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Abiological catalysis by artificial haem proteins 
containing noble metals in place of iron
Hanna M. Key1,2*, Paweł Dydio1,2*, Douglas S. Clark3,4 & John F. Hartwig1,2

Enzymes that contain metal ions—that is, metalloenzymes—
possess the reactivity of a transition metal centre and the potential 
of molecular evolution to modulate the reactivity and substrate-
selectivity of the system1. By exploiting substrate promiscuity 
and protein engineering, the scope of reactions catalysed by 
native metalloenzymes has been expanded recently to include 
abiological transformations2,3. However, this strategy is limited by 
the inherent reactivity of metal centres in native metalloenzymes. 
To overcome this limitation, artificial metalloproteins have 
been created by incorporating complete, noble-metal complexes 
within proteins lacking native metal sites1,4,5. The interactions 
of the substrate with the protein in these systems are, however, 
distinct from those with the native protein because the metal 
complex occupies the substrate binding site. At the intersection 
of these approaches lies a third strategy, in which the native metal 
of a metalloenzyme is replaced with an abiological metal with 
reactivity different from that of the metal in a native protein6–8. 
This strategy could create artificial enzymes for abiological 
catalysis within the natural substrate binding site of an enzyme that 
can be subjected to directed evolution. Here we report the formal 
replacement of iron in Fe-porphyrin IX (Fe-PIX) proteins with 
abiological, noble metals to create enzymes that catalyse reactions 
not catalysed by native Fe-enzymes or other metalloenzymes9,10. 
In particular, we prepared modified myoglobins containing an 
Ir(Me) site that catalyse the functionalization of C–H bonds to 
form C–C bonds by carbene insertion and add carbenes to both 
β-substituted vinylarenes and unactivated aliphatic α-olefins. 
We conducted directed evolution of the Ir(Me)-myoglobin and 
generated mutants that form either enantiomer of the products 
of C–H insertion and catalyse the enantio- and diastereoselective 
cyclopropanation of unactivated olefins. The presented method 
of preparing artificial haem proteins containing abiological metal 
porphyrins sets the stage for the generation of artificial enzymes 
from innumerable combinations of PIX-protein scaffolds and 
unnatural metal cofactors to catalyse a wide range of abiological 
transformations.

To create artificial metalloenzymes formed by combining abiolog-
ical metals and natural metalloprotein scaffolds, we focused on haem 
proteins, which contain Fe-porphyrin IX (Fe-PIX) as a metal cofactor.  
Native haem enzymes catalyse reactions that include C–H oxidation  
and halogenation11, and they have been successfully evolved to 
oxidize abiological substrates12,13. Fe-PIX proteins have also been 
shown to catalyse abiological reactions involving the addition and 
insertion of carbenes and nitrenes to olefins and X–H bonds2,3,9,14. 
However, the reactivity of the Fe-centre in haem proteins limits the 
scope of these transformations. For example, Fe-PIX proteins catalyse 
the cyclopropanation of activated terminal vinylarenes9,10, but they 
do not catalyse reactions with internal vinylarenes or unactivated 
alkenes. Likewise, they catalyse insertions of carbenes into reactive 

N–H and S–H bonds, but they do not catalyse the insertion into less 
reactive C–H bonds3,14.

Because the repertoire of reactions catalysed by free metal-porphyrin 
complexes of Ru (ref. 15), Rh (ref. 16) and Ir (ref. 17) is much greater 
than that of the free Fe-analogues, we hypothesized that their incorpora-
tion into PIX proteins could create new enzymes for abiological catalysis 
that is not possible with Fe-PIX enzymes. Artificial PIX proteins contain-
ing Mn, Cr, and Co cofactors have been prepared to mimic the intrin-
sic chemistry of the native haem proteins18–21, but the reactivities and 
selectivities of these processes are lower than those achieved in the same 
reactions catalysed by native Fe-PIX enzymes. Thus, artificially metal-
lated PIX proteins that catalyse reactions that are not catalysed by native 
Fe-PIX proteins are unknown, and the current, inefficient methods  
to prepare PIX proteins containing non-native metals have hindered the 
potential for directed evolution of the resulting enzymes22–25.

To evaluate rapidly the potential of artificial [M]-PIX enzymes, we 
envisioned creating an array of catalysts formed by pairing numerous 
mutants of apo-PIX proteins and [M]-cofactors in a combinatorial 
fashion. Previously, apo-PIX proteins have been prepared from native 
Fe-PIX enzymes by acidic, denaturing extraction of the Fe-cofactor, 
followed by extensive dialysis to refold the protein22. This multistep 
process is too lengthy for directed evolution, and the harsh, acidic con-
ditions are known to result in proteins that are heterogeneous in struc-
ture, which would be detrimental for selective catalysis26. Alternatively, 
Ru-, Mn- and Co-PIX proteins have been expressed directly23–25, but 
these methods are not general, require a gross excess of metal cofactor, 
and would require a time-consuming purification of each combination  
of metal and protein. To avoid the aforementioned liabilities of these 
reported methods in the creation of the proposed catalyst library, 
we sought to express directly and purify apo-PIX proteins lacking 
the entire haem unit and to reconstitute them with metal cofactors  
containing metals other than iron in a stoichiometric fashion (Fig. 1a).

Evaluation of a series of expression conditions revealed those  
suitable for recombinant expression of the apo-form of haem pro-
teins in Escherichia coli (Supplementary Tables 1 and 2). Under the 
optimized conditions (Supplementary Fig. 1 and Supplementary 
Table 1), involving minimal media lacking Fe to minimize the bio-
synthesis of hemin and low temperature to mitigate the instability 
of the apo-form, we expressed successfully the protein containing 
less than 5% of the Fe-PIX cofactor, as determined by inductively 
coupled plasma optical emission spectroscopy (ICP-OES). In par-
ticular, mutants of Physeter macrocephalus myoglobin (Myo) and 
Bacillus megaterium cytochrome P450 BM3h (P450) with and 
without an mOCR stability tag were overexpressed in high yields 
and purified (up to 70 mg l−1 of protein; Fig. 1a, Supplementary 
Tables 1 and 2)9,10,27. Circular dichroism spectroscopy revealed that 
these apo-proteins retain the fold of their native Fe-PIX analogues  
(Fig. 1b, Supplementary Fig. 2). The obtained apo-proteins were 
reconstituted quantitatively upon addition of stoichiometric amounts 
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of various [M]-PIX cofactors, as determined by native nano electros-
pray ionization mass spectrometry (Supplementary Fig. 3). Moreover, 
reactions catalysed by reconstituted Fe-myoglobin and Fe-P450 
occurred with the same enantioselectivities as those catalysed by native 
Fe-proteins (Supplementary Fig. 4)9,10, providing strong evidence that 
this method indeed generates [M]-PIX-proteins with the intact active 
site and with the cofactors bound at the native PIX-binding site. Further 
studies revealed that reconstituted mOCR-myoglobins are stable on 
storage; reactions catalysed by freshly prepared, frozen, and lyophilized 
enzymes proceeded with comparable enantioselectivity (see below, 
Supplementary Fig. 5).

Following this method, we directly expressed eight variants of  
apo-mOCR-Myo-H93X, each carrying a different mutation to the 
axial ligand position (H93X). Upon reconstitution of each variant 
with nine different porphyrin cofactors (containing Fe(Cl)-, Co(Cl)-,  
Cu-, Mn(Cl)-, Rh-, Ir(Cl)-, Ir(Me)-, Ru(CO)- and Ag-sites, 
Supplementary Table 2), we rapidly accessed 72 potential catalysts 
whose activity profiles are distinct from those of wild-type myoglobin, 
owing to the identity of the metal centre and the amino acid residue 
serving as the axial ligand (Fig. 2a, b)3.

Natural haem proteins functionalize C–H bonds to form C–O 
bonds11, but no haem protein is known to functionalize a C–H bond 
to form a C–C bond. To identify an enzyme for the insertion of a car-
bene into a C–H bond, the array of artificial [M]-mOCR-myoglobins  
containing various metals and axial ligands was evaluated for the  
reaction of diazoester 1 to form chiral dihydrobenzofuran 2 (Fig. 2a). 
All myoglobins formed from the native Fe-PIX cofactor were inactive, 
regardless of the axial ligand. In contrast, non-native metals formed 
active catalysts when paired with an appropriate axial ligand. The 
most active catalysts, those containing Ir(Me)-PIX, were formed by 
incorporating both an abiological metal (Ir) and an abiological axial 
ligand (-CH3) that cannot be incorporated though standard mutagen-
esis techniques. The eight myoglobins containing Ir(Me)-PIX formed 
enantioenriched dibenzohydrofuran 2 in up to 50% yield before any 
further mutagenesis (see below). Moreover, this artificial enzyme  
tolerated modifications to all portions of the substrate; diazoesters 
6–11, containing varied ester, arene, and alkoxy functionalities  
(Fig. 3a, Supplementary Fig. 6), also underwent C–H insertion in the 
presence of Ir(Me)-PIX-Myo. Together, these results show that the  

multi-dimensional evaluation of reconstituted PIX-enzymes can  
identify new artificial metalloenzymes that catalyse reactions that  
biological Fe-PIX-proteins do not catalyse.

A substantial benefit of using enzymes for synthetic applications is 
the potential to use directed evolution to obtain a catalyst with desired 
properties13,28. To develop an enantioselective catalyst for each of the 
seven substrates undergoing C–H insertion, we followed a hybrid 
strategy based on stepwise optimization of small sets of amino acids 
progressively more distal from the reaction site (Fig. 4). In the first 
phase, the axial ligand (H93) was modified to A or G and the resi-
due directly above the metal centre (H64) was modified to A, V, L, or  
I (Fig. 4) to give an initial set of eight mutants. In the second phase, 
these initial eight mutants were modified at positions F43 and V68, 
which are located in the binding site (Fig. 4), to generate 225 prospec-
tive enzymes. To retain the hydrophobicity of the site that binds the 
porphyrin and substrate, only hydrophophic and uncharged residues 
(V, A, G, F, Y, S, T) were introduced at positions F43 and V68. Of these 
225 mutants, 22 that were among the most selective for one or more of 
the substrates in Fig. 3 were subjected to a further round of evolution 
during which the residues at four additional positions (L32, F33, H97, 
and I99) were modified to generate 217 more mutants (Fig. 4).

The complete results of the carbene insertion reaction with these 
mutants are provided in Supplementary Tables 5–11 and are summa-
rized in Fig. 3b and Supplementary Table 4. The directed evolution of 
Ir(Me)-myoglobins uncovered distinct enzymes catalysing the C–H 
functionalization to form either enantiomer of the products containing 
a new C–C bond formed from substrates 1 and 6–11. The reactions 
occurred with selectivities up to an enantiomeric ratio (e.r.) of 92:8 and 
with yields up to 97% (Fig. 4, Supplementary Fig. 7 and Supplementary 
Tables 4–11) with enzymes that were evolved from those giving nearly 
racemic product. The Ir-myoglobins are suitable catalysts for synthetic- 
scale reactions; the carbene insertion of substrate 11 formed the product  
containing a new C–C bond in 80% isolated yield from a reaction of 
28 mg of 11 with nearly the same enantioselectivity as observed on 
smaller scale (Fig. 3). A reaction conducted with a 40,000:1 ratio of 
substrate to Ir(Me)-mOCR-myo occurred with a turnover number 
(TON) of 7,200 (Fig. 3).

In contrast to the few directed evolutions of artificial enzymes 
reported previously28, our method of preparing variants of the  
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Ir(Me)-PIX-enzyme enabled us to pursue an individual, eight-site  
evolutionary trajectory for the reaction of each substrate that iden-
tified catalysts selectively forming either enantiomer of all targeted  
products. These results demonstrate that Ir(Me)-PIX-myoglobins are 
highly evolvable for different substrates containing varied structural 
modifications. These results, along with the high isolated yield and 

the observation of high TONs, demonstrate that the direct expression  
of apo-Myo, the insertion of diverse [M]-PIX cofactors, and the sub-
sequent directed evolution of the most active enzymes identified  
is a robust strategy that can be applied in a general way to create stereo-
selective enzymes for abiological catalysis that cannot be accomplished 
by any natural enzymes.
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To assess the generality of this approach further, we sought  
catalysts for the cyclopropanation of internal alkenes and α​-olefins that, 
like carbene insertion into C–H bonds, have not been accomplished 
with natural or artificial enzymes. As a starting point, we evaluated 
the two-dimensional array of [M]-PIX catalysts shown in Fig. 2b for 
the cyclopropanation of β​-methylstyrene 3 with ethyl diazoacetate  
4 (EDA). In agreement with literature reports10, Fe-PIX enzymes did 
not catalyse this reaction (Fig. 2b). In contrast, Rh-, Ru-, and Ir-PIX 
enzymes furnished the cyclopropane product 5. The enzyme containing  
Ir(Me)-PIX was the most active. Although further work is needed 
to obtain full conversion and high enantiomeric excess (e.e.), the  
reaction of EDA with β​-methylstyrene catalysed by the Ir(Me)-mOCR-Myo  
mutant H93A, H64V, F43Y, V68A, H97F formed the cyclopropane  
5 with a TON of 40 with 70:30 e.r., and with a high >​33:1 ratio of dias-
tereomers, favouring the trans isomer.

Having observed the expanded scope of enzyme-catalysed cyclo-
propanation, we assessed the ability of Ir(Me)-PIX enzymes to catalyse 
the cyclopropanation of 1-octene, an unactivated, aliphatic olefin. The 
series of Ir(Me)-PIX-Myo enzymes assessed for C–H insertion reactions 
were tested as catalysts for the reaction of EDA with 1-octene. Although 
the mutant H93A, H64A, V68F formed the products of C–H insertion 
from all substrates unselectively, the same mutant formed the prod-
uct of cyclopropanation of 1-octene in an enantiomeric ratio of 91:9 
and a trans:cis ratio of 40:1 (Figs 3b, 4; Supplementary Tables 12–14).  
Cyclopropanations of aliphatic alkenes catalysed by traditional metal 
complexes are typically conducted with an excess of the alkene29. In 
contrast, the Ir(Me)-PIX-Myo mutant catalyses the reaction with 
an excess of EDA (a TON of 42 with a 10:1 ratio of EDA:1-octene), 
suggesting that reactions can be developed with valuable alkenes as 
limiting reagent. The reactions with fewer equivalents of EDA occur 
with lower TON due to consumption of EDA by dimerization or O–H 
insertion of water. These cyclopropanations of unactivated alkenes 
show the broad potential to evolve artificial myoglobins containing 
abiological active sites for reactions that are not catalysed by enzymes 
containing native metals.

The work presented here demonstrates that unknown enzymatic 
reactivity can be achieved by incorporating just a metal ion with 
an accompanying small ligand into a well-known metalloprotein, 
while retaining the native structure of the active site. Selectivity for  
specific substrates, then, can be achieved readily by directed evolution. 
Considering the rich chemistry of free metalloporphyrins and the ease 
of preparation and evolution of haem proteins containing diverse metals  
by the methods just described, this methodology should seed the  
creation of many new artificial metalloenzymes with diverse, unnatural 
reactivity. Moreover, the facile, direct expression of apo-haem proteins 
could be used in tandem with strategies to incorporate highly active 
noble-metal complexes of ligands beyond porphyrins. Access to such a 
range of artificial haem proteins provides a nearly limitless opportunity 
to achieve catalytic reactions with selectivity derived from the interac-
tion of the substrate with a natural, evolvable binding site.
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