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2Laureate Institute for Brain Research, Tulsa, OK, USA
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Abstract

Background: Real-time control of goal-directed actions requires continuous adjustments in 

response both to current error (i.e. distance from goal state) and predicted future error. Proportion-

integral-derivative (PID) control models, which are extensively used in the automated control of 

industrial processes, formalize this intuition. Previous computational approaches to anxiety have 

separately addressed behavioral inhibition and exaggerated error processing, but a PID control 

approach decomposing error processing into current and anticipated error could integrate these 

accounts and extend them to a real-time sensorimotor control domain.

Methods: We applied a simplified proportion-derivative (PD) control model to a virtual driving 

task in a transdiagnostic psychiatric sample of 317 individuals and computed a drive parameter 

(weighting of current error) and a damping parameter (weighting of the rate of change of error, 

enabling adjustment based on future error).

Results: Self-reported fear but not negative affect was selectively associated with lower drive and 

lower damping. Those individuals that were characterized by lower drive and damping also 

exhibited lower caudal anterior cingulate cortex (ACC) but not insula volume in a structural MRI 

analysis.

Conclusions: Taken together, the PD control approach reveals that fear is specifically associated 

with reduced weighting of current error and overestimation of future error, resulting in both 

approach inhibition and in overcorrecting overshoots around a goal state.
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Introduction

In pursuing our goals, we must continuously make adjustments based on errors, i.e. the 

difference between where we are and where we would like to be. These adjustments must be 

based not only on the current situation (i.e. current error), but also on how we expect the 

situation to evolve (anticipated future error). Without this capacity to extrapolate a trajectory 

into the future and adjust our behavior accordingly, vigorous goal pursuit can result in a 

series of overcorrecting overshoots around the goal state. The development of techniques to 

solve this problem was a major advance in the automated control of industrial processes (1). 

Individuals must solve an equivalent problem when pursuing real-time control of goal-

directed actions and a deficit in this fundamental process could be related not only to gross 

abnormalities in the motor system but also to higher level cognitive and affective processing 

dysfunctions. Individuals with high trait anxiety were found to have difficulty selecting 

optimal actions when adjusting to the temporal statistics of the environment (2). Moreover, 

anxiety has been linked to exaggerated error signaling in the dorsal anterior cingulate cortex 

(dACC) (3). Some researchers have argued that behavioral inhibition is a central aspect of 

anxiety (4), suggesting that anxious individuals may exhibit an attenuated drive to reach a 

goal in addition to an inability to avoid overcorrecting overshoots around a goal. A control-

theoretic account of behavioral adjustments as a function of real-time error magnitude could 

therefore elucidate fundamental anxiety-related processing dysfunctions. This can be 

accomplished through the use of a proportion-integral-derivative (PID) control modeling 

approach.

PID controllers are the most widely used controllers in industrial systems today and were 

originally developed in 1922 as a model of steering by human ship pilots (5). In PID control, 

the control action is a linear combination of three terms that capture current, past, and future 

error: (1) the proportion term is the weighted current error (difference between goal state and 

current state), (2) the integral term is the weighted integral of the error over time (i.e. past 
error), and (3) the derivative term is the weighted derivative (rate of change) of the error 

(enabling adjustment based on anticipated future error). The combination of these terms 

allows for rapid correction of errors (i.e. goal pursuit) while minimizing overcorrection 

(which results in large overshoots around the goal state). The coefficients or weighting 

factors for the three terms, Kp, Ki, and Kd, are known as gains. Kp is a driving parameter that 

controls propulsion toward the goal based on current error and influences the rise time, or 

time to initially reach the goal state. Kd is a damping parameter, analogous to friction in a 

physical system, that minimizes overcorrection by anticipating future error and thereby 

influences the settling time, or the time until oscillations around the goal state fall within a 

certain small range. Higher Kd (i.e. damping) is necessary in the setting of higher Kp (i.e. 

drive), with the combination helping to mitigate the inherent tradeoff between fast rise time 

and fast settling time. Ki is a parameter that responds to past error over time and thereby 
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eliminates residual steady-state error resulting from a constant disturbance such as gravity. 

Kp, Ki, and Kd, are typically tuned heuristically rather than optimizing based on a 

mathematical model of the system. The origins of PID as a model of human control 

performance underline its potential value as an approach to real-time behavioral adjustments 

in humans. PID control has been successfully applied to human motor performance in terms 

of balance (6, 7), simulated control of the forearm (8), and skilled operation of machinery 

(9). A PID modeling approach could help refine accounts of error processing in anxious 

individuals by separately examining the weighting of current error and anticipated future 

error. If these individuals underweight current error, while also underweighting the rate of 

decrease in error (thus overestimating future error), this would lead to behavior that is both 

under-driven and under-damped, consistent with a combination of behavioral inhibition and 

overcorrecting overshoots around the goal. This would argue for an account of anxiety as 

involving a fundamental deficit in error prediction.

In 2010, the National Institute of Mental Health (NIMH) initiated the Research Domain 

Criteria (RDoC) framework, which aims to integrate information across multiple units of 

analysis to develop a dimensional, neuroscience-based psychiatric classification system (10). 

RDoC is organized into domains of functioning, with the negative valence domain being the 

most broadly relevant to anxiety disorders. Within the negative valence domain, the 

construct of fear, or response to an acute threat, can be distinguished from negative affect or 

distress more generally, and has good convergent and discriminant validity on self-report 

measures (11). This distinction between fear and broader negative affect has critical 

implications for the assessment and treatment of individuals with anxiety-related complaints, 

as variability in levels of fear is observed both between and within anxiety-related diagnostic 

categories (12). Fear is behaviorally associated with increased avoidance behaviors, 

decreased approach behaviors, and response inhibition. Physiologically, fear is accompanied 

by autonomic arousal and increased startle response (13). A closely related construct is 

anxious arousal, which has been distinguished from anxious apprehension in characterizing 

two separate factors cutting across multiple anxiety-related disorders (14). Importantly, a 

new sensorimotor domain has recently been added to the RDoC framework (15), reflecting a 

growing awareness that new models relating negative valence processing to alterations in 

real-time motor behavior may hold great promise in refining our understanding of 

processing dysfunctions in anxiety disorders.

We examined the relationship between self-reported fear and performance on a task in which 

subjects controlled a virtual car via a joystick (16). Because the combination of inhibited 

approach behavior (4) and exaggerated error processing (3) suggest that fear may be 

associated with motor behavior that is both under-driven and under-damped, we 

hypothesized that fear would be associated with lower Kp and Kd. We further hypothesized 

that low Kp and Kd would be associated with lower brain volumes in two regions that are 

closely associated with fear, the insula and the dorsal anterior cingulate cortex (dACC) (13). 

The dACC in particular is associated with error monitoring (3) and fear expression (17) and 

is believed to be key region through which affective state influences motor control processes 

(18). Consistent with the National Institute of Mental Health Research Domain Criteria 

(RDoC) (10) approach, our sample consisted of a combination of healthy volunteers and a 

transdiagnostic group consisting of individuals with anxiety and mood problems.
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In industrial applications, PD and PI controllers (as opposed to full PID controllers) are 

common. Here we use a PD rather than a full PID model for three reasons: (1) We 

hypothesized that fear would be related to differences in Kp and Kd rather than Ki. (2) Our 

task design does not include a constant disturbance, and therefore Ki is not necessary to 

eliminate steady-state error. (3) The integral of error is expected to correlate with current 

error, presenting difficulties for model-fitting if both Kp and Ki were included.

Methods and Materials

All study procedures were approved by the Western Institutional Review Board, and all 

participants provided written informed consent prior to participation.

Participants

The experiment was performed as part of the Tulsa-1000 (T-1000) study, which is aimed at 

multilevel assessment and outcome prediction in a large, heterogeneous psychiatric sample. 

Subjects were recruited from mental health providers or via advertisements. At screening, 

treatment-seeking individuals were required to have a score on the Patient Health 

Questionnaire-9 (PHQ-9) ≥ 10 and/or on the Overall Anxiety Severity and Impairment Scale 

(OASIS) ≥ 8 (cutoff scores were based on the validation studies for these measures (19, 20)). 

317 subjects (age: 35.42 ± 11.35 years; gender: 104 male and 213 female) participated in the 

experiment, of whom 259 were in the mood/anxiety group and 58 in the healthy control 

group. Psychiatric diagnoses based on the MINI Neuropsychiatric Interview (MINI) (21) are 

shown in Supplementary Table S1, with additional demographic and clinical information 

shown in Supplementary Table S2.

Experiment

Subjects performed a simulated one-dimensional driving task (Figure 1) (16). The position 

of a virtual car was controlled using a gaming joystick. Each subject completed 30 trials. In 

each trial, subjects were instructed to drive the car as quickly as possible and stop as close as 

possible to a stop sign without crossing the stop-line. Each trial had a fixed duration of 10 

seconds. The car was controlled according to a linear dynamical system, in which car 

velocity was proportional to joystick displacement. Throughout each trial, continuous 

joystick displacement was recorded with a sampling window of 1/60 second. In order to 

assess affective state including fear and general negative affect, participants completed the 

Positive and Negative Affect Schedule-Expanded Form (PANAS X) (22). The PANAS X is a 

hierarchical self-report measure of emotional states which includes two higher order 

dimensions (Positive Affect and Negative Affect) as well as 11 specific affects: Fear, 

Sadness, Guilt, Hostility, Shyness, Fatigue, Surprise, Joviality, Self-Assurance, 

Attentiveness, and Serenity. Both the higher order dimensions and specific affect scales have 

demonstrated high internal consistency, test-retest reliability, and convergent and 

discriminant validity (22). Participants completed the trait version of the PANAS X, with 

instructions asking “How do you feel in general?”
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Behavioral Analysis

We plotted the log of mean speed throughout the course of the 10-second trial to visualize 

individual differences in behavioral performance. This was calculated as the log of the mean 

of the absolute value of velocity across all trials for each subject, and captures both rise time 

(with fast rise time corresponding to higher speeds early in the trial) and settling time (with 

fast settling time, meaning less pronounced oscillations, corresponding to lower speeds later 

in the trial). To quantify the relationship between self-reported fear and log mean speed, we 

performed a linear regression analysis at each sampled time point, controlling for gender, 

age, and education. To investigate the relationship between gender and log mean speed, we 

performed an otherwise identical analysis controlling for age and education

PD Control Model

We performed hierarchical Bayesian estimation of PD model parameters using the Rstan 

(23) interface to the Stan (24) language (Figure 1, Figure 2, and Supplementary Figure S1). 

At each time point within a trial, acceleration was modeled as a linear combination of 

current error (goal position minus current care position) and derivative of the error, with 

coefficients Kp and Kd, respectively. In turn, Kp and Kd for each trial were modeled as being 

drawn from subject-level distributions. Finally, these subject-level means were modeled as 

being drawn from overall group-level distributions, while also potentially depending on 

subject-level predictors (gender, age, and self-reported affect). See Supplementary Methods 

for further modeling details.

Fear and Model Parameters

To determine the relationship between fear and model parameters, we constructed a 

hierarchical model in which both the subject-level mean Kp and the subject-level mean Kd 

depended on scaled (i.e. z-scored) age, gender, and PANAS X Fear. Effect sizes for the 

relationships between subject-level predictors and subject-level Kp and Kd were calculated 

by dividing each draw of the posterior distribution of the slope by the posterior distribution 

of the standard deviation of subject-level Kp and Kd. This yielded the equivalent of a 

standardized regression coefficient or beta weight, i.e. an estimate of the change (in standard 

deviations) of the dependent variable per standard deviation of the predictor variable.

To test the specific effect of fear as distinguished from negative affect more generally, we 

constructed a model otherwise identical to the above, but adding PANAS X Negative Affect 

score as an additional predictor of subject-level mean Kp and Kd.

Brain Volumes and Model Parameters

In order to test the relationship between model parameters and brain volumes, 302 subjects 

completed subjects completed structural MRI scans. Volumes of individual brain regions 

were obtained using FreeSurfer (see Supplementary Methods section for details). Two brain 

regions were selected as a priori regions of interest: caudal ACC and insula. For each brain 

region, we first calculated the mean of the left and right volume for each subject. We then 

constructed two hierarchical models: in each model, both the subject-level mean Kp and the 

subject-level mean Kd depended on the scaled volume of the region of interest, in addition to 

total cortical volume, gender, and age.
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Results

Behavioral Results

The relationship between self-reported fear and log mean speed at each time point during the 

trial, controlling for gender, age, and education is shown in Figure 3a. Results demonstrate 

that individuals reporting high levels of fear displayed a lower speed early in the trial 

(corresponding to slow rise time) and a higher speed late in the trial (corresponding to slow 

settling time). The relationship between gender and log mean speed controlling for age and 

education is shown in Figure 3b. Males demonstrated a higher speed early in the trial 

(corresponding to fast rise time) and a lower speed late in the trial corresponding to fast 

settling time).

Fear and Model Parameters

PANAS X Fear score was associated with lower Kp (median β = −0.12, 95% credible 

interval β = [−0.23, −0.01], 1.9% of the posterior greater than zero; Supplementary Figure 

S7a) and lower Kd (β = −0.19 [−0.30, −0.07], 0.1% of the posterior greater than zero; Figure 

4a). Male gender was associated with higher Kp (β = 0.26 [0.15, 0.38], 0.0% of the posterior 

less than zero) and higher Kd (β = 0.29 [0.18, 0.41], 0.0% of the posterior less than zero). 

Older age was associated with lower Kp (β = −0.13 [−0.24, - 0.01], 1.4% of the posterior 

greater than zero) and lower Kd (β = −0.12 [−0.24, −0.00], 2.3% of the posterior greater than 

zero). See Supplementary Figure S8 for plots of the relationship between PANAS X Fear 

and model parameters (extracted from the hierarchical model).

After controlling for negative affect, PANAS X Fear score remained associated with lower 

Kp (β = −0.27 [−0.50, −0.03], 1.2% of the posterior greater than zero; Supplementary Figure 

S7b) and lower Kd (β = −0.25 [−0.50, −0.01], 1.8% of the posterior greater than zero; 

Supplementary Figure S7c). There was no credible association between PANAS X Negative 

Affect score and Kp (β = 0.17 [−0.07, 0.40], 8.2% of the posterior less than zero) or Kd (β = 

0.07 [−0.17, 0.31], 27.8% of the posterior less than zero).

Brain Volumes and Model Parameters

Caudal ACC volume was associated with higher Kp (β = 0.20 [0.06, 0.34], 0.3% of the 

posterior less than zero; Supplementary Figure S10) and higher Kd (β = 0.20 [0.06, 0.34], 

0.1% of the posterior less than zero; Figure 4b). Insula volume was not associated with Kp 

(β = −0.01 [−0.21, 0.18], 45% of the posterior greater than zero) or Kd (β = −0.06 [−0.26, 

0.13], 26% of the posterior greater than zero).

Discussion

This investigation used a virtual driving task using a PD control model with driving (Kp) and 

damping (Kd) parameters to examine whether individuals with high levels of fear show 

altered processing of current and future errors. There were three main results. First, 

individuals with higher levels of fear showed lower levels of both drive and damping even 

after controlling for negative affect. Although males had higher values for both drive and 

damping, and older individuals showed lower drive and damping, the associations between 
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fear and model parameters were present whether or not age and gender were included as 

covariates in the models. Second, in an a priori region-of-interest analysis, higher levels of 

drive and damping were associated with larger gray matter volume in the caudal ACC, after 

controlling for total cortical volume. Third, the reliability of estimating both Kp and Kd was 

high, which means that trial noise is small compared to the variance between subjects and 

that parameters can be estimated reliably even with a small number of trials per subject. 

Taken together, this approach shows that high fear individuals relative to low fear individuals 

show attenuated processing of current but an exaggerated processing of future errors during 

a motor task.

In our sensorimotor control task, individuals reporting high levels of fear do not overweight 

current error, but rather overestimate future error because of an underweighting of the error’s 

rate of decrease (i.e. derivative). Thus, these individuals can simultaneously display inhibited 

approach behavior (i.e. slow rise time) due to low Kp and overcorrecting oscillations around 

the goal (i.e. slow settling time) due to low Kd. A PD control approach can thereby integrate 

behavioral inhibition and over-responsiveness to error within a unified modeling perspective. 

The combination of slower rise time with longer settling time demonstrates that fearful 

individuals are behaving suboptimally, rather than placing greater weight on speed or 

accuracy. The idea that fear is associated with exaggerated prediction of future error is 

consistent with a view of anxiety disorders as fundamentally involving altered anticipatory 

processing (25).

The need for computational approaches to explicitly model the role of brain processes in 

generating behavior, thus developing a more precise understanding of altered behavior in 

anxiety, has been increasingly recognized (26). Ideally, such approaches could disentangle 

fear, or response to an acute threat, from negative affect or distress more generally, a 

distinction with critical implications for the assessment and treatment of individuals with 

anxiety-related complaints (11, 12). Previous computational accounts have shed light on the 

quantitative mechanistic underpinnings of anxiety-related constructs. For example, Bayesian 

analysis has recently been applied to develop a normative framework for behavioral 

inhibition in approach/avoidance conflict scenarios (27). As expected, behavioral inhibition 

within this framework was positively associated with trait anxiety (27) and reduced by 

administration of a benzodiazepine (an anxiolytic medication) and by lesions of the 

amygdala (which is involved in fear learning and fear expression) (28). Another 

computational approach to anxiety is to characterize the scaling of error information based 

on environmental statistics. Adjustments to prediction errors (i.e. learning) should be 

sensitive to underlying environmental statistics, because an error in a volatile context is more 

likely to represent a true change, while an error in a stable context is more likely to represent 

noise. Anxious individuals have been shown to be poorer at adjusting response to error 

(known as the learning rate) based on environmental statistics (29), and to suboptimally 

display a higher “lose-shift” rate in a stable environment (30). As a result, these individuals 

can fail to settle into a stable behavioral pattern, and instead continue to over-adjust behavior 

in response to statistical noise.

One challenge facing a more integrative computational account of anxiety is to combine the 

two constructs discussed above, i.e. behavioral inhibition and over-responsiveness to error, 
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within a single framework. As noted above, behavioral inhibition has been largely analyzed 

within explicit approach/avoidance conflict scenarios such as foraging in the presence of a 

predator or approaching a potential social partner who may or may not be friendly. These 

conflict scenarios are clearly ubiquitous both in evolutionary history and in everyday life, 

and help explain key clinical aspects of anxiety disorders (31). However, suboptimal error 

scaling in anxious individuals is observed even in the absence of an explicit approach/

avoidance conflict. Moreover, when adopting a simple but powerful control-theoretic 

conceptualization of error as the distance between the current state and a goal, greater error 

responsiveness would correspond to a less inhibited goal approach, the opposite of what is 

observed in anxiety. The PD control modeling approach can help resolve this paradox and 

extend computational accounts of anxiety into a real-time sensorimotor control domain by 

decomposing error processing into separate terms for current and anticipated error.

The specific relationship between PD model parameters and fear, even after controlling for 

other affects including general negative affect, suggests that this approach could provide a 

specific assessment for a subset of individuals with anxiety-related complaints, as opposed 

to those experiencing distress more generally. Even within individuals endorsing anxiety-

related complaints, levels of fear (which includes an arousal component) vary both across 

and within anxiety-related diagnoses (12). It is therefore possible that the altered control 

performance observed in our paradigm is specifically associated with this arousal 

component, leading to a stronger relationship between model parameters and fear as 

opposed to negative affect or trait anxiety (see Supplementary Results). Model parameters 

which specifically relate to fear rather than negative affect more generally may allow 

assessment of a dimension which cuts across diagnostic lines while differentiating 

individuals within diagnostic categories, consistent with the goals of RDoC (10).

While fear is negatively associated with both Kp and Kd, the high correlation between these 

two parameters across subjects raises the question of whether they can be disambiguated in 

our paradigm. Furthermore, as shown in Supplementary Figure S1, velocity traces for a 

given Kp are relatively similar across the range of observed Kd values. Our results do 

provide some evidence that, despite the high correlation, we can successfully recover these 

parameters independently. Simulations and parameter recovery shows that the model can 

reliably recover these two parameters when they are generated independently (i.e. are 

uncorrelated). Simulations with correlated Kp and Kd also show that the model can reliably 

recover residual Kd, controlling for Kp. Split half reliability results also show that the model 

reliably recovers residual Kd, controlling for Kp, from real data. Partial correlations show 

that fear is negatively associated with Kd, controlling for Kp, but may be positively 
associated with Kp, controlling for Kd. This suggests that the negative relationship with Kd 

may be more fundamental, and that subjects with high fear may display inhibited approach 

because of a limited capacity for damping, although further research will be needed to test 

this causal hypothesis.

Much of the recent research on the computational mechanisms underlying human motor 

control has incorporated a different body of engineering techniques known as optimal 

control theory (32). Optimal control theory employs calculus of variations to minimize a 

chosen performance measure given a mathematical model of a system (33). The 
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performance measure must explicitly account for all competing goals relevant to a control 

policy (such as maximizing accuracy while minimizing energetic costs) and must explicitly 

weight the relative importance of each goal. While optimal control theory has proven to be a 

powerful approach to understanding the human motor system, it may not straightforwardly 

map onto suboptimal motor performance in psychiatric disorders. While it is unlikely that 

PID control will offer a full account of human motor performance, its simplicity, flexibility, 

and interpretability, especially with respect to suboptimal behavioral functioning such as 

slow responsiveness or large oscillations, suggest it may hold great utility for delineating 

individual differences in real-time behavioral control in psychiatric disorders. Optimal 

control and PD control may therefore represent complementary approaches to understanding 

the full range of human real-time behavioral control processes.

The ability to reliably measure individual behavioral differences, ideally with short testing 

sessions amenable for use in clinical populations, is critical for the growing field of 

computational psychiatry. Recent investigations have highlighted the challenge of this 

endeavor by demonstrating the poor individual-level reliability of an assortment of common 

behavioral paradigms. For example, common behavioral paradigms used to measure self-

regulation have shown low test-retest reliability due to relatively low levels of between-

subject variance compared to within-subject variance and error variance (34). In fact, many 

common behavioral tasks have been designed to exhibit a low between-subject variance, 

leading to robust task effects but a lack of reliability in measuring individual differences 

(35). Bayesian hierarchical modeling is an ideal approach to accurately characterize different 

sources of variance (36) and has demonstrated that high variability within-subject (i.e. trial 

noise) is a major impediment to reliably estimating individual differences in common 

inhibitory control paradigms, especially when the number of trials per subject is low (37). In 

contrast, our results indicate that, even at the level of a single trial, variance in Kp and Kd are 

more attributable to between-subject differences than within-subject differences (i.e. trial 

noise). The high level of between-subject variability and low level of trial noise indicates 

that subject-level parameters in our paradigm can be estimated with high reliability, even 

with a small number of trials per subject. These findings suggest that real-time sensorimotor 

paradigms could offer substantially improved reliability in measuring individual differences 

compared to common discrete decision-making or reaction time paradigms and thus may 

warrant far greater attention within computational psychiatry.

The advantages of the present approach include a simple data collection procedure and a 

hierarchical model-fitting process yielding highly reliable model parameters. Our generative 

model specifically predicts acceleration at each time-point during each trial and reliably 

captures individual behavioral differences on the task. The model parameters demonstrate a 

relationship to self-reported fear, demonstrating a link between high-level affective 

processing and real-time sensorimotor control. Crucially, there is a specific relationship to 

fear even after controlling for general negative affect as well as other specific affects, a 

distinction that may have critical clinical implications for delineating neural dysfunction in 

separate psychiatric sub-populations. The model parameters are also related to age and 

gender, as well as to volumes in the ACC, a region linked to fear, error processing, and 

motor control. The present study also has the advantage of a large, heterogeneous sample.
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Limitations of the current study include the cross-sectional design, thus limiting insight into 

the relationship between changes in model parameters and changes in fear over time. 

Another limitation is the lack of fMRI data to examine the real-time neural mechanisms 

underlying the observed performance differences. Future research can also examine 

relationships between model parameters and other fear- and anxiety-related brain regions, 

such as the amygdala (which was not measured in our FreeSurfer cortical volume analysis). 

Another limitation is that, while our analyses were hypothesis-driven, our hypotheses were 

not pre-registered. The T1000 study includes a plan to conduct confirmatory replications in 

an independent sample with pre-registered hypotheses. Finally, an important limitation is the 

inability to fully separate state estimation from control in our paradigm. Because we are 

unable to directly infer the subject’s estimate of the current state (which is influenced by 

sensory and motor noise), it is difficult to determine whether the observed differences in 

parameters between subjects could be accounted for in part by biased estimation of current 

position and velocity rather than different weightings placed on these estimates. Previous 

research employing an optimal feedback control framework to study limb movements has 

applied external perturbations to explicitly measure the motor response to an experimenter-

controlled sensory input (38). A similar approach could help disambiguate state estimation 

from control in our paradigm.

In summary, we employed a PD control model to a sensorimotor control task and 

demonstrated that subjects reporting high levels of fear displayed decreased weighting on 

current error (consistent with inhibited goal approach) and also decreased weighting on the 

rate of change of error (leading to overcorrecting oscillations around the goal). These 

findings were specific to fear after controlling for general negative affect. This parameter 

pattern observed in subjects with high fear ratings was also observed in females, older 

subjects, and in subjects with lower volumes in the ACC. The results demonstrate that a 

fairly simple task paradigm can generate highly reliable, potentially clinically relevant 

parameters, and help extend and integrate prior computational analyses of anxiety into a 

real-time sensorimotor control domain.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Proportion-derivative (PD) control model of a virtual driving task.

(a) PD control framework. At each timepoint, error is calculated by subtracting the current 

position from the goal position. The control action (i.e. acceleration) at each timepoint is a 

linear combination of the current error and derivative of the error, with coefficients Kp and 

Kd, respectively. Goal state is taken to be the final position of the car at the end of the trial. 

Goal state, current position, and acceleration are directly measured during the task, whereas 

current error and derivative of the error are calculated based on these quantities, and Kp and 

Kd are determined based on a hierarchical model-fitting process. The virtual driving task is 

shown as an inset in the figure.

(b) Example model fits for four subjects. Subjects were chosen based on fitted Kp (10th 

percentile, 30th percentile, 70th percentile, and 90th percentile) to illustrate a range of 
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different behaviors on the task. The red traces (data traces) show mean velocity at each time 

point across all trials for each subject. The green traces (simulation traces) were generated 

via autonomous simulations using the forward PD model from starting conditions, using the 

fitted mean Kp and Kd for each subject.
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Figure 2: 
Hierarchical Bayesian model. The graphical model depicts the hierarchical PD control 

modeling approach. Shaded circles represent data, while non-shaded circles represent 

parameters. At each timepoint within a trial, acceleration depends on error and derivative of 

the error according to the PD control model. Kp and Kd for each trial represent the 

coefficients of the error term and derivative term, respectively. Trial-level Kp and Kd are 

drawn from subject-level means (αp and αd), which themselves are drawn from group-level 

means (μp, and μd). Depending on the particular model, αp and αd can be related to 

individual-level predictors such as self-report scores, demographics, and brain region 
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volumes. The σ terms represent standard deviations. See Methods section for details of the 

modeling approach.
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Figure 3: 
Behavioral results.

(a) Relationship between PANAS X Fear score and log of mean speed throughout the course 

of the trial. Log of mean speed captures both rise time (speed of reaching the goal early in 

the trial) and settling time (decay of oscillations later in the trial). The beta weight (i.e. 

standardized regression coefficient) for the relationship between PANAS X Fear score and 

log of mean speed, controlling for gender and age, is shown for each time point over the 

course of the 10-second trial, with shaded regions representing 95% confidence intervals. 
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Fearful subjects displayed lower log mean speed early in the trial and higher log mean speed 

later in the trial, consistent with slower rise time and longer settling time.

(b) Relationship between male gender and log of mean speed throughout the course of the 

trial. The beta weight (i.e. standardized regression coefficient) for the relationship between 

gender and log of mean speed, controlling for age, is shown for each time point over the 

course of the 10-second trial, with shaded regions representing 95% confidence intervals. 

Male subjects displayed higher log mean speed early in the trial and lower log mean speed 

later in the trial, consistent with faster rise time and shorter settling time.
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Figure 4: 
Relationships between Kd and individual-level predictors.

(a) Relationship between Kd (damping) parameter and PANAS X Fear score, controlling for 

gender and age. The hierarchical model additionally included relationships between the Kp 

(driving) parameter and the same individual-level predictors (see Supplementary Figure 

S7a). For each parameter, the median of the posterior distribution (black circle), 80% 

credible interval (red line), and 95% credible interval (black line) are shown. Individual-level 

predictors (i.e. PANAS X Fear score, gender, and age) were scaled (i.e. z-scored) prior to 

model-fitting. PANAS X Fear score was negatively associated with Kd.
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(b) Relationship between Kd (damping) parameter and caudal ACC volume, controlling for 

total cortical volume, gender and age. The hierarchical model additionally included 

relationships between the Kp (driving) parameter and the same individual-level predictors 

(see Supplementary Figure S7a). Individual-level predictors were scaled (i.e. z-scored) prior 

to model-fitting. Caudal ACC volume was positively associated with Kd.
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