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Fragment pose prediction using non-equilibrium candidate 
Monte Carlo and molecular dynamics simulations

Nathan M. Lim, Meghan Osato, Gregory L. Warren, David L. Mobley
Department of Pharmaceutical Sciences, University of California—Irvine, Irvine, California 92697, 
United States

Abstract

Part of early stage drug discovery involves determining how molecules may bind to the target 

protein. Through understanding where and how molecules bind, chemists can begin to build ideas 

on how to design improvements to increase binding affinities. In this retrospective study, we 

compare how computational approaches like docking, molecular dynamics (MD) simulations, and 

a non-equilibrium candidate Monte Carlo (NCMC) based method (NCMC+MD) perform in 

predicting binding modes for a set of 12 fragment-like molecules which bind to soluble epoxide 

hydrolase. We evaluate each method’s effectiveness in identifying the dominant binding mode and 

finding additional binding modes (if any). Then, we compare our predicted binding modes to 

experimentally obtained X-ray crystal structures. We dock each of the 12 small molecules into the 

apo-protein crystal structure and then run simulations up to 1 microsecond each. Small and 

fragment-like molecules likely have smaller energy barriers separating different binding modes by 

virtue of relatively fewer and weaker interactions relative to drug-like molecules, and thus likely 

undergo more rapid binding mode transitions. We expect, thus, to see more rapid transitions 

between binding modes in our study.

Following this, we build Markov State Models (MSM) to define our stable ligand binding modes. 

We investigate if adequate sampling of ligand binding modes and transitions between them can 

occur at the microsecond timescale using traditional MD or a hybrid NCMC+MD simulation 

approach. Our findings suggest that even with small fragment-like molecules, we fail to sample all 

the crystallographic binding modes using microsecond MD simulations, but using NCMC+MD we 

have better success in sampling the crystal structure while obtaining the correct populations.
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Introduction

High-throughput screening (HTS) is commonly used in early stage drug discovery to 

identify potential binders or hits. HTS involves taking a large library of molecules and 

screening them against a target (e.g. a protein). Hit rates in HTS campaigns are often low, 

simply due to how vast chemical space can be and the complexity of therapeutic targets.1 

One common strategy in fragment-based drug discovery (FBDD) projects is to conduct the 

screen using smaller molecules (fragments) to cover a larger portion in chemical space 

which may lead to higher hit rates. Often in this approach hits tend to be weak binders, but 

they can serve as a starting point for building a potential lead molecule.2 From the pool of 

hits, medicinal chemists may find a desirable starting scaffold or they can build up new 

molecules by connecting fragments together in hopes to improve binding affinity. While 

doing this optimization, chemists must gain an understanding of where and how their 

molecule binds to their target protein to guide their efforts to optimize the compound’s 

binding or selectivity.

Some experimental approaches to gaining structural insight on ligand binding include X-ray 

crystallography, nuclear magnetic resonance (NMR), and surface plasmon resonance (SPR). 

Each of these approaches present its own set of benefits and challenges but most are costly, 

time-consuming and difficult.3,4 For example, X-ray crystallography provides structural 

information with near atomic-resolution, but obtaining high resolution crystal can be 

extremely challenging. Especially with FBDD, resolving the binding mode(s) for small 

molecules and fragments proves challenging as fragments often bind in several different 

configurations. This often produces X-ray structures which have ambiguous densities around 

the bound ligand or are generally in too low resolution to definitively resolve the fragment 

binding mode(s).5

Here, with these ambiguous densities in the crystal structures, computational approaches 

may aid in the design process by resolving ambiguities through predicting fragment binding 

modes. Computational methods like docking or molecular dynamics (MD) simulations are 

some common approaches used in helping to determine fragment binding modes.6–8 If these 

techniques are accurate enough, computational chemists can apply them to make sense of 
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partial occupancy data and help rescue structure-based design work on fragments that might 

otherwise have stalled.

Docking is a computationally inexpensive technique which generates a variety of 

configurations or poses by placing the ligand into a static structure of the apo-protein and 

subsequently scoring each generated candidate. It can be performed at high speeds by 

neglecting conformational changes in proteins which might normally occur on binding. This 

often results in sacrificing accuracy–making it difficult to distinguish binders from non-

binders.9–13 Of course, there are also flexible docking approaches but these usually neglect 

protein strain and typically do not demonstrate dramatically better performances.14 Instead, 

docking can often be used to understand the conformational space of the ligand and provide 

some initial insight on how a ligand may fit in the binding site. Several studies have shown 

that docking does not reliably find experimental binding modes of ligands.13,15 In view of 

these limitations, here, we use docking to generate a variety of configurations to hopefully 

provide coverage of the entire binding site and all reasonable binding mode possibilities, and 

use these as starting points for our simulations.

Unlike docking, MD simulations resolve—in full atomistic detail—the overall dynamics of 

the protein-ligand system by solving Newton’s equations of motions in discrete timesteps.
16,17 This can get very computationally expensive if one wants to simulate biological 

timescales as MD simulations must take timesteps which are constrained by the fastest 

motion in the system (e.g. bond vibrations at 1–2 femtoseconds). One may use schemes like 

hydrogen mass re-partitioning18 to enable one to take longer timesteps (e.g. 4fs) by slowing 

down hydrogen bond stretching, but interesting biological motions occur at much larger 

timescales necessitating large numbers of timesteps and great computational cost. Interesting 

biological motions like protein folding or other large conformational changes have 

timescales ranges from 10−6s (μs) to 100s or even longer,19 requiring extremely long 

compute times if one aims to capture these types of motions.

Fortunately, recent advancements in technology, like the introduction of computing using 

graphics processing units (GPUs), have made achieving microsecond (or even millisecond) 

long MD simulations fairly routine. Still, despite using longer timesteps and newer 

technologies, the utility of MD simulations in the drug discovery process has been hindered 

by MD’s inability to adequately sample the conformational space. Often, MD simulations of 

a protein-ligand complex will see the ligand remain trapped in the binding mode the 

simulation had started in and will fail to capture any transition into alternative binding 

modes.

For FBDD, MD simulations may hold some value given that fragments are small and rigid 

enough that transitions between binding modes may occur at shorter timescales. In this case, 

MD simulations could then resolve potential binding modes and reveal important stabilizing 

protein-ligand contacts–that is, if such contacts form on reasonable timescales (nanoseconds 

to milliseconds). But in some cases, binding mode transitions may require conformational 

changes in the protein which may take beyond the millisecond timescale before a transition 

can even occur.20,21 Although these challenges in adequate sampling of the biologically 

relevant timescales remain an issue to this day, recent advancements in the field have 
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resulted in new ways to address sampling challenges which we apply within this study. We 

note that in this study, we are mostly focused on addressing problems of sampling ligand 

binding modes that occur in the absence of slow protein conformational degrees of freedom.

One example of an enhanced sampling approach is a hybrid simulation approach which 

combines non-equilibrium candidate Monte Carlo (NCMC)22 move proposals with 

traditional MD simulations. We previously implemented this NCMC+MD approach in a 

software package called BLUES: Binding modes of Ligands Using Enhanced Sampling,23 

which aims to accelerate sampling of ligand binding modes by proposing random rotational 

moves on the ligand and then runs a conventional MD simulation. BLUES is similar to using 

traditional Monte Carlo (MC) moves with MD, except that it uses a gradual non-equilibrium 

based switching protocol while performing perturbations to the ligand instead of an 

instantaneous perturbation. In theory, this allows us to perform larger perturbations to the 

ligand and increase acceptance of proposed moves over traditional MC. With the BLUES 

approach, we hypothesize that we will observe better sampling of ligand binding modes and 

be able to identify the experimental ligand binding modes over using traditional MD 

simulations. Previous work using BLUES has shown success in accelerating sampling of 

ligand binding modes in the simple model systems of toluene and iodotoluene bound to the 

T4 lysozyme L99A mutant.23 Here, we are interested in applying BLUES to a more 

complex target with pharmaceutical relevance to evaluate its utility beyond a simple model 

system.

In this retrospective study, we are interested in using computational methods to identify 

binding modes for fragments which bind to a protein called soluble epoxide hydrolase 

(SEH). SEH has been hypothesized to have therapeutic potential in cardiovascular diseases, 

inflammatory diseases, and neurological diseases, which has spurred efforts in developing 

SEH inhibitors. Specifically, SEH is involved in the breakdown of epoxyeicosatrienoic acids 

(EETs), acids with cardiovascular effects such as vasodilation and anti-inflammatory 

actions. Through slowing the degradation of EETs (via SEH inhibition), it has been 

hypothesized to induce neuroprotective, cardioprotective, and anti-inflammatory effects. In 

vitro studies with murine models found that SEH inhibition significantly lowered blood 

pressure, bolstering its hypothesized role in blood pressure regulation.24–26

Here, we apply docking, MD, and (NCMC+MD) BLUES simulations on a small set of 12 

fragments which bind to SEH and evaluate their effectiveness in identifying their binding 

modes. For the remainder of this paper, we define binding modes as experimentally or 

simulation-determined metastable bound states; ligand poses are defined as the 

configurations generated from docking. In some cases, MD simulations can successfully 

distinguish experimental binding modes from decoy poses better than using docking alone.
27,28 Thus, we will investigate if using microsecond MD simulations or our BLUES (NCMC

+MD) enhanced sampling approach provide any value, beyond docking, for identifying the 

SEH fragment binding modes. We will compare poses generated from docking and the 

metastable binding modes sampled from MD and BLUES against experimentally obtained 

x-ray crystal structures. Through this study, we aim to provide insight on the value 

computational methods can provide in identifying the crystallographic binding modes and 

finding additional binding modes.
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Methods

SEH apo-protein preparation

Prior to beginning this study, our OpenEye Scientific collaborators provided the SEH 

structure, the location of the binding site where ligands would be docked, and a set of 47 

ligands in the form of SMILES strings. The initial SEH structure from OpenEye Scientific 

was missing residues. We found the apo SEH structure in the Protein Data bank 

(PDBID:5AHX), built in the missing residues with PDBFixer, and used this structure for the 

remainder of the study.29 The apo SEH structure was altered using the PDB2PQR web 

server,30 which uses PROPKA2.0 to assign residue protonation states. We protonated 

residues at pH 8.5 to match experimental conditions, using AMBER parameters31–33 and we 

removed crystallographic waters from the system. The PQR file was then converted back to 

a PDB file with ParmEd (v3.0.1). We aligned the corrected apo SEH structure to the SEH 

structure provided by OpenEye Scientific to ensure the predefined docking site was the 

same.

The SEH protein contains 2 domains, a phosphatase domain (N-terminus) and a hydrolase 

domain (C-terminus) connected by a flexible proline rich linker.34 The predefined docking 

site was only located in the C-terminal hydrolase domain, so to reduce computational cost, 

we removed the N-terminal domain from residue 0 to residue 224 (Fig. 1). We analyzed the 

structural integrity of the truncated protein by averaging the RMSD of the protein backbone 

over a 1 microsecond MD simulation. The average RMSD of the truncated protein backbone 

was 2.1 Angstroms suggesting the C-terminus was relatively unaffected by the removal of 

N-terminus. The slight spikes in RMSD correspond to fluctuations in the flexible linker 

region and did not affect the overall integrity of the C-terminal hydrolase domain–where the 

binding site was located. In Figure 3, we show the entire binding site located in the C-

terminus domain as defined by our collaborators.

Here, we define two sub-cavities (left/right) which are separated by two loops which form at 

residues VAL381 (A) and VAL499 (B), creating a cleft in the center of the SEH binding site 

(Fig. 3). Throughout this study, we treat the left and right sub-cavity separately as we did not 

observe transitions between them in our simulations. By performing our analysis on each 

sub-cavity separately, we are better able to resolve the binding modes and timescales for 

transitions between binding modes, relative to trying to resolve the transition timescales 

between the sub-cavities.

Ligand preparation and docking

From a set of 47 ligands given to us by our OpenEye Scientific collaborators, we chose to 

study a smaller subset of 12 ligands (Fig. 4). The initial set of 47 ligands were taken from a 

fragment-based drug discovery campaign from AstraZeneca.35 Here, we chose ligands based 

on the overall size and number of rotatable bonds. Particularly, we were interested in only 

studying small and rigid fragment molecules as we expected to observe more binding mode 

transitions during our simulations, due to their size and rigidity. The molecule set ranged 

from 133.13 to 156.73 Å3 in shape volume with 0 to 1 rotatable bonds.
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We used openmoltools (v0.8.1)36 and OpenEye toolkits37 to convert each ligand SMILES 

string to a 3D structure and then we assigned charges using the OEAM1BCC charging 

scheme from the OEQUACPAC library.37 This scheme assigns AM1 Mulliken-type partial 

charges with bond-charge corrections to the ligand atoms.38 Then, we generated 1000 

conformers of each charged ligand using OpenEye’s OMEGA (20180212).39 These 

conformers were then docked into the SEH apo protein structure using FRED from 

OEDock(v3.2.0.2), generating 1000 docked poses, and scored with the Chemgauss4 scoring 

function.40

From the 1000 generated docked poses, we wanted to select the most distinct and use them 

as our starting positions for our simulations. Here, we define distinct docked poses as poses 

which are dissimilar from one another. Some studies have shown that docking is an 

unreliable method for identifying the true binding mode using the top scoring pose.13 Given 

this, we believed that the top scoring poses would often be far from the true binding mode 

and thus, we did not retain them and use them as starting points for our MD simulations to 

ensure broad coverage of possible binding modes/sites. This was done without utilizing 

experimental binding modes. In analysis after our calculations, we confirmed that the top 

scoring docked poses are not generally close to the crystallographic binding modes (Fig. 5).

By selecting the distinct poses generated from docking, we have a variety of starting 

configurations in our simulations and provide reasonable coverage of the protein binding 

site. Regardless of the starting positions, given enough simulation time and the fragment-like 

properties (i.e. small and rigid properties) of the molecules we are simulating, we should see 

convergence to the true binding mode given the forcefields, protonation states, accuracy of 

our model, and simulation timescales used in this study. However, how much “enough 

simulation time” truly is remains an open question in general. We describe the filtering and 

selection process below.

MDS-RMSD Filtering: Unique pose selection

First, we generate a RMSD-based similarity matrix of the 1000 generated docked poses. 

That is, we compute the RMSD, using only the ligand heavy atoms, from each docked pose 

to every other docked pose. This gives us an NxN similarity matrix (N=1000), in which our 

measure of similarity is based on the calculated RMSD between the docked poses (Fig. 6). 

Next, we apply a technique called Multi-Dimensional Scaling (MDS) through scikit-learn 

(v0.19.0)41 in order to reduce our NxN dimensional space into a 2D space, where we can 

then apply clustering techniques. MDS is a method which transforms our similarity matrix 

and projects each object (i.e pose) into a lower dimensional space in such a way that the 

distance between objects (i.e poses) are preserved as best as possible. In other words, when 

we project into a 2D space, poses which are similar (low RMSD) will appear closer together 

and poses which are dissimilar (high RMSD) will appear farther away.

After applying MDS to our RMSD similarity matrix, we transform our NxN dimensional 

space and take our first two MDS components to project the data into a 2D scatter plot. This 

enables us to easily apply K-means clustering42 (from scikit-learn) to group up similar poses 

and separate dissimilar poses with the first two components which best represent the pair-

wise similarity distances. A notable downside to K-means clustering is that one has to 
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specify the number of clusters to be used to separate the data points. To avoid bias, we use 

silhouette scoring43 (from scikit-learn) to automatically determine the best number of 

clusters to use to separate our data points. Silhouette scores range from −1 to +1 and 

evaluates how similar objects belonging to the same cluster are (cohesion) and how 

dissimilar those objects are with other clusters (separation) (Left: Fig. 7). High values 

(closer to +1) indicate that the object is similar to other objects within the same cluster and 

dissimilar to objects in neighboring clusters. Low values (closer to −1) indicate that the 

object is dissimilar to others within the same clusters and similar to objects in neighboring 

clusters. A low total silhouette score indicates that the clustering configuration is likely 

incorrect with either too many or too few clusters, so we can use the total silhouette score as 

a way to select the optimal number of clusters.

We apply K-means clustering using a range of 2–9 clusters on our MDS-RMSD scatter plot 

and score each round of clustering using silhouette scores. We selected the number of 

clusters K maximizing total silhouette score, and then used this to partition our 1000 docked 

poses in MDS-RMSD space and set the number of starting poses to be used for our 

simulations. Using the K clusters which maximized the silhouette score, we then selected the 

pose closest to the calculated centroid of each cluster as the representative pose for starting 

our simulations (Right: Fig. 7).

Molecular Dynamics and BLUES Simulations

In this study, we used two simulation approaches: traditional molecular dynamics (MD) 

simulations and our hybrid approach called BLUES: Binding modes of Ligands Using 

Enhanced Sampling,23 which combines Non-equilibrium Candidate Monte Carlo (NCMC)22 

move proposals with MD. Both MD and BLUES simulations using OpenMM (v7.1.1)44 

with the same solvated SEH system. For our simulations, the truncated SEH protein 

(consisting of only the C-terminal domain) was parameterized with amber99sbildn forcefield 

for the protein and GAFF2 for the ligands, and solvated with TIP3P waters.45

We performed a maximum of 30,000 energy minimization steps and a 3 stage (NVT, NPT, 

NPT) equilibration protocol which we describe as follows. In each equilibration stage, a 

restraint force is placed on the α-Carbons of the protein backbone and the ligand heavy 

atoms, where we successively decrease the force from 2.0 kcal
mol ⋅ Å2  to 0.5 kcal

mol ⋅ Å2  to 0.1 kcal
mol ⋅ Å2

at each stage. After equilibration, we ran 1 microsecond (μs) using molecular dynamics 

(MD) and 600 nanoseconds (ns) to 1 microsecond using BLUES for each pose selected by 

our MDS-RMSD filtering protocol (described in the previous section). We note that some 

BLUES simulations were run less than 1 microsecond due to limitations in our available 

compute resources. Our simulations were run using 4 femtosecond (fs) timesteps and with 

the hydrogen-mass repartitioning scheme.18

Briefly, we describe our protocol for BLUES simulations. A BLUES simulation begins with 

the NCMC phase, which involves proposing a random rotation about the ligand center of 

mass and then relaxes via a series of non-equilibrium switching steps which alchemically 

scale the ligand iterations off/on over N steps. This is in contrast to traditional Monte Carlo, 

which involves performing an instantaneous change to the ligand coordinates. Specifically, 
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interactions are controlled via a parameter (λ0→1) which scales the ligand interactions with 

the surrounding environment. Our non-equilibrium switching protocol begins with the fully 

interacting ligand at λ0 and then we alchemically scale the ligand forces off until λ0.5, 

where the ligand is no longer interacting with surrounding atoms. We perform the proposed 

random rotation on the non-interacting ligand and then alchemically scale the ligand forces 

back on until λ1, where the ligand is fully interacting and in the proposed position. Over the 

series of N NCMC switching steps, we accumulate the total non-equilibrium work done and 

use this in acceptance or rejection of the proposed move (following the Metropolis-Hasting 

acceptance criterion46). After the Metropolization step, we follow-up using traditional MD 

methodology and repeat the cycle (NCMC -> MD -> NCMC…etc.) for I iterations.

Determination of Binding Modes with TICA and PCCA

We divide the SEH binding site (Figure 3) into two sub-cavities denoted as “left” and “right” 

and analyze simulation data from these two sub-cavities separately, as we rarely observed 

transitions between them. That is, simulations which started with dock poses in the right 

sub-cavity were pooled together and vice versa, but simulations in each sub-cavity were kept 

separate, since very few simulations exhibited transitions and thus pooling data across sub-

cavities would have complicated analysis. By treating the two sub-cavities separately, we are 

better able to distinguish between binding modes sampled within each sub-cavity and 

understand their timescales, over the timescale to transition between sub-cavities. In other 

words, we can better distinguish rapid transitions between binding modes within each sub-

cavity over the slow transitions between sub-cavities. Additionally, if we had pooled 

together simulation data from both sub-cavities, our silhouette scores would always suggest 

2 binding modes, which is actually just the separation of binding modes between the two 

cavities.

Using PyEMMA (v2.5.5), we analyzed and built Markov State Models (MSM) separately 

between our MD and BLUES simulations. MD simulation frames were stored every 25,000 

steps (100ps/frame) and BLUES simulation frames were stored every 10,000 steps (40ps/

frame). In this study, we apply a method called time-lagged independent component analysis 

(TICA) with perron-cluster cluster analysis (PCCA) to define our metastable binding modes 

sampled during our simulation. Here, we analyzed our simulations using the coordinates of 

the ligand heavy atoms as our chosen feature set. In Figure 8, the appropriate lagtime for 

TICA was chosen by performing an analysis on the VAMP2 score47–49 by varying the TICA 

dimensions parameter for several lag times. VAMP2 score measures the kinetic variance in 

our chosen feature set and provides a heuristic for selecting an appropriate lagtime to 

discretize our input coordinates in TICA space. Here, we chose a lag time of 1ns to 

discretize our MD simulations, but lag times below 1ns would have been an appropriate 

choices as well. For our BLUES simulations, we chose a lag time of 200ps to discretize the 

simulation data as this corresponds to the amount of simulation time between each move 

proposal, where a change in binding mode may occur. We applied TICA50 to extract the 

slow order parameters from our feature set (ligand heavy atom coordinates). From our TICA 

coordinates, we cluster our simulation frames into discrete microstates using k-means 

clustering. This gives us a set of N discrete microstates (i.e. simulation frames) which we 
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map into the coordinate space of the first 2 TICA components (Fig. 9), where N is defined as 

the square root of the total number of simulation frames (the default setting for PyEMMA).

In Figure 9, we define our macrostates or metastable binding modes by assigning each 

microstate to a given K number of macrostates via PCCA.51,52 To determine the appropriate 

number of K macrostates to use, we evaluate the clustering using silhouette scoring42 

(discussed previously). In our analysis we represent each macrostate by randomly draw 50 

simulation frames from the pool of microstates assigned to each of the K macrostates.

In Fig S13, we plot the RMSD of the ligand heavy atoms relative to the crystal structure and 

color each time point by assigning it to the macrostate which minimizes the RMSD. 

Specifically, we compute the ligand heavy atom RMSD to the 50 representative microstates 

(simulation frames) belonging to each macrostate; then, assign it to the macrostate which 

minimizes the RMSD. We can then compute the populations or amount of simulation time 

spent within each binding mode by counting how many frames fall within each binding 

mode (Fig. S12).

Crystal Structure Selection and Refinement

The fragment binding data used in this study was a subset of the 55 complex structures and 1 

apo structure with associated affinity data published by L. Öster et al.53 All 55 complex 

structures were re-refined using phenix.refine (version 1.14.3283)54,55 with AFITT56 

generated MMFF94s gradients on the small molecule ligand-complexes used in 

phenix.refine (PHENIX-AFITT). All refinements using phenix.refine or PHENIX-AFITT 

used six refinement macrocycles. The resulting structures were aligned to the apo structure 

(PDBID:5AHX) using defaults options for protein alignment in the OpenEye SpruceTK.57 

The ten fragment complex structures used for prediction (PDBID:5AI0, 5AI6, 5AIB, 5AIC, 

5AK4, 5AKG, 5AKX, 5ALE, 5ALV, 5AM2) were further re-refined in an attempt estimate 

the occupancy of the fragment in the binding site and to determine if an automated ligand 

placement algorithm (AFITT)58 agreed with the conformation and placement done by L. 

Öster et al.53 The re-refinement protocol was as follows: 1) remove the ligand and refine 

using phenix.refine the resulting protein, excipients and solvent; 2) AFITT58 was used to 

automatically fit fragment to the resulting difference density; 3) the new fragment placement 

was checked to see if significantly different from the deposited placement; 4) the new 

complex was re-refined using PHENIX-AFITT; and 5) the structure was refined with 

occupancy refinement of the ligand turned on and automatically generated Translational, 

Librational, and Screw (TLS) constraints for PHENIX-AFITT. The refinement and 

occupancy data for all ten structures can be found in supporting data tables S3, S2 and S1. 

The median root mean square deviation (RMSD) between the deposited and re-refined 

ligands was 0.11 Å with a maximum of 1.4 Å for 6N6 (PDBID:5AK4).

The ten structures used in this study were initially re-refined using PHENIX-AFITT for two 

reasons. The first was to generate ligand bond lengths, angles and torsions fit using 

energetics from a small molecule force field – in this case MMFF94s. The second was to 

assess whether additional low occupancy conformations or binding modes existed. While the 

depositors53 were very careful and thorough in fitting the ligands for these structures there is 

prior evidence, from the recent qFit publication by G. C. P. van Zundert et al.,59 that up to 
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29% of protein-ligand complexes could have ligand heterogeneity or unmodeled alternate 

binding modes. Our initial analysis suggested some of the ten structures had evidence of 

alternate binding modes, making them an ideal test cases for a method geared towards 

sampling of binding modes. We used a method based on AFITT56,58 but similar in principle 

to qFit and found three cases of previously unmodeled heterogeneity. They were a missing 

alternate conformation for TGX, a different binding conformation for 6N6, and an additional 

binding mode for GVG. For 6N6 the new conformation rotates the thiodiazol-2-amine ring 

by 180° into an orientation with better interactions with the protein but the thiophene ring is 

left in a higher energy conformation (see Figure S1). This new conformation had the highest 

RMSD difference (1.4 Å) to the deposited structure for all the ligands in this set. For 6N6 an 

alternate and possibly better model would have rotated the thiophene ring or added an 

alternate conformation for the thiophene. It is interesting to note that the amount of 

heterogeneity was for this small data set was 30%, which is very similar to the 29% reported 

by G. C. P. van Zundert et al.59

Crystallographic Binding Mode Predictions

To evaluate the ability to predict dominant binding modes as determined by crystallography 

using docking, MD or BLUES, we report two RMSD (Å) metrics, both based on analysis of 

the docked pose or cluster (macrostate) which is closest to the crystallographic binding 

mode. Particularly, we compute the minimum RMSD to the crystallographic structure, as 

well as the average RMSD of the selected representative frames of the macrostate or 

remaining (MDS-RMSD filtered) docked poses. Here, our reported average RMSD is 

calculated by averaging over 10,000 randomly drawn (with replacement) values from the 

remaining docked poses or 50 simulation frames which we saved to represent each binding 

mode. We believe our reported ‘average’ RMSD best represents random selection of a single 

docked pose from a pool of poses or a single representative frame of a macrostate to 

compare against the crystallographic structure.

Dominant binding modes observed in simulations may disagree with crystallographic 

binding modes for multiple reasons; in this work, our main focus is on sampling, but force 

field errors can also lead to disagreements. Our data can help distinguish between 

disagreements caused by insufficient sampling and those caused by force field errors. 

Particularly, the reported average RMSD from our simulations for the binding mode closest 

to the crystallographic one helps us diagnose the source of error. That is, if we see a low 

average RMSD, the binding mode determined by our clustering approach is not only well 

defined but also closely agrees with the binding mode found within the crystal structure. On 

the other hand, a higher average RMSD — with a minimum RMSD which is low — may 

indicate that the binding mode determined from clustering is poorly defined or does not 

precisely correspond with the crystallographic binding mode, even though it is close. For 

example, in Figure S21 we see that from the 2nd to last simulation, the cyan cluster has a 

minimum RMSD of 0.3Å to the crystallographic structure but the average RMSD of this 

cluster is 3.0Å (Fig. 10, Table 1). This suggests that clustering of this binding mode may not 

be well defined or does not precisely correspond with the crystallographic binding mode, but 

we are still able to sample close to the crystallographic binding mode. In such cases, this 

may mean that there is a force field or model error not directly related to sampling — though 

Lim et al. Page 10

J Chem Theory Comput. Author manuscript; available in PMC 2021 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



we are sampling the crystallographic binding mode, our predicted dominant binding mode is 

not that close to it, so perhaps crystal conditions or temperature alter the preferred binding 

mode slightly, or our force field does not adequately represent reality.

We also report the minimum RMSD as this represents the best case or ‘ideal’ scenario where 

we could identify which of our structures (generated from docking or sampled from our 

simulations) would be closest to the crystallographic binding mode. However, we are not 

aware of any method which could identify such poses so we view minimum RMSD to be 

useless as an overall performance metric. Here, we include it simply to provide a way to 

assess whether any poses sampled were close to the crystallographic binding mode.

To compare the sampling performance between MD and BLUES, we report the rank order 

(based on population) of the binding mode which is closest to the crystallographic structure. 

Ideally, with adequate sampling and an accurate force field, the the crystallographic binding 

mode should be represented by the most populated binding mode sampled during our 

simulations. In other words, if the binding mode closest to the crystal structure is not the 

most populated binding modes, this would be indicative of poor sampling performance for 

that particular method, or of force field errors.

We remind the reader that our analysis treats each sub-cavity separately (Fig. 3). There were 

a total of 29 crystallographic binding modes identified for the 12 ligands we simulated, 

because some ligands had multiple binding modes. Molecules fell into 2 groups: those with 

a single binding mode and those with multiple binding modes (2+). For ligands with a single 

binding mode, we report the average and minimum RMSDs (described previously) of the 

ligand atoms in the crystallographic structure against those in the representative frames from 

the binding mode with the highest occupancy (i.e simulation time). When ligands have 

multiple crystallographic binding modes, we report the lowest RMSD from the binding 

modes found from simulations, relative to each crystallographic binding mode.

Here, we define successful predictions as being within 2Å (RMSD) of the crystallographic 

binding mode and close predictions as those within 4Å of the crystallographic binding 

mode.

Results

Here, we analyze the success of docking, standard MD and BLUES at recovering 

crystallographic binding modes for a series of 12 ligands which have a total of 29 binding 

modes between them. In our analysis, we consider data only from docked poses or binding 

modes sampled during our simulations which are in the correct sub-cavity. That is, if the 

crystallographic structure was found in the right sub-cavity, we computed the RMSD using 

docked poses or simulation frames that were only in the right sub-cavity (and vice versa). In 

this study, we consider predictions successful when they are within 2Å of the 

crystallographic binding mode and we label predictions “close” when they are within 4Å.

We remind the reader that we report an ‘average’ RMSD from each method (See Methods: 

Crystallographic Binding Mode Predictions). Since we cannot determine which docked pose 

or single simulation frame would result in minimizing the RMSD to the crystallographic 
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binding mode without knowing the crystallographic binding mode, an average RMSD 

represents the typical accuracy expected from randomly picking from a pool of docked 

poses or a single simulation frame representative of a metastable binding mode. We also 

report the minimum RMSD to show the best case or ‘ideal’ scenario for each method. The 

minimum RMSD reflects the accuracy which would be expected if one could determine 

somehow, without knowing the crystal structure, which docked pose or simulation frame 

would be closest to the true binding mode.

The minimum and average RMSDs for each method are reported in Table 1.

As a performance metric, in comparing how well BLUES and MD do at sapling binding 

modes, we turn to comparing the ranked population of the binding mode closest to the 

crystal structure, which is reported in Table 2. That is, given sufficient sampling and an 

appropriate force field, the most populated binding mode should represent the 

crystallographic binding mode. Here, we also examine a “recovery success rate” which we 

define as finding the crystallographic binding mode in one of the top two most populated 

binding modes, as long as the minimum RMSD for this cluster falls below the 2Å cutoff. If 

there are three or more crystallographic binding modes to identify, we declare success if the 

crystallographic binding mode is in the top three most populated binding modes.

Analysis of Molecules with a Single Binding Mode

Molecules with a single crystallographic binding mode were 4XH, 6N6, 8NY, JF6, KJU, 

ONR, and TGX. Calculated RMSDs are measured in units of Å and are shown in Figure 10 

and reported in Table 1. The rankings of the binding modes closest to the crystallographic 

structure are reported in Table 2.

When considering the minimum RMSDs from docking, we see that docking can generate 

poses which are only close (within 4Å) to the crystallographic structure for molecules 4XH, 

8NY, KJU, ONR, and TGX (Table 1). None of the poses generated from docking were 

within our success cutoff of 2Å to the crystal structure. This suggests that docking may be 

good for generating simulation starting configurations as the simulations would start off 

fairly close to the crystallographic structure.

From Table 2, we show the rankings (based on % simulation time) of the MD/BLUES 

binding modes which are closest to the crystallographic binding mode. For this subset of 

single binding mode molecules, the most populated binding modes from MD corresponded 

with the crystal structure in 3/7 cases which are from molecules 8NY, ONR, TGX. For MD 

simulations of 8NY and TGX, both the minimum and average RMSD are within the 2Å 

cutoff for the most populated binding mode. This indicates that the most populated binding 

modes were well defined and are in good agreement with the crystallographic binding mode 

(Fig. 10, Table 1). For MD simulations of ONR, the minimum RMSD was calculated to be 

0.3Å, which suggests that we were able to sample the crystallographic binding mode. But, 

the average RMSD for this binding mode was 2.1Å which suggests that the binding mode 

may not be as well defined or that the forcefield used prefers a binding mode which is close 

(within 4Å) to the crystal structure (Fig. 10, Table 1).
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From our BLUES simulations, the most populated binding mode corresponded with the 

crystal structure in 4/7 cases but in the remaining 3/7 cases, the second most populated 

binding mode represented the crystallographic binding mode. In all 7/7 single binding mode 

cases, the minimum RMSD from BLUES simulations were all below the 2Å cutoff, 

indicating that BLUES can indeed sample the crystallographic binding mode and does so 

more successfully than standard MD. But, only molecules 8NY and TGX appeared to be 

well defined and in close agreement with the crystal structure as the average RMSD for 

these molecules fell below 2Å. For molecules 4XH, 6N6, KJU, and ONR, the binding 

modes were less well defined or had slight disagreement with the crystal structure with 

average RMSDs that were below our 4Å cutoff. Lastly, JF6 had a very high average RMSD 

of 6.3Å indicating that the binding mode was poorly defined or that the forcefield disagreed 

with the crystallographic binding mode.

Across this subset of molecules with a single binding mode, the minimum RMSDs for 

docking (pink), MD (lime), and BLUES (cyan), were 3.4 ± 0.3Å, 0.8 ± 0.3Å, and 0.5 ± 0.2Å 

respectively; average RMSDs for docking (red), MD (green), and BLUES (blue) were 

5.1±0.3Å, 3.4 ± 0.9Å, and 3.0 ± 0.6Å respectively (Fig. 10, right). Thus, based on 

considering the overall minimum RMSD, docking will often generate poses which are close 

(within 4Å) to the crystallographic binding mode. Using these docked poses as starting 

points, further exploration via either MD or BLUES simulations here easily generates 

samples which are representative of the crystal structure (Fig. 10, Table 1). But, here, only 

BLUES simulations generate trajectories which spend most of the simulation time in the 

binding modes which represents the crystallographic binding mode (Table 2), due to slower 

transitions between binding modes in the MD simulations. With longer MD simulations, we 

expect results could become comparable, with significant additional sampling expense.

When we consider the overall average RMSD from each method, we can see that docked 

poses will be quite far from the crystal structure on average. On the other hand–given that 

we can at least sample the crystallographic binding mode using MD or BLUES–when a 

modeller tries to select a specific sample or simulation frame (from the most populated 

cluster) to compare against the crystal structure, they will on average select a sample which 

is at least within 4Å to the crystallographic binding mode.

Analysis of Molecules with Multiple Binding Modes

Molecules with multiple binding modes were 6TZ(1/2), GVG(1/2), and KUF which had 3, 

5, and 6 crystallographic binding modes, respectively. Some molecules had uncertain 

tautomers, which we reflect in our notation. Specifically, 6TZ(1/2) denote two possible 

tautomers of 6TZ, and similarly for or GVG(1/2). We consider these separately as we were 

uncertain which tautomers would actually be dominant in binding to this target, and thus 

which we should simulate both.

We compare binding modes sampled in simulations of 6TZ(1/2) and GVG(1/2) to the same 

crystallographic structure regardless of which tautomer we were simulating, since protons 

are not resolved in the crystal structures. The RMSD for each molecule to each 

crystallographic structure is denoted as XXXX-#; for example, 6TZ1-(0,1,2) is the 
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comparison from the simulations of 6TZ1 against each of the 3 crystallographic binding 

modes.

For this subset of ligands with multiple binding modes, the collective minimum RMSD was 

4.1 ± 0.3, 1.6 ± 0.2, and 1.2 ± 0.1 from docking, MD, and BLUES, respectively. The 

collective average RMSD was 6.1±0.2, 5.9±0.5, and 5.0±0.3 from docking, MD and 

BLUES, respectively. When considering the minimum RMSD, docking can generate poses 

which are close (within 4Å) to the crystallographic structures, even if there are multiple 

binding modes. With MD and BLUES, we found that we were able to generate samples 

which are within 2Å of the crystallographic binding modes.

Analysis of Simulations of 6TZ(1/2)

For 6TZ(1/2), there were two crystallographic binding modes in the left sub-cavity 

(6TZ-0/2) and one in the right sub-cavity (6TZ-1). From Table 1 and Figure 11, the 

minimum RMSDs of 6TZ1 to the crystallographic structures were 4.0, 4.7, and 5.1 from 

docking; 2.5, 1.5, and 2.6 from MD; and 1.7, 1.5, and 1.8 from BLUES. The average 

RMSDs were reported to be 9.1, 7.9, and 6.4 from docking; 8.5, 5.7, and 6.7 from MD; and 

8.4, 5.6, and 5.3 from BLUES. In the case of 6TZ1, docking had generated one pose which 

was close to one crystal structure (6TZ-0) and was far away from the other crystal structures.

From Table 2, we see that the single most populated binding mode from MD and BLUES 

corresponds to the two crystal structures 6TZ-0 and 6TZ-2, which were located in the left 

sub-cavity. This suggests that our clustering approach was unable to distinguish two separate 

binding modes in the left sub-cavity and instead defined a single binding mode which 

resembled something in between both of them. From MD (Table 1), the minimum RMSDs 

relative to 6TZ-(0/2) from the most populated MD binding mode (yellow, Fig. S32) was only 

close to the crystallographic binding mode (2.5Å and 2.6Å). Thus, we do not count this as 

successfully sampling the crystallographic structure but claim MD had sampled fairly close 

to it.

From BLUES (Table 1), the minimum RMSD for the most populated binding mode in the 

left sub-cavity (blue, Fig. S34) and right sub-cavity (purple, Fig. S38) were below our 2Å 

cutoff. This indicates that with BLUES simulations of 6TZ1, we were successfully able to 

generate samples which were representative of all 3 crystallographic binding modes. Despite 

the low minimum RMSDs, the average RMSDs were quite high (above 4Å), suggesting that 

the BLUES binding modes for 6TZ1 were poorly defined or the simulations simply disagree 

with the crystallographic results. Such a high average RMSD would indicate that it would be 

challenging for a modeller to pick the specific sample (i.e. simulation frame) which would 

be closest to the crystal structure.

In the case of 6TZ2, the minimum RMSDs were 3.9, 6.2, and 4.3 from docking; 3.6, 2.3 and 

2.3 from MD; and 1.6, 1.8, and 0.8 from BLUES. The average RMSDs were reported to be 

7.0, 6.2, and 5.5 from docking; 10.1, 8.9, and 7.0 from MD; and 7.4, 5.5, and 5.6 from 

BLUES (Table 1 and Fig. 11). Here, docking generated one pose which was 3.9Å away from 

crystal structure 6TZ-0 and was far away for the rest.
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For MD simulations of 6TZ2 in the left sub-cavity, the most populated binding mode (green, 

Fig. S40) was only close (within 4Å) to the crystal structures 6TZ-(0/2). Like in the case of 

6TZ1, our clustering approach was unable to define two separate binding modes for each 

crystal structure and instead defined a binding mode which was close to both 6TZ-(0/2) 

(Table 2, 1). For MD simulations of 6TZ2 in the right sub-cavity, the binding mode closest 

to the crystal structure 6TZ-1 corresponded to the 2nd most populated binding mode (cyan, 

Fig. S44) and was only close to the crystallographic binding mode (2.3Å). Here, MD 

simulations of 6TZ2 failed to recover the crystallographic binding mode and were only able 

to sample close to it.

In BLUES simulations of 6TZ2 in left sub-cavity, the most populated binding mode (cyan, 

Fig. S42) was at minimum 0.8Å away from crystal structure 6TZ-2 and the second most 

populated binding (green, Fig. S42) was at minimum 1.6Å away from crystal structure 

6TZ-0. For the right sub-cavity, the most populated binding mode (purple, Fig.S46) was at 

minimum 1.8Å away from crystal structure 6TZ-1. These results indicate that BLUES was 

able to generate samples which were representative of the crystallographic binding modes 

6TZ-(0,1,2) for all 3 cases. However, all the average RMSDs for the BLUES binding modes 

were higher than 4Å which would suggest that these binding modes were poorly defined or 

that the forcefield disagrees with the crystal structures.

When we consider the minimum RMSDs, we find that the dominant MD binding modes 

sampled only close to the crystal structure in 2/3 cases for 6TZ1 and in 3/3 cases for 6TZ2. 

On the other hand, the dominant BLUES binding modes produced samples which were 

representative (below 2Å) of the crystallographic structure in all cases for both 6TZ1 and 

6TZ2. But, the dominant BLUES binding modes had high average RMSDs, which suggests 

that there is disagreement with the crystal structure or that the clusters were poorly defined. 

From these results alone, we cannot definitively say which tautomer for 6TZ is likely to 

dominate in the binding site, as both produced reasonable agreement with the crystal 

structure. But based on Fig. S41 and S43), we observe more stabilized sampling of (or near) 

the crystallographic binding mode in simulations of 6TZ2; thus, we believe 6TZ2 may be 

the dominant tautomer in the binding site.

Analysis of Simulations of GVG(1/2)

For molecule GVG, we simulated two tautomers which are denoted as GVG1 or GVG2. 

There were a total of 5 crystallographic binding modes where 2 were located in the right 

sub-cavity, denoted as GVG1-(0,1) or GVG2-(0,1), and 3 located in the left sub-cavity, 

denoted with GVG1-(2,3,4) or GVG2-(2,3,4). We first present the results for GVG1 and then 

discuss the results from GVG2.

For the right sub-cavity, we see that docking had generated poses close to GVG1–0 (within 

3.7Å) but was 4.3Å away from GVG1–1 (Table. 1). Given that at least one pose was close to 

the crystal structure GVG1–0, both MD and BLUES were able to recover the binding mode 

GVG1–0 within the top two most populated binding modes. The most populated MD 

binding mode (cyan, Fig. S48), had a minimum RMSD of 0.8Å to GVG1–0 and 0.7Å to 

GVG1–1 (Table 1, Fig. S49), indicating that we have indeed sampled both crystallographic 

binding modes. In this case, our clustering approach from our MD simulations defined a 
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single binding mode which was close to both crystallographic binding modes, GVG-(0,1). 

On the other hand, BLUES defined two separate binding modes which corresponded with 

each crystal structure. The second most populated BLUES binding mode (blue, Fig. S50) 

was representative of the crystallographic structure GVG-0 with a minimum RMSD of 0.8Å 

(Table 1, Fig. S51). The most populated binding (green, Fig. S50) mode was able to sample 

crystal structure GVG-1 with a minimum RMSD of 1.6Å. Thus, for the right sub-cavity, MD 

was able to recover 2/2 binding modes while BLUES was only able to recover 2/2 binding 

modes for GVG1.

When we consider the left sub-cavity, there were 3 crystallographic binding modes to 

identify GVG1-(2,3,4). In this case, we consider the recovery success rate when either the 

top three most populated binding modes are able to sample close to the crystallographic 

binding mode. For crystal structures GVG1-(2,4), poses generated from docking were 4.3 

and 4.9Å away and the closest docked pose was 1.8Å away from GVG1–3. From MD 

binding modes, we were able to sample the crystallographic binding modes GVG1–2 and 

GVG1–3 with the third (cyan) and first (blue) most populated binding modes (Table. 2, Fig. 

S52). Here, the closest samples generated from MD were 0.6Å away from GVG1–2 and 

0.5Å away from GVG1–3 (Fig. S53). In the case of GVG1–4, the fourth most populated MD 

binding mode (green) had sampled fairly close to the crystal structure at a distance of 2.4Å 

away. In our BLUES binding modes, we see only success in sampling GVG1–3, where a 

sample from the most populated binding mode (purple, Fig. S54) was 0.5Å away from the 

crystal structure (Fig. S55). For GVG1–2 and GVG1–4, BLUES was able to sample 0.7 and 

1.9Å away from the crystal structures, respectively. But, these samples came out of the sixth 

and fourth most populated binding modes. Thus, for the left sub-cavity, MD was able to 

recover 2/3 binding modes and BLUES was able to recover 1/3 binding modes for GVG1.

When considering the right sub-cavity for GVG2, the closest docked pose was 1.8Å away 

from GVG2–1 and was 4.4Å away from GVG-0. The second most populated MD binding 

mode (spring green, Fig. S56) was able to sample the crystallographic binding mode GVG2–

0 at 0.3Å away (Fig. S57). Our clustering approach from our BLUES simulations resulted in 

defining a single dominant binding mode (green, Fig. S58) which was 1.0 and 1.4Å away 

from crystal structures GVG2–0 and GVG2–1, respectively. Thus, for the right sub-cavity, 

MD recovered 1/2 cases and BLUES recovered 2/2 cases for GVG2.

For GVG2 binding modes in the left sub-cavity, docking generated poses which were 4.4, 

2.2, and 4.8Å away from crystal structures GVG2-(2,3,4), respectively. From our MD 

simulations, the most populated binding mode (spring green, Fig. S60) came close to 

GVG2–2 at 2.7Å but was successful in sampling GVG2–4 at 1.8Å away (Table. 1, Fig.S61). 

Similarly, in our BLUES simulations, the most populated binding mode (blue, Fig.S62) was 

successful in sampling GVG2–3 and GVG-4 at 0.8 and 1.3Å away from the crystal structure 

(Fig. S63). The second most populated BLUES binding mode (purple. Fig.S62) was able to 

sample 0.4Å away from crystal structure GVG2–2. Thus, for the left sub-cavity, MD 

recovered 2/3 binding modes while BLUES recovered 3/3 binding modes for GVG2. From 

our results, we believe simulation of GVG2 were the correct tautomeric state as we were 

able to recover more of the crystallographic binding modes in simulations of GVG2 over 

GVG1.
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Analysis of Simulations of KUF

For molecule KUF, there were a total of 6 crystallographic binding modes to identify where 

KUF-(0,1,2) refer to the binding modes located in the right sub-cavity and KUF-(3,4,5) refer 

to the binding modes located in the left sub-cavity. For the right sub-cavity, docking had 

generated poses which were close to the crystal structures of KUF-1 and KUF-2 at 3.8 and 

2.1Å away, respectively; while the closest pose to KUF-0 was 4.9Å away (Table 1). For the 

left sub-cavity, docking only came close to crystal structure KUF-3 at 4Å away and was 

much further away for KUF-4 and KUF-5 at 4.5 and 6.1Å away, respectively (Table 1).

In our MD simulations of KUF, we were able to recover the crystallographic binding modes 

in the right sub-cavity for all 3 cases KUF-(0,1,2) from the top three most populated binding 

modes (Table. 2). From Fig. S65, we see that the most populated binding mode (purple, Fig. 

S64) was able to sample the crystallographic binding mode KUF-2 at 0.9Å. The second 

(green) and third (cyan) most populated binding modes, corresponded with crystal structures 

KUF-0 and KUF-1, respectively (Fig.S64). The green binding mode was closest to the 

crystal structure KUF-1 with minimum RMSD of 1.3Å, while the cyan binding mode was 

closest to crystal structure KUF-2 with a minimum RMSD of 1.4Å (Table. 1, Fig.S65). In 

the case of BLUES binding modes, a single dominant binding mode (purple, Fig. S66) 

generated samples which were 1.9Å away from KUF-0 and 0.7Å away from KUF-2. For 

KUF binding modes in the right sub-cavity, MD successfully able to sample all 3/3 

crystallographic structures KUF-(0,1,2) while BLUES was only able to sample 2/3 cases 

(KUF-0 and KUF-2).

When considering KUF binding modes in the left sub-cavity (KUF-3,4,5), docking had 

generated a pose which was close to the crystal structure KUF-3 by 4Å but was 4.5 and 6.1Å 

away from KUF-4 and KUF-5, respectively (Table 1). From our MD binding modes, the top 

two most populated binding modes (blue and purple, Fig. S68), corresponded with crystal 

structures KUF-3 and KUF-4 (Table 2). The most populated binding mode (blue) contained 

a sample which was representative of the crystal structure KUF-4 at a distance of 1.9Å 

away; while the second most populated (purple) binding mode represented crystal structure 

KUF-3 at a distance of 0.9Å away (Fig. S69). In the case of KUF-5, MD failed to recover 

this crystallographic binding mode, where the fifth most populated binding mode 

corresponded with the crystal structure at a distance of 1.4Å. From our BLUES binding 

modes, the first and third binding mode (purple and sky blue, Fig. S70) corresponded with 

the crystal structures KUF-3 and KUF-5, respectively. The purple binding mode from 

BLUES contained a sample with a minimum RMSD of 0.6Å from KUF-3 and the sky blue 

binding mode contained a sample which was 1.1Å away from KUF-5 (Fig. S71). For 

KUF-4, the fourth most populated binding mode from our BLUES simulations contained a 

sample with a minimum RMSD of 1.3Å away. Thus, for KUF binding modes in the left sub-

cavity, both MD and BLUES were able to recover 2/3 cases where MD found KUF-3 and 

KUF-4 and BLUES found KUF-3 and KUF-5.

Dataset Summary

Here, we find that no method always correctly identifies the crystallographic binding mode 

(as evidenced by average RMSD) but both MD and BLUES substantially outperform 
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docking at sampling binding modes near the crystallographic one, and of these, BLUES 

performs better. From Table 1, we see that docking was only able to generate poses which 

were within 2Å of the crystallographic structure in 2/29 (7%) cases and was close (within 

4Å) in 12/29 (41%) cases. To remind the reader, when we evaluate the sampling proficiency 

for MD and BLUES, we consider the method successful when the top two most populated 

binding modes (or top three if there are 3 or more crystallographic binding modes) contain a 

sample which is within 2Å of the crystal structure (Table 2). Across the all the molecules 

used in this study, MD was able to recover the crystallographic binding mode in 14/29 

(48%) cases but was close in 6/29 (21%) cases; while BLUES was successful finding the 

crystallographic binding modes in 25/29 (86%) cases.

Averaged across all of the ligands in this study, the minimum RMSDs for docking (pink), 

MD (lime), and BLUES (cyan) were 3.9 ± 0.2Å, 1.4 ± 0.2Å, and 1.0 ± 0.1Å respectively; 

the average RMSD for docking (red), MD (green), and BLUES were 5.9 ± 0.2Å, 5.3 ± 0.5Å, 

and 4.5 ± 0.3Å respectively ((Fig. 12). On average, when considering both cases of single 

and multiple crystallographic binding modes to identify, none of the 3 methods considered 

here appear to make predictions which are close (within 4Å) to the crystallographic binding 

mode. At best (considering the minimum RMSD), both MD and BLUES simulations may be 

able to generate samples which are at least within 2Å to the crystallographic binding mode. 

But, when we factor in the binding mode populations, we can clearly see that BLUES out 

performs standard MD simulations at recovering the crystallographic binding mode. We note 

that the average RMSD is a poor metric as there is no physical reason why the average 

RMSD of a ‘perfect’ method ought to be low. The most meaningful metric here is that the 

most populated binding modes from either simulation method corresponds well with the 

crystal structure.

Discussion

Single Binding Mode: BLUES recovers the crystallographic binding mode faster and better 
than MD

For molecules which exhibit only a single binding mode (molecules: 4XH, 6N6, 8NY, JF6, 

KJU, ONR, and TGX), we see from Table 1 and Table 2, that MD is only able to recover 3/7 

binding modes while BLUES is able to recover all 7/7 binding modes. In general, we find 

that through using BLUES simulations, we are able to recover the crystallographic binding 

mode much faster than standard MD. In some cases (e.g. 8NY, ONR, TGX) MD was able to 

quickly recover the crystallographic binding mode as docking had generated nearby starting 

poses (within 4Å).

If we were to only consider the minimum RMSDs, we find that MD is at least able to sample 

the crystallographic binding mode (within 2Å) in all cases but 6N6. Where MD falls short is 

in populating the binding mode which is representative of the crystallographic binding 

mode. Given sufficient sampling time and accurate forcefields, the most populated binding 

modes should correspond to the crystal structure which we find to be the case when using 

BLUES rather than standard MD due to the enhanced sampling we get using the BLUES 

approach.
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From BLUES, the first or second most populated binding mode corresponded with the 

crystal structure in all single binding mode cases, which was not the case when using MD. 

We find that in cases where both methods are able to find the crystallographic binding mode 

quickly, MD has a tendency to not produce the expected populations. This is because when 

MD samples the crystallographic binding mode and then leaves, it has a tendency to not 

rediscover it (e.g 4XH, JF6, KJU). Ideally, if the crystallographic structure represents the 

most stable binding mode, both MD and BLUES should populate that binding mode the 

most. However, if timescales for transition between binding modes are very slow (as is 

especially the case with MD) this may not be the case on the timescale of any reasonable 

simulation – as we find here. Given that our BLUES approach proposes random rotational 

moves on the ligand every 200ps, we did not expect the ligand to remain trapped in the 

crystallographic binding mode like we did with MD. Thus, this highlights that with BLUES, 

not only are we able to sample the crystal structure but we are able to recover the correct 

populations–unlike with MD.

Multiple Binding Mode: BLUES transiently samples the crystallographic binding mode

Here, we separately analyze compounds which exhibit multiple crystallographic binding 

modes simply because such cases require different analysis approaches. However, we note 

that it is impossible to know–a priori–if molecules would bind in a single binding mode 

versus multiple binding modes, as determined by crystallography.

In general, analysis of X-ray crystallography will tend to capture only the dominant binding 

mode(s) – though our re-refinement here avoids some of these typical limitations. 

Specifically, we deliberately re-refined the structures in this study in an attempt to 

specifically detect lower occupancy binding modes.

Here we deliberately avoid discussing potentially confounding factors that might impact 

agreement between binding modes observed from simulation, and those observed from 

crystallography, because such differences are not within the scope of our study. These 

include differences due to cryogenic temperatures for crystals, effects from crystal packing, 

co-solvent effects in crystals, and protein force field limitations,60 which could further 

impact binding modes.

For these molecules which exhibit multiple crystallographic binding modes, MD was able to 

recover 11/22 (50%) of the crystallographic binding modes while BLUES was able to 

resolve 17/22 (77%). This doesn’t suggest that BLUES is more successful in recovering 

crystallographic binding modes if there are multiple ones to identify. We generally observed 

that both MD and BLUES were able to stably sample at least 1 of the crystallographic 

binding modes, while only briefly sampling (or sampling close to) the second or third 

binding mode. Here, BLUES and MD result in equivalent performance as measured by how 

often the crystallographic binding mode matches the most populated binding mode. 

However, BLUES does do a better job transiently sampling the crystallographic binding 

mode even in those cases where MD does not discover it. Thus, BLUES is more successful 

at discovering crystallographic binding modes in general, which is not surprising given that 

it employs rotational moves to better explore possible binding modes. It is interesting that in 
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some of these cases, BLUES discovers the crystallographic binding mode but stabilizes into 

an alternate nearby mode, potentially due to force field errors.

In the case of MD, the simulations have a tendency to stabilize into a binding mode which is 

close to the crystal structure, rather than sampling close to the crystallographic structure. In 

general, we believe this may be due to the forcefield disagreeing with some of the crystal 

structure–particularly in the case of 6TZ. This discrepancy could also be because of 

differences in conditions (crystallographic structures being collected at cryogenic 

temperatures, for example, and in the environment of a crystal). Clusters for molecules 

which have a single binding mode have an overall average RMSD of 3.4 ± 0.9Å from MD 

and 3.0 ± 0.6Å from BLUES, while clusters for molecules with multiple binding modes 

have an overall average RMSD of 5.9 ± 0.5Å from MD and 5.0 ± 0.3Å. We believe that the 

higher average RMSD for multiple binding mode molecules (6TZ, GVG, KUF) may suggest 

that converged forcefield results disagree with the crystallographic binding modes. This may 

indicate deficiencies in the forcefield or differences in simulation conditions relative to 

crystallographic conditions, as discussed above.

Conclusions

In this study, we evaluated several potential techniques for predicting fragment binding 

modes, as judged by comparison to crystallographic bound structures. Specifically, we 

compared the performance of docking, MD, and (NCMC+MD) BLUES at recovering 

crystallographic binding modes for a set of fragment-like molecules bound to soluble-

epoxide hydrolase (SEH). We assessed how well these approaches do at sampling the 

crystallographic structure, but also how well they do (in the case of BLUES and MD) at 

recognizing the crystallographic binding mode as the most populated binding mode out of 

several possibilities.

Here, our reported minimum RMSDs illustrate the ability to sample the crystallographic 

structure and our reported average RMSDs serve as a representation of how well our 

clustering algorithm defines a particular binding mode and if our approach in general agrees 

with the crystallographic binding modes. For docking, the poses chosen by our MDS-RMSD 

filtering approach were often within 4Å of the crystallographic structure and in rare cases 

were within 2Å.

When comparing MD and BLUES, we found that both approaches perform roughly 

equivalently in being able to sample the crystallographic binding mode within 2Å RMSD. 

BLUES, however, performs much better than standard MD in recovery success rate – that is, 

finding the crystallographic binding mode in the top two most populated binding modes. 

This demonstrates that we are indeed able to enhance ligand binding mode sampling using 

our BLUES approach while also obtaining closer to correct populations.

Overall, we showed that microsecond MD simulations of small fragment-like molecules in 

the large SEH binding site were unable to adequately sample ligand binding mode 

transitions, even within a given sub-cavity, which resulted in MD failing to produce correct 

populations. Only by accelerating the sampling using random ligand rotations via our 
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BLUES approach were we able to recover binding mode populations which correctly 

identified crystallographic binding modes in most cases. While MD did do better than 

docking at discovering crystallographic binding modes, even with the relatively long MD 

simulation time, we found most MD simulations remained trapped in or near a binding mode 

other than the crystallographic binding mode and, often, relatively near the starting dock 

pose. Since these simulations often remained trapped, our conclusion is that the best general 

approach is to use a variety of starting poses from docking to get good coverage of the 

binding site and run simulations to refine the pose such that it can recover likely potential 

binding modes, including potentially the crystallographic binding mode.

Using BLUES, we were able to enhance the sampling of ligand binding modes over 

traditional MD and found that BLUES often discovers the crystallographic binding mode 

with shorter simulation times and does a better job ensuring the dominant binding mode is 

well populated in simulations. Ultimately, enhanced sampling via BLUES lead to an 

improvement in finding the crystallographic binding modes over traditional MD simulations.
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Figure 1: 
The complete SEH protein structure with the C-terminal domain (left) and the N-terminal 

domain (right). The docking site is highlighted (blue) in a mesh representation. The N-

terminal domain (right) was removed to reduce computational costs, keeping the C-terminal 

domain with the defined docking site.
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Figure 2: 
Calculated RMSD (Å) of the protein backbone relative to the starting position for 1 

microsecond of MD with an average RMSD of 2.1Å after removal of the N-terminal 

domain. The protein backbone eventually stabilizes at 3Å from the starting position. This 

indicates that removal of the N-terminal domain did not largely affect the protein structure.
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Figure 3: 
Truncated SEH protein structure (C-domain only) with the the docking site is highlighted 

(blue) in a mesh representation. We divide the full cavity into two sub-cavities denoted by 

left and right. The sub-cavity division is best denoted at the two loops marked as A and B in 

the figure. In the SEH apo protein structure, point A is closest to residue VAL381 and point 

B is closest to residue VAL499. We treat each sub-cavity separately in our analysis to better 

resolve binding modes within each sub-cavity.
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Figure 4: 
2D representation of molecules used in this study and their identifying label.
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Figure 5: 
Docking score and the calculated RMSD (Å) to the crystallographic binding modes from the 

top scoring docked poses.
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Figure 6: 
RMSD (Å) similarity matrix from 1000 docked poses for 8NY. Poses which are similar will 

have a low RMSD represented by darker colors (blue to purple) and poses which are 

dissimilar will have a high RMSD represented by brighter colors (green to yellow). This 

shows the raw similarities between docked poses.

Lim et al. Page 30

J Chem Theory Comput. Author manuscript; available in PMC 2021 April 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 7: 
Left: Silhouette scores from 1000 docked poses for 8NY using 6 clusters from K-means 

clustering. Right:MDS-RMSD scatter plot for 1000 docked poses for 8NY with K-means 

clustered points using 6 clusters. The cluster centroids are denoted by a number in white 

circles.
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Figure 8: 
VAMP2 scores analysis for 8NY from our MD simulations. This plots the number of TICA 

dimensions against the VAMP2 scores for several lag times (nanoseconds). At lag times 

above 1ns we do not observe as large of an increase in the VAMP2 score when using more 

than four dimensions, i.e. the first four dimensions contains most of the relevant information 

of the slow dynamics.
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Figure 9: 
Left: Time-lagged independent component analysis (TICA) plot for binding modes of 8NY 

located in the right sub-cavity using the first two TICA components from our BLUES 

simulations. Discrete microstates (i.e. simulation frames are denoted by Xs. Each microstate 

has been assigned to a macrostate by PCCA which define our metastable binding modes 

sampled during our simulation. We find 3 states (red, green, blue) or binding modes sampled 

from simulations of 8NY in the right sub-cavity. Right: Shows the sampling density from 

our BLUES simulations for the 3 macrostates defined by PCCA, where tighter clusters are 

suggestive of higher stability for that particular macrostate.
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Figure 10: 
Left: Calculated RMSDs (minimum/average) relative to the crystallographic ligand binding 

mode and binding modes from docking (pink/red), MD (lime/green), and BLUES (cyan/

blue) simulations for ligands with a single binding mode. The lighter shades represent the 

minimum RMSD and the darker shades represent the average RMSD. Successful prediction 

in binding mode is judged to be less than or equal to 2Å (black dashed horizontal line). 

Right: Averaged RMSD for each method: docking, MD, and BLUES for ligands with a 

single binding mode. Considering the minimum RMSD averaged across ligands with a 

single binding mode, MD and BLUES can both make predictions with 2Å to the true 

binding mode.
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Figure 11: 
Left: Calculated RMSDs (minimum/average) relative to the crystallographic ligand binding 

mode and binding modes from docking (pink/red), MD (lime/green), and BLUES (cyan/

blue) simulations for ligands with a single binding mode. The lighter shades represent the 

minimum RMSD and the darker shades represent the average RMSD. Successful prediction 

in binding mode is judged to be less than or equal to 2Å (black dashed horizontal line). 

Right: Averaged RMSDs for each method: docking, MD, and BLUES for ligands with a 

single binding mode. Considering the minimum RMSD averaged across ligands with a 

single binding mode, BLUES can make predictions with 2Å to the true binding mode.
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Figure 12: 
Minimum/Average RMSD for each method: docking (pink/red), MD (lime/green), and 

BLUES (cyan/blue) for all ligands in this study. Dashed line at 2Å represents successful 

predictions and dotted line at 4Å represents close predictions. This reports the averaged 

RMSD from all 12 ligands used in this study.
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Table 1:

Calculated RMSD (Å) to the crystal structures for docking, MD, and BLUES. The ‘Side’ column denotes the 

sub-cavity that the crystallographic binding mode was located in. The ‘Rank’ column denotes the population 

(% simulation time) rank order of the binding mode for MD and BLUES simulations. The ‘Rank’ column is 

colored green if the cluster corresponds to the first or second (or third, if there are 3 or more binding modes, 

per sub-cavity) most populated binding mode and has a minimum RMSD within 2Å; it is colored yellow if it 

is within 4Å. The ‘Min’ and ‘Avg’ columns denotes the minimum and average RMSDs from the docked poses 

or cluster of simulation frames. The ‘Err’ column denotes the corresponding error with a 95% confidence 

interval for the reported average RMSD. The ‘Min’ and ‘Avg’ RMSD columns are colored green to indicate 

success in sampling the crystallographic binding mode within 2Å and is colored yellow to indicate sampling 

within 4Å. The population ranking corresponding to the binding modes on this table are also reported in Table 

2). Docking generated poses within 2Å of the crystallographic structure in 2/29 (7%) cases. MD recovered the 

crystallographic binding mode in 14/29 (48%) while BLUES succeeded in 25/29 (86%) cases.

Dock MD BLUES

Ligand Side Min Avg Err Rank Min Avg Err Rank Min Avg Err

4XH R 3.6 5.4 0 6 0.4 2.4 0.0 2 0.3 3.3 0.0

6N6 L 4.4 5.7 0 4 2.2 6.7 0.1 1 1.5 3.4 0.0

8NY R 3.1 5.1 0 1 0.2 1.2 0.0 1 0.1 1.2 0.0

JF6 L 4.5 6.3 0 4 1.6 6.3 0.0 2 0.5 6.3 0.1

KJU R 2.9 5.3 0 3 0.4 3.4 0.0 1 0.3 3.0 0.0

ONR R 3.0 4.1 0 1 0.3 2.1 0.0 2 0.5 2.4 0.0

TGX R 2.3 3.7 0 1 0.2 1.5 0.0 1 0.2 1.3 0.0

6TZ1–0 L 4.0 9.1 0.1 1 2.5 8.5 0.1 1 1.7 8.4 0.1

6TZ1–1 R 4.7 7.9 0.1 3 1.5 5.7 0.0 1 1.5 5.6 0.0

6TZ1–2 L 5.1 6.4 0 1 2.6 6.7 0.1 1 1.8 5.3 0.0

6TZ2–0 L 3.9 7.0 0 1 3.6 10.1 0.0 2 1.6 7.4 0.1

6TZ2–1 R 6.2 6.2 0 2 2.3 8.9 0.0 1 1.8 5.5 0.0

6TZ2–2 L 4.3 5.5 0 1 2.3 7.0 0.0 1 0.8 5.6 0.0

GVG1–0 R 3.7 5.5 0 1 0.8 5.0 0.1 2 0.8 3.7 0.0

GVG1–1 R 4.3 5.9 0 1 0.7 5.2 0.1 1 1.6 5.1 0.0

GVG1–2 L 4.3 6.2 0 3 0.6 2.7 0.0 6 0.7 4.1 0.1

GVG1–3 L 1.8 6.3 0.1 1 0.5 2.9 0.1 1 0.5 2.9 0.1

GVG1–4 L 4.9 6.6 0 4 2.4 7.9 0.0 4 1.9 6.0 0.0

GVG2–0 R 4.4 6.1 0 2 0.3 1.4 0.0 1 1.0 2.9 0.0

GVG2–1 R 1.8 4.8 0.1 4 1.5 4.0 0.0 1 1.4 3.9 0.0

GVG2–2 L 4.4 6.5 0 1 2.7 9.1 0.1 2 0.4 6.6 0.1

GVG2–3 L 2.2 6.9 0.1 4 1.3 7.0 0.1 1 0.8 6.5 0.1

GVG2–4 L 4.8 6.7 0 1 1.8 7.7 0.1 1 1.3 6.0 0.0

KUF-0 R 4.9 6.1 0 3 1.4 4.0 0.0 1 1.9 5.8 5.8

KUF-1 R 3.8 4.3 0 2 1.3 5.7 0.0 6 0.9 3.1 0.0
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Dock MD BLUES

Ligand Side Min Avg Err Rank Min Avg Err Rank Min Avg Err

KUF-2 R 2.1 3.6 0 1 0.9 3.5 0.0 1 0.7 3.4 0.0

KUF-3 L 4.0 5.1 0 2 0.9 2.7 0.0 1 0.6 3.1 0.0

KUF-4 L 4.5 6.0 0 1 1.9 8.1 0.0 4 1.3 5.3 0.0

KUF-5 L 6.1 6.6 0 5 1.4 5.5 0.0 3 1.1 4.0 0.0
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Table 2:

Rank order based on population (% simulation time) from MD or BLUES simulations of the binding mode 

closest to the crystallographic structure. The ‘Side’ column denotes the sub-cavity that the crystallographic 

binding mode was located in. The ‘Start’ column denotes the number of docked poses used for starting the 

simulations. The ‘BM’ column specifies the total number of binding modes sampled during the MD or 

BLUES simulations. The ‘CL’ column denotes the index (0-based) of the cluster closest to the 

crystallographic binding mode and the ‘Color’ column specifies the color. The ‘Rank’ column is colored green 

if the cluster corresponds to the first or second (or third, if there are 3 or more binding modes, per sub-cavity) 

most populated binding mode and that the binding mode has a minimum RMSD equal to or less than 2Å; it is 

colored yellow if the minimum RMSD is between 2 to 4Å. The minimum and average RMSD of each cluster 

is reported in Table 1. When considering the minimum RMSDs and population rankings, MD was able to 

recover the crystallographic binding mode in 14/29 (48%) cases but was close in 6/29 (21%) cases; while 

BLUES was successful finding the crystallographic binding modes in 25/29 (86%) cases.

MD BLUES

Ligand Side Start BM CL Color Rank BM CL Color Rank

4XH R 2 9 0 red 6 9 7 blue 2

6N6 L 4 6 3 spring green 4 6 5 purple 1

8NY R 2 7 6 purple 1 3 2 blue 1

JF6 L 4 5 0 red 4 6 4 blue 2

KJU R 3 8 4 spring green 3 7 4 cyan 1

ONR R 2 5 4 blue 1 4 3 blue 2

TGX R 2 4 2 spring green 1 3 2 blue 1

6TZ1–0 L 3 5 1 yellow 1 6 4 blue 1

6TZ1–1 R 2 4 1 yellow 3 6 5 purple 1

6TZ1–2 L 3 5 1 yellow 1 6 4 blue 1

6TZ2–0 L 3 3 1 green 1 5 2 green 2

6TZ2–1 R 2 7 4 cyan 2 6 5 purple 1

6TZ2–2 L 3 3 1 green 1 5 3 cyan 1

GVG1–0 R 3 5 3 cyan 1 6 4 blue 2

GVG1–1 R 3 5 3 cyan 1 6 0 green 1

GVG1–2 L 3 5 3 cyan 3 8 3 green 6

GVG1–3 L 3 5 4 blue 1 8 7 purple 1

GVG1–4 L 3 5 2 green 4 8 0 red 4

GVG2–0 R 2 4 2 spring green 2 3 1 green 1

GVG2–1 R 2 4 0 red 4 3 1 green 1

GVG2–2 L 4 6 3 spring green 1 6 5 purple 2

GVG2–3 L 4 6 4 blue 4 6 4 blue 1

GVG2–4 L 4 6 3 spring green 1 6 4 blue 1

KUF-0 R 2 7 4 cyan 3 8 1 purple 1

KUF-1 R 2 7 3 green 2 8 6 red 6
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MD BLUES

Ligand Side Start BM CL Color Rank BM CL Color Rank

KUF-2 R 2 7 6 purple 1 8 1 purple 1

KUF-3 L 4 6 5 purple 2 9 8 purple 1

KUF-4 L 4 6 4 blue 1 9 5 cyan 4

KUF-5 L 4 6 2 green 5 9 6 sky blue 3
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