.000
0.113
0.115
0.000
0.012
0.033
0.329
0.140
0.034
0.165
0.000
0.000
0.000
0.002
0.056
0.001
0.021
0.040
0.002
0.044
0.033
0.004
0.041
0.019
0.105
0.075
0.017
0.060
0.001
0.243
0.012
0.023
0.005
0.000
0.012
0.012
0.000
0.000
0215
0.028
0.060
0.144
0.019
0.098
0.097
0.067
0.000
0.041
0.000
0.000
0.002
0.000
0.072
0.000
0.037
0.002
0.002
0.040
0.021
0.002
0.002
0.000
0.000
0.002
0.000
0.029
0.033
0.450

192

184



Supplementary Figure 2. 43: Full-stack states enrichments with GWAS catalog variants
(Welter et al., 2014) and sex chromosomes.

Each row corresponds to a full-stack state. The first column gives the state labels and the second
column shows the percentage in the genome that each full-stack state occupies. The third column
shows the fold enrichments of full-stack states with GWAS catalog variants against the whole-
genome. The fourth column shows the percentage of the background context (UCSC snp151
common variants) that each full-stack state occupies. The fifth column shows fold enrichments
with GWAS catalog variants against the background of common variants (Methods). The sixth,
seventh and eight columns report the autosomal, chrX, and chrY fold enrichments, respectively.
Columns are colored on a column specific coloring scale. The last row reports the percent of the
background context (whole genome and set of common variants) that each annotation category
covers.
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Supplementary Figure 2. 44: Full-stack states enrichment values for fine-mapped variants
at phenotype associated loci.

At phenotype associated loci, causal variants were fine-mapped by two methods, CAVIAR and
Finemap (Benner et al., 2016; Tate et al., 2019). A set of lead fine-mapped variants in 1MB loci
across the genome were identified (Methods). The Supplementary Figure 2.hows the full-stack
states’ enrichment values for these fine-mapped variants calculated against a background of
common variants. The rows correspond to full-stack states. The first column gives the state labels,
the second column the percent of the genome that each state covers, followed by columns with
the fold enrichment for fine-mapped variants by CAVIAR and Finemap. The heatmap colors are
on a column specific coloring scale. The last row shows the percentage of the background set of
variants that the sets of lead fine-mapped variants occupy.
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Supplementary Figure 2. 45: Comparison of full-stack model annotations and the 100-state
annotations from independent models in predicting fine-mapped variants.

(A) ROC curves for the full-stack model and the 127 100-state independent models’ chromatin
state annotations at predicting variants that show highest probabilities of being causal according
to fine-mapping method FINEMAP (Benner et al., 2016) against the background of common
variants (Methods). The full-stack annotation model's ROC curve is in black and the 127 100-
state annotations from independent models’ ROCs are shown in blue. (B) Similar plot as (A), but
for variants evaluated by fine-mapping method CAVIAR (Chen et al., 2015). (C) Comparison of
the AUROC in predicting fine-mapped variants from a background of common variants. The x-
axis represents two different fine-mapping methods used to evaluate variants’ potential for
causing diseases. The box-plots show AUROC of 127 100 annotations from independent models
in predicting these variants. The blue dots show the AUROC of the full-stack chromatin state
annotations.
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Supplementary Figure 2. 46: Comparison of full-stack model annotations and the 18-state
annotations from a concatenated model in predicting fine-mapped variants.

(A) ROC curves for the full-stack model and the 98 18-state annotations from concatenated
models’ chromatin state annotations at predicting variants that show highest probabilities of being
causal according to fine-mapping method FINEMAP (Benner et al., 2016) against the background
of common variants (Methods). The full-stack model annotation’s ROC curve is in black and the
98 18-state annotations from a concatenated model ROCs are shown in red. (B) Similar plot as
(A), but for variants evaluated by fine-mapping method CAVIAR (Chen et al., 2015). (C)
Comparison of the AUROC in predicting fine-mapped variants from a background of common
variants. The x-axis represents two different fine-mapping methods used to evaluate variants’
potential for causing diseases. The box-plots show AUROC of 98 18-state annotations from
concatenated models in predicting these variants. The red dots show the AUROC of the full-stack
chromatin state annotations.
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Supplementary Figure 2. 47: Full-stack states enrichments with cancer-associated somatic
mutations in the non-coding genome.

Each row corresponds to a full-stack state. The first column gives the state labels and the second
column shows the percentage in the background genome context that each full-stack state
occupies. For this analysis, the background context is the non-coding genome (Methods). The
following columns correspond to one of four cancer types with the most number of mutations in
the COSMIC database (Tate et al., 20719). These columns give the enrichments of full-stack
states for mutations that appear at least once in the database for the cancer types. The heatmap
colors are on a column specific coloring scale. The last row shows the percentage of the genome
that mutations associated with each cancer type occupy.
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Supplementary Figure 2. 48: Comparison of full-stack model annotation and the 100-state
independent annotations in predicting somatic mutations associated with four cancer
types from COSMIC database (Tate et al., 2079).

(A) ROC curves for the full-stack model's annotations and the 127 100-state annotations from
independent models at predicting somatic mutations associated with breast cancer against the
background of non-coding genome (Methods). The full-stack model annotation’s ROC curve is
in black and the 127 100-state independent model annotations’ ROCs are shown in blue. (B-D)
Similar plot as (A), but for mutations associated with (B) haematopoietic and lymphoid tissue
(HLT) cancer, (C) liver cancer and (D) pancreas cancer, respectively. (E) Comparison of the
AUROC in predicting cancer-associated somatic mutations from a background of non-coding
genome. The x-axis represents four different cancer types that we considered in this analysis.
The box-plots show AUROC of 127 100-state independent models’ in predicting these mutations.
The blue dots show the AUROC of the full-stack chromatin state annotations.
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Supplementary Figure 2. 49: Comparison of full-stack model annotation and the 18-state
concatenated annotations in predicting somatic mutations associated with four cancer
types from COSMIC database (Tate et al., 2079).

(A) ROC curves for the full-stack model and the 98 18-state concatenatedmodels’ chromatin state
annotations at predicting somatic mutations associated with breast cancer against the
background of non-coding genome (Methods). The full-stack model's ROC curve is in black and
the 98 18-state annotations from a concatenated model ROCs are shown in blue. (B-D) Similar
plot as (A), but for mutations associated with haematopoietic and lymphoid tissue (HLT) cancer,
liver cancer and pancreas cancer, respectively. (C) Comparison of the AUROC in predicting
cancer-associated somatic mutations from a background of non-coding genome. The x-axis
represents four different cancer types that we considered in this analysis. The box-plots show
AUROC of 98 18-state annotations from a concatenated model in predicting these mutations. The
blue dots show the AUROC of the full-stack chromatin state annotations.
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Supplementary Figure 2. 50: Full-stack states enrichments of bases that were not lifted
over from hg19 to hg38.

(A) The heatmap shows enrichment values for the full-stack states (rows) of genomic bases that
were unmapped when lifting the state annotation from hg19 to hg38 (Methods). The first column
shows the state label and the second column shows the percentage of the genome that each
state covers. The third column shows enrichment values, colored such that highest enrichment
values are colored red and lowest ones are colored white. The fourth column shows the
percentage of the unmapped regions (from hg19 to hg38) in each state. (B) Table showing details
of numbers of bases involved in liftOver procedure, highlighting the overlap between the
unmapped and unannotated regions with assembly gaps. As part of the liftOver procedure, bases
in hg38 that are mapped to from multiple bases in hg19 are left unannotated to any state in hg38
(Methods). All results are reported in chromosomes 1-22, X, Y.
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Supplementary figures for chapter 3
Universal chromatin state annotation of the mouse genome
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Supplementary Figure 3. 1: Mouse full-stack states transition probabilities.

Each row and each column correspond to a full-stack state, ordered based on their associated
state group. The heatmap shows for each state assigned at a current genomic position (rows) the
probabilities of transitioning to another state (columns) at the subsequent genomic position. The
state groups are shown at the bottom.
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Supplementary Figure 3. 2: Positional enrichments of full-stack states around annotated
transcription start sites and transcription end sites.

The figure shows positional fold enrichments for positions within 2kb of annotated (a) transcription
start sites (TSS) and (b) transcription end sites (TES). Each column corresponds to one 200bp
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window as indicated at bottom. Positive coordinate values represent the number of bases
downstream in the 5’ to 3’ direction of transcription, while negative values represent the number
of bases upstream. Enrichments are calculated based on a genome-wide background. Color

scale of enrichments is indicated at right for each panel. State groups’ color legends are shown
at the bottom.
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Enrichment of mouse full-stack states with chromosomes
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States in the top 1 most enriched in with non-primary chromosomes
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Supplementary Figure 3. 3: Mouse full-stack states enrichments with different
chromosomes.

(A) The first and second columns show the mouse full-stack states and their percent genome
coverage. The following columns correspond to different chromosomes. The heatmap shows fold
enrichments of each state with each chromosome. Coloring of the heatmap is column-specific.
The last row shows the percentage of the genome that each chromosome covers. Certain states
in polycomb repressed group (mReprPC4-6) show distinctly high enrichments with chromosome
X. (B) The first and second columns show mouse full-stack states and their genome coverage,
respectively. The following columns correspond to different scaffold chromosomes. Only states
that show highest enrichments with at least one scaffold chromosome are shown. Within each
column, the highest enrichment values across 100 mouse full-stack states are colored red. States
in ‘assembly gaps and alignment artifacts’ or in heterochromatin groups show highest
enrichments with multiple scaffold chromosomes.
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Enrichment of mouse full-stack states with classes of repeat elements

Supplementary Figure 3. 4: Mouse full-stack states enrichments with different classes of
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repeats (Smit et al., 2015).
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The first and second columns show the mouse full-stack states and their genome coverage. The
following columns correspond to different repeat classes. The following columns correspond to
different classes of repeat elements (with elements named with “?’ excluded). The heatmap shows
fold enrichments of each state with each repeat class. Coloring of the heatmap is column-specific.
The last row shows the percentage of the genome that each repeat class covers.

Top mouse full-stack states most enriched with classes of repeat elements
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Supplementary Figure 3. 5: Enrichment of select mouse full-stack states with different
classes of repeat elements (Smit et al., 2015).

The first and second columns show mouse full-stack states and their genome coverage,
respectively. The following columns correspond to different classes of select repeat elements.
Only states that show highest enrichments with at least one repeat class are shown. Within each
column, the highest enrichment values across 100 mouse full-stack states are colored red.
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Associated per-cell-type state with each mouse full-stack state, by tissue type
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Supplementary Figure 3. 6: Full-stack states maximum-enrichments with annotated
concatenated-model chromatin states in 66 mouse reference epigenomes (Gorkin et al.,
2020).

Each row corresponds to one of 100 mouse full-stack state (Methods). Each column corresponds
to a reference epigenome, grouped by the associated cell types as colored at the top and bottom.
Each color entry corresponds to a reference epigenome and mouse full-stack state combination.
The color corresponds to the chromatin state from the concatenated 15-state model annotating
the respective mouse reference epigenome that is most enriched with the respective mouse full-
stack state. Description of states in the per-cell-type 15-state concatenated model is in the bottom
(Gorkin et al., 2020). The figure highlights how some mouse full-stack states are maximally
enriched with the same concatenated-model chromatin states across all the reference
epigenomes; for example, states mTx1-5 are maximally enriched with the strong transcription
state in all 66 reference epigenomes’ 15-state concatenated annotation. Other mouse full-stack
states are enriched for distinct concatenated states in different cell types, for example state
mEnNhA17-- characterized as an enhancer state in liver, spleen and bone marrow based on
emission probabilities of enhancer associated marks-- is most enriched with an active enhancer
in liver cell types, while being most enriched with poised/weak enhancer states in others. Detailed
description of each mouse full-stack state enrichment patterns with concatenated states can be
found in Supplementary Data 3.4.
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Supplementary Figure 3. 7: Estimated probabilities of per-cell-type concatenated-model
chromatin states overlapping with mouse full-stack states.

The figure shows estimated probabilities of per-cell-type chromatin state annotations overlapping
with mouse full-stack states observed in different cell groups (Gorkin et al., 2020). This figure is
also provided as an excel file in Supplementary Data 3.4. The figure is based on a 15-state per-
cell type chromatin state model trained on 66 mouse reference epigenomes from 12 cell groups
(Gorkin et al., 2020). Each row corresponds to a combination of per-cell type state (among 15
states) and cell group, as denoted in the first two columns and legends on the right and matching
with the colors in Supplementary Figure 3.5. We note that we changed here the concatenated-
model no-signal state from white to blue for better visibility. Rows corresponding to the same per-
cell-type model state are grouped together (into 15 bigger rows). The 100 following columns
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correspond to 100 mouse full-stack states. Values in the heatmap correspond to the estimated
probability a genomic position annotated as a mouse full-stack state (column) is also annotated
as a concatenated-model state in a reference epigenome from the corresponding cell group (row)
(Methods). The last two columns show the minimum and maximum probabilities observed for
each per-cell type state for any combination of tissue group and mouse full-stack state. The
heatmap colors correspond to the 15-state’s colors and are scaled such that the maximum
probability value in each row block is colored darkest (as seen in the right most column). The
figure complements Supplementary Figure 3.5 in providing information on how each full-stack
state can correspond to different per-cell-type states, hence stratifying mouse full-stack states’
characteristics in more details. For example, mouse full-stack state mTSS1 shows high
probabilities of overlapping bivalent promoter state in liver cells, and moderate probabilities of
overlapping the flanking/weak promoter state in other cell groups.
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Mouse full-stack states’ relationships with human full-stack states
Human full-stack states

__Mouse full-stac

Min >=100

Supplementary Figure 3. 8: Enrichments of mouse full-stack states with human full-stack
states (Vu and Ernst, 2022).

The first three columns show mouse full-stack states, the maximum fold enrichment with a human
full-stack state (across all human states) and the corresponding human state, respectively. The
following columns show the overlap enrichments with of each mouse state (rows) with each
human state (columns). Across all pairs of states, the smallest enrichment values are colored blue
and enrichment values >= 100 are colored red. This figure is also provided in Supplementary

Data 3.3.
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Mouse full-stack states’ relationships with functional assay conservation
(LECIF), sequence conservation (PhastCons) and human full-stack states
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Supplementary Figure 3. 9: Mouse full-stack states’ relationship with LECIF scores, human
full-stack states and phastCons elements.

LECIF scores were developed to measure the level of evidence of human-mouse conservation at
functional/epigenomic levels, with higher score (maximum of 1 and minimum of 0) implies higher
evidence of conservation (Kwon and Ernst, 2021). PhastCons elements correspond to genomic
regions showing strong 60-way multi-species sequence alignment conservation (Siepel et al.,
2005). Human full-stack states were learned from >1,000 Chip-seq/DNase-seq datasets in
human, and provide annotation of the human genome that is shared across cell/tissue types (Vu
and Ernst, 2022). (A) The heatmap shows mouse full-stack states (rows) average LECIF scores,
enrichments with phastCons elements and the maximum enrichments with human full-stack
states. The first and second columns show the mouse full-stack states, and the percentage of the
genome that each state covers. Coloring of the next 3 columns is column specific, as specified in
legend. The last row shows the percentage of the genome that each LECIF score range covers.
(B) Upset plot showing the number of states that are among the top 20 states with either (1)
highest average LECIF score, or (2) hig hest enrichments with PhastCons elements or (3) highest
maximal enrichments with human full-stack states. Within each category, the column below the
upset plot lists states that are in the top 20 most associated (as measured by average LECIF
scores or fold enrichments) with the combination enrichment contexts.
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Supplementary figures for chapter 4
A framework for group-wise summarization and comparison of chromatin state
annotations
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Visualization of ESC and Brain sample’s input chromatin state maps and CSREP’s output
for region chr5:156,012,600-156,022,400
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Supplementary Figure 4. 1: Visualization of ESC and Brain sample’s input chromatin state
maps and CSREP’s output for region chr5:156,012,600-156,022,400, hg19.

All the sections of tracks are annotated in the legend on the left. The first section of tracks shows
the universal chromatin state annotation that can annotate the epigenome across cell types, with
states EnhA6 and EnhWk4 previously characterized as active and weak enhancer states
specifically in the Brain/neuron, respectively (Vu and Emst, 2022). The following three sections
of tracks show the CSREP summary state assignment probabilities for the Brain group, the
CSREP summary state annotation for Brain group, and the Brain input samples’ chromatin state
maps from Roadmap Epigenomics. The last four sections of tracks show ESC input samples’
chromatin state maps from Roadmap Epigenomics, CSREP summary state annotation and
assignment probabilities for the ESC group and the differential scores of ESC-Brain annotations.
This figure shows input and CSREP output data for a similar genomic region as in Figure 4.1C.
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CSREP empirical run time
(input data preprocessing time for all 64 samples: 0:42:14)
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ESC 5 1:24:22
Epithelial 5 2:48:27
Brain 7 1:41:12
ES-deriv 7 1:41:26
Digestive 10 1:53:54
Blood & T-cell 12 2:26:14

Supplementary Figure 4. 2: Empirical run time of CSREP for summarizing chromatin
annotations from 11 groups (of 64 samples in total) from Roadmap.

We ran CSREP on the high-performance computing cluster, where each job was allocated 4 cores
with 4GB of memory per core. snakemake (Késter and Rahmann, 2012; Moélder et al., 2021)
parallelizes the steps in input data preprocessing across all 64 input samples. Additionally,
snakemake parallelizes the training process to predict chromatin state maps in individual samples
in each group. The total runtime includes data preprocessing time shared across all groups of
samples (~42 minutes), and prediction time that is specific to each group and denoted in the table.
The prediction run time reported in the table include (1) the maximum time span of one job that
outputs predictions for one sample, out of all samples in each group, and (2) the time span for
averaging the predictions across samples, to obtain the group-wide summary chromatin state
maps.
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Visualization of input samples’ chromatin state maps and CSREP’s summary
state assignment probabilities tracks for region chr5: 42821109-43321109
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Supplementary Figure 4. 3: Visualization of CSREP’s input and output data for an
arbitrary 500-kb genomic window (chr5: 42,821,109-43,321,109, hg19).

The visualization shows CSREP’s strong agreement with the chromatin state maps from 10 input
samples from Digestive and 3 samples from Heart tissue groups from Roadmap Epigenomics. In
each panel, the first track shows the summary chromatin state map based on CSREP. The
following 3 (Heart) and 10 (Digestive) tracks show input samples’ chromatin state maps. States
are colored based on legend on the left. In the following 18 tracks, each track shows the
probabilities of assignment for one of 18 states. This region is the same as in Figure 4.2A.
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Visualization of input samples’ chromatin state maps and CSREP’s
summary state assignment probabilities tracks for region
chr12:79237500-79737500
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Supplementary Figure 4. 4: Visualization of CSREP’s input and output data for an arbitrary
500-kb genomic window (chr12:79,237,500-79,737,500, hg19).

Similar to Supplementary Figure 4.3, for genomic region chr12:79,237,500-79,737,500, hg19.
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Visualization of input samples’ chromatin state maps and CSREP’s
summary state assignment probabilities tracks for region
chr10:2290673-2790673
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Supplementary Figure 4. 5: Visualization of CSREP’s input and output data for an
arbitrary 500-kb genomic window (chr10:2,290,673-2,790,673, hg19).

Similar to Supplementary Figure 4.3, for genomic region chr10:2,290,673-2,790,673, hg19.
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Visualization of input samples’ chromatin state maps and CSREP’s
summary state assignment probabilities tracks for region
chr2:109461695-109961695

200 kol ]
109,500, 806 103,556, 806 103,608, 808] 199,850, 800 103,708, 806 189,750, 00| 103,500, 806| 103,550, 808] 199,300, 000
' . w - ' v —
— [ - - } ] 5 —
' b D

— = =
] |
2 Flk TSS i 4
3Flk TSS U |.
4 Flk TSS D i
-—— .. Dbl o A PRI AR i B AL Rk A 0 e AN o (B
7 Genic Enh
8 Genic Enh
9 Active Enh M T [T T Ahi |
10 Active Enh i a i ook b ik ke i
11 Wk Enh i ' - i a I TN IRTOR W T SRS VU1 7Y IRV WNIDT VT PTON W TV DT AN PP T
12 ZNF/Rpts I n
13 Het w— ' L
17 Wk ReprPC R - -~ - -
18 Quiescent | MRS R S . e e et N o . s s e ol B
Ton v T reis
169,568, 608] 169,550, 668| 169,668, 668| 169,650, 008| 169,760, 668| 169,750, 660| 109,506, 008| 109,850, 008| 189,906, 088| 199,956, 006|
— - a —ar 1 : . . - - B aem  wmamt - |
- e e e = : — - — e e —
Digestive - - e ettt e e e e r—
0 —— " m— wm—w 1 e—
- - i - =
' . - -8 s
1 'S
2 FIk TSS 2 i a
3Flk TSS U .
4 Flk TSS D
7 Genic Enh
8 Genic Enh X Ao 4 a2 L n Ll
9 Active Enh
10 Active Enh " 'y Ak L 1 il n, A Naedi a4
11 Wk Enh i L J [
12 ZNF/Rpts a d A A
13 Het ul o
M Med o i b B A M ek A M .
U,
17 Wk ReprPC - Al i o e S, T

18 Quiescent | g mtdiiiene ol e manl o ofiecens B SR andiie. . ofele . AN Bl . JecNRER _.oh

Supplementary Figure 4. 6: Visualization of CSREP’s input and output data for an
arbitrary 500-kb genomic window (chr2:109,461,695-109,961,695, hg19).
Similar to Supplementary Figure 4.3, for genomic region chr2:109,461,695-109,961,695, hg19.
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Visualization of input samples’ chromatin state maps and CSREP’s summary state assignment
probabilities tracks for gene LGALS4 (highly expressed in colon and intestine)
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Supplementary Figure 4. 7: Visualization of CSREP’s input and output data for a genomic
window overlapping the LGALS4 gene (chr19:39,292,311-39,303,740, hg19).

Gene LGALS4 shows the distinctly higher expression in cell types of the Digestive system, with
gene expression profile across cell types in Supplementary Figure 4.9. The visualization shows
UCSC Genome browser view of CSREP’s output summary chromatin state maps for 10 input
samples from Digestive and 3 samples from Heart tissue groups from Roadmap Epigenomics
Consortium. The first 18 tracks show the summary probability assignment of chromatin states for
Heart samples, based on CSREP. The following track shows the summary chromatin state
annotation for Heart samples. The following 3 (Heart) and 10 (Digestive) tracks show input
samples’ chromatin state maps. The following tracks show the summary chromatin state map for
sample of the Digestive cell groups, followed by the individual states’ summary state assignment
probabilities. States are colored based on legend on the left.
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Visualization of input samples’ chromatin state maps and CSREP’s summary state assignment probabilities tracks
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Supplementary Figure 4. 8: Visualization of CSREP’s input and output data for a genomic
window overlapping the MT3 gene (chr16:56,623,267-56,625,000, hg19).

Gene MT3 shows the distinctly higher expression in Brain cell types, with gene expression profile
across cell types in Supplementary Figure 4.9. The visualization shows UCSC Genome browser
view of CSREP’s output summary chromatin state maps for 12 input samples from Blood and 7
samples from Brain tissue groups from Roadmap Epigenomics. The first 18 tracks show the
summary probability assignment of chromatin states for Blood samples, based on CSREP. The
following track shows the summary chromatin state annotation for Blood samples. The following
12 (Blood) and 7 (Brain) tracks show input samples’ chromatin state maps. The following tracks
show the summary chromatin state map for sample of the Brain cell groups, followed by the
individual states’ summary state assignment probabilities. States are colored based on legend on
the left.
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Gene expression for genes LGALS4 and MT3, outputted by UCSC Genome Browser

LGALS4 Gene Expression from GTEx (Release V8)
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Supplementary Figure 4. 9: Gene expression profile for genes LGALS4 (top) and MT3
(bottom), as shown on UCSC Genome Browser.
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Difference of AUROCs between CSREP and base_count stratified by number of input samples
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Supplementary Figure 4. 10: Relationship between the number of samples and AUROCs
from using summary chromatin state map to predict genomic locations of individual
chromatin states.

We conducted cross-validation analysis for each group of samples (Methods), and for each
group, we calculate ROC curve of CSREP’s summary probabilistic chromatin state map in
recovering genomic positions of individual chromatin states in a held-out sample. Each panel
corresponds to a chromatin state, and shows the difference between CSREP’s AUROCs and
base_count’'s AUROCSs for predicting locations of the chromatin state in left-out samples. Each
dot corresponds to one sample. Y-axis shows the difference of AUROCs between the two
methods (positive y-axis means CSREP results in higher AUROCSs and vice-versa). X-axis shows
the number of input samples for the group, not to scale, but the reported Pearson correlation is
based on actual number of samples.
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Histogram of Male - Female CSREP differential scores in autosomes and chrX
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Supplementary Figure 4. 11: Histogram of CSREP differential chromatin scores between
Male and Female groups of samples, in autosomes and in chromosome X.

Each subpanel shows the histograms of one state’s CSREP Male - Female differential scores,
bounded between -1 and 1, in autosomes and chromosome X.
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Supplementary Figure 4. 12: Mean and variance of the CSREP differential scores between
Male and Female groups of samples, in autosomes and in chromosomes.

The mean differential scores for each state in either chromosome X or autosomes are reported
for each state and share the same color scale as in bottom legend. The difference between the
mean scores for chromosome X and the autosomes for each state is reported on the bottom row
and colored as in bottom legend. Three states with largest-magnitude difference in mean scores
are 13_Het, 17_ReprPCWKk, 18 Quies.
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AUROC:s for predicting Brain-/ESC- specific peaks of chromatin marks
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Supplementary Figure 4. 13: Evaluation of recovery of differential chromatin marks signals
between ESC and Brain.

The table is an extension to Figure 4.4, and shows AUROCSs for differential scores’ predictions
of genomic regions associated with differential peak signals for one chromatin mark, from left to
right: DNase, H3K27ac and H3K9ac. For each chromatin mark, it shows the AUROCs of
predicting signal peaks observed in Brain and ESC exclusively (Brain-spec and ESC-spec).
Differential scores outputted by CSREP, base-count, Mann-Whitney U test (used by ChromDiff)
and Fisher’s exact test (used by EpiCompare) are shown for each chromatin state (rows). In each
category of comparisons (a chromatin mark in either ESC or Brain), the top three scores that
show highest AUROCSs are highlighted in green. Along the bottom is the AUROC for SCIDDO.
The differential scores for states that are not related to active promoter and enhancer activities
tend to show AUROCs near or lower than 0.5, which is expected since these states are not
associated with DNase, H3K27ac or H3K9ac.
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Effects of varying genome proportion used for
CSREP training on accuracy and runtime
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Supplementary Figure 4. 14: Effects of varying genome proportion used for training in
CSREP on accuracy and runtime.

We conducted leave-one-out analysis to evaluate CSREP’s accuracy in predicting a held-out
sample’s chromatin state map, given varying fractions of the genome used for training (Methods).
We applied the procedure on data from Roadmap Epigenomics, and reported the AUROC for 3
and 12 samples from Heart (A) and Blood (B) groups, respectively. The empirical runtime for
CSREP to generate the summary chromatin state maps for a group of 2 Heart samples or 11
Blood samples in the leave-one-out analysis are reported in (C).
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