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 Environmental health’s purview, driven by an accelerating transformation of social and 

ecological systems, has been progressively expanding to encompass a broader array of 

environment-health relationships. This widening perspective embraces persistent, resurgent, and 

nascent threats to human health that often operate at multiple scales, generating the attributable 

burdens of the present as well as the avoidable burdens of the future. Analyzing linkages from 

the planetary to the individual is a core challenge for evolving environmental health into its 

“global” incarnation. The complications and uncertainties involved are daunting as causality 

cascades through multiple scales, prompting global environmental health to expand not only its 

paradigm but also its toolkit.  

In this dissertation, I motivate, develop, and demonstrate three such approaches for 

investigating multiscale drivers of global environmental health: (1) a causal metric for analyzing 

contributions and responses to climate change from global to sectoral scales, (2) a conceptual 

framework for unraveling the influence of environmental change on infectious diseases at 

regional to local scales, and (3) a mechanistic model for informing the design and evaluation of 

clean cooking interventions at community to household scales. 

The full utility of climate debt as an analytical perspective will remain untapped without 

causal metrics that can be manipulated by a wide range of analysts, including global 

environmental health researchers. In Chapter 2, I explain how international natural debt (IND) 

apportions global radiative forcing from fossil fuel carbon dioxide and methane, the two most 

significant climate altering pollutants, to individual entities − primarily countries but also 

subnational states and economic sectors, with even finer scales possible − as a function of unique 

trajectories of historical emissions, taking into account the quite different radiative efficiencies 

and atmospheric lifetimes of each pollutant. Owing to its straightforward and transparent 

derivation, IND can readily operationalize climate debt to consider issues of equity and 

efficiency and drive scenario exercises that explore the response to climate change. Collectively, 

the analyses presented in this chapter demonstrate how IND can inform a range of key question 
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at multiple scales, compelling environmental health towards an appraisal of the causes as well as 

the consequences of climate change. 

 The environmental change and infectious disease (EnvID) conceptual framework of 

Chapter 3 builds on a rich history of prior efforts in epidemiologic theory, environmental 

science, and mathematical modeling to analyze social and ecological drivers of re/emerging 

pathogens. EnvID is distinguished by: (1) articulating a flexible and logical system specification; 

(2) incorporating transmission groupings linked to public health intervention strategies; (3) 

emphasizing the intersection of proximal environmental characteristics and transmission cycles; 

(4) incorporating a matrix formulation to identify knowledge gaps and facilitate research 

integration; and (5) highlighting hypothesis generation amidst dynamic processes. A 

systems-based approach leverages the reality that studies relevant to environmental change and 

infectious disease are embedded within a wider web of interactions. As scientific understanding 

advances, the EnvID framework can help integrate the various factors at play in determining 

environment–disease relationships and the connections between intrinsically multiscale causal 

networks. 

 In Chapter 4, the coverage effect mechanistic model functions primarily as a 

“proof-of-concept” analysis to address whether the efficacy of a clean cooking technology may 

be determined by the extent of not only household-level use but also community-level coverage. 

Such coverage dependent efficacy, or a “coverage effect,” would transform how interventions 

are studied and deployed. Ensemble results are consistent with the concept that an appreciable 

coverage effect from clean cooking interventions can manifest within moderately dense 

communities. Benefits for users derive largely from direct effects; initially, at low coverage 

levels, almost exclusively so. Yet, as coverage expands within a user’s community, a coverage 

effect becomes markedly beneficial. In contrast, non-users, despite also experiencing comparable 

exposure reductions from community-level intervention use, cannot proportionately benefit 

because their exposures remain overwhelmingly dominated by household-level use of traditional 

solid fuel cookstoves.  

 The coverage effect model strengthens the rationale for public health programs and 

policies to encourage clean cooking technologies with an added incentive to realize high 

coverage within contiguous areas. The implications of the modeling exercise extend to priorities 

for data collection, underscoring the importance of outdoor pollution concentrations during, as 

well as before and/or after, community cooking windows and also routine measurement of 

ventilation, meteorology, time-activity patterns, and cooking practices. The possibility of a 

coverage effect necessitates appropriate strategies to estimate not only direct effects but also 

coverage and total effects to avoid impaired conclusions.  

The specter of accelerating social and ecological change challenges efforts to respond to 

climate change, re/emerging infectious diseases, and household air pollution. Environmental 

health possesses a verified repertoire of incisive methods but contending with multiscale drivers 

of risk requires complementary approaches, as well. Integrating causal metrics, conceptual 

frameworks, and mechanistic models − and the resulting insights − into its analytical arsenal can 

help global environmental health meet the challenges of today and tomorrow. 
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… all life is interrelated in an inescapable network of mutuality, 

whatever affects one destiny, 

affects all destinies … 

 

— Martin Luther King, Jr. 
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1. Introduction 

1.1: Multiscale Drivers of  Global Environmental Health 

 Environmental health’s purview, driven by an accelerating transformation of social and 

ecological systems, has been progressively expanding to encompass a broader array of 

environment-health relationships (McMichael 2001; Whitmee et al. 2015). This widening 

perspective embraces persistent, resurgent, and nascent threats to human health that often operate 

at multiple scales (Myers and Patz 2009; Swinburn et al. 2011; Kovats and Butler 2012; Levy et 

al. 2012; Myers et al. 2013; Patz et al. 2014), generating the attributable burdens of the present as 

well as the avoidable burdens of the future (Kovats et al. 2005; Prüss-Ustün et al. 2016). The 

interplay between social and ecological components of environmental change shapes public 

health not only through development and sustainability but also through justice and equity 

(Butler and McMichael 2010; Kleinman 2010; Collins et al. 2011; Cushing et al. 2015; Levy and 

Patz 2015; Herrick 2016). Collectively, these concerns reveal the complexity of processes by 

which both traditional and modern environmentally-mediated risks influence human well-being 

(Smith and Desai 2002). 

 Analyzing linkages from the planetary to the individual is a core challenge for evolving 

environmental health into its “global” incarnation (Galea et al. 2010; Ferraro et al. 2015). The 

complications and uncertainties involved are daunting as causality cascades through multiple 

scales (Capistrano et al. 2005; Georgopoulos 2008; Sadsad and McDonnell 2014), prompting 

global environmental health to expand not only its paradigm but also its toolkit. In this 

dissertation, I motivate, develop, and demonstrate three such approaches for investigating 

multiscale drivers of global environmental health: (1) a causal metric for analyzing contributions 

and responses to climate change from global to sectoral scales, (2) a conceptual framework for 

unraveling the influence of environmental change on infectious diseases at regional to local 

scales, and (3) a mechanistic model for informing the design and evaluation of clean cooking 

interventions at community to household scales. Integrating these methods and their insights into 

its analytical arsenal can help global environmental health meet the challenges of today and 

tomorrow. 
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1.2: Metric, Framework, and Model 

 Environmental health’s response to climate change, thus far, has focused primarily on 

impacts, adaptation, and vulnerability (Portier et al. 2010; Bowen and Friel 2012; IPCC 2014), as 

well as co-benefits from the control of greenhouse gas emissions (Smith and Haigler 2008; 

Haines et al. 2009; West et al. 2013). These are vital research streams which justifiably shall 

remain priorities. Yet in other realms, environmental health seeks not only to characterize the 

consequences but also mitigate the causes of harmful exposures (Friis 2007). The lack of an 

accessible means for attributing accountability for climate change at multiple scales has 

constrained such research in environmental health, as well as other fields (National Research 

Council 2010). 

 In Chapter 2, I aim to help bridge this gap with a causal metric termed International 

Natural Debt (IND). IND apportions global radiative forcing from fossil fuel carbon dioxide and 

methane, the two most significant climate altering pollutants (CAPs), to individual entities − 

primarily countries but also subnational states and economic sectors, with even finer scales 

possible − as a function of unique trajectories of historical emissions, taking into account the 

quite different radiative efficiencies and atmospheric lifetimes of each CAP. Owing to its 

straightforward and transparent derivation, IND can readily operationalize climate debt to 

consider issues of equity and efficiency, and drive scenario exercises that explore the response to 

climate change at multiple scales. The analyses presented in this chapter demonstrate the 

capacity for climate debt, as captured by IND, to inform a range of key question at multiple 

scales. In so doing, I present an accessible path for environmental health scientists to pursue the 

causes as well as the consequences of climate change. 

 Climate change is among the most prominent examples of a distal environmental change 

that can affect human health through a series of causal linkages (Altizer et al. 2013). For 

example, acting through a series of intermediate steps, climate change may alter more proximal 

environmental characteristics at regional or local scales (Hambling et al. 2011), such as 

temperature or precipitation, which in turn may perturbate the transmission cycles of an 

environmentally-mediated infectious disease (Anderson and May 1991; Kraemer and Khan 

2010). Systematically interrogating this type of inherently multiscale chain compels a 

systems-based approach. 

 In Chapter 3, I present the Environmental Change and Infectious Disease (EnvID) 

conceptual framework which draws on a systems-based structure to organize and evaluate 

disparate information from a variety of disciplines. The goal of the framework is both to identify 

knowledge gaps and define research directions, as well as to develop relevant study designs and 

data analytics so that knowledge about environmental change can be incorporated appropriately 

into the study and control of re/emerging pathogens. I survey the literature on epidemiologic 

debates, integrative reviews, and mathematical models to bring into relief the challenges a 

framework on environmental change and infectious disease endeavors to remedy. On this basis, I 

explain the EnvID framework’s systems-based approach and operationalize its emphases with a 

putative matrix of plausible relationships between proximal environmental characteristics and 

transmission cycles. I then apply the framework to a case study, examining a web of interactions 

surrounding road construction and diarrheal disease in northwestern Ecuador.  
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 A derivative of the systems-based approach advocated by the EnvID framework proves 

well-suited to the topic of Chapter 4. Household air pollution from solid fuel use for cooking 

(HAP) remains one the world’s most significant environmental health challenges, levying an 

enormous toll on poor families (Smith et al. 2014). Several lines of evidence, viewed in concert, 

posit that clean cooking interventions may reduce exposure to HAP not only for users but for 

their neighbors, as well. In turn, the efficacy of interventions may be determined by the extent of 

both household-level use as well as community-level coverage. Such coverage dependent 

efficacy, or a “coverage effect,” would transform approaches to how interventions are studied 

and deployed. 

 In Chapter 4, I develop and apply a mechanistic model to study the postulated 

relationship between community-level coverage of clean cooking interventions and 

individual-level reductions in exposure to PM2.5. Model simulations are intended to help (1) 

demonstrate whether and to what degree a coverage effect may manifest, (2) explore conditions 

influencing a relationship between coverage and efficacy, and (3) submit strategies to further 

enlighten comprehension of a coverage effect. The modeling exercise ventures to be primarily a 

“proof-of-concept” analysis, and secondarily, an initial first-order approximation and qualitative 

screening tool. Moreover, the overarching purpose is to encourage approaches that consider − 

and where or when appropriate, leverage − a coverage effect from clean cooking interventions. 

 Chapter 5 concludes with synopsis of findings and future steps for these approaches − 

metric, framework, and model − to investigate multiscale drivers of global environmental health. 
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2. Metric of  Climate Debt 
from Carbon Dioxide and 
Methane 

2.1. Background & Motivation 

 Environmental health’s response to climate change has focused primarily on impacts, 

adaptation, and vulnerability (Portier et al. 2010; Bowen and Friel 2012; IPCC 2014), as well as 

co-benefits from the control of greenhouse gas emissions (Haines et al. 2009; West et al. 2013). 

These are vital research streams which justifiably shall remain priorities. Yet in other realms, 

environmental health seeks not only to characterize the consequences but also mitigate the 

causes of harmful exposures (Friis 2007). The lack of an accessible metric for attributing 

accountability for climate change at multiple scales has constrained such research in 

environmental health and other disciplines (National Research Council 2010).   

 

2.1.1. Overview 

 The United Nations Framework Convention on Climate Change (UNFCCC) enjoins 

countries to act “in accordance with their common but differentiated responsibilities and 

respective capabilities” (United Nations 1992) “in light of different national circumstances” 

(UNFCCC, 2014). This guiding principal seeks to engender an equitable, efficient, and 

ultimately effective international response to climate change (Stone 2004). Efforts to formalize 

such an approach began with the Brazilian Proposal (UNFCCC, 1997), which emerged during 

deliberations culminating in the Kyoto Protocol, and continue today as negotiations on a 

successor treaty progress (Morales 2013). Yet fully implementing a commensurate framework 

has proven contentious, partly owing to the lack of an acceptable means for estimating 

accountability for climate change, otherwise known as “climate debt.” Moreover, the capacity 

for a climate debt metric to inform a range of key questions on climate change mitigation, 

including public health impacts, has been underappreciated.  

 Discussions about climate debt have generally emphasized disparities between countries 

in either current or cumulative emissions of carbon dioxide from fossil fuel combustion and 

cement production (CO2(f), the “f” referring to fossil carbon), the most important driver of global 



 

7 

warming. Neither current nor cumulative emissions fully reflects contributions to climate 

change, however, because the amount of global warming caused by CO2(f) at any given moment 

is actually due to those prior emissions still remaining in the atmosphere at that time, a quantity 

which is usually intermediate between current and cumulative emissions. 

 Notably, recent research has also stressed the substantial roles played by other climate 

altering pollutants (CAPs), the emissions of which, while also exhibiting substantial country-by-

country variation, are now garnering attention as additional avenues for intervention (Moore and 

MacCracken 2009). Chief among these is methane (CH4), the second most significant CAP 

(Shindell et al. 2009). Together, CO2(f) and CH4 contributed roughly two-thirds of the radiative 

forcing (RF), or excess energy in the climate system, from all non-aerosol CAPs circulating in 

the atmosphere during 2005 (Myhre et al. 2013). Yet there is comparatively little in the 

published climate justice literature incorporating the impact of multiple CAPs in concert, nor the 

consequent shift in perspective such a joint appraisal would entail (Grübler and Nakićenović 

1994; Höhne et al. 2011; den Elzen et al. 2013; Matthews et al. 2014). 

 In this chapter, I first motivate a straightforward and transparent metric of climate debt 

termed International Natural Debt or IND (Smith 1991). IND apportions global RF from CO2(f) 

and CH4, the two most significant CAPs, to individual countries as a function of each country’s 

unique trajectory of historical emissions, taking into account the quite different radiative 

efficiencies and atmospheric lifetimes of each CAP. Hence, IND portrays climate debt in terms 

of a meaningful parameter for measuring anthropogenic perturbation of the climate system − RF 

− that resides intermediate along the causal change from source to impact. IND avoids recourse 

to either computationally intensive methods, such as global climate models, which require 

specialist knowledge and sophisticated tools to engage (Friman and Linner 2008; Okereke 2010), 

or time horizons and discount rates, the selection of which have proven problematic for Global 

Warming Potential and its analogs (Shine 2009; Tol et al. 2012). IND was developed to be 

accessible and flexible for users, including with regards to inputs and outputs. Thus, IND can be 

an appropriate vehicle, as data sources improve and climate science advances, for folding 

additional CAPs and other anthropogenic perturbations to RF, including compensatory actions, 

into the climate debt paradigm. In sum, I contend that IND meets the criterion of being an 

insightful “good enough tool” for analyzing responses to climate change (Socolow and Lam 

2007). 

 I develop an IND database
1
 that spans 181 countries, 24 dependencies, and the 

subnational entity of California. California’s landmark Global Warming Solutions Act 

(California State Assembly 2006) expands this state’s “tradition of environmental leadership by 

placing California at the forefront of ... efforts to reduce emissions of greenhouse gases.” While 

acknowledging that “national and international actions are necessary to fully address the issue of 

global warming,” the legislation also argues that “action taken by California will have 

far-reaching effects by encouraging other states, the federal government, and other countries to 

act” (California State Assembly 2006). California’s leadership provides impetus to include it in 

IND analyses as one example of how the metric can be leveraged at a subnational scale.  

                                                 
1
 Database IND is available at http://www.kirkrsmith.org/s/Desai-Dataset-IND.xlsx. 

http://www.kirkrsmith.org/s/Desai-Dataset-IND.xlsx
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 To characterize both California’s and the United States’ IND, I contrast the two, using the 

opportunity to consider uncertainty in IND as well. Subsequently, I survey the global community 

of nations in total and per capita terms, as well as with respect to economic output and 

population health in a manner akin to carbon intensity carbon intensity (Knight and Rosa 2011; 

Jorgenson 2014). I devote extra attention to the CH4 contribution to IND, since this component 

of climate debt has been less examined. These characterizations of climate debt serve to 

highlight equity and efficiency considerations and the relative roles of CO2(f) versus CH4 to 

IND. Descriptive applications can snapshot the global distribution of climate debt along 

important axes, propose rationales and pathways for decreasing climate debt, and track a 

county’s progress in comparison to itself or other countries.  

 To investigate the issues posed by excluding or including land use change and forestry 

(LUCF), an important component of anthropogenic CO2 flux, I also calculate a combined climate 

debt metric that consolidates both CO2(f) and LUCF, as well as CH4, by global region, as this is 

the finest geographic scale available for reliable LUCF data. Also at a region-level, I employ 

IND to bring into relief the stark inequities between countries that are experiencing versus 

imposing health impacts from climate change, an analysis relevant to burden-sharing among 

countries. 

 Next, I show how arguments for reducing CO2(f) versus CH4 can be clarified by 

calculating country-by-country IND under an “aspirational reductions” scenario. In this exercise, 

I forecast the IND consequences of countries achieving a widely discussed yet ambitious goal of 

decreasing emissions of CAPs to 80% of 1990 levels by 2050 (Executive Department of the 

State of California 2005; Parliament of the United Kingdom 2008; European Commission 2011). 

Under this scenario, for instance, global IND in 2050 would be 93% of its 2005 level with CH4 

comprising 17% of IND instead of 43% as in 2005. This scenario exercise exposes how the 

composition of IND, determined by the magnitude and timing of historical emissions, constrains 

a country’s capacity to reduce its climate debt, further motivating a globally coordinated 

approach to mitigating both CAPs. 

 Lastly, I explore how a question at a sectoral scale can be examined with IND. Energy-

related emissions are a major driver of climate debt and among the most discussed targets for 

mitigation. However, controversy endures about the direction of RF impacts from the expanded 

use of natural gas (Weber and Clavin 2012; McJeon et al. 2014). I examine this dilemma for 

California by simulating the change to the state’s IND in 2005 that would have occurred from an 

“alternate histories” scenario during which half of all coal-fired power production had shifted to 

gas five years prior. The ramifications of this scenario exercise help to elucidate the key 

parameters and tradeoffs, from the standpoint of climate debt as defined by IND, of selecting 

between alternative energy sources and their associated infrastructure. 

 In concert, these characterizations and applications of IND build upon and further extend 

the purview of climate debt analyses, bringing into relief the consequences of jointly considering 

CO2(f) and CH4, and encouraging global environmental health researchers to investigate the full 

causal chain from climate change drivers to climate change impacts. 
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2.1.2. Climate Justice and Historical Accountability 

 In this subsection, I briefly review the rationale behind the development of climate debt 

metrics. One reformulation of climate debt is “natural debt,” a concept which better reflects 

physical reality than either current or cumulative emissions by focusing on the amount of a 

country’s or person’s past CAP emissions that remain in the atmosphere in any given year 

(Smith 1991; Smith 1996). A similar notion is “ecological debt” (Baer 2006; Srinivasan et al. 

2008). A national debt is built by borrowing financial resources from the future. Similarly, the 

natural debt is built by borrowing Earth’s assimilative capacity from the future, as CAPs are 

released faster than they can be removed by natural systems. Just as with their national debt, 

countries have built up their infrastructure and wealth faster than would otherwise have occurred 

by borrowing against their natural debt. The size of a country’s natural debt indicates the degree 

to which it has avoided diverting resources from other economic activities to CAP control during 

development, whether consciously or not. 

 The amount of a CAP remaining in the atmosphere today is not equal to the total amount 

emitted throughout history since Earth's assimilative capacity removes CAPs from the 

atmosphere at a rate that varies with, inter alia, the physical and chemical characteristics of each 

CAP. Thus, the most realistic climate debt calculations allow for natural depletion over time, 

counting only that portion that still survives as the current debt.  

 An individual country’s contribution to the global natural debt serves as a useful measure 

of its accountability for climate change that more accurately reflects physical reality than current 

yearly emissions, since the current global natural debt (remaining CAPs in the atmosphere) is 

what drives climate change. This allocation approach also accords with the “polluter pays 

principle” from environmental ethics, policy, and law, which says that those who release the 

pollution into the common environment should be held accountable for the costs of the resulting 

negative impacts imposed on others and of remediation. 

 The debut of a natural debt-like metric in international negotiations is attributed to what 

is termed the “Brazilian Proposal”, which recommends use of “net anthropogenic emissions” 

from 1840 rather than current emissions when calculating accountability for global warming 

(UNFCCC 1997). This approach was not taken up in the Kyoto Protocol, but remains an option 

discussed by the UNFCCC; other countries, for example China (Project Team of the 

Development Research Center of the State Council 2009); and in the scientific literature (Höhne 

and Blok 2005; Friman and Linner 2008). The approach has raised by various countries, 

including the BASIC coalition of Brazil, South Africa, India and China. 

 Incorporating the impacts of additional CAPs into a climate debt metric will help the 

metric to further reflect physical reality and convey signals regarding the most appropriate 

control priorities. In addition, as additional CAPs are considered when allocating historic 

accountability, the spectrum of mitigation strategies to achieve CAP targets will enlarge. There 

are, however, some conceptual issues with integrating additional CAPs into the climate debt 

metric in combining CAPs with different RFs and lifetimes. In addition, for non-CO2(f) CAPs, 

the available emissions inventories have been much less elaborated than for CO2(f). 

 Although the “polluter pays principle” may be conceptually attractive, some observers 

have expressed discomfort when applied historically to a country’s CAP emissions back to the 
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beginnings of the Industrial Revolution (Baer 2006). For an excellent and detailed discussion of 

the characteristics of different indices for determining just and equitable distributions of CAP 

emissions and their reductions see Grübler and Nakićenović (1994). Other discussions are found in 

Hayes and Smith (1993); Ridgley (1996); Cazorla and Toman (2000); and Sagar (2000). In general, 

two classes of arguments focus on why it is unfair to hold the present accountable for the past: 

the past was ignorant and the present is ignorant (Beckerman and Pasek 1995; Neumayer 2000; 

Miller 2009). 

 Although the first warnings about greenhouse warming appeared in the century before 

last (Arrhenius 1896), it can be argued that past generations acted out of ignorance in not 

controlling emissions and thus their descendants should not be penalized (Grubb 1995). 

Moreover, estimates of the emissions of CAPs become increasingly unreliable the farther back in 

time one goes, since they depend on records of fossil fuel use, cement production, land use 

patterns, etc. Even with good estimates by geography, shifting political boundaries and past 

dominion of one country over others could make it problematic to assign emissions to countries 

today, even for a CAP such as CO2(f) for which reasonable emissions data may be available 

(Grubb et al. 1992). 

 The counterarguments address why it is unfair not to hold the present accountable for the 

past, that ignorant or not, we benefitted and ignorance should not be rewarded. People alive 

today have directly benefited by the actions of their ancestors in borrowing environmental 

assimilative capacity. The current overall economic standard of living in the United States, for 

example, would most likely not be as high today if previous U.S. generations had directed more 

resources to emitting fewer CAPs given the state of technology at the time. In the words of 

Bhaskar (1995), “..., if current generations in the North accept assets from their parents, then it is 

incumbent upon them to also accept the corresponding liabilities” (emphasis in original).  

 Bhaskar (1995) notes also that because of past ignorance, it is not appropriate to place a 

moral opprobrium on past generations and their descendants for these actions. It is fair, however, 

to expect that current generations meet the obligations that come with the benefits they receive. 

Simply put, it is a matter of repaying one’s debts with a fraction of the assets achieved in part by 

taking on the debts. Similarly, the return from successful investments made in the past for the 

wrong reasons or even accidently, still is subject to income taxes today.  

 In addition, if the present generation is to be expected to accept accountability for the 

future, it must possess a feeling of control over the future. Without any control, there can be no 

true accountability, because there is no reason to think the values and consequent sacrifices of 

today will be honored in the future. Consequently, and perhaps paradoxically, in order to impart 

a perception of control over the future, the present generation must feel somewhat constrained by 

the past. If this generation dismisses historical accountability, what is to keep the next generation 

from doing so as well (Smith 1977)? 

 One of the best ways to encourage this and future generations to more seriously consider 

the long-term impacts of their activities is to make it clear that they will be held accountable for 

problems that arise as a result of their decisions, no matter how much ignorance is claimed. With 

this shift in perspective, they will then be more likely to apply the appropriate caution in their 

choices. To not do so is to provide great incentive to remain ignorant. 
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 A number of analysts have examined the implications of strategies that achieve just and 

equitable climate control without considering climate debt (Berk and den Elzen 2001; Toth 2001; 

Pan 2003; Sugiyama and Deshun 2004; Manne and Stephan 2005; Böhringer and Welsch 2006). 

Conversely, more sophisticated elaborations of accountability based on historical emissions have 

also been proposed, such as those related to actual cumulative RF (Labriet and Loulou 2003) or 

based on weighted temperature changes (Tanaka et al. 2009). These latter approaches, although 

in a sense more reflective of reality than natural debt, are further along the causal chain from 

emissions to impact and thus subject to the uncertainties of the complex and evolving models 

upon which they rely (Smith and Ahuja 1990). 

 IND therefore endeavors to present a compromise between the over-simplification and 

somewhat misleading nature of current or cumulative emissions as an accountability metric and 

the difficult to explain and interpret expressions of climate change impacts resulting from global 

climate models. IND has the distinct advantage that individuals and organizations can readily 

duplicate and update the index themselves without contending with differences among global 

climate models that cannot be quickly resolved even by experts. With the addition of the second 

major CAP, CH4, IND is more reflective of physical reality and provides signals related 

short-lived pollutants that would be otherwise lost. 
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2.2. Metric Development 

2.2.1. Overview 

 Unless otherwise qualified, “IND” without a subscript specifically refers to climate debt 

as follows: (1) from both CO2(f) and CH4 combined, (2) for the year 2005, and (3) in total not 

per capita terms. Climate debt from only CO2(f) or CH4 is denoted INDCO2(f) or INDCH4
, 

respectively, and the percent of IND from CO2(f) or CH4 is denoted %CO2(f) or %CH4, 

respectively. To be clear, IND does not include LUCF. Climate debt from LUCF; CO2(f) and 

LUCF combined; and CO2(f), CH4, and LUCF combined are denoted INDLUCF, INDCO2
, and 

IND+LUCF (note that IND+LUCF equals the sum of IND and INDLUCF). 

 I calculated IND for 181 countries, 24 dependencies, and California. For brevity, in this 

chapter the term “countries” refers to all 206 of these political entities, which together comprised 

over 99% of the world’s population and economy in 2005. IND for the United States was 

calculated separately for California and an entity termed the United States minus California, 

abbreviated U.S. minus CA.  

 IND measures climate debt in terms of RF, defined as the net impact of a factor, 

including its direct and indirect effects, on the global energy balance. RF, with respect to a CAP, 

implicitly accounts for the depletion of historical emissions over time by natural processes. 

Typically, RF is expressed in units of excess energy per surface area (e.g., mW/m
2
) and in 

reference to conditions at a specific point in time relative to pre-industrial conditions. Therefore, 

expressed in the same units as RF, a given country’s IND estimates how many mW/m
2
 its still 

extant past emissions of CO2(f) and CH4 are contributing to the climate system in 2005.  

 The Intergovernmental Panel on Climate Change (IPCC) provides RFs for major CAPs 

based on anthropogenic emissions since 1750. I continue to use RFs from the Fourth Assessment 

Report (AR4, Solomon et al. 2007), instead of the more recently released Fifth Assessment 

Report (AR5, Stocker et al. 2013), because AR4 provides RF values for 2005 (Forster et al. 

2007), retaining consistency with time-series of emissions which span 1950−2005. 

 AR4 reports the RF from CO2 in 2005, or global INDCO2
, as 1,560 mW/m

2
. In order to 

divide this value among its CO2(f) and LUCF components, I applied the first two steps of the 

procedure described in this section to the global-level time-series, which spans the 1850−2005 

period, of CO2(f) and LUCF emissions. In so doing, I calculated that 72% of INDCO2
 is 

attributable to CO2(f) and the other 28% is attributable to LUCF. In other words, global INDCO2(f) 

equals 1,123 mW/m
2
 and global INDLUCF equals 437 mW/m

2
. AR4 also reports the RF from CH4 

in 2005, or global INDCH4
, as 856 mW/m

2
.  

 Thus, global INDCO2(f) and INDCH4
 sums to a global IND of 1,979 mW/m

2 
in 2005. For 

comparison, the 2005 RF from all non-aerosol CAPs was 2,913 mW/m
2
, and the best estimate of 

net RF from all human activity since the Industrial Revolution − including LUCF, the overall 

cooling effect of aerosol CAPs, changes in surface albedo from land use, and contrails − is 

~1,600 mW/m
2
. 
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 Global INDCO2(f) and INDCH4
 were allocated to countries by the method outlined in 

Figure 2.1 and described in detail in the ensuing subsections. As an overview, the steps for a 

single country and a single CAP were as follows. First, I developed time-series of historical, or 

“original,” emissions from 1950 to 2005. Second, I calculated year-by-year, using the CAP’s 

atmospheric lifetime, how much of these original emissions remained in the atmosphere in 2005 

and summed these “remaining” emissions from all years. Third, I divided the country’s total 

remaining emissions by the world’s to determine what fraction of global INDCO2(f) or INDCH4
 to 

assign to the country. Once this procedure was executed for both CAPs, I summed the country’s 

INDCO2(f) and INDCH4
 to generate its IND as well as %CO2(f) and %CH4. 

 A 1950 start year helps to address potential uneasiness associated with historical 

accountability and practical difficulties in attributing current CAP concentrations to emissions 

dating back to pre-industrial times. A base year of 1950 was also used by Sagar (2000), but other 

investigators have gone back to 1915 (Winkler et al. 2002), 1850 (Rosa and Ribeiro 2001), or, in 

probably the first analysis done, 1800 (Grübler and Fujii 1991). Subak (1993) compares five 

Figure 2.1: Flowchart of Steps to Calculate IND. Summary of procedure to calculate IND from a 
single CAP and for a single country. See Section 2.2 for details. 
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different approaches to assessing emissions with data going back to 1860. The complexities of 

systematically determining emissions so long ago and assigning them to current populations, 

however, are daunting. Shorter periods have also been proposed, e.g., 1990 (Baer 2006). 

 For the post-1950 timeframe, records are more numerous, detailed, and reliable. In the 

years following World War II, national boundaries were altered across the globe to mostly 

resemble their current form and the major colonial empires had begun to dissolve. As a results, 

IND calculations are subject to fewer assumptions in order to link old national boundaries to 

current ones. Additionally, by the early 1950s, most of the major global organizations, founded 

several years prior (e.g., the United Nations and the Bretton Woods institutions), had taken on 

their modern character, ushering in the present era. Arguably, therefore, 1950 approximately 

represents the point in world history when a large fraction of the international community first 

accepted some shared accountability for global action. International commitments focusing on 

climate change are now expressed through these same 1950-era institutions via the IPCC and 

UNFCCC. 

 

2.2.2. Step 1 − Develop Time-Series of  Original Emissions 

 To begin, I developed a database of country-level time-series (1950−2005) of original 

emissions of CO2(f) and CH4. The phrase “original emissions” refers to the amount of CAP 

emitted by a country during a particular year without accounting for any subsequent depletion. 

The database was derived from datasets which covered as much of the world since 1950 as 

possible, meeting the  spatiotemporal requirement, and also met the following criteria: (1) free 

and publicly available; (2) frequently updated; (3) well-documented methodologies with 

estimates of uncertainty; and (4) widely referenced. 

 Given these criteria, I drew on country-level datasets for CO2(f) emissions from the 

Carbon Dioxide Information Analysis Center (CDIAC, Boden et al. 2010) and for CH4 emissions 

from the Emission Database for Global Atmospheric Research (EDGAR, 2010b). Both CDIAC 

and EDGAR were updated with Annex I countries’ 1990 to 2005 data from the UNFCCC 

(2012). Additionally, population data were drawn from the United Nations Department of Social 

and Economic Affairs, Population Division (2011), and economic data from the World Bank 

(2012) and World Factbook (United States Central Intelligence Agency 2006). 

 For California, I drew on datasets of CO2(f) and CH4 emissions from the Air Resources 

Board of the California Environmental Protection Agency (CARB; Air Resources Board of the 

California Environmental Protection Agency 2007a; Air Resources Board of the California 

Environmental Protection Agency 2013). I used the earlier inventory for 1990−1999 emissions 

and the later inventory for 2000−2005 emissions. CO2(f) emissions from 1960−1989 were drawn 

from CDIAC (Blasing and Krassovski 2012). Population data were based on intercensal 

estimates from the Population Estimates Program of the United States Census Bureau (2011), 

and economic data were obtained from the Bureau of Economic Analysis of the United States 

Department of Commerce (2006). 

 The CDIAC and CARB datasets for CO2(f) included emissions from fossil fuel 

combustion, cement manufacture, and gas flaring in oil fields, corresponding to Common 

Reporting Framework categories 1A, 2A1, and 1B2C1, respectively (Houghton et al. 1997). To 
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construct complete and consistent time-series of CO2(f) emissions, adjustments to the 

country-level CDIAC dataset were necessary to account for, most notably, changes in the 

boundaries of countries (see Appendix A for details on this and several additional minor 

adjustments). 

 Over the 1950−2005, 30% of countries in the database experienced a boundary change 

unaccounted for by the country-level CDIAC dataset. For unifications, I merged the time-series 

of the component countries. For partitions, I used cumulative emissions from each component 

country during the first five years post-partition to proportionally weight the attribution of 

emissions during pre-partition. Adjustments in one of these two ways affected 14% of all 

country-years. 

 The EDGAR and CARB datasets for CH4 included emissions from energy, industry, 

agriculture, waste, and wildfires (forest and grassland), corresponding to Common Reporting 

Framework categories 1, 2, 4, 6, and 5B, respectively (Houghton et al. 1997). EDGAR’s CH4 

dataset covers 1970−2005, accurately mapping these historical emissions, with no adjustment 

necessary, to those countries that existed in 2005. To estimate country-level CH4 emissions for 

1950−1969, I extrapolated individual countries’ full 1970−2005 data back to 1950 by 

least-squares linear regression. If an extrapolated trend became negative, emissions for that and 

all prior years reverted to zero.  

 To estimate California’s CO2(f) emissions for 1950−1959 and CH4 emissions for 

1950−1989, a parallel extrapolation was executed using the full 1990−2005 data for CO2(f) and 

the full 1970−2005 data for CH4. The proportional contribution of these extrapolated original 

emissions to INDCO2(f) and INDCH4
 are provided in the subsection. The full time-series of 

California’s CO2(f) and CH4 emissions were subtracted from those for the United States to 

produce CO2(f) and CH4 time-series for the U.S. minus CA. 

 To reiterate, my purpose is not to calculate the most up-to-date values for IND, but rather, 

to demonstrate applications of IND and thus encourage a climate debt perspective even as 

underlying data continually updates. Nonetheless, it is worth noting that post-2005 emissions 

trajectories will alter the size and distribution of INDs, although, as yet, not in dramatic fashion. 

Most apparently, CO2(f) emissions from many low-to-middle income countries (LMICs) have 

increased more rapidly relative to most high income countries (HICs), whereas CH4 emissions 

have increased more-or-less uniformly and gently across the board. Hence, the global balance of 

IND in 2010, relative to 2005, will shift slightly towards rapidly developing economies, driven 

by their proportionately faster growth in INDCO2(f). In per capita terms, the difference between 

HICs and LMICs generally will narrow, of course, but remain large. 

 

2.2.3. Step 2 − Calculate Total Remaining Emissions 

 Next, CAP-by-CAP, country-by-country, and year-by-year, I calculated the amount of 

original emissions that, given depletion over time, remained in the atmosphere in 2005. The 

phrase “remaining emissions” refers to such amounts. With the database elaborated to include 

remaining emissions, I summed each country’s remaining emissions from each year to calculate 

country-level total remaining emissions. 



 

16 

 Calculations for remaining emissions are based on the impulse response function or 

lifetime for CO2 and CH4. The corresponding equations, which model the decay over time of 

these two CAPs, are presented in Equations 2.1 and 2.2. 

 

Equation 2.1: 

CO2 fraction remaining at time t (years) =  
0.186e(-t/1.186 years) + 0.338e(-t/18.51 years) + 0.259e(-t/172.9 years) + 0.217 

 

Equation 2.2: 

CH4 fraction remaining at time t (years) = e(-t/8.7 years) 
 

 Equation 2.1 is the impulse response function from the Bern Carbon Cycle Model as 

recommended in AR4 (Joos et al. 2001). Equation 2.2 utilizes the global CH4 lifetime reported in 

AR4 (Denman et al. 2007). 

 To illustrate the use of these equations and the different decay dynamics of CO2(f) and 

CH4, consider 1000 tonnes of each CAP emitted in 1990. The amount of these original emissions 

still present in the atmosphere in 2005 would be 605 tonnes of CO2(f) and 178 tonnes of CH4. If 

these 1000 tonnes of each CAP had been emitted in 1950, then remaining in 2005 would be 

423 tonnes of CO2(f) and 2 tonnes of CH4. 

 As a result, although the database only extends back to 1950, for CH4 in particular there 

would be little difference, only an estimated <0.1% of global total remaining emissions in 2005, 

were original emissions prior to 1950 included. A comparatively greater fraction of CO2(f) 

remaining emissions in 2005 were originally released prior to 1950, but this fraction is 

nonetheless not vast, given the rapid rise in emissions during recent decades (Houghton 2007). 

Applying Equation 2.1 to CDIAC’s global time-series of original emissions dating back to 1751, 

one finds that 87% of anthropogenic CO2(f) still circulating in the atmosphere during 2005 was 

emitted subsequent to 1950. Analogous arguments apply to California’s pre-1950 CO2(f) and 

CH4 emissions. 

 The contribution of extrapolated original emissions to total remaining emissions also can 

be assessed at this stage. By 2005, 1.2% of global total remaining emissions of CH4 were derived 

from extrapolated original emissions for 1950−1969. For California, by 2005, 10.0% of its total 

remaining emissions of CO2(f) were from the 1950−1959 extrapolated original emissions and 

12.4% of its total remaining emissions of CH4 were from the 1950−1989 extrapolated original 

emissions.  

 

2.2.4. Step 3 − Determine International Natural Debt 

 In the final step, I divided each country’s total remaining emissions by the global total of 

remaining emissions (all countries, all years), yielding a “percent of world” for each country. I 

then multiplied these percentages by the RF for the corresponding CAP to compute country-level 

INDCO2(f) or INDCH4
. 
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 I thus parse the total global natural debts of CO2(f) and CH4 across countries believing 

that the practical and theoretical difficulties, in addition to the complications discussed in the 

Introduction, of determining and assigning emissions previous to 1950 would outweigh any 

minor improvement in nominal accuracy that might result. The distribution derived from the 

post-1950 period is therefore used as an estimate of the full distribution of remaining CO2(f) and 

CH4 in the atmosphere in 2005. 

 With all IND measures expressed in the same units as RF, I summed each country’s 

INDCO2(f) and INDCH4
 to compute a combined IND, as well as %CO2(f) and %CH4. 

 

2.2.5. Uncertainty 

 As with other composite metrics, IND is subject to uncertainty from the choices and 

parameters that are inherent to it (Prather et al. 2009). With respect to the major inputs to IND − 

RFs, lifetimes, and emissions − each contributes to a different step in the calculation of IND. In 

this subsection, I discuss uncertainty in these three parameters and explain the methods 

employed to conduct a formal uncertainty analysis of California’s and the United States’ IND, 

INDCO2(f), and INDCH4
. 

 Revised estimates of RF would essentially serve to renormalize all countries’ INDCO2(f) or 

INDCH4
 to a different value. Clearly, if one CAP’s RF were to shift proportionately more or less 

than the other, this would alter the relative contribution of INDCO2(f) and INDCH4
 to IND and 

thereby redistribute countries’ INDs. RFs for both CAPs are assessed to have 90% CIs of ±10% 

for direct effects, and in the case of CH4, ±20% for its additional indirect effects (Forster et al. 

2007). 

 The effect of uncertainty in lifetimes would be, in a sense, intermediate to that from 

uncertainty in RFs and emissions. Within calculations for INDCO2(f) or INDCH4
, a change in 

lifetime would impact all countries, but late emitters would be affected less than early emitters. 

Although the multi-compartmental nature of the carbon cycle, among other issues, complicates 

the presentation of uncertainty for the atmospheric lifetime of CO2(f), the impulse response 

functions from the five IPCC assessment reports agree with one another within 15% for 

simulations over a 100-year timeframe (Joos et al. 2013). The 90% CI for the atmospheric 

lifetime of CH4 spans ±15% (Denman et al. 2007).  

 Emissions inventories likely constitute the greatest source of uncertainty in IND. 

Uncertainty generally widens as time-series go farther back in time, but the calculation of 

remaining emissions effectively discounts the weight of older original emissions, partly abating 

the contribution of these comparatively less certain data to overall uncertainty. Moreover, both 

INDCO2(f) and INDCH4
 are disproportionately sensitive to emissions from recent years because 

these emissions have risen rapidly, in the case of CO2 (f), or not yet decayed away, in the case of 

CH4.  

 The accuracy of time-series of original emissions is also partially a function of economic 

significance. Countries with high per capita or total economic output are scrutinized by both their 

own and international data collection agencies with greater rigor. Partly for this reason, 

whenever appropriate, the fifty countries with the largest INDs are labelled in ensuing figures. 
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 Uncertainty in emissions can only be roughly ascertained through expert opinion or 

cross-comparisons of competing datasets (Marland et al. 2009). With this caveats in mind, the 

95% confidence intervals (CIs) for original emissions of CO2(f) are judged to range from 

plus-or-minus several percent for most developed countries, ±15% to 20% for China, and more 

than ±50% for countries with inadequate statistical infrastructure (Andres et al. 2012). The 90% 

CIs for original emissions of CH4 vary depending on source category, from around ±10% for the 

energy sector to as much as ±100% for the agriculture or waste sectors (Joint Research Centre of 

the European Commission/PBL Netherlands Environmental Assessment Agency 2010a).  

 To explore how uncertainty in original emissions affects California’s and the U.S. minus 

CA’s INDs, I conducted Monte Carlo simulation analyses to compute the equivalent of 90% CIs. 

For CO2(f) time-series, I assumed that emissions estimates for each year were normally 

distributed with the mean set by the value in the IND database and 95% CIs assumed to be ±10% 

of the mean. Distributions were truncated at ±100% of the mean. For CH4 time series, I assumed 

that emissions estimates for each year were lognormally distributed, since the estimates in the 

IND database are more likely to be an underestimate than an overestimate according to several 

lines of evidence (Frey et al. 2006; Fischer and Jeong 2012). As with CO2(f), the mean was set 

by the value in the IND database and 90% CIs were assumed, on the left, to be 75% of the mean, 

and on the right, 175% of the mean. This assumption was intended to reflect a level of 

uncertainty intermediate to that for energy versus agriculture/waste CH4 emissions. Distributions 

were truncated at 33% and 350% of the mean. Furthermore, each individual emissions estimate 

was assumed to be correlated with the estimate for the year before and the year after according 

the same correlation coefficients evidenced by the IND database: 0.96 for California’s CO2(f) 

emissions; 0.95 for U.S. minus CA’s CO2(f) emissions; 0.99 for California’s CH4 emissions; and 

0.93 for U.S. minus CA’s CH4 emissions. Simulations were comprised of 3,000 trials each. 

 The results of this exercise are suggestive but limited. I did not simulate uncertainty 

simultaneously in all countries’ emissions nor in CAP lifetimes, since these scenarios would 

require repeatedly recalculating the entire database. Furthermore, some studies have suggested 

that CH4 emissions might be off by several multiples (Miller et al. 2013; Brandt et al. 2014), 

which would imply wholesale revisions to central estimates may be necessary, a possibility that I 

acknowledge but did not model. Alternatives to the structural assumptions embedded within the 

IND metric were not addressed either.  

 The analyses that follow are based on central estimates of IND and associated data, with 

the recognition that there are remaining uncertainties in emissions inventories and other input 

parameters which will undoubtedly be reduced with time. Accordingly, results are not intended 

to be definitive but rather first-order approximations that can guide initial decision-making and 

stimulate further inquiry, even as the particular distribution of global IND across countries may 

itself change with future refinement.  

 

2.2.6. Land Use Change and Forestry 

 Most previous CO2-based climate debt metrics have focused only on emissions from the 

energy and cement sectors, as reliable databases have been widely available. In reality, human-

induced LUCF have also contributed significantly to CO2 emissions over time. At the country 
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level, it is difficult to attribute LUCF empirically, because of incomplete and uncertain historical 

records of LUCF sinks and sources, and conceptually, due to the ambiguities of deciding which 

changes were natural versus human-induced and what credit to assign for avoiding degradation 

of carbon stocks (Corbera and Schroeder 2011). Nevertheless, attempts have been made (Klein 

Goldewijk et al. 2011). Also, unlike CO2(f), there is no appropriate baseline starting point, i.e., 

the start of the Industrial Revolution (Smith 1994; Ruddiman 2006). LUCF’s estimated 

contribution is therefore reported separately from CO2(f) in most of the tables and figures that 

follow. Given these and many other challenges inherent to attributing climate debt from LUCF, a 

national-level assessment is beyond the scope of this chapter. I do, however, consider the 

implications of LUCF through a region-level version of IND both with and without LUCF. 

 The LUCF dataset was derived from the most recent update to Houghton (Houghton 

2003; Houghton 2008) and estimates net CO2 fluxes resulting from human-induced LUCF at a 

regional level (see Figure 2.2 and Table A8 for region definitions). Once again, I focused on only 

the 1950−2005 portion of time-series. The methods for calculating the annual LUCF fluxes of 

CO2 are described elsewhere in greater detail (e.g., Houghton 1999). Here, I note that the 

analysis (1) draws on a vast array of land-use statistics from agencies and researchers; (2) models 

carbon fluxes for multiple native ecosystems per region; (3) accounts for changes in living and 

dead carbon (above and below ground), harvested wood products, and soils; and (4) incorporates 

time lags for the decay of biomass and soil carbon and regrowth of secondary forests following 

wood harvest and agricultural abandonment. Thus, the net flux of CO2 for a given region-year 

may be either positive (net CO2 source) or negative (net CO2 sink). The LUCF dataset does not 

include fluxes of CO2 from ecosystems undisturbed by human activity. Nor does it include the 

effects of environmental change (e.g., CO2 fertilization, nitrogen deposition) on CO2 fluxes. 

 Historical data on LUCF fluxes are understandably difficult to develop and possess much 

higher uncertainty than counterpart data on CO2(f) emissions. For California, I was unable to 

identify an LUCF dataset that spans the bulk of the 1950−2005 timeframe. The Air Resources 

Board of the California Environmental Protection Agency (2007b) has generated estimates for 

1990−2004 (the LUCF flux was negative for all years). Nonetheless, pre-1990 estimates for 

California await development. Hence, with respect to LUCF, this chapter does not consider 

California and the U.S. minus CA separately. Yet despite its more coarse geographic resolution, 

the LUCF analysis remains informative given the import of LUCF to the global CO2 budget. 

 To harmonize the different spatial scales of the datasets (country-level versus 

region-level), I added INDCH4
 for all countries within a region to arrive at region-level INDCH4

 

values. However, for CO2(f) I followed a slightly different process to accommodate negative 

values for LUCF. Within each region, I added member countries’ yearly CO2(f) original 

emissions to create region-level time-series. Next, I combined region-level CO2(f) and LUCF 

time-series, adding or subtracting as warranted, to generate a unified CO2 time-series. With these 

CO2 time-series of original emissions, I then followed the same three-step procedure explained 

above to generate region-level INDCO2
 values. Lastly, summing each region’s INDCO2

 and 

INDCH4
 yielded its IND+LUCF.  

 



 

 

2
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Figure 2.2: Map of Regions for IND+LUCF. Map of the world circa 2005 that distinguishes by color the 18 regions used for calculating IND+LUCF. For 
list of countries constituting each region see Table A8.  
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2.3. Results & Discussion 

2.3.1. California and the United States 

 Database IND
2
 summarizes IND results for all 206 countries, including California, 

considered in the analysis. Database IND includes total and per capita IND, INDCO2(f), and 

INDCH4
; current, total original, and total remaining emissions for CO2(f) and CH4; and population 

and income data.  

 Figure 2.3 focuses on California’s and the U.S. minus CA’s total (top panel) and per 

capita (bottom panel) INDs. Ninety percent CIs based on the approach explained in the previous 

section and discussed further below are represented by error bars in Figure 2.3 and reported in 

brackets within the text.  

 California’s total IND is 24.0 mW/m
2
 [21.8 mW/m

2
, 27.5 mW/m

2
] or 1.21% of global 

total IND. The U.S. minus CA’s total IND is 340 mW/m
2
 [302 Mw/m

2
, 411 mW/m

2
] or 17.2% 

of global total IND. Split into its dual components, California’s total INDCO2(f) is 20.7 mW/m
2
 

[19.1 mW/m
2
, 22.2 mW/m

2
], 1.84% of global INDCO2(f), and its total INDCH4

 is 3.27 mW/m
2
 

[1.47 mW/m
2
, 6.28 mW/m

2
], 0.383% of global INDCH4

. The U.S. minus CA’s INDCO2(f) is 

260 mW/m
2
 [241 mW/m

2
, 280 mW/m

2
], 23.2% of global INDCO2(f), and its INDCH4

 is 

79.2 mW/m
2
 [44.8 mW/m

2
, 142 mW/m

2
], 9.25% of global INDCH4

. Consequently, California’s 

%CO2(f) is higher than that of the U.S. minus CA’s, 86.3% versus 76.7%, and conversely its 

%CH4 is lower, 13.7% versus 23.3%. 

 The difference in climate debts accumulated by California and the U.S. minus CA is 

perhaps best revealed through per capita measures. California’s per capita IND is 669 μW/m
2
 

[575 μW/m
2
, 796 μW/m

2
], essentially half (51%) that of the U.S. minus CA’s per capita IND of 

1300 μW/m
2
 [1,100 μW/m

2
, 1,620 μW/m

2
]. California’s INDCO2(f) of 578 μW/m

2
 [534 μW/m

2
, 

621 μW/m
2
] and INDCH4

 of 91.4 μW /m
2
 [41.1 μW/m

2
, 175 μW/m

2
] are roughly three-fifths 

(58%) and one-third (30%), respectively, of the U.S. minus CA’s INDCO2(f) of 999 μW/m
2
 

[924 μW/m
2
, 1,070 μW/m

2
] and INDCH4

 of 303 μW/m
2
 [172 μW/m

2
, 546 μW/m

2
]. These per 

capita IND values reflect California’s more efficient generation of both CO2(f) and CH4 

emissions in comparison to the U.S. minus CA.  

                                                 
2
 Database IND is available at http://www.kirkrsmith.org/s/Desai-Dataset-IND.xlsx. 

http://www.kirkrsmith.org/s/Desai-Dataset-IND.xlsx
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Figure 2.3: Total and Per Capita INDs for U.S. minus CA and California. Two top panels display total IND, INDCO2(f), and INDCH4. Note the 
different scales used for the U.S. minus CA (left) and California (right). Bottom panel displays per capita IND, INDCO2(f), and INDCH4 for the U.S. 
minus CA (top bars, darker color) and California (bottom bars, lighter color). Error bars (bar ends at top and round ends at bottom) represent 90% 
confidence intervals (see Section 2.3.1 for details). Abbreviation: U.S. minus CA = United States minus California. 
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 The 90% CIs reported above help to contextualize IND results for California and the U.S. 

minus CA. The upper 90% CIs for INDCH4
 are farther from central estimates than the lower 90% 

CIs, reflecting current thinking that CH4 emissions, and consequently estimates of INDCH4
, are 

more likely to be underestimates rather than overestimates. For INDCH4
, 90% CIs are wider than 

central estimates of INDCH4
. For INDCO2(f), 90% CIs are proportionately much narrower both in 

comparison to 90% CIs for INDCH4
 and central estimates of INDCO2(f). Ninety-percent CIs for 

IND are intermediate to those for INDCO2(f) and INDCH4
, with uncertainty for IND driven more by 

uncertainty in INDCH4
 than INDCO2(f). The results of this exercise are not to be interpreted as 

definitive quantifications of uncertainty. At the same time, an appreciation of the magnitude of 

uncertainty from its most likely significant source − original emissions − can help inform 

IND-based decision analyses.  

 Policy to address climate change must nonetheless proceed amidst multiple dimensions 

of uncertainty. In this chapter, IND analyses are based on current best estimates, with the 

recognition that remaining uncertainties in emissions inventories and other parameters will be 

reduced with time. Accordingly, results are intended to be first-order approximations that 

describe climate debt, guide initial decision-making, demonstrate insightful applications, and 

stimulate further inquiry, even as the particular specification of IND across countries, including 

for California and the U.S. minus CA, may itself shift with future refinement.  

 

2.3.2. Characterizations of  International Natural Debt 

2.3.2.1. Total and Per Capita International Natural Debt 

 Understanding the global distribution of climate debt as captured by IND begins with 

characterizing individual countries’ total and per capita IND values, including the splits between 

%CO2(f) and %CH4. Total IND, predictably, spans a vast range incorporating the extremes of 

population and economic size exhibited by the world’s countries, with the U.S. minus CA’s 

340 mW/m
2
 at one end and Niue’s 3.51×10

-4 
mW/m

2
 at the opposite. As a separate country, 

California is ranked 18
th

 in the world in total IND, below Iran and above South Africa; 11
th

 in the 

world in total INDCO2(f), below France and above Italy; and 48
th

 in the world in total INDCH4
, 

below Azerbaijan and above the United Arab Emirates. The U.S. minus CA’s rankings do not 

change relative those for the United States. The U.S. minus CA is first with regards to total IND 

and total INDCO2(f) but second, flipping positions with China, with regards to total INDCH4
. 

 Chart A of Figure 2.4 illustrates total world CO2(f) climate debt, emphasizing the 

contribution from the ten countries with the largest INDCO2(f) values plus California. Chart B of 

Figure 2.4 similarly illustrates total world CH4 climate debt. LUCF, represented by chart D in 

Figure 2.4, is not attributed to individual countries but is included as its own separate chart for 

comparison. Within Figure 2.4, combining chart A and chart B yields chart C, total global IND. 

 Given INDCO2(f)’s genesis from fossil fuel combustion, the largest debtor countries reflect 

economic size. The total INDCO2(f) from the U.S. minus CA alone comprises 23.2% of total 

global INDCO2(f) and the next nine countries and California account for an additional 44.5%. 

Thus, these top INDCO2(f) debtors collectively account for two-thirds of total global INDCO2(f).  
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Figure 2.4: Total INDs for Top Debtor Countries. Stacked bar charts represent total world (A) INDCO2(f), (B) INDCH4, (C) IND, and (D) INDLUCF 
climate debt. Chart sizes are proportional to RF. Within charts A−C, the ten countries with the largest INDs are indicated top-most by individual 
segments in rank order, followed by California’s segment and the remainder of the world represented by the segment “Other Countries”. Thin 
arrows track the change in top ten countries’ positions from chart A to chart C or from chart B to chart C. The percentages immediately following a 
segment’s name indicate its contribution to total global IND for that chart. INDLUCF is represented separately because it is not a component of 
INDCO2(f) or IND. Instead, the wide arrow shows how chart C would enlarge if LUCF were attributed to countries (or regions) and included in an 
IND+LUCF metric (as in Table 2.1, panel B). Data are from Database IND. Abbreviation: U.S. minus CA = United States minus California. 
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 INDCH4
, given its link to agriculture, broadly reflects population size. Total INDCH4

 from 

China accounts for 16.4% of total global INDCH4
 and the next nine countries plus California 

account for an additional 40.7% of total global IND. Thus these top INDCO2(f) debtor countries 

collectively account for approximately three-fifths of total global INDCO2(f). These percentages 

all imply a more even distribution of INDCH4
 than INDCO2(f). 

 Comparing ranks from chart A to chart C (see arrows) reveal that the relative contribution 

of HICs often decreases in going from INDCO2(f) to IND, for example Japan’s 4.8% to 2.9%, 

while the contribution of LMICs often increases, for example India’s 3.2% to 5.3%. The reverse 

trends hold in comparing ranks from chart B to chart C. Put another way, %CO2(f) is often 

greater for HICs than LMICs and %CH4 is often greater for LMICs than HICs. In the case of 

California, it’s contribution to global INDCH4
 (0.4%) is much lower than its contribution to global 

INDCO2(f) (1.8%) or global IND (1.2%). 

 Just as other metrics related to human welfare, such as income and health, are best judged 

on a per capita basis, per capita IND indicates the average use of the assimilative capacity of the 

planet by individuals within a country. Per capita IND varies dramatically across the globe. 

Comparing opposite extremes, the Falkland Islands’ 5050 W/m
2
/person and Rwanda’s 28.8 

W/m
2
/person differ by a factor of nearly 175. California’s per capita IND, INDCO2(f), and 

INDCH4
 are 220%, 334%, and 69.4%, respectively, of the corresponding global averages. These 

values contrast with the U.S. minus CA’s per capita IND, INDCO2(f), and INDCH4
 of 428%, 578%, 

and 230%, respectively, expressed in the same manner. Viewed from this perspective, 

California’s IND profile is closer to that for the European Union (EU; as constituted in 2005) 

than that for the U.S. minus CA. The EU possesses per capita IND, INDCO2(f), and INDCH4
, 

expressed as percent of global averages, of 206%, 284%, and 104%, respectively. Hence, relative 

to the EU, California’s IND derives comparatively more from INDCO2(f) than INDCH4
. 

 Figure 2.5 compares per capita IND for the ten countries (minimum population ten 

million) with the largest values, California, and the ten most populous LMICs. The divergence in 

per capita IND between these two sets is striking. Even so, Brazil and Mexico are close to the 

global average per capita IND. In general, CH4 constitutes a higher fraction of climate debt in 

LMICs, primarily due to agriculture. For illustration, the mean percent for the CH4 proportion 

among the 10 most populous LMICs is 74%, compared to 28% for the ten countries with the 

largest values of per capita IND. California’s per capita IND, while less than that of the ten 

countries with the largest values, nonetheless remains large at over twice the global average. 

California’s per capita INDCO2(f) surpasses that for all ten most populous LMICs, but at the same 

time, California’s INDCH4
 falls roughly in the middle of these same countries. 

 Figure 2.6 helps characterize climate debt, as conceptualized by IND, along several 

important dimensions, capturing the wide range of climate debts accrued by countries as 

expressed in terms of both per capita IND (y-axis) and total IND (bubble area). Additionally, 

bubble slices correspond to %CO2(f) (red) and %CH4 (blue). The countries included in the 

figure, all with a population greater than one million and per capita IND less than 1,500 mW/m
2
, 

span a thirty-fold range of per capita IND. The horizontal line at 305 μW/m
2
/person represents 

global per capita IND and could be viewed as an initial demarcation between countries, circa 

2005, with a surplus of climate debt, above the line, and a deficit of climate debt, below the line. 
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Figure 2.5: Per Capita INDs for Top Debtor Countries, California, World, and Largest Developing Countries. Upper bars list the ten 
countries, minimum population ten million, with the largest per capita IND, plus California. Together these ten countries and California comprise 
11% of global population. The middle bar provides the world average for per capita IND. Lower bars list the 10 most populous developing 
countries, collectively comprising 55% of global population, with each country’s per capita IND. Each bar is divided into INDCO2(f) and INDCH4 
components, the sum of which equals IND. Numbers in parentheses indicate country rankings for total IND. The value to the right of each bar is 
the percent of IND from CH4 (%CH4). Data are from Database IND. Abbreviation: U.S. minus CA = United States minus California. 
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 At first glance, most apparent are the four largest bubbles, representing the U.S. minus 

CA, China, Russian Federation, and India. In aggregate, these four countries accounted for 

43.9% of global IND in 2005. Although possessing the largest INDs, these countries have 

attained their debts through different means. The U.S. minus CA and Russian Federation are 

both populous and have high per capita INDs, roughly four times the global average, with 

INDCO2(f) constituting a majority of IND. China and India, although even more populous, have 

per capita INDs less than the global average, approximately two-thirds and one-third of the 

global average, respectively, and INDCH4
 comprises a majority of IND. With the addition of 

Germany and Brazil, these six countries alone would account for over half of global IND in 

2005. Overall, Figure 2.6 brings into relief the distinction between countries with high per capita 

INDs and high total INDs, hinting at the size and direction of burden sharing between countries 

that would be most equitable. 

 Focusing on the fifty countries with largest INDs (labeled with rank in parentheses) and 

California (also labeled), groupings can be defined by bands based on multiples of global per 

capita IND. These groupings also identify countries that may be facing similar challenges, given 

their comparable accumulations of climate debt on a per capita basis, and thus the groupings 

suggest potential partnerships and networks for sharing technological innovations and policy 

instruments.  

 Countries with per capita IND greater than three times the global average 

(>~900 mW/m
2
) include the U.S. minus CA and Russian Federation as well as the five countries 

from the United Arab Emirates to Czech Republic. Australia and the United Arab Emirates carry 

more INDCH4
 than INDCO2(f), unlike the other countries in this grouping, reflecting the sizable 

CH4 emissions from the agricultural sector for Australia and the energy sector for both countries. 

The ten countries with per capita IND between two and three times the global average 

(~600−900 mW/m
2
), from Germany to Belarus and including California, exhibit a %CO2(f) 

greater than %CH4 in all cases except Azerbaijan, which has a large natural gas industry. 

Countries with per capita IND between one and two times the global average 

(~300−600 mW/m
2
), the seventeen countries from France to Taiwan, span a range from 

possessing markedly more INDCO2(f) than INDCH4
, as in the case of Japan and Taiwan, to 

decidedly more INDCH4
 than INDCO2(f), such as for Brazil and Angola, mirroring the diverse 

economic histories of this group. Finally, there are the seventeen countries with per capita IND 

less than the global average (<~300 mW/m
2
), including China and India plus the group from 

Mexico to Ethiopia. All but two of these have a %CH4 greater than %CO2(f), as the 

proportionately larger agricultural sectors of these countries would suggest. The two exceptions, 

Figure 2.6: Total and Per Capita Distribution of IND. Bubble areas (previous page) are proportional 
to total IND and divided into slices representing INDCO2(f) (red) and INDCH4 (blue). Bubble centers are 
graphed with respect to per capita IND on the y-axis (linear scale) and population on the x-axis (log 
scale). The axes are truncated to exclude countries with a population less than one million or per capita 
IND greater than 1500 μW/m

2
. Consequently, bubbles for 152 countres from the IND database, plus 

California, are visible. Labeled are the 51 countries, including California, with the largest INDs in 2005 
with ranks given in parentheses. The horizontal line at 305 μW/m

2
 represents global per capita IND. 

Data are from Database IND. Abbreviation: U.S. minus CA = United States minus California. 
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Mexico and Turkey, both enjoy a per capita gross domestic product at purchasing power parity 

(GDP-PPP) higher by a factor of two than the other countries in this final group. 

 Figure 2.6 captures a number of key features of the global distribution of climate debt, 

and its simultaneous appraisal of total IND, per capita IND, %CO2(f), and %CH4 begins to 

suggest ways forward. The figure sketches a general pattern of greater %CO2(f) as per capita 

IND increases and hence greater %CH4 as per capita IND decreases, with divergences from this 

broad trend notwithstanding. Partly explaining this observation is the fact that INDCO2(f) is 

strongly linked with economic development while INDCH4
 is more evenly distributed with 

respect to income. Wealthier countries, in addition to accumulating INDCH4
, have amassed 

substantial INDCO2(f), and so their total IND and %CO2(f) all tend to be greater than poorer 

countries of similar population. The inclusion of INDCH4
 narrows the gap in per capita IND 

between wealthier and poorer countries, but in general the latter still far exceed the former on a 

per capita basis.  

 Countries with similar INDs, including with respect to %CO2(f)/%CH4, would be logical 

partners for sharing technological and policy innovations, whereas those with divergent INDs 

might benefit from Clean Development Mechanism projects (Sutter and Parreño 2007). The size 

and color of a country’s bubble hints at the relative durability of its IND, given that in most cases 

INDCO2(f) will contract more slowly than INDCH4
. These two observations are relevant to 

prioritizing emissions reductions or guiding emissions trading, though both are complex matters 

with many factors to consider. Furthermore, the location of a country’s bubble could help it to 

track progress, in comparison to itself or others, as its IND changes over time. 

 Figure 2.7 further establishes the distinction between distributions of per capita INDCO2(f) 

and per capita INDCH4
 among countries by income, as measured by per capita GDP-PPP. The 

analysis was limited to countries with populations greater than one million because many small 

countries have unique circumstances with respect to IND. With the added dimension of per 

capita GDP-PPP, Figure 2.7 also expands on the earlier observation that California has less 

intensively accumulated IND than has the U.S. minus CA, even though California’s per capita 

GDP is slighter higher than that of the U.S. minus CA.  

 Examining Figure 2.7, it is apparent that per capita INDCO2(f) is relatively closely 

associated with economic development (r
2
 = 0.55), with an upward-sloping linear regression line. 

California’s per capita INDCO2(f) is below the associated trend line, while the U.S. minus CA’s 

per capita INDCO2(f) is far above it. In contrast, per capita IND is less predictably distributed 

across the income spectrum (r
2 

= 0.085). Furthermore, per capita INDCO2(f) occupies a much 

broader range of values, with the ratio of highest to lowest more than 1250 (Kuwait : Chad). In 

comparison, the ratio of highest to lowest per capita INDCH4
 is only about 50 (Trinidad & Tobago 

: Taiwan).  
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2.3.2.2. Income and Health 

 The accrual of climate debt can be conceptualized as a country repeatedly borrowing 

future resiliency from natural systems in order to progressively better the lot of its citizenry 

(Smith et al. 1993; Bhaskar 1995; Smith 1996; Srinivasan et al. 2008). Research on various 

measures of humanity’s “environmental footprint” indicates that countries differ in how 

successfully they have transformed impacts on natural resources into improved conditions for 

their societies (Knight and Rosa 2011; Jorgenson 2014). Characterizing climate debt in an 

analogous manner can bring into focus variation in countries’ efficiency of climate debt 

accumulation and pathways for narrowing these differences (McMichael and Butler 2011; Lamb 

and Rao 2015).  

 Figure 2.8 examines how “efficiently” countries have translated their consequent climate 

debt, as measured by IND, into two major indicators of overall well-being: economic output and 

population health. Although there is a degree of overlap in the activities that generate CO2(f) and 

CH4 emissions, sources differ sufficiently to prompt separate assessments of the efficiencies of 

INDCO2(f) (2A) and INDCH4
 (2B). Economic output is gauged by GDP-PPP (United States Central 

Intelligence Agency 2006; World Bank 2012) and population health by the total amount of 

ill-health in a country as measured by lost disability-adjusted life years (DALYs) (Global Burden 

of Disease Study 2010 2012). The DALY, a widely-used metric for lost healthy life years, is a 

more accurate estimate of lost health than deaths alone since it accounts for both the degree of 

prematurity in mortality as well as the severity and duration of morbidity. 

 For California, state-level DALY data were unavailable. In its place, I applied 

age-specific DALY rates for the United States to the population distribution of California. 

Summing these results enabled an estimation of California’s DALYs, but this approach may only 

a be a rough approximation. In common with original emissions, I subtracted California’s 

DALYs from those for the United States’ to arrive at the U.S. minus CA’s DALYs. 

 Figure 2.8 depicts the efficiency of countries’ accumulated investments, enabled by 

climate debt, in expanding economic output while diminishing ill-health. Twenty-seven countries 

which lack DALY data, listed in Table A7, are missing from Figure 2.8 (Global Burden of 

Disease Study 2010 2012). The location of countries with regards to the y-axes is analogous to 

the notion of carbon intensity (Jorgenson 2014). In other words, the more economic output per 

unit of climate debt (or “income efficiency’), the more efficiently a country has parlayed its 

borrowing into national income. Conversely, with regards to the x-axes, the less ill-health per 

unit of climate debt (or “health efficiency”), the more efficiently a country has converted its 

borrowing into wellness.  

 The horizontal and vertical lines represent global average IND efficiencies and define 

four quadrants of combined income and health efficiency. The most efficient quadrant at top-left 

marks countries with high income and health efficiencies in comparison to the global average. 

Correspondingly, the least efficient quadrant at bottom-right hosts countries with low income 

and health efficiencies in comparison to the global average. 
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 Viewing both log-log plots of Figure 2.8 side-by-side, it is apparent that the health 

efficiency of INDCO2(f) covers a wider range (~10,000×) than INDCH4
 (~200×) and conversely the 

income efficiency of INDCH4
 covers a wider range (~2,000×) than INDCO2(f) (~100×). The 

distribution of countries, in Figure 2.8A, mostly excludes the bottom-right quadrant (low health 

and low income efficiencies), but in in Figure 2.8B, includes all four quadrants. Both 

distributions raise research questions, for example on the direction of causal relationships 

between income and health (Bloom and Canning 2000), into which the lens of IND efficiency 

may provide additional insight. 

 California, located in the upper-left quadrant, exceeds global averages with respect to 

both income and health efficiencies for INDCO2(f). Yet there is room for improvement for 

California along both axes. In comparison, the U.S. minus CA is less efficient in terms of 

income, an expected outcome given California’s more moderate accumulation of INDCO2(f), but 

more efficient in terms of health. A similar relationship between California and the U.S. minus 

CA exists for INDCH4
 efficiencies. California’s INDCH4

 is exceptionally efficient with respect to 

income as only two top fifty countries, Japan and Taiwan, are more efficient. With respect to 

health, California is near the global average for health efficiency of INDCH4
. 

 Figure 2.8A suggests that, for future INDCO2(f), “leapfrog” strategies are possible for 

LMICs currently in the top-right quadrant (low health but high income efficiencies) to shift into 

the top-left quadrant (high health and high income efficiencies). If these countries maintained or 

even moderately increased their current CO2(f) climate debt in order to promote population 

health, they could catapult to HIC levels of health and economic efficiency. It would be 

advantageous from a global and country-level perspective, doubly so given health co-benefits 

(Smith et al. 2014), for these LMICs to avoid the fossil fuel intensive pathway of the suite of 

countries in the bottom-left quadrant (high health but low income efficiencies). Many HICs, it 

must also be noted, have room for improvement with respect to the income efficiency of their 

INDCO2(f).  

 Shifting to Figure 2.8B, rapidly and dramatically boosting population health in LMICs, 

the stated objective of initiatives such as Global Health 2035 (Jamison et al. 2013), would also 

move many countries currently in the bottom-right quadrant (low health and low income 

efficiencies), into the lower-left quadrant (high health and low income efficiencies). The sizable 

Figure 2.8: Efficiency of INDCO2(f) and INDCH4 by GDP-PPP and DALYs. Figure (previous two pages) 
plots countries according to the efficiency of their INDCO2(f) (panel A) or INDCH4 (panel B) with regards to 
income (y-axis, log scale) and health (x-axis, log scale) in 2005. INDCO2(f) or INDCH4 income efficiency, 
defined as the ratio of GDP-PPP divided by INDCO2(f) or INDCH4, respectively, increases to the top of the 
graph. Conversely, INDCO2(f) or INDCH4 health efficiency, defined as the ratio of DALYs divided by 
INDCO2(f) or INDCH4, respectively, increases to the left of the graph. The horizontal and vertical lines 
represent global average IND efficiencies and delineate four quadrants of combined income and health 
efficiency, the most efficient at top-left and the least efficient at bottom-right. Labeled and dark red 
points represent the 51 countries, including California, with the largest INDs in 2005 and ranks given in 
parentheses. Not graphed are 27 countries that lacked DALY data (see Table A7). In both panels, an 
additional three countries are off-scale (in 2A: Chad, Mali, and Micronesia; in 2B: Brunei Darussalam, 
Central African Republic, and Qatar). Light red points represent the remaining 125 countries in the IND 
database. The intersection of the two lines represents the world as a whole. Data are from Database 
IND. Abbreviations: DALY = disability-adjusted life year; GDP-PPP = gross domestic product at 
purchasing power parity; U.S. minus CA = United States minus California. 
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number of countries currently in the bottom half of the figure, from the perspective of economic 

output, have inefficiently accumulated INDCH4
, lending additional impetus for research and 

development into technologies and strategies that either decrease CH4 emissions, which also has 

attendant health co-benefits (Shindell et al. 2012), or more effectively convert CH4 emissions 

into income gains, and for the countries in the bottom-right quadrant, health gains, as well.  

 In conjunction with tracking climate debt on its own, the concept of IND efficiency can 

provide another yardstick by which a country can trace the progression of its climate debt over 

time either in comparison to itself or in reference to other countries. It must be noted, however, 

that IND efficiency would improve as long as the rate at which income expands or ill-health 

contracts exceeds the rate at which climate debt grows. Though such a scenario remains more 

desirable than its opposite, more efficiently acquiring climate debt may not correspond to 

mitigating climate change. 

 Additionally, facilitating the conversion of societal investments, financed partly by 

climate debt, into income or health gains is often a complex multifactorial process with time 

lags. There is also a delay between decelerating emissions growth or outright emissions 

decreases and reducing IND, since IND carries the burden of past emissions that can only be 

discharged as a function of each CAP’s atmospheric lifetime. It follows that the efficiency of 

INDCH4
 would respond more quickly to contracting emissions than the efficiency of INDCO2(f). 

 

2.3.2.3. Methane International Natural Debt by Sector 

 Controlling anthropogenic emissions of CH4 may present, under certain circumstances, 

an underappreciated opportunity for climate change mitigation, an insight that motivates a closer 

examination of INDCH4
. Major sources include ruminant livestock, manure management, and rice 

cultivation in the agriculture sector; fossil fuel systems in the energy sector; and landfills and 

wastewater in the waste sector (2006; Reay et al. 2010). Current inventory methodologies are not 

comprehensive and atmospheric monitoring of CH4 suggests emissions from unaccounted 

sources, such as abandoned landfills and oil/gas wells, may be large (Fischer and Jeong 2012; 

Brandt et al. 2014). 

 In order to probe INDCH4
, Figure 2.9 breaks down INDCH4

 into its sector-level 

components. Panel A presents the 25 countries with the largest INDCH4
 from all sectors combined 

and panels B−D present the top 25 contributors of INDCH4
 from the agriculture (B), energy (C), 

and waste (D) sectors. Rankings for each panel are in the left-most columns, and rankings for 

total IND are in parentheses. California is included at bottom in all four panels. Collectively, the 

top 25 countries plus California accounted for 75% of global INDCH4
 in 2005.  

 Global INDCH4
 is dominated by the agriculture (45.3%), energy (34.5%), and waste 

(16.2%) sectors, with much smaller input from land use (3.8%), referring to emissions from 

forest and grass fires, and industry (<1%). Over half of California’s INDCH4
 derives from 

agriculture (52.5%), followed by waste (31.7%) and energy (15.5%). For the U.S. minus CA’s 

INDCH4
, historical emissions from the energy sector (48.0%) contribute the most, followed by 

agriculture (27.7%) and waste (22.9%), with small contributions from land use (1.1%) and 

industry (0.3%). 
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(A) ALL SECTORS

mW/m
2 % World μW/m

2
 pp % Average

WORLD 856.00 100.00% 131.71 100.00%

1 China (2) 140.23 16.38% 107.24 81.42%

2 United States (1) 82.43 9.63% 277.70 210.84%

3 India (4) 70.02 8.18% 61.42 46.63%

4 Russian Fed. (3) 63.63 7.43% 442.32 335.82%

5 Brazil (6) 47.37 5.53% 254.72 193.39%

6 Indonesia (11) 26.33 3.08% 115.83 87.94%

7 Nigeria (22) 15.55 1.82% 111.23 84.45%

8 Australia (14) 14.88 1.74% 729.35 553.74%

9 Mexico (13) 14.50 1.69% 136.14 103.36%

10 Pakistan (23) 14.20 1.66% 89.54 67.98%

11 Argentina (21) 13.25 1.55% 342.58 260.09%

12 Iran (17) 12.89 1.51% 184.86 140.35%

13 Canada (10) 12.01 1.40% 372.01 282.43%

14 Bangladesh (30) 11.33 1.32% 80.59 61.19%

15 Ukraine (9) 11.23 1.31% 239.35 181.72%

16 Germany (5) 10.69 1.25% 129.57 98.37%

17 Thailand (26) 10.29 1.20% 154.27 117.12%

18 Myanmar (36) 10.04 1.17% 216.71 164.53%

19 United Kingdom (8) 9.85 1.15% 163.67 124.26%

20 France (12) 9.03 1.06% 148.12 112.45%

21 Viet Nam (33) 8.98 1.05% 107.97 81.97%

22 Congo (Kin.) (43) 8.16 0.95% 142.08 107.87%

23 Venezuela (28) 7.62 0.89% 285.78 216.97%

24 Poland (15) 7.17 0.84% 187.92 142.67%

25 South Africa (19) 7.05 0.82% 147.57 112.04%

48 California (18) 3.28 0.38% 91.45 69.43%

(B) AGRICULTURE (C) ENERGY (D) WASTE

mW/m
2 % World μW/m

2
 pp % Average mW/m

2 % World μW/m
2
 pp % Average mW/m

2 % World μW/m
2
 pp % Average

WORLD 387.59 45.28% 59.64 100.00% WORLD 295.62 34.53% 45.49 100.00% WORLD 139.06 16.24% 21.40 100.00%

1 China (2) 65.77 16.97% 50.30 84.34% 1 China (2) 53.09 17.96% 40.60 89.26% 1 China (2) 21.16 15.22% 16.18 75.63%

2 India (4) 47.04 12.14% 41.27 69.19% 2 Russian Fed. (3) 46.67 15.79% 324.48 713.34% 2 United States (1) 19.19 13.80% 64.64 302.08%

3 Brazil (6) 31.81 8.21% 171.05 286.81% 3 United States (1) 38.52 13.03% 129.77 285.29% 3 India (4) 12.06 8.67% 10.58 49.44%

4 United States (1) 23.63 6.10% 79.60 133.47% 4 Nigeria (22) 11.01 3.73% 78.77 173.18% 4 Russian Fed. (3) 6.55 4.71% 45.51 212.69%

5 Indonesia (11) 10.97 2.83% 48.27 80.94% 5 India (4) 10.68 3.61% 9.36 20.59% 5 Brazil (6) 6.41 4.61% 34.47 161.10%

6 Pakistan (23) 9.49 2.45% 59.84 100.33% 6 Iran (17) 9.13 3.09% 130.87 287.71% 6 Indonesia (11) 4.88 3.51% 21.45 100.24%

7 Argentina (21) 9.33 2.41% 241.32 404.64% 7 Ukraine (9) 6.92 2.34% 147.40 324.06% 7 United Kingdom (8) 4.36 3.13% 72.40 338.35%

8 Russian Fed. (3) 9.13 2.36% 63.48 106.45% 8 Indonesia (11) 6.74 2.28% 29.67 65.23% 8 Germany (5) 3.49 2.51% 42.34 197.89%

9 Australia (14) 9.01 2.32% 441.51 740.31% 9 Canada (10) 5.78 1.96% 179.08 393.69% 9 Turkey (29) 3.13 2.25% 45.90 214.50%

10 Bangladesh (30) 8.53 2.20% 60.68 101.75% 10 Algeria (35) 5.78 1.95% 175.68 386.22% 10 Canada (10) 2.47 1.78% 76.51 357.58%

11 Thailand (26) 7.42 1.91% 111.20 186.46% 11 Mexico (13) 5.31 1.80% 49.90 109.71% 11 Italy (16) 2.41 1.73% 41.04 191.79%

12 Mexico (13) 6.68 1.72% 62.72 105.16% 12 Saudi Arabia (25) 5.30 1.79% 220.65 485.09% 12 Mexico (13) 2.24 1.61% 21.07 98.48%

13 Viet Nam (33) 6.43 1.66% 77.27 129.56% 13 Venezuela (28) 4.05 1.37% 151.97 334.10% 13 France (12) 1.87 1.35% 30.70 143.47%

14 Sudan (45) 6.02 1.55% 156.79 262.90% 14 Poland (15) 3.85 1.30% 100.83 221.66% 14 Bangladesh (30) 1.85 1.33% 13.18 61.61%

15 Myanmar (36) 5.77 1.49% 124.54 208.82% 15 Australia (14) 3.51 1.19% 172.06 378.27% 15 Pakistan (23) 1.81 1.30% 11.41 53.32%

16 France (12) 5.61 1.45% 91.93 154.14% 16 Brazil (6) 3.50 1.18% 18.83 41.40% 16 Australia (14) 1.80 1.29% 88.09 411.69%

17 Colombia (38) 4.72 1.22% 109.59 183.75% 17 Kazakhstan (20) 3.36 1.14% 221.22 486.33% 17 Nigeria (22) 1.47 1.06% 10.52 49.18%

18 Ethiopia (49) 4.26 1.10% 57.36 96.18% 18 Germany (5) 3.25 1.10% 39.31 86.43% 18 Philippines (41) 1.44 1.04% 16.87 78.83%

19 Philippines (41) 4.00 1.03% 46.73 78.35% 19 South Africa (19) 3.14 1.06% 65.72 144.48% 19 Thailand (26) 1.43 1.03% 21.47 100.33%

20 Germany (5) 3.95 1.02% 47.84 80.22% 20 Malaysia (42) 3.11 1.05% 119.29 262.25% 20 South Korea (24) 1.37 0.99% 29.17 136.31%

21 Ukraine (9) 3.24 0.84% 69.08 115.83% 21 Pakistan (23) 2.90 0.98% 18.26 40.13% 21 Iran (17) 1.31 0.94% 18.82 87.94%

22 New Zealand 3.05 0.79% 738.02 1237.46% 22 U.A.E. (48) 2.77 0.94% 681.69 1498.63% 22 South Africa (19) 1.31 0.94% 27.38 127.98%

23 Nigeria (22) 3.02 0.78% 21.61 36.23% 23 United Kingdom (8) 2.74 0.93% 45.47 99.96% 23 Spain (27) 1.31 0.94% 30.08 140.57%

24 Canada (10) 2.86 0.74% 88.56 148.50% 24 Azerbaijan (51) 2.64 0.89% 307.40 675.80% 24 Japan (7) 1.19 0.85% 9.41 43.96%

25 United Kingdom (8) 2.74 0.71% 45.48 76.26% 25 Argentina (21) 2.62 0.89% 67.66 148.75% 25 Netherlands (32) 1.15 0.82% 70.23 328.23%

41 California (18) 1.72 0.44% 48.02 80.52% 58 California (18) 0.51 0.17% 14.16 31.12% 29 California (18) 1.04 0.75% 28.96 135.33%

Total Per Capita

Total Per Capita Total Per Capita Total Per Capita

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Agriculture

Energy

Waste

Land Use

Industry
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 Focusing on panel A, the sectoral decomposition of INDCH4
 shows a diversity of 

situations reflecting the distinctive circumstances of each country. Countries with 

proportionately large contributions to their INDCH4
 from the agriculture sector often have had 

major rice or livestock production, for example California, Argentine, or Bangladesh. Major oil 

and gas producers typically have proportionately large contributions from the energy sector to 

their INDCH4
, for example Nigeria and Russia. The waste sector can also be a large contributor to 

INDCH4
, particularly for California, the United Kingdom, and Germany. Several countries with 

large areas of tropical forest have sizeable contributions to their INDCH4
 from land use, most 

notably Congo (Kinshasa) but also Myanmar, Indonesia, and Brazil.  

 China has the largest total INDCH4
 from all sectors combined and for each of the separate 

sectors. However, in each case, China’s per capita INDCH4
 is 10−25% lower than the global 

average. India, with the third largest total INDCH4
, follows a similar pattern with even lower per 

capita INDCH4
 values, half the global average for all sectors combined and 20−70% the global 

average for the separate sectors. On the other hand, the U.S. minus CA, which has the second 

largest total INDCH4
 and is ranked in the top four for the agriculture, energy, and waste sectors, 

possesses in all instances per capita INDCH4
 values much higher than the global average. 

Similarly, Australia, a medium-sized country from the perspective of population or economic 

size, is a top 25 contributor to global total INDCH4
 from all three sectors and at per capita levels 

several times the global average.  

 About half of California’s INDCH4
 derives from agriculture (52.5%), a third from waste 

(31.7%), and the remainder from energy (15.5%). Compared globally, the state’s INDCH4
 from 

the waste sector is ranked highest (29
th

), with a per capita value 136% of the global average. 

California’s total INDCH4
 for the agriculture and energy sectors are ranked 41

st
 and 58

th
, 

respectively, and corresponding per capita values are below global averages. Although 

California’s accumulation of INDCH4
 has been modest, CH4 emissions remain substantial for the 

state, comprising 8.3% of total CAP emissions in 2012 on a CO2 equivalent basis (Air Resources 

Board of the California Environmental Protection Agency 2014). IND would respond more 

quickly to decreases in CH4 emissions than CO2(f) emissions, potentially at lower cost or 

disruption. 

 For California and indeed most countries, decreasing emissions by shifting diet 

preferences for meat, diary, and/or rice would likely be slow, although perhaps engineering 

genetic or management approaches to reducing emission factors could be achieved more rapidly. 

Figure 2.9: INDCH4 by Sector. Figure (previous page) presents the 25 countries plus California with 
the largest total and sectoral debts from INDCH4. Panel A focuses in total INDCH4. Stacked bars at left 
show the percent of each country’s INDCH4 derived from each sector. The top 10 countries in panel A 
are color-coded so they can be easily tracked in panels B−D. Panels B−D list the top 25 contributors of 
INDCH4, plus California, from the agriculture (B), energy (C), and waste (D) sectors. All panels include 
total and per capita INDCH4, both of which are also expressed as “% World” or “% Average” with 
respect to the global total or global average, respectively, for that panel. The fraction each sector 
contributes to global INDCH4 is provided in panels B−D in the entry for the world (top-most row) under 
“Total” and “% of World”. Numbers in parentheses indicate country rankings for total IND. Additionally, 
data for California are provided in the bottom-most row of each panel along with California’s ranking for 
that particular sector. Data are from Database IND. Abbreviations: pp = per person, U.S. minus CA = 
United States minus California. 
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Conversely, remedying poor human and animal waste management or leaks from fossil fuel 

systems can be achieved with little impact on consumption patterns. Current inventory 

methodologies are not comprehensive, so there are probably additional CH4 sources that are not 

yet accounted for, such as abandoned landfills and oil/gas wells (Wunch et al. 2009). Leakage 

from fracking operations may also add to future CH4 inventories. Nonetheless, countries with 

large agricultural components to their INDCH4
 such as California are already experimenting with 

different feed compositions to minimize enteric fermentation in ruminant livestock (Eckard et al. 

2010) or altered flooding and fertilization regimens to curtail methanogenesis in wet rice fields 

(Jain et al. 2013). Such technological advances, as well as policy ideas, could be shared between 

countries with similar portfolios of INDCH4
.  

 

2.3.3. Land Use Change and Forestry 

 In actuality, LUCF has also contributed significantly to anthropogenic CO2 flux over 

time. Table 2.1 presents a preliminary exploration, at a regional level (see Figure 2.2 and Table 

A8 for region definitions), of LUCF’s contribution to IND, contrasting IND (Panel A), which 

does not include LUCF, and IND+LUCF (Panel B), which does. For this analysis, California is 

subsumed into the United States region. In both panels, the United States, Europe, and China 

regions possess the largest total values and the Oceania, United States, and Canada regions 

possess the largest per capita values. As would be expected, assigning accountability for LUCF 

leads IND+LUCF to be greater than IND for all regions (except the Caribbean). The increases are 

proportionately much larger, however, in those tropical regions that experienced significant 

deforestation over 1950−2005 (Tropical South America, Central Africa, West Africa, East 

Africa, and Southeast Asia), so much so that these regions leapfrog others in both total and per 

capita IND. Yet, intact tropical forests in these same regions, as well as undisturbed ecosystems 

in other regions, undoubtedly served as carbon sinks both since 1950 as well as prior. The 

limited data on California’s LUCF net CO2(f) flux suggest the state served as a carbon sink 

throughout the period 1990−2004 (Air Resources Board of the California Environmental 

Protection Agency 2007b). 

 Although Table 2.1 draws on the best available LUCF dataset to my knowledge, it must 

be emphasized that it is difficult to attribute CO2 flux from LUCF empirically, due to incomplete 

and uncertain historical records of sinks and sources, and conceptually, owing to ambiguities in 

deciding which changes were natural versus anthropogenic and what credit to assign for avoiding 

degradation of carbon stocks (Corbera and Schroeder 2011). Nevertheless, attempts have been 

made, albeit at regional levels (Klein Goldewijk et al. 2011). Also, unlike CO2(f), there is no 

appropriate baseline starting point, i.e., the start of the Industrial Revolution (Smith 1994; 

Ruddiman 2006). These and other theoretical and methodological obstacles continue to limit the 

incorporation of LUCF into a robust climate debt metric. Such challenges serve to further 

motivate research into the carbon cycle across spatial and temporal scales, as well as to highlight 

the advantage of a less comprehensive but more tractable metric such as IND. 

 



 

 

3
9
 

Table 2.1: IND and IND+LUCF by Region 
 Population A: IND

1
 B: IND+LUCF

2
 

 Year 2005 Total IND Per Capita IND GHG Fraction Total IND Per Capita IND GHG Fraction 

Region
3
 (# of Countries) 10

6
 people mW/m

2
 

% of 
World 

μW/m
2
/ 

person 

% of 
World 

Ave. 
CO2 CH4 mW/m

2
 

% 
World 

μW/m
2
/ 

person 

% of 
World 

Ave. 
CO2 CH4 

WORLD CO2(f)+CH4 6,498.893 1979.0 100.0% 304.5 100.0% 57% 43% 2416.0 100.0% 371.8 100.0% 65% 35% 

Canada (2) 32.341 36.5 1.8% 1129.0 370.7% 67% 33% 48.2 2.0% 1489.5 400.7% 75% 25% 

United States (1) 296.820 364.0 18.4% 1226.2 402.6% 77% 23% 394.8 16.3% 1329.9 357.7% 79% 21% 

Mesoamerica (7) 145.103 34.3 1.7% 236.3 77.6% 48% 52% 49.4 2.0% 340.2 91.5% 64% 36% 

Caribbean (16) 39.081 9.3 0.5% 238.5 78.3% 52% 48% 7.3 0.3% 187.9 50.6% 39% 61% 

Trop. South America (10) 313.169 94.5 4.8% 301.8 99.1% 25% 75% 205.0 8.5% 654.5 176.1% 65% 35% 

Temp. South America (4) 58.308 26.2 1.3% 449.9 147.7% 33% 67% 34.2 1.4% 586.7 157.8% 48% 52% 

Europe (33) 518.902 314.3 15.9% 605.7 198.9% 77% 23% 334.1 13.8% 643.8 173.2% 79% 21% 

FSU (15) 284.920 252.9 12.8% 887.8 291.5% 62% 38% 274.6 11.4% 963.7 259.2% 65% 35% 

ME & NA (22) 436.970 110.2 5.6% 252.1 82.8% 51% 49% 122.5 5.1% 280.3 75.4% 56% 44% 

West Africa (17) 277.322 30.0 1.5% 108.2 35.5% 13% 87% 52.7 2.2% 190.1 51.1% 51% 49% 

Central Africa (9) 101.109 17.1 0.9% 169.3 55.6% 4% 96% 39.0 1.6% 385.9 103.8% 58% 42% 

East Africa (9) 229.289 23.2 1.2% 101.3 33.2% 4% 96% 37.6 1.6% 164.0 44.1% 41% 59% 

Southern Africa (14) 147.553 38.6 2.0% 261.6 85.9% 45% 55% 58.5 2.4% 396.7 106.7% 64% 36% 

South Asia (7) 1,487.355 139.7 7.1% 93.9 30.8% 29% 71% 144.1 6.0% 96.9 26.1% 31% 69% 

Southeast Asia (12) 565.976 95.7 4.8% 169.0 55.5% 26% 74% 154.3 6.4% 272.6 73.3% 54% 46% 

China (4) 1,337.586 273.9 13.8% 204.7 67.2% 49% 51% 323.8 13.4% 242.1 65.1% 56% 44% 

East Asia (4) 199.730 85.0 4.3% 425.4 139.7% 86% 14% 92.2 3.8% 461.5 124.2% 87% 13% 

Oceania (19) 27.359 33.8 1.7% 1235.0 405.5% 45% 55% 43.8 1.8% 1601.5 430.8% 57% 43% 

Notes: 
1
Includes climate debt from CO2(f) and CH4.; 

2
 Includes climate debt from CO2(f), CH4, and LUCF.; 

3
 Regions defined in Figure 2.2 and 

Table A8. Abbreviations: Trop. = Tropical; Temp. = Temperate; FSU = Former Soviet Union; ME & NA = Middle East and North Africa 
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2.3.4. Applications of  International Natural Debt 

2.3.4.1. Impact and Accountability: the Example of Health 

 IND can be used to compare the distribution of accountability with the impacts of climate 

change. A major concern about climate change, for example, is the potential impacts on human 

health, through shifts in disease patterns (infectious, vector-borne and parasitic), extreme weather 

events, damage to agriculture, changes in water availability, heat stress, sea-level rise, and other 

routes (McMichael et al. 2006; Parry et al. 2007). Although knowledge is growing rapidly, only 

one detailed global assessment of these effects has been published to date as part of the World 

Health Organization’s (WHO) Comparative Risk Assessment (CRA) Project (Ezzati et al. 2004). 

 Estimates were made of DALYs)in 2000 due to premature death and illness or injury by 

age, sex, and 14 world regions (defined in Table A9) due to anthropogenic climate change 

(McMichael et al. 2004). California, as a part of the United States, is included within region 

AMR-A, although California’s per capita IND profile is actually closer to that for the EU, the 

bulk of which constitutes region EUR-A. 

 In the target year of 2000, the overall impact of 150,000 premature deaths annually 

worldwide (0.4% of global lost DALYs) is relatively small by comparison with other global risk 

factors. I use the WHO CRA results in the analysis, nevertheless, since it provides the only 

currently available consistent set of health effect estimates that allow comparison across regions 

and risk factors in an equivalent manner. In addition, it seems reasonable to expect that the future 

patterns of impacts would be similar across the world, given that most of the risk will likely be 

exerted as exacerbation of local baseline health conditions. It is the future expression of ill-health 

from climate change (avoidable risk), moreover, that is the main worry, rather than what has 

happened so far (attributable risk). 

 The downward trending line in Figure 2.10 is taken directly from the CRA (McMichael 

et al. 2004) and shows that the “experienced” health burden from climate change declines with 

increasing economic development (per capita GDP-PPP) across the 14 CRA regions (for a 

CO2(f)-only analog, see Smith and Ezzati (2005)). This trend in experienced health burden is to 

be expected in that the poorest parts of the world are less able to protect themselves from 

environmental stresses in general and, partly as a result, experience much higher levels of 

ill-health from them. The upper line shows the “imposed” health burden or the same total impact 

distributed according to the 2005 IND per capita for each region, which trends in the reverse 

direction, i.e., richer regions impose more risk than poorer ones because of their INDs.  

 The embedded table in Figure 2.10 compares the ratio of imposed to experienced impacts 

across regions. The poorest regions impose ~10% of the risk they experience, while the richest − 

AMR-A and EUR-A − impose ~30,000% (~300 times) the risk they experience, a difference of a 

factor of ~1000. This is the basis of the often published maps of global health inequity from 

climate change (Patz et al. 2007). It is noteworthy that all regions above a per capita GDP-PPP of 

about $2,500 were imposing more health impact than they were experiencing early last decade. 
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2.3.4.2. Aspirational Reductions 

 IND captures the amount of excess RF in a given year attributable to a country’s past 

activities. Given the relative ease of calculating and interpreting IND-based climate debt, IND 

lends itself to exploring the implications of mitigation goals and strategies through scenario 

analyses.  

 Figure 2.11 conveys how much IND would change under a scenario of “aspirational 

reductions” in which all countries achieved a proposed goal of decreasing all CAP emissions to 

20% of 1990 levels by 2050 (Executive Department of the State of California 2005; Parliament 

of the United Kingdom 2008; European Commission 2011). The scenario models each country’s 

future time-series of CO2(f) and CH4 emissions as a linear decline commencing in 2006 and 

attaining target emissions rates in 2050. Initial conditions are based on Database IND. Implicitly, 

rising energy demands are met despite economic and population pressures. Over the 2006−2050 

timeframe, the scenario assumes that atmospheric lifetimes, direct and indirect effects, and 

radiative efficiencies hold constant. These assumptions simplify the climate system but enable a 

reasonably realistic first-order examination. 

 The results for future RFs are in broad concordance with more sophisticated models that 

simulate similarly aggressive emissions reduction, such as RCP2.6 utilized in AR5 (van Vuuren 

et al. 2011). Under the aspirational reductions scenario, global IND in 2050 would be 

1,850 mW/m
2
 or 93% of its 2005 level. The respective contributions of CO2(f) and CH4 to IND 

would shift from 57% and 43% in 2005 to 83% and 17% in 2050, as would be expected since 

INDCO2(f) persists longer than INDCH4
. Owing to the endurance of past and future CO2 emissions, 

by 2050 California’s IND, as well as that of the U.S. minus CA’s, would actually increase to 

27 mW/m
2
 (1.5% of global IND) and 364 mW/m

2
 (20% of global IND), respectively. California, 

with a larger %CO2(f) in 2005, would see its IND in 2050 relative to IND in 2005 grow slightly 

more than the U.S. minus CA: 116% versus 107%. 

Figure 2.10: Per Capita GDP-PPP by Per Capita Imposed versus Experienced Health Impacts 
from Climate Change. Figure (previous page) presents all data in terms of 14 WHO regions defined in 
Table A7. The United States, including California, is part of region AMR-A. Each region is located on 
the x-axis according to its GDP-PPP. With respect to the y-axis, each region is graphed according to its 
per capita experienced health impacts (brown triangles) and imposed health impacts (yellow triangles), 
the latter calculated by parsing the global impact by region according to IND. The lower line (brown 
dashed) is fitted to the per capita GDP-PPP and experienced health impacts data (r

2
 = 0.67). The 

upper line (yellow dotted) is fitted to the per capita GDP-PPP and imposed health impacts data (r
2
 = 

0.64). Note the logarithmic scale for both axes. The imbedded table shows the ratio of imposed to 
experienced risk from climate change by region. Data are from Database IND and McMichael et al. 
(2004). Abbreviations: DALY = disability-adjusted life year, GDP-PPP = gross domestic product at 
purchasing power parity;. 
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 A sizable minority of countries, including both California and the U.S. minus CA, are 

located above the orange line which represents INDs that are equal in 2050 and 2005. These 

countries, despite dramatic emissions decreases, nonetheless would experience a rise in their 

IND by 2050, and many of these same countries already possess per capita INDs well above the 

global average in 2005. Such countries have a high %CO2(f) and/or an unusually steep recent 

increase in CO2(f) emissions. The consequent evolution of IND underlines the substantial 

“hangover” from comparatively persistent CO2(f) contributions to IND. As a result, for countries 

above the orange line, the aspirational reductions scenario argues that even more drastic 

decreases in CO2(f) emissions would be necessary to allow these countries to lower their INDs 

by 2050. 

 A majority of countries are found below the orange line. These countries would lower 

their INDs by 2050, in some cases quite markedly so. Such countries typically have a high %CH4 

and/or gradually decreasing CO2(f) emissions. In reality, however, many of these countries are 

currently poised to increase CO2(f) emissions during the coming years as their economies 

continue to develop and populations continue to grow. Most such countries are also carrying 

INDs lower than the global per capita average in 2005, underscoring the question of how to 

justly apportion obligations to reduce climate debt across the globe. 

 Although %CH4 functions well as a shortcut for locating countries on the graph, 

countries’ outcomes under the scenario are in actuality a consequence of their unique historical 

emissions trajectories of CO2(f) and CH4. This explains the variance in the figure, accounting for 

differing INDs in 2050 among countries with seemingly comparable compositions to their INDs 

in 2005. For example, South Korea and Poland share a similar %CH4 in 2005, 26% and 24%, 

respectively. In addition, the preponderance of both countries’ INDCH4
 is comprised of remaining 

emissions from recent years.  

 South Korea’s and Poland’s historical time-series of CO2(f) emissions, however, differ 

strikingly from one another and consequently so does the genesis of each’s INDCO2(f). South 

Korea’s CO2(f) emissions doubled from 1990−2005 and remaining emissions from this period 

account for three-fourths of its INDCO2(f). In contrast, Poland’s CO2(f) emissions decreased by a 

third over the same years, but remaining emissions from the more distant 1970−1989 period 

account for almost half of its INDCO2(f). 

 As a result, though South Korea and Poland have almost identical values for %CO2(f) in 

2005, they begin the aspirational reductions scenario with proportionately much different 

Figure 2.11: IND Consequences of Aspirational Reductions in CAP Emissions. Figure (previous 
page) depicts the IND consequences of a scenario in which all countries decrease both their CO2(f) 
and CH4 emissions to 20% of 1990 levels by 2050. A country’s resulting IND in 2050, measured as a 
percent of its IND in 2005 (y-axis), is plotted against the country’s percent of IND from CH4 (%CH4) in 
2005 (x-axis). The orange horizontal line represents equal INDs in 2050 and 2005. Countries 
experiencing an IND increase are above this line and those experiencing an IND decrease are below 
the line. Labeled dark green points represent the 51 countries, including California, with the largest 
INDs in 2005 and ranks given in parentheses. One country (Turks & Caicos Islands) is off-scale. Light 
green points represent the remaining 154 countries. The green triangle represents the world as a 
whole. The linear regression line (green), calculated using data for all 206 countries, has an r

2
 equal to 

0.76. Data derived from using Database IND as the input for modeling this scenario. Abbreviation: U.S. 
minus CA = United States minus California. 
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emissions rates of CO2(f) in 2005: South Korea’s are higher, their decline for the scenario is 

steeper, and yet their contribution to IND in 2050 is larger. These disparities in historical 

emissions between South Korea and Poland explain why the former’s IND in 2050 expands by 

27% while the latter’s contracts by 4%.  

 A similar explanation accounts for the difference between California and Estonia, though 

the differences between the historical time-series of this pair are not as stark as the pairing of 

South Korea and Poland. In Figure 2.11, Estonia is represented by the light green unlabeled 

point directly below California but located directly on the orange line. Estonia is thus a country 

with a similar %CO2(f) versus %CH4 split in 2005 to California, but unlike California, with an 

IND in 2050 that would be essentially unchanged from that in 2005.  

 Estonia experienced higher CO2(f) emission in distant decades but more recently, since 

1989, has witnessed declining CO2(f) emissions. Indeed, Estonia’s CO2(f) emissions in 2005 had 

not been that low since 1955. California, on the other hand, experienced a steady rise in CO2(f) 

emissions until 2000 followed by a levelling off over 2001 to 2005. That California’s CO2(f) 

emissions have been commendably declining on a per capita or per dollar basis, however, does 

not alter the trajectory of its total IND burden.  

 Under the aspirational reductions scenario, Estonia starts with an emissions rate of CO2(f) 

far below its peak whereas California begins only slightly below its peak. In the case of both 

countries, the decrease in their CH4 emissions will also causes a decline in their INDCH4
s. But in 

Estonia’s case, the contribution of its future CO2(f) emissions to its IND will be balanced by the 

decay of its past emissions, whereas California will see its IND slowly grow barring even more 

significant cuts to its CO2(f) emissions.  

 Under the aspirational reductions scenario, whether a country’s IND contracts or expands 

is determined by the balance between the country’s lowering of INDCH4
 and its raising of 

INDCO2(f). The modeled decreases in CH4 emissions lower INDCH4
 by 2050 for all countries, 

verifying the swift response of INDCH4
 to a decline in emissions. On the other hand, the modeled 

decreases in CO2(f) emissions do not lower INDCO2(f) for any country, in this case reflecting the 

enduring legacy of past CO2(f) emissions. The decreases in CO2(f) emissions prevent INDCO2(f) 

from rising even further, but their insufficiency also make apparent the incentive for 

simultaneously decreasing emissions of other CAPs while devising viable carbon capture and 

sequestration technologies (Rubin et al. 2012; Sedjo and Sohngen 2012), as well as the impulse 

for cautiously appraising geoengineering schemes to manipulate the climate system (Lenton and 

Vaughan 2009). 

 For the world as a whole, the rise in IND from countries above the orange line is 

compensated by the fall in IND from countries below the orange line. Consequently, global IND 

in 2050 remains very similar to that in 2005. But this seemingly favorable outcome for the 

aspirational reductions scenario does not advocate for its implementation. A global program of 

climate stabilization pursued through commensurate decreases in emissions intensity across all 

countries, on the contrary, would exacerbate already stark inequities. 

 Instead, the aspirational reduction scenario stresses the different capacities of countries to 

lower their climate debt and draws a sharp distinction between the potentially divergent 

evolution of countries’ IND. The scenario exercise lays bare the need for coordinated action on 

both CO2(f) and CH4 to address climate change. Firstly, bold decreases in CO2(f) emissions from 
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countries with a high %CO2(f) will be necessary to both reduce global INDCO2(f) and offset 

increases in CO2(f) emissions from countries that aspire to attain a prosperous level of 

development. Secondly, decreases in CH4 emissions from all countries will also be necessary to 

rapidly reduce the global INDCH4
 and thereby at least postpone and possibly diminish the 

deleterious impacts of climate change. Therefore, on both counts, the aspirational reductions 

scenario motivates sharp cuts in both CO2(f) and CH4 emissions in order for California to reduce 

its IND by 2050. 

 Moreover, the aspirational reductions scenario posits that the global IND in 2005 could 

serve as a medium-term objective for capping worldwide climate debt from CO2(f) and CH4 

combined. It follows that the target for global per capita IND in 2050 would be about 

215 μW/m
2
/person for the intermediate-fertility population projection from the United Nations 

Department of Economic and Social Affairs - Population Division (United Nations Department 

of Economic and Social Affairs - Population Division 2011), similar to the climate debt carried 

in 2005 by the average Jamaican, Laotian, or Somali. For the UN’s low-fertility and high-fertility 

population projections, global per capita IND in 2050 would be roughly 30 μW/m
2
/person higher 

or lower, respectively. The target applies equally to countries currently above and below it, and 

offers a vision of what will be required, as well as what would be achieved, by “convergence” 

with respect to climate debt. 

 

2.3.4.3. Alternate Histories 

 The same features of IND which make it an accessible tool for global-level scenario 

analyses also facilitate the scrutiny of questions at finer scales. As an example of such an 

analysis, I leverage IND to help define the climate debt contours of the ongoing debate on 

natural gas in California and across the world. In particular, IND can help to assess the relative 

impact, in terms of change in RF, from displacing coal-fired electricity generation with gas-fired 

alternatives. 

 Much of the opportunity for reducing emissions of both CO2(f) and CH4 resides in the 

energy sector. Hydraulic fracturing or “fracking” has significantly expanded natural gas 

production in the United States since the mid-2000s. Coupled with the opportune advances in 

extraction technology has been a favorable economic, regulatory, and strategic environment for 

natural gas as an energy source. In addition, gas burns more cleanly than oil and especially coal, 

producing less CO2(f) per unit energy released, which has led some to pitch natural gas as a 

“bridge” fuel until renewables become more competitive.  

 Part of the argument around natural gas concerns whether its greater combustion 

efficiency might be outweighed by fugitive emissions of CH4 during extraction, transport, 

storage, and use (Alvarez et al. 2012; Miller et al. 2013). Although natural processes remove 

CH4 from the atmosphere more rapidly than CO2, the radiative efficiency of CH4 exceeds that of 

CO2 on a per unit mass or carbon atom basis. Studies on the net impacts of natural gas, including 

those focused on fracking, have found evidence to support claims on both sides of the argument 

(Weber and Clavin 2012; McJeon et al. 2014). 

 An analysis based on IND can help define the climate debt contours of this ongoing 

debate while also highlighting the applicability of IND for scrutinizing questions at finer scales. 
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In order to examine the IND implications of shifting California’ power production portfolio from 

coal to gas, I developed an “alternate histories” scenario in which half of the state’s coal-fired 

electricity generation during 2001 to 2005, including imports from other states, was instead 

produced by natural gas power plants. The scenario considers a range of coal and gas power 

plant types and a continuum of plausible leakage rates in the natural gas system.  

 Instead of attempting to forecast the future, I sought to reimagine the past, asking how the 

California’ IND in 2005 would have differed had the fracking revolution occurred earlier. This 

approach has the benefit of drawing on more reliable existing data, subjected to the hypotheses 

of the exercise, instead of anticipating less certain circumstances far into the future. Additionally, 

such a strategy may be useful for situations requiring a near-term assessment, for instance to 

meet a target or respond to feedbacks (Rignot et al. 2014; van Nes et al. 2015), whereas assessing 

long-term impacts would require assumptions similar to the aspirational reductions scenario. 

 The alternate histories scenario drew on Database IND and its underlying datasets (Air 

Resources Board of the California Environmental Protection Agency 2007a; Boden et al. 2010; 

JRC/PBL, 2010b; Air Resources Board of the California Environmental Protection Agency 

2013). In the scenario, CO2(f) emissions from coal are replaced by those from gas at a proportion 

ranging from 0.35 to 0.65., thereby accounting for the range of carbon intensity (CO2 emissions 

per unit energy) ratios possible given the various types of both coal and gas power plants. The 

lower value corresponds to a combined cycle gas plant replacing an average coal plant and the 

higher value corresponds to an average gas plant replacing a super pulverizer coal plant (2012).  

 For simplicity, I assumed that all coal or gas combusted in a given year was extracted in 

that same year. In order to capture the full impact of the coal-to-gas alternate history, I expanded 

the system boundary of California’s greenhouse gas emissions inventory in two ways. First, I 

included decreases in CH4 emissions consequent to a decline in coal mining caused by 

diminished demand even though the state’s emissions inventory’s boundary does not include 

CH4 emissions from out-of-state coal mines that supply facilities generating electricity for 

California. To fill this data gap, I relied on data showing that, during 2001 to 2005, coal mining 

contributed on average 18.5% of the United States’ energy sector’s CH4 emissions (2010b; 

2013).  

 Second, I included increases in CH4 emissions from fugitive emissions (i.e., leaks) of 

natural gas anywhere on the pathway from well to plant. Again, current inventory methods do 

not include such CH4 emissions that occur out-of-state, except at the site of a power plant that 

exports electricity to California. System-wide, i.e., well-to-plant, leakage in the natural gas 

system can be expressed as a percent of the gas being extracted in order to be combusted at 

gas-fired facilities. In the scenario, leakage spans a range of 0% to 5%, encapsulating a plausible 

range approximately centered around the United States Environmental Protection Agency’s 

pre-2013 estimate that ~2.25% of natural gas produced over 2001 to 2005 was lost to fugitive 

emissions (2008). More recently, the United States Environmental Protection Agency revised 

this fraction downwards, to ~1.5% (2013). Other evidence suggests leakage could be several 

times higher than either of these values (Miller et al. 2013; Brandt et al. 2014), a concern 

addressed by the higher end of the leakage range. 
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 The scenario exercise recalculated CO2(f) and CH4 emissions over 2001−2005 for 

California and then adjusted corresponding global emissions accordingly. This pair of 

recalculations provided both a new numerator and denominator for re-attributing global INDCO2(f) 

and INDCH4
 to California. 

 Figure 2.12 presents the difference between California’s IND as calculated under the 

alternate histories scenario and California’s actual IND in 2005 across all combinations of 

relative carbon intensities (x-axis) and leakage rates (y-axis). As the green-hued contour bands 

become darker, they incrementally indicate larger falls in IND. Conversely, as the brown-hued 

contour bands become darker, they incrementally indicate larger rises in IND.  

 The upper left corner, where natural gas leakage is lowest and combined cycle gas plants 

replace average coal plants, is the most favorable region of IND outcomes, a decrease of 0.15 to 

0.10mW/m
2
. The opposite corner, at the bottom-right, where natural gas leakage is highest and 

average gas plants replace super pulverizer coal plants, is the least favorable region, with IND 

actually increasing 0.15 to 0.20 mW/m
2
. In general, combined cycle gas plants are net positive, 

with respect to climate debt in 2005, until leakage rates approach the 3% to 4.5% range. For 

average gas plants to be advantageous from this perspective, leakage rates must be lower, in the 

1.5% to 2.5% range. 

 The IND-based scenario analysis, in which half of California’s coal power production 

was replaced by gas, defines the range of outcomes possible, over the five year period, in terms 

of climate debt. Clearly, conclusions pivot on the amount of leakage in the natural gas system 

and the type of gas and coal plants being swapped. Overall, from one set of extremes to the 

other, as leakage in the natural gas system decreases or as the combustion efficiency of gas 

plants relative to coal plants increases, electricity generation by natural gas goes from being 

unfavorable to favorable in terms of climate debt. The alternate histories scenario provides a 

template for using IND to scrutinize more elaborate decision analyses, including the 

incorporation of economic costs, a central issue I have left aside for the time-being, as well as 

longer time horizons. 

 

  

Figure 2.12: IND Outcomes from Alternate Histories of a Coal-to-Gas Transition in California. 
Figure (previous page) depicts the net impact on California’s IND in 2005 under a scenario in which 
50% of the state’s coal-fired electricity generation during 2001 to 2005 had instead been produced by 
gas power plants. The colored contour bands (contour interval 0.05 mW/m

2
) indicate the change in IND 

between the various combinations of this scenario and reality. The contour bands range from a 
decrease in IND (green hues) of -0.15 to -0.10 mW/m

2
 at top-left to an increase in IND (brown hues) of 

0.15 to 0.20 mW/m
2
 at bottom-right. The y-axis spans the possible range of carbon intensity ratios for 

gas versus coal power generation and the x-axis spans a continuum of plausible system-wide leakage 
rates in the natural gas system (see text). The black curve separates the regions of IND decrease, 
above the arc, from IND increase, below the arc. Data derived from using Database IND as the input 
for modeling this scenario, with additional data from the Air Resources Board of the California 
Environmental Protection Agency (2013). 



 

50 

2.4. Conclusions 

 IND apportions global radiative forcing from CO2(f) and CH4, the two most significant 

CAPs, to individual entities − primarily countries but also subnational states and economic 

sectors, with even finer scales possible − as a function of unique trajectories of historical 

emissions, taking into account the quite different radiative efficiencies and atmospheric lifetimes 

of each CAP. Owing to its straightforward and transparent derivation, IND can readily 

operationalize climate debt to consider issues of equity and efficiency, and drive scenario 

exercises that explore the response to climate change from global to sectoral scales. The analyses 

presented in this chapter demonstrate the capacity for climate debt, as captured by IND, to 

inform a range of key question on climate change mitigation. As such, an accessible path exists 

for public health scientists to pursue the causes and not just the consequences of climate change. 

 Scrutinizing IND in total and per capita terms exposes and emphasizes variations in the 

size and composition of climate debt that can help orient burden-sharing, guide mitigation 

approaches, track progress at multiple scales, and generate hypotheses for further investigation. 

For example, monitoring California’s IND can benchmark the state’s progress in comparison to 

other countries, the U.S. minus CA, or itself over time. California’s IND in 2005 reflects its 

historically efficient generation, relative to the U.S. minus CA, of both CO2(f) and CH4 

emissions. Yet California’s IND nonetheless exceeds the global average by more than a factor of 

two. Reducing California’s contribution to global warming will require determined and 

coordinated decreases to both its CO2(f) and CH4 emissions. IND functions as a natural tool for 

exploring, in an manageable yet realistic manner, technological and policy options at the level of 

a subnational state. 

 At the global level, IND reveals that the bulk of accountability remains with HICs, 

though there is a shift in balance toward LMICs compared to a CO2(f)-only perspective. In 

contrast, compared to HICs, CH4 reductions in LMICs can result in comparatively rapid 

reductions in these countries’ climate debts, since CH4 is often a significant portion of LMICs’ 

debt, while helping to slacken the pace of warming over this century. The use of IND to allocate 

accountability in international negotiations for action on CAP mitigation and adaptation could 

help enact the “differentiated responsibilities” portion of the UNFCCC (United Nations 1992). 

By itself, however, IND would be insufficient to determine obligations. Under the “respective 

capabilities” clause of the UNFCCC (United Nations 1992), actual transfers for remediation or 

adaptation in an international regime would require implicit or explicit assessment of ability to 

pay and additional factors including, for instance, promoting access to family planning and 

adhering to conventions on conservation (Hayes and Smith 1993; Baer 2006).  

 Similar to other measures of environmental footprint (Knight and Rosa 2011; Jorgenson 

2014), the accumulation of IND can be evaluated in comparison to two major indicators of 

overall well-being – economic output and population health. I put forth a characterization of the 

“efficiencies” of INDCO2(f) and INDCH4
 in order to explore how effectively countries have 

accumulated these two forms of climate debt in the pursuit of expanding economic output and 

diminishing ill-health. For instance, the distribution of the efficiency of INDCO2(f) hints at the 

consequence of a “leapfrog” strategy for many LMICs, a number of which have low health but 

high income efficiencies. If these countries maintained or even moderately increased their 
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INDCO2(f) in order to promote population health, they could catapult to HIC levels of both health 

and income efficiency. In contrast, the sizable number of LMICs which, from the perspective of 

economic output, have inefficiently accumulated INDCH4
, lends additional impetus for research 

and development into technologies and strategies that either decrease CH4 emissions or more 

effectively convert CH4 emissions into income gains. Overall, IND efficiency provides another 

yardstick by which to investigate the distribution and evolution of climate debt across countries 

as countries also endeavor to achieve other goals (McMichael and Butler 2011; Lamb and Rao 

2015).  

 IND functions as a natural tool for investigating mitigation goals and strategies. As a 

measure of climate debt, IND accounts for the constraints imposed by the magnitude and timing 

of past emissions and measures the amount of radiative forcing in a particular year caused by 

still-extant emissions of multiple CAPs. Scenario exercises, with appropriate attention to their 

limitations, can help evaluate the future evolution of IND, propose evenhanded approaches to 

reducing climate debt, and interrogate the choice between mitigating CO2(f) or CH4 at several 

scales. 

 Under the “aspirational reductions” scenario, countries linearly decrease their CAP 

emissions to 20% of 1990 levels by 2050, attaining a target commonly discussed for midcentury 

(European Commission, 2011; Executive Department State of California, 2005; Parliament of 

the United Kingdom, 2008). Overall, the exercise posits that, assuming intermediate-term 

fertility projections (United Nations Department of Economic and Social Affairs - Population 

Division 2011), a medium-term, globally averaged, per capita IND of approximately 215 

μW/m
2
/person would stabilize global IND by 2050. 

 The aspirational reduction scenario explains how the differing capacities of countries to 

lower their climate debts is a function of historical emissions trajectories of CO2(f) and CH4. 

Thus, the exercise lays bare the need for coordinated action on both CO2(f) and CH4 to address 

climate change. Firstly, bold decreases in CO2(f) emissions from countries with a high %CO2(f) 

will be necessary to both reduce global INDCO2(f) and offset increases in CO2(f) emissions from 

countries aspiring to attain a prosperous level of development. Secondly, decreases in CH4 

emissions from all countries will also be necessary to rapidly reduce global INDCH4
 and thereby 

at least postpone and possibly diminish the deleterious impacts of climate change. Thirdly, the 

immense challenge of the preceding two recommendations makes apparent the incentive for 

simultaneously decreasing emissions of other CAPs; devising viable carbon capture and 

sequestration technologies (Rubin et al. 2012; Sedjo and Sohngen 2012); and appraising, with 

due caution, geoengineering schemes to manipulate the climate system (Lenton and Vaughan 

2009). 

 Although natural processes remove CH4 from the atmosphere more rapidly than CO2, the 

radiative efficiency of CH4 exceeds that of CO2 on a per unit mass or carbon atom basis, 

complicating decisions to preferentially mitigate one CAP versus the other (Weber and Clavin 

2012; McJeon et al. 2014). This question can be pursued at a sectoral level through an “alternate 

histories” scenario in which half of California’s coal-fired power production had been instead 

generated by natural gas facilities from 2000 to 2005. The scenario incorporates the carbon 

intensity ratios of different coal-to-gas plant substitutions and a range of plausible well-to-plant 

leakage rates in the natural gas system. For such a hypothesized shift to have lowered 
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California’s IND in 2005, relative to the state’s actual IND that year, combined cycle gas plants 

would require leakage rates in the 3% to 4.5% range or less, whereas average gas plants, with 

their lower efficiency, would require leakage rates at most in the 1.5% to 2.5% range. 

 IND was developed to be flexible for users, including with regards to data inputs and 

calculated outputs. IND can be an appropriate vehicle, as data sources improve and climate 

science advances, for folding additional CAPs, non-CAP anthropogenic perturbations to RF, and 

mitigative actions into the climate debt paradigm. The incorporation of a “basic needs” 

allowance (Müller et al. 2009; Costa et al. 2011), as well as approaches that attribute IND on the 

basis of where good and services were consumed, as opposed to where emissions were produced 

(Hertwich and Peters 2009; Unger et al. 2010), would further expand the explanatory and 

analytical power of IND. 

 Collectively, the analyses presented in this chapter demonstrate how IND in its present 

form – as well as updated, expanded, or enhanced − can inform a range of key question on 

climate change mitigation. The published literature on climate debt has often involved either 

philosophically or technically complex approaches to contemplate or calculate climate debt 

(Caney 2005; Tanaka et al. 2009; Bell 2011; Höhne et al. 2011). Both of these are valuable 

streams of scholarship that warrant sustained attention, and have contributed to the development 

of IND. However, the full utility of climate debt as an analytical perspective will remain 

untapped without tools such as IND that can be manipulated by a wide range of analysts, 

including global environmental health researchers. By demonstrating the insights possible from 

applications of IND, I have sought to broaden the intellectual terrain for climate debt analyses 

and invite more participatory and inclusive discussions about the consequent implications of 

such a perspective. 
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3. Framework for 
Environmental Change and 
Infectious Disease 

3.1. Introduction 

 Climate change is among the most prominent examples of a distal environmental change 

that can affect human health through a series of causal linkages (Altizer et al. 2013). For 

example, acting through a series of intermediate steps, climate change may alter more proximal 

environmental characteristics at regional or local scales, such as temperature or precipitation,  

(Hambling et al. 2011), which in turn shift the transmission dynamics of an environmentally-

mediated infectious disease (Anderson and May 1991; Kraemer and Khan 2010). Systematically 

interrogating this type of inherently multiscale chain motivates a systems-based approach.  

 

3.1.1. Overview 

 Over the past two decades, global environmental health scientists have increasingly 

discovered that the recent emergence or re-emergence of infectious diseases has an origin in 

environmental change (Morse 1995; Patz et al. 2000; Jones et al. 2008; Wallinga et al. 2010; 

Kilpatrick and Randolph 2012; Gebreyes et al. 2014; Mackey et al. 2014). These multiscale 

environmental changes encompass social processes such as urbanization, transportation, and 

migration (Balcan et al. 2009), as well as ecological processes such as agricultural 

intensification, water development, energy use, biodiversity loss, and as Chapter 2 explored, 

climate change (Aguirre and Tabor 2008). Concern surrounding these trends has inspired much 

exploratory research, since these phenomena are often anthropogenic, interrelated, and 

accelerating. Yet there remains a pressing need to more clearly define the causal relationships 

leading from a distal environmental change to alterations in more proximal environmental 

characteristics and disease transmission cycles, which eventually lead to a shift in the prevalence, 

distribution, or severity of an infectious disease. 

 In this chapter, I focus on the intermediary relationships between proximal environmental 

characteristics and transmission cycles. The environmental sciences have traditionally focused 

on the linkages between distal environmental changes and their effects on proximal 
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environmental characteristics, whereas the public health sciences have focused on the linkages 

between transmission cycles and disease burden. I motivate and develop a framework for 

leveraging the wealth of prior research in both realms by highlighting the relationships between 

these two modes of scholarship. These links are conveniently defined through a matrix 

formulation in which system elements from one component are mapped onto system elements 

from another component. The matrix cells can then be used to provide information on what is 

known about the particular link. This matrix formulation is consistent with a dynamic systems 

approach that accounts for feedbacks, a central feature of complex systems (Bar-Yam 1997). 

 The Environmental Change and Infectious Disease (EnvID) framework (Figure 3.1) uses 

a systems-based structure to integrate and analyze disparate information from a variety of 

disciplines. My ultimate goal is to identify knowledge gaps and define research directions, as 

well as to develop relevant study designs and approaches for data analysis so that knowledge 

about environmental change can be incorporated appropriately into the study and control of 

infectious diseases. In the ensuing section, I survey the literature on contemporary frameworks of 

environmental change and infectious disease. Next, I motivate and describe the EnvID 

framework. I then use this framework to generate a putative matrix of plausible relationships 

between proximal environmental characteristics and transmission cycles. This matrix can be used 

to assess the strengths and weaknesses of existing knowledge, and thus prioritize avenues for 

future research. 
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Figure 3.1: Environmental Determinants of Infectious Disease (EnvID) Framework 



 

 65 

3.2. Environmental Change and Infectious Disease 

 During the modern era of public health, attention to the natural and built environment has 

fluctuated, reflecting wider trends in biomedical thought and praxis (Porter 1999; McMichael 

2001). In the 19th century, the progenitors of public health instituted a suite of interventions that 

astutely reflected perceived linkages between environmental conditions and poor health. 

Campaigns that focused on sanitation, hygiene, housing, and nutrition led to unparalleled leaps in 

health and longevity (Szreter 1988). Despite a flawed rationale based on theories of miasma or 

contagion, these campaigns effectively controlled many significant communicable pathogens 

(Cipolla 1992). Moreover, their success demonstrated the utility of intervening further up the 

causal chain, even in the absence of comprehensive knowledge (Smith and Desai 2002). 

 Subsequent advances in germ theory gradually overshadowed the environment as a major 

cause of disease. In the 20
th 

century, public health strategies for the control of infectious disease 

progressed along a reductionist trajectory that emphasized vaccines, antibiotics, pesticides, and 

barriers to infection. These technologies resulted in further improvements in the public’s health 

and deservedly continue to influence much of biomedicine. 

 However, a growing body of literature on environmental change and infectious disease 

has emerged, returning public health to its roots (Epstein 1995; Daily and Ehrlich 1996; Gratz 

1999). Overviews on the topic have permeated a growing array of academic fields (Price-Smith 

1999; Cohen 2000; Kombe and Darrow 2001; Anderson 2004) and popular literature (Garrett 

1994). These commentaries have raised interest and stimulated research, but understanding how 

environmental change impacts an infectious disease process remains a challenge. This challenge 

hinders efforts to translate research into public health policy and practice. 

 In order to help bridge this gap, I highlight three threads of scholarship that link 

environmental change and infectious disease: (1) debates on the future of epidemiology; (2) 

integrative reviews on environmental change and infectious disease; and (3) mathematical 

models of disease transmission. I draw and build upon the major themes and converging 

concerns and approaches within these threads.  

 

3.2.1. Debates on the Future of  Epidemiology 

 Suggestions that public health move from a discipline concerned primarily with risk 

factors at the individual level toward one concerned with multiple levels and types of causation 

have prompted vigorous discussions. Several themes within these debates on the future of 

epidemiology offer guidance for the study of environmental change and infectious disease. 

 

3.2.1.1. Strengths and Weaknesses of Risk Factor Analysis 

 Risk factor analysis has become virtually synonymous with modern epidemiology. It 

supplies the theoretical and methodological foundation for studying relationships at an individual 

level, and within this realm, provides the basis for testing causal hypotheses. Although risk factor 

analysis has enjoyed much success, its limitations have come to light in recent years (Pearce 

1996; Susser 1998). In response, more valid and precise techniques which better account for bias 
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and error have been developed (Robins et al. 2000; Greenland 2001; Lash and Fink 2003); where 

others have advocated of the risk factor approach, stressed the role of apparently inexplicable 

results in eventually guiding discovery (Savitz 1994; Greenland et al. 2004).  

 Although such refinement and reflection have addressed some weaknesses of risk factor 

analysis, others have emerged. For example, although the individual level may be an important 

scale for probing certain public health questions, risk factor analysis is challenged by the 

complexity of fundamental causes, including social and ecological drivers (Krieger and Zierler 

1996; Pimentel et al. 1998), gene-environment interactions (Hunter 2005), and life-course 

trajectories (Susser and Terry 2003). Risk-factor analysis, even with modification, faces limits in 

its capacity to examine causal mechanisms at multiple scales (Susser and Susser 1996a); it may 

adeptly explain who is at risk but not why risks exist or differ within and between populations 

(Rose 1985; Krieger 1994; Susser 2004).  

 

3.2.1.2. Causal Inference for Infectious Disease 

 Yet other critiques have questioned the appropriateness of placing causal inference on 

potential outcomes at the individual level, the underlying premise of risk factor analysis; i.e., the 

traditional analytical approach in epidemiology assumes independence of outcomes, and is 

therefore an inherently individual-level analysis (Plowright et al. 2008). This model hinges on 

the conjecture that populations are simple collections of individuals, and the nature or 

arrangement of interactions between individuals does not alter patterns of risk (Koopman and 

Lynch 1999). The propagation of exposures and outcomes through a population, however, is 

intrinsic to most communicable pathogens and plainly violates the so-called stability assumption, 

which requires independence among individuals’ exposure and outcome status (Rubin 1991; 

Halloran and Struchiner 1995). Disease (e.g., cholera) influences exposure (e.g., contaminated 

water source), which in turn influences outcome (e.g., more cholera), and so on, via 

transmission. It is not simply an individual’s exposure to water which alone determines the 

individual’s outcome, but rather the exposure and outcome status of all other individuals in 

possible prior contact with the same water source (Eisenberg et al. 1996).  

 Feedbacks among exposures and outcomes generate context-dependent effects. 

Population level effects are not equivalent to the sum of individual level effects, and individual 

level effects depend on the distribution of population level effects. Herd immunity and threshold 

density are two well-known examples of this phenomenon. Moreover, feedbacks are also integral 

to many wider causal webs of environment and disease (Figure 3.1). In complex systems, 

inappropriate inferences based on potential outcomes can severely distort the interpretation of 

effects and misdirect the application of interventions (Jacquez et al. 1994; Halloran and 

Struchiner 1995; Eisenberg et al. 2003). Risk-factor analysis for infectious disease can 

sometimes be partially salvaged through conditioning on transmission potential (Haber 1999) or 

employing counterfactuals (Robins et al. 2000), but results from both experimental and 

observational studies warrant cautious scrutiny prior to generalization. 
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3.2.1.3. New Paradigms for Epidemiologic Research 

 The impetus to understand causality within complex systems has inspired the search for 

new paradigms that do not abandon conventional research, but rather situate it within the study 

of processes. Several more sophisticated approaches have been proposed, some of the more 

influential of which include eco-epidemiology (Susser and Susser 1996b), social-ecologic 

systems perspectives (McMichael et al. 1999), and eco-social theory (Krieger 2001). These 

efforts all utilize a systems- based approach to extend the purview of causation across axes of 

space, time, and organizational level and propose to interrelate research at different scales 

through feedbacks and interactions.  

 

3.2.2. Integrative Reviews on Environmental Change and Infectious 
Disease 

 In recent years, research on the linkages between environmental change and infectious 

disease has proliferated, embracing multiple types and levels of anthropogenic disturbance, 

pathogenic process, and scientific approach. Integrative reviews on environmental change and 

infectious disease have played a critical role for the nascent field by distilling results from 

disparate sources. I do not systematically assess these integrative reviews, and many worthwhile 

publications are overlooked. Instead, I concentrate on three emerging trends within this literature 

of notable import to future projects and syntheses. 

In parallel to the debates on the future of epidemiology, in recent years integrative 

reviews on environmental change and infectious disease have proliferated. I concentrate on three 

emerging trends within this literature. 

 

3.2.2.1. Conceptual Frameworks 

 A set of integrative reviews articulate conceptual frameworks for comprehensively 

organizing knowledge about systems of interacting components that link fundamental drivers to 

disease resurgence through an interplay of subsystems (e.g. social, economic, biological, 

physical; Barrett et al. 1998; Cohen 1998; McMichael et al. 1998; Daszak et al. 2000; Mayer 

2000; Weiss and McMichael 2004; Harrus and Baneth 2005; Wilcox and Colwell 2005; Bonds et 

al. 2010). Some existing conceptual frameworks could also be applied to environmental change 

and infectious disease. Particularly germane are frameworks for climate change (Colwell 1996; 

Patz et al. 1996; McMichael and Butler 2004; Parham et al. 2015), globalization (Woodward et 

al. 2001; Chapman 2009), social epidemiology (Diez Roux 2000; Subramanian 2004; Gislason 

2013), and environmental health (Black 2000; Parkes et al. 2003; Mellor et al. 2016). The 

various conceptual frameworks reveal the exceptional complexity and difficulties of their subject 

matter, such as striking a balance between the general versus the specific, and difficulty in 

assessing validity and relevance to decision-making bodies. Still, conceptual frameworks 

undoubtedly encourage critical thought and shape the evolution of the field. 
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3.2.2.2. Interdisciplinarity and Integration 

 Virtually all integrative reviews are, at least to some extent, interdisciplinary since the 

study of environmental change and infectious disease clearly requires expertise from numerous 

fields. Most integrative reviews include various biomedical sciences but selectively emphasize 

certain social or ecological sciences, with more recent work displaying greater inclusivity and 

deeper collaboration. In addition, integrative reviews that reference the gradually growing 

number of case studies on sustainable development (Shahi et al. 1997; Corvalan et al. 1999) or 

ecosystem approaches (Forget and Lebel 2001; Patz et al. 2004; Corvalan et al. 2005; Parkes et 

al. 2005) bridge scientists, policy-makers, activists, and citizens. 

 

3.2.2.3. Categorization Schemes 

 Explicitly or implicitly, many integrative reviews deploy particular typologies to 

categorize environmental changes and/or infectious diseases. Most schemes do not emphasize 

the most salient features of environment-disease relationships. Infectious diseases are commonly 

grouped according to scientific taxonomy or clinical symptoms, which might be useful for 

purposes of diagnosis and treatment, but do not correspond reliably to environmental drivers. 

Wilson (2001) groups infectious diseases by transmission cycle, an approach I adopt here. 

Proposed typologies of environmental change are similarly elusive due to their complex causes 

and consequences. Still, the tentative discrimination of environmental changes along continuums 

of spatial extent, temporal persistence, distal to proximal action, and social versus ecological 

impact could more usefully translate linkages, as they are identified, to a putative causal 

network.  

 

3.2.3. Mathematical Models of  Disease Transmission 

 Mathematical models of disease transmission began to be developed nearly a century ago 

with work on mass action (Ross 1915) and threshold densities (Kermack and McKendrick 1933), 

with subsequent elaboration from mathematical and population biologists (Anderson and May 

1991). Ecologists, epidemiologists, and mathematicians are increasingly deploying transmission 

models towards informing study designs, effect estimates,
 
and intervention strategies (Levin et 

al. 1999; Eisenberg et al. 2002). From the extensive literature on transmission models, I 

underscore two important and related conclusions: transmission models are instructive as a 

well-developed systems-based approach; and transmission models can themselves be 

incorporated into wider studies of environmental change. 

 

3.2.3.1. Systems-Based Approach 

 The overt consideration of feedbacks and interactions within and between populations in 

a transmission model allows for a consideration of infectious diseases as inherently dynamic and 

interdependent processes, and thus causality as context-dependent and systems-based (Koopman 

2004). Transmission models elucidate the relationships governing the creation and distribution of 

risks by disentangling individual level effects and population level effects (Halloran et al. 1991). 
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The insights enabled by this analysis are often nuanced. For example, altering the pattern of 

connections between exposed and unexposed individuals may impact the level of infection 

within a population more so than altering the exposure status of individuals in that population 

(Koopman and Longini 1994). If a core group is sustaining infection in a larger group, targeting 

interventions based on individual-level risk factors will not, in general, address the principle 

cause of disease (Jacquez et al. 1988; Sattenspiel 2000; Christley et al. 2005; Verdasca et al. 

2005). 

 

3.2.3.2. Transmission Models within Wider Systems 

 The influence of social and ecological contexts on disease transmission has been 

recognized for diseases spread through direct contact (e.g., sexually transmitted diseases (STDs) 

and air-borne diseases; Rothenberg et al. 1998; Klovdahl et al. 2001; Shen et al. 2004), diseases 

with environmental reservoirs (e.g., water-borne diseases; Colwell 2004; Eisenberg et al. 2005), 

and diseases for which land use change modulates vector populations (e.g., vector-borne 

diseases; Lindblade et al. 2000; Ostfeld and Keesing 2000). Transmission models can serve as 

conceptual or analytical instruments to analyze the interactions between environmental contexts 

and transmission cycle components (McMichael 1997; Brooker et al. 2002; Smith et al. 2005; 

Ortblad et al. 2015).  

 

3.2.4. Preliminary Synthesis 

 These three threads of scholarship all advocate a gradual shift towards a systems-based 

approach. The emerging epidemiologic paradigms, spurred by debates on the future of 

epidemiology, and the conceptual frameworks, distilled from integrative reviews on 

environmental change and infectious disease, are essentially extensions of the systems 

perspective intrinsic to mathematical models of disease transmission that spans the gulf from 

distal environmental change to disease burden by leveraging interdisciplinarity and sound causal 

inference.  

 I propose a series of steps, derived from these three threads, towards constructing a more 

robust scaffold. An initial step defines flexible and logical classifications of environment and 

disease that can readily translate to causal webs. These classifications or components form the 

basis of the framework. A second step begins to integrate transmission with environment by 

examining the intersection of proximal environmental characteristics and transmission cycles and 

acknowledging the useful but limited insights of risk factor analysis. Here I detail some of the 

connections that exist between environment and health. A third step develops causal networks 

with explicit feedbacks and interactions that highlight the dynamic properties of this large-scale 

environmental process. 
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3.3. The Framework 

 The EnvID framework encompasses three interlocking components: environment, 

transmission, and disease. There has been a tendency to delineate environmental changes into 

those that are social, such as urbanization, and those that are ecological, such as deforestation, 

but in actuality any process affecting human health has both social and ecological components 

that are inextricably linked. These changing environmental processes may affect the transmission 

cycles of infectious pathogens. I present six transmission groups that each relate to the 

environment in distinct ways. Disease burden is determined by incidence and severity of 

infection, which is in part a function of the transmission cycle.   

 An initial step in operationalizing this framework I propose a matrix formulation to move 

both backwards, towards fundamental drivers, and forwards, towards disease burden. A matrix as 

describe in this section can provide an explicit description of the interconnections between 

system elements. In this manner the matrix defines one component of the system and provides a 

means to summarize what is known and what is unknown about that component. This section 

describes each of the three main EnvID components, with a focus on the linkage between 

proximal environmental characteristics and transmission cycles. 

 

3.3.1. Framework Description  

3.3.1.1. Environmental Change 

 Although the environment represents the first component of the systems-based EnvID 

framework, the environment is itself a system of interacting components. I choose to 

disaggregate the environment into distal environmental changes that act on disease transmission 

through multiple intermediate steps and proximal environmental characteristics that directly 

affect disease transmission.  

 The list of distal environmental changes in Table 3.1 includes anthropogenic changes that 

affect landscape ecology, human ecology, and human-created environments, as well as natural 

perturbations and natural disasters. There are clear interactions among these distal factors and 

their effects. For example, climate change may impact the characteristics of El Niño, roads may 

contribute to urbanization, deforestation may amplify climate change, and the impacts of natural 

disasters might be augmented by anthropogenic changes such as loss of wetlands (Martens and 

McMichael 2002).  

 The distal changes are larger in temporal and spatial scale than the more proximal 

environmental characteristics that they influence. Proximal environmental characteristics are 

defined as directly measurable physical, chemical, biological, or social components of the 

environment, including populations and traits of relevant organisms. Proximal environmental 

characteristics can have a direct influence on the environment of the organisms in question 

(pathogen, vector, host, or human), and thus may directly affect the transmission cycle of an 

infectious disease. 
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Table 3.1: Distal Environmental Changes and Infectious Diseases 

 Description Infectious Disease 

Energy Use 
exposure to immune suppressing  

air-borne pollutants 

bacterial and viral pneumonias  

tuberculosis 

Urbanization 

migration to and growth within towns, 

interplay between humans and 

domesticated animals 

dengue fever  

fecal-oral pathogens 

tuberculosis 

influenza, SARS, avian flu 

Antibiotic Use 
selective pressure for emergence of 

antibiotic resistance 

multi-drug resistant tuberculosis 

S. typhimurium 

Water Projects 
water flow changes due to dam 

construction and irrigation networks  

malaria 

schistosomiasis 

Agricultural 

Intensification 

changing crop and animal management 

practices, fertilizer and biocide use, use of 

genetically modified organisms  

Cryptosporidium 

pathogenic E. coli 

Deforestation 

loss of forest cover, changing water flow 

patterns, human encroachment along and 

into forested areas 

malaria 

Lyme disease  

hemorrhagic fevers 

sexually transmitted diseases 

Transportation 

Projects 

construction of roads, increasing access to 

both towns and remote areas 

malaria 

sexually transmitted diseases 

Natural 

Perturbations 

large-scale climatic and other changes 

such as El Niño events  

cholera 

leptospirosis 

Natural 

Disasters 

localized landscape changes caused by 

earthquakes, tsunamis, wildfires, etc. 
water-mediated infections 

Climate Change 
changing temperature and precipitation 

patterns 

vector-borne infections 

water-borne infections 

food-borne infections 

 

 Distal changes affect disease only through a series of causal linkages. For example, a dam 

does not change health directly; rather, a dam causes changes in water flow, which may affect 

mosquito habitat, which in turn can affect transmission potential of malaria. A new road may 

affect disease through major demographic shifts that ultimately lead to increased sexual activity 

and STD incidence. The causal linkages between distal and proximal, therefore, represent a 

continuum, and the labeling of a factor as distal or proximal is relative. However, by focusing on 

measurable proximal environmental characteristics studies can more clearly and definitively 

describe the causal linkages that changes in the environment have on disease transmission. 
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3.3.1.2. Transmission Cycles  

 The impact of proximal environmental characteristics on disease burden is mediated 

through the dynamics of transmission cycles. I categorize pathogens into one of six transmission 

system groups based on their distinct relationships with the environment (Figure 3.2).  

 The first group (I) includes person-to-person transmitted diseases, wherein “contact” 

between humans is the principle mode of transmission, through intimate proximity (e.g. casual 

contact or droplet spray) or bodily fluid exchange (Mandell et al. 2000). In this group, humans 

are the only host and the environment does not serve as a reservoir for the pathogen. The second 

group (II) includes all vector-borne diseases in which humans play an important role in the 

transmission cycle. Transmission occurs through contact between humans and vectors (defined 

here as arthropods that move pathogens from one host to another). The third group includes 

infectious diseases for which the environment (e.g., food, water, soil, etc.) plays a significant role 

in a pathogen’s transmission cycle. In the first subtype (IIIa), transmission occurs between 

humans and the environment directly; no other host animals are involved. In the second subtype 

(IIIb), non-human hosts mediate transmission, although the environment remains an integral part 

of the transmission chain. The fourth group (IV) includes all pathogens that cause zoonotic 

diseases. The transmission cycles of all zoonotic diseases share two key features; humans are 

dead-end hosts and no person-to-person transmission is possible. Subtype IVa includes 

vector-borne zoonotic diseases. Non-vector-borne zoonotic diseases in which pathogens are 

transmitted indirectly through the environment or host-to-host are included in subtype IVb.  

 Although each of these six transmission cycles describe a different mechanism of 

transmission, they share common attributes; i.e., all are affected by the population level and/or 

density of the host and/or vector, and all are driven by a transmission potential governed by a 

number of biological and environmental characteristics. The transmission rate from one host to 

another can be thought of as the product of two processes: contact rate and infectivity. The 

contact rate quantifies the interaction between hosts or between a host and the environment and 

is generally determined by host behavior and properties of the environment. Infectivity, or 

probability of infection given contact, is a function of both the virulence of the pathogen and the 

immune status of the host. Environmental changes can affect population levels of the host, 

vector, or environmental stage of the pathogen, as well as the transmission rate at which 

pathogens move between hosts, vectors and environment. 

 

3.3.1.3. Disease Patterns and Disease Burden 

 Understanding how environmental change affects disease transmission and incidence 

does not address the crucial public health concern of disease burden. For example, high levels of 

rotavirus disease exist in both developed and developing countries, but the mortality rates in 

developing countries are much higher than in developed countries (Parashar et al. 2003). In 

addition, environmental change can affect disease burden directly without necessarily 

influencing transmission. If environmental change affects nutrition, for example, this can in turn 

affect disease severity. Disease burden can also feedback to transmission cycles, as people who 

are more seriously sick may have higher pathogen loads. 
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Figure 3.2: Transmission Cycle Groupings 
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3.3.2. Proximal Characteristics to Transmission Cycles 

Many studies have focused on the association between specific proximal changes in the 

environment and health, and how these proximal characteristics influence transmission. Since 

proximal environmental changes often affect transmission processes directly, experiments can be 

designed to elucidate these mechanistic relationships. These proximal environmental 

characteristic/transmission cycle relationships can be mapped using a tabular “transmission 

matrix,” in which the environmental proximal characteristics are represented as rows and the 

transmission cycle characteristics are represented as columns (Figure 3.3). 

 The transmission matrix organization is consistent with two paradigms prevalent in the 

literature. First, the classic paradigm of infectious disease transmission depicts the agent, host, 

and environment as each representing one node of a triangle. The matrix columns represent the 

host and agent nodes. They consist of population/demographic factors such as density, virulence, 

and immune status, as well as those factors that influence the rate of transmission from one host 

to another, such as ingestion rate, vector biting rate, and human-to-human contact rates. The 

matrix rows represent the environment node that consists of those specific proximal 

environmental characteristics that can affect host/agent properties. 

 The proximal environmental characteristics represented as rows in Figure 3.3 were 

chosen to encompass: physio-chemical characteristics associated with air, water, and climate; 

ecological characteristics of plants and animals; genetic characteristics of pathogens; and human 

characteristics associated with short and long-term human migratory patterns, human contact 

with the environment, and social structure. Again, each row may not be relevant for every 

infectious disease, and the list is not meant to be definitive. The choice of columns is based on 

the transmission paradigm elaborated above. This paradigm suggests that disease incidence is 

proportional to the population level of all organisms that can harbor the pathogen, and the 

transmission rate, which is the product of: (1) the rate of contact between hosts or between a host 

and the environment; and (2) the probability of infection given contact. The matrix columns 

therefore represent factors needed to estimate the transmission rate, and the matrix rows 

represent those environmental factors that can impact the transmission potential by modifying 

factors represented in the columns. Each cell represents the potential for a proximal 

environmental characteristic to affect a component of the transmission cycle. Different portions 

of the matrix (columns and rows) will apply to the different transmission groups outlined in 

Figure 3.2. 
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Figure 3.3: Matrix for Mapping Relationships between Proximal Environmental Characteristics and Transmission Cycles. Abbreviation: 
GMO = genetically modifed organisms 
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 Environmental change will obviously impact disease patterns differently depending on 

the transmission cycle of a particular pathogen (Figure 3.2). Because diseases in Transmission 

Group I are directly transmitted between humans they are most influenced by the proximal 

changes in the environment that affect human social structure, such as conditions of severe 

overcrowding, social changes affected by access to transportation, and migration and travel 

patterns. However, many of these pathogens can survive in the environment for hours or more 

and therefore other physiochemical characteristics of the environment may also play a role. 

Environmental change can impact transmission of diseases in Transmission Group II through its 

effects on proximal factors associated with vector ecology, such as vector biting behavior, 

mortality, and population density, or through social changes that can increase human contact 

with vectors. Because all pathogens in Transmission Group III can survive in the environment 

and some have non-human hosts, environmental change impacts transmission through modifying 

human exposure to contaminated media such as drinking water, recreational water, and food, 

animal hosts, and other infectious individuals. Since this class of pathogens consists of both 

vector-borne and environmentally mediated pathogens, The contact patterns of Transmission 

Group IV are similar to those of Group II and III, but transmission is sustained in non-human 

Figure 3.4: Importance of Ecological versus Social Processes from Different Transmission Groups 
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hosts, so environmental factors associated with the ecology of these non-human hosts and their 

relationships to pathogens is most salient. 

 These differences in the role of social and ecologic processes in mediating environmental 

change between the six transmission groups is represented in Figure 3.4. Environmental change 

impacts those diseases caused by pathogens within Transmission Group I via mechanisms that 

are primarily mediated by social processes. In contrast, those changes impact diseases caused by 

Group IV pathogens via mechanisms primarily mediated by non-human ecological processes. 

Both ecological and social processes influence group II and III pathogens. 
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3.4. Application of  EnvID 

 The EnvID framework can be used in several ways. For example, it can be used to assess 

all possible impacts of environmental factors on a single infectious disease. A formal use of this 

framework would be to conduct a systematic review evaluating the weight of evidence on how 

the environment affects representative pathogens for each of the transmission groups. The 

framework can also be used to guide a particular research question exploring the impacts of a 

distal environmental change on a particular disease. It provides a structured way to conceptualize 

the causal network, which can guide research approaches.  

 To illustrate this latter approach, I present a short case study here that examines the 

proposed causal linkages between road development and diarrheal disease. In 1996, the 

Ecuadorian government began a 100 km road construction project to link the southern 

Colombian border with the Ecuadorian coast. The road was completed in 2001 but secondary 

roads continue to be built, linking additional villages to the paved road. These roads provide a 

faster and cheaper mode of transportation compared with rivers and have led to major changes in 

the ecology and social structure of the region (Sierra 1999). While there is evidence that road 

construction affects the incidence of vector-borne and sexually transmitted diseases (Birley 

1995) the impact that environmental changes from road construction have on diarrheal disease 

remains largely unexplored. A proximal environmental characteristic−transmission cycle matrix 

of this environmental change/infectious disease example illustrates that there is strong risk factor 

evidence for the relationship between the proximal factors of water quality as well as sanitation 

and hygiene levels and transmission of enteric pathogens. There are fewer studies that 

demonstrate a relationship between distal social factors such as crowding or general social 

infrastructure and distal ecological factors such as regional scale water patterns with diarrheal 

disease (Mackey et al. 2014).  

 Road development represents a comparatively distal environmental change that can 

impact both ecological processes, such as deforestation, biodiversity, and hydroecology, as well 

as social processes, such as migration, demographics, and infrastructure. Deforestation can cause 

major changes in watershed characteristics and potential local climate change, which can affect 

the transmission of enteric pathogens (Curriero et al. 2001). Perhaps more important than 

ecological processes, social processes such as migration that are facilitated by roads can increase 

the rate of pathogen introduction into a region. Road proximity affects short-term travel patterns, 

thereby resulting in continual reintroduction of new pathogen strains into communities. New 

communities are created along roads and existing communities can rapidly increase in density. 

These changes in social structures of communities often create or are accompanied by inadequate 

infrastructure, which affects hygiene and sanitation levels, and in turn the likelihood of 

transmission of enteric pathogens. Roads can also increase flows of consumer goods such as 

processed food, material goods, and medicines, and may also provide communities with 

increased access to health care, health facilities, and health information. Figure 3.5 illustrates a 

mapping of the distal environmental change, due to road proximity, to the proximal 

environmental factors associated with water sanitation and hygiene that directly influences 

disease transmission.  
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 The framework and matrix help elucidate the necessary interdisciplinary research 

elements and approaches needed to study environmental impacts of road development on 

diarrheal disease transmission in this Ecuadorian landscape. The research question requires a 

design that examines and integrates processes at multiple spatial and temporal scales using 

regional, village-wide, individual, and molecular-level data, and systems-based models to 

integrate these data. Epidemiological study designs are complemented by hydrology and water 

quality studies, remote sensing and geographic information system technologies, social network 

analysis, ethnography, and molecular strain typing of to elucidate pathogen flow across the 

landscape. The scale and inherent dimensionality of the problem requires this systems-based 

analytic model approach to examine relationships between environmental, social, and biological 

change to explain the detection of the relationship between road access and infection. 
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Figure 3.5: Causal Diagram of the Relationship between Transportation Projects and Diarrheal Disease. 
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3.5. Conclusion 

 As public health moves more towards examining how ecological and social processes 

affect disease transmission, and more specifically, towards examining the fundamental role of 

environmental change in creating the landscape of human disease, a systems-based framework is 

needed from which to integrate and analyze data obtained from the disparate but relevant fields 

of study involved. As the review of contemporary frameworks suggests, the inherent 

multi-dimensionality of these problems precludes the use of standard analytic approaches.  

 The EnvID framework of Chapter 2 builds on a rich history of prior conceptualizations of 

environmental change and infectious disease by: (1) articulating a flexible and logical system 

specification; (2) incorporating transmission groupings linked to public health intervention 

strategies; (3) emphasizing the intersection of proximal environmental characteristics and 

transmission cycles; (4) incorporating a matrix formulation to identify knowledge gaps and 

facilitate an integration of research; and (5) highlighting hypothesis generation amidst dynamic 

processes. The EnvID framework endeavors to identify source of disputes or uncertainty and 

prioritizes avenues for resolution. As scientific understanding advances, the EnvID framework 

can help integrate the various factors at play in determining environment–disease relationships 

and the connections between intrinsically multiscale causal networks. 

A systems-based approach serves to leverage the reality that studies on environmental 

change and infectious disease are embedded within a wider web of interactions. This 

systems-based approach can be initially operationalized by the proposed matrix formulation. The 

matrix formulation provides a succinct approach to characterizing the system, providing 

information on the interrelatedness of the different system components and defining research 

needs. Data needs for the matrix often will be a combination of site-specific data, collected 

specifically for the systems-based analysis, and data from the literature, which always need to be 

assessed with respect to quality and appropriateness. The matrix can be additionally used to (1) 

inform theoretical simulation studies on broader system dynamics, (2) guide the development of 

more focused and informative empiric studies, and (3) integrate and contextualize both 

theoretical and empirical with processes upstream and downstream. In Chapter 4, I pursue such a 

project, focusing on household-level energy use and community-level PM2.5 exposure, a major 

intervention point and risk factor, respectively, for childhood pneumonias. 

 The challenge for future studies on environmental change and infectious disease will be 

to develop new approaches for thinking about processes at the system level that in turn will elicit 

new study designs and data analyses. Given the increasingly explicit nature of the connections 

between proximal environmental change and well-being (Dye 2014), the EnvID framework can  

help synthesize these connections to spur this important nexus of environment and health 

forward. 
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4. Model of  Postulated 
Coverage Effect from Clean 
Cooking Interventions 

4.1. Background & Motivation 

 The overarching theme throughout this dissertation has been to motivate, develop, and 

demonstrate approaches for investigating multiscale drivers of global environmental health. The 

IND metric of climate debt from Chapter 1 addressed global to sectoral scales. The EnvID 

framework for environmental change and infectious disease from Chapter 2 addressed regional 

to local scales. Now, in Chapter 3, I focus on community to household scales with a mechanistic 

model of clean cooking interventions. 

 

4.1.1. Household Air Pollution from Solid Fuel Use 

 Household air pollution from solid fuel use for cooking (HAP) remains one the world’s 

most significant environmental health challenges. Approximately three billion people rely on 

biomass fuels (wood, dung, crop waste, charcoal, etc.) or coal as their primary energy source for 

cooking
3
 (Bonjour et al. 2013). These solid fuels, used in inefficiently combusting and 

inadequately vented traditional cookstoves, generate extraordinary indoor concentrations of 

health-damaging aerosols and gases (Balakrishnan and Mehta 2014). HAP has been causatively 

linked with a range of cardiovascular and respiratory diseases in adults, as well as pneumonias in 

children, resulting in approximately four million premature deaths and over 100 million lost 

disability-adjusted life years annually (Lim et al. 2012; Smith et al. 2014). Current estimates of 

disease burden do not yet include accumulating evidence of additional risks from HAP (Bruce 

and Smith 2014). Women and children experience the greatest exposures to HAP but men are 

also significantly impacted (Adair-Rohani et al. 2016). The vast bulk of this avoidable burden is 

borne by poor families in low-to-middle income countries (LMICs).  

                                                 
3
 Solid fuel use for heating (Chafe et al. 2015) and kerosene use for cooking, heating, and lighting (Lam et al. 2012) 

are additional sources of household air pollution, incurring attendant risks, but are not discussed further here. 
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 Nevertheless, the present moment is a time for cautious optimism. Owing to a renewed 

focus from the global health community, efforts to encourage cleaner burning alternatives to 

traditional solid fuel cookstoves (TSF-Cs) are proliferating (Martin et al. 2013; Rosenthal 2015; 

Amegah and Jaakkola 2016). Clean cooking interventions center primarily on two types of 

technologies: “improved” cookstoves (Barnes et al. 2012; Anenberg et al. 2013) and modern 

cookstove-cookfuel combinations (Smith and Sagar 2014; Smith 2015). Improved cookstoves 

are designed to burn solid fuels with more efficiency and/or less pollution than TSF-Cs. A 

promising but loosely defined category, improved cookstoves have encountered challenges with 

adoption, correct use, and maintenance (Lewis and Pattanayak 2012; Rehfuess et al. 2014b; 

Shankar et al. 2014). Relatedly and crucially, though many improved cookstoves perform well 

during laboratory tests, none has yet demonstrated a consistent capacity to attain recommended 

pollutant levels during actual sustained household use (Rehfuess et al. 2014a; Sambandam et al. 

2015; Thomas et al. 2015).  

 Thus, the most promising strategy to achieve healthy indoor air quality remains enabling 

access to modern cookstoves and cookfuels, in particular, liquefied petroleum gas cookstoves 

(LPG-Cs) and electricity powered induction cookers − provided, of course, that these options are 

safe, reliable, and affordable (Bruce et al. 2015). The question of how to best facilitate the use of 

clean cooking interventions, however, is complicated by the substantial constraints faced by 

poorer households (Jeuland et al. 2015), as well as by the multilateral consortia, development 

agencies, and governments programs which seek to aid them. Households and organizations 

interested in clean cooking interventions must decide how to best distribute their inevitably 

limited resources, a decision which will inform the nature of scale-up schemes − e.g., based on 

commercial markets (Bailis et al. 2009), antenatal clinics (Mukhopadhyay et al. 2012; Jack et al. 

2015), or subsidized distribution (Tripathi et al. 2015) − and consequently “coverage” or the 

extent of intervention use within a given community or region. 

 Notably, several lines of evidence, considered in concert, posit that clean cooking 

interventions may reduce exposure to HAP not only for users but for their neighbors, as well. In 

turn, the efficacy
4
 of an intervention may be determined by the extent of both household-level 

use as well as community-level coverage. Such coverage dependent efficacy, or a “coverage 

effect,” would transform how interventions are studied and deployed. The systems-based 

approach advocated in Chapter 3 lends itself to investigating questions surrounding a postulated 

coverage effect from clean cooking interventions to mitigate HAP. In this chapter, I pursue a 

mechanistic modeling exercise to help bring into relief the conditions under which a coverage 

effect may manifest and the consequent implications for research and policy. 

 

4.1.2. Relationship between Household and Ambient Air Pollution 

 Ambient air pollution (AAP) is also a major environmental health concern, responsible 

for roughly three million premature deaths and nearly 75 million lost disability-adjusted life 

years annually (Lim et al. 2012; Apte et al. 2015). The definition for AAP differs from that for 

                                                 
4
 I use the term “efficacy” throughout for consistency and because the chapter is a theoretical exercise. However, the 

principles explored herein apply to both controlled and real-world conditions.  
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HAP in that the former refers to air pollution in a general place (the outdoors), whereas the latter 

refers to air pollution from a specific source (household cooking with solid fuels). Thus, AAP 

arises from many different emission sources, including the energy, industrial, transportation, 

agricultural, commercial, and residential sectors, as well as geologic processes (e.g., wind-swept 

desert dust) and vegetation fires of both natural and anthropogenic origin. 

 Recent modeling advances (Brauer et al. 2012; Brauer et al. 2016) have refined estimates 

of worldwide ambient exposure to fine particulate matter (≤ 2.5 μm in aerodynamic diameter; 

PM2.5), a major toxic air pollutant and an indicator for adverse impacts from air pollution more 

generally. Enhanced resolution models (1°×1° or finer) channel inputs from emissions 

inventories, remote sensing measurements, and air quality monitoring stations through a global 

chemical transport model. The resulting concentrations can be integrated with spatially-resolved 

population distributions and associated time-activity patterns to yield estimates of exposure. In 

this manner, Lelieveld et al. (2015) attributed one-third of global ambient PM2.5, on a 

population-exposure weighted basis, to energy use by the residential and commercial sectors, 

mostly for cooking and heating. In a more specific study, Chafe et al. (2014) found HAP 

accounted for 12% of population-exposure weighted ambient PM2.5. In both studies, the impact 

of residential/household combustion was highest, several times the global average, in South Asia 

and East Asia, and growing fastest in Sub-Saharan Africa − the three regions with the largest 

numbers of TSF-C users. 

 Although models of this scope necessarily entail extensive simplifications, they 

nonetheless posit that a substantial portion of AAP exposures may be due to HAP sources. 

Indeed, for this reason, the Global Burden of Disease Study 2010 attributed a portion of the total 

disease burden from air pollution to both HAP and AAP (~16%; Lim et al. 2012), a practice 

consistent with how attributable risk operates (Walter 1978). The growing recognition that HAP 

and AAP are often interrelated issues, especially for many LMICs, advocates for a 

commensurate research agenda (Balakrishnan et al. 2014). 

 Vexingly, empirical research on HAP and AAP have historically not been well 

integrated. Projects on HAP have understandably prioritized the indoor environment, whereas 

projects on AAP have customarily overlooked the locales within which HAP predominates: rural 

villages, and to a lesser extent, urban slums. Still, a handful of field studies have considered HAP 

in the context of AAP and offer suggestive insights. In the earliest such work, Smith et al. (1983) 

gauged ambient total suspended particulate concentrations during evening cooking periods 

within four villages in Gujarat. The startling result, ~2 mg/m
3
, an extremely high concentration, 

established that AAP from TSF-Cs warranted scrutiny. Additional data from the same project, 

presented in a landmark book on HAP (Smith 1987), indicated that concentrations dropped 

sharply at the village edge. Smith (1987) also recognized that many of the same factors, such as 

meteorology, that influence ambient concentrations from more typically studied sources would 

also apply to household sources.  

 Three ensuing studies offer suggestive insights into the relationship between HAP and 

AAP. First, in the city of Pune, Smith et al. (1994) monitored daily outdoor PM10 at 60 sites in 

several poorer neighborhoods. Concentrations were an order of magnitude higher in 

neighborhoods using TSF-C versus LPG-C, emphasizing the role of predominant cooking 

technology on AAP at a daylong and community scale. Second, in highland Guatemala, Naeher 
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et al. (2000) collected real-time ambient PM2.5 readings along street-level transects in a 

half-dozen villages within which the major PM2.5 source was HAP. Concentrations were 

~three-fold greater in villages with high versus low residential density (~10 versus ~1 

household/ha). Third, in New Delhi, Saksena et al. (2003) measured respirable suspended 

particulate concentrations inside and outside 40 households in two different slum according to 

micro-environmental sampling scheme. Concentrations were elevated by ~1.5× in households 

located in the slum with high versus low background concentrations as qualitatively ascertained 

by the authors. Although limited in number and pilot by design, this trio of studies nevertheless 

enrich the conclusions of the recent global-level models by proposing potential key mechanisms 

for conceptualizing how a coverage effect from clean cooking interventions may arise. 

 

4.1.3. Considering a Coverage Effect 

 Clean cooking interventions, implicitly or explicitly, have usually been presumed to 

attenuate exposure to air pollution from only a single exposure pathway − emissions from a 

household’s own cooking activities. Exposures to air pollution originating from other sources, 

such as from another household, are not assessed. Moreover, benefits are assumed only to accrue 

for inhabitants of the household using the intervention. In many cases, these assumptions may 

well hold. But the trio of studies described at the end of the previous section submit intriguing 

snapshots to the contrary. Not only may HAP give rise to non-negligible, near-field, outdoor air 

pollution, but in turn, this AAP may then also contribute to indoor air pollution. 

 In settings and circumstances conforming to this description, the exposure (and 

eventually health) outcomes for individuals will not be independent of the intervention status of 

neighbors. An underappreciated but core feature of such a system is that, as coverage of a clean 

cooking intervention expands within a community, exposure to PM2.5 and other pollutants from 

HAP progressively declines for other users (and possibly non-users), as well. Therefore, a 

coverage effect would be anticipated because the clean cooking intervention reduces exposure 

both directly, for inhabitants of households using the intervention, and indirectly, for all 

community residents via reduced emissions vented into the outdoors. Coverage effects would 

accumulate as coverage expands, with each additional intervention household contributing 

another increment of benefit. The nature of associated exposure-response relationships would 

then determine the degree to which the intervention, by reducing exposure through its combined 

effects, will translate into a diminution of risk at the individual level and a contraction of disease 

burden at the community level.  

 As an illustration, consider a characteristically drafty poor household, which possesses no 

indoor sources of PM2.5 besides a cookstove, in two extremes of locales and under two scenarios. 

To begin, imagine the household is exceedingly distant from any neighbors or any regional 

sources of PM2.5 emissions. For the inhabitants of this household, exposure to HAP would be 

exclusively determined by the household’s cooking technology. The notion of a coverage effect 

would be irrelevant. In essence, current thinking about clean cooking interventions embodies this 

assumption.  

 Now, imagine the same household is wedged inside a dense informal settlement, again 

with no regional sources of PM2.5 emissions wafting into the community. Here, all of the 
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household’s neighbors use TSF-Cs. The household’s inhabitants’ PM2.5 exposure, in this case, 

might be strongly affected by its neighbors’ cookstove use, even if the household itself uses, as 

an example, LPG-C. Inhabitants of the household could be exposed to PM2.5 not only from their 

own cookstove, but while outdoors they could be exposed to the exfiltration of emissions from 

their neighbors’ cookstoves, and while indoors they could also be exposed to the infiltration of 

these same emissions into their household.  

 Lastly, imagine the same household in either locale but downwind of a constantly 

operating coal-fired power plant. Even if the household in the informal settlement and all of its 

neighbors use LPG-Cs, the household’s inhabitants, and indeed all community residents, must 

contend with PM2.5 exposures from the power plant while they are outdoors as well as indoors. 

The same holds true for the former case, the isolated household. 

 Lending further credence to this thought experiment is a more recent and sophisticated 

study. Working in a Dhaka slum distant from roadways, Salje et al. (2013) assessed indoor daily 

minute-by-minute PM2.5 levels for 257 households, some of which used TSF-Cs and others 

LPG-Cs/induction cookers. Previously, the authors had observed that even households without 

TSF-Cs or other obvious indoor emission sources still experienced high PM2.5 concentrations. 

Median daily average PM2.5 concentrations confirmed this observation: 101 μg/m
3
 for TSF-C 

households versus 79 μg/m
3
 for LPG-Cs/induction cooker households. Probing further with a 

statistical model, Salje et al. (2013) computed that the highest probability of PM2.5 

concentrations exceeding 1000 μg/m
3
 − for both groups of households − occurred during 

community cooking periods. These results are consistent with the conjecture that even 

households using modern cooking technologies may still be subjected to neighborhood HAP or 

to emissions from TSF-Cs within their communities (Moschandreas et al. 2002). It would follow 

that expanding coverage of LPG-Cs or induction cookers would help ameliorate exposure to 

PM2.5 for all residents of the community. 

 My use of the terms “coverage” and “community,” which denote idealized notions, 

warrants clarification. In order to isolate the effect of TSF-Cs and clean cooking technologies, I 

maintain the assumptions of the preceding thought experiment − there are no other household or 

community sources of air pollution besides cooking and all households possess only a single 

cookstove – for the following discussion. 

 “Coverage” is intended to express the level of intervention use within a community. I 

define coverage simplistically as  the percentage of households within a community that use the 

clean cooking intervention. This definition has the decided advantage of being easy to explain 

but its application in the field would require caution. A more realistic coverage metric, in order 

to account for multiple cookstoves per household, among other factors, might quantify the 

fraction of total community cooking energy, events, or time that employ the intervention. 

Coverage also functions as a convenient shorthand for the degree to which exposure to HAP is 

reduced within a community. In the absence of any coverage effect, this may not be problematic, 

but in the presence of a postulated coverage effect, equating coverage with a reduction in 

exposure to HAP would be more complicated, and thus using coverage as a surrogate for 

efficacy could be at least subtly misleading. 

 By “community,” I refer to a collection of households connected by an environmental 

feature that communicates exposure (Gurarie and Seto 2009); in this case, given the emphasis on 
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HAP, a shared community airshed
5
 within which airborne pollution initially disperses. The 

ground-level boundaries of a community defined in this manner and the geographic units of 

village or slum are identical. But the volume of a community airshed can only be loosely 

delineated since it varies over time and space with inconstant and porous boundaries. 

Furthermore, the degree to which different households are connected naturally differs based on 

many factors, most apparently distance and prevalent wind direction. Nonetheless, connectivity 

would be enhanced where and when local emission sources predominate. 

 A community airshed interacts with indoor environments, as well. Within less prosperous 

communities throughout LMICs, houses are generally constructed with open architectures and of 

porous materials. These structures are therefore exceedingly drafty. Ventilation facilitates 

connectivity with the larger airshed through exfiltration and infiltration. The elderly, women, and 

the young, especially in rural locales, may not move about as widely, and so these groups’ 

exposures may be primarily determined by air quality in their household and home community 

airshed. Conversely, for urban locales or for individuals who spend significant time away from 

their home community airshed, the opposite may be the case. Estimating total exposure would 

necessitate either personal monitoring or an approximation of complex spatiotemporal patterns 

of human activity and pollutant concentrations in all relevant environments. 

 Airsheds, it must be noted, exist on multiple, nested, scales. The specter of climate 

change has focused global attention on the largest shared airshed, the planetary atmosphere. With 

regards to HAP, residential density and background concentration help determine, respectively, 

the connectivity of households within a community airshed and the connectivity of communities 

within a regional airshed. Neither factor is amenable to easy manipulation. In other words, 

residential density and background concentration can be presumed to act as external constraints 

on the emergence and strength of any coverage effect from clean cooking interventions.  

 

4.1.4. A Mechanistic Modeling Approach 

 The preponderance of exposure to HAP is experienced by those households using 

TSF-Cs. However, global-level models and local-level studies suggest that the impact of HAP 

may spread farther afield. These observations, coupled with common-sense reasoning, propose 

that, at least under certain conditions, coverage effects may play a vital role in shaping benefits 

from clean cooking technologies. Yet thus far, few efforts have considered the conditions for and 

consequences of a coverage effect, despite the possible implications for the design and 

interpretation of interventions studies and the planning and evaluation of intervention programs. 

 As always, carefully collected field measurements will be the true barometer for 

appraising a coverage effect. Still, it remains the case that empirical data are inevitably limited to 

descriptions of specific places and times, and as a result, may not offer clear guidance on the 

identification of causes or generalizability to alternative scenarios. Disentangling a coverage 

effect will require apportioning averted and extant PM2.5 exposures to categories which are, in 

practice, exceedingly difficult if not impossible to distinguish. Perhaps a gold standard could be 

                                                 
5
 To be clear, “community airshed” refers to the surface layer of the atmosphere within which emissions vented by 

households initially disperse. This may be a smaller scale than is often implied by “airshed” used in other contexts.    
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inferred through sustained personal and area monitoring, along with gathering much other 

relevant information, across a continuum of coverage levels. The requirements for such an 

undertaking will clearly be demanding. 

 Mechanistic models can prove indispensable to guiding these efforts and extending their 

conclusions to other settings and circumstances (Gall et al. 2013). Models of this nature have 

been utilized by public health scientists since at least the early-20th century (Ross 1915; 

Kermack and McKendrick 1927; Sutton 1932; Bosanquet and Pearson 1936). A mechanistic 

model synthesizes current understanding by specifying, in mathematical and algorithmic terms, a 

chain of logic about how processes and parameters interact to govern a system. Given thorough 

verification and validation, a mechanistic model can thereby help to explain past and predict 

future outcomes of interest (Garnett et al. 2011).  

 Mechanistic modeling can be particularly useful for examining system behavior beyond 

what may be readily observable, for example, to assess questions for which experimental or 

observational studies are overly controversial, costly, or complicated (Alper and Geller 2015); to 

explore the ramifications of variability and uncertainty in process or parameter space (Cullen and 

Frey 1999); or to portray the theoretical counterfactual with regards to causal inference based on 

potential outcomes (Neyman 1923; Rubin 1974; Holland 1986). Yet ideally, mechanistic models 

and field data work together in mutually constitutive fashion. Models are calibrated and validated 

by data, and in turn, data are targeted and interpreted by models. Over time, conceptual, 

statistical, and mechanistic models can gradually help bring the empirical and the theoretical into 

alignment. 

 Just as with any analysis, suitable attention must be paid to a mechanistic model’s 

assumptions and applicability. Unavoidable simplifications may be both a boon, by deliberately 

isolating the consequences of specific components of a system, or a curse, by inadvertently 

neglecting pivotal aspects of the reality. An appreciation of the scope of a mechanistic model is 

equally critical, or results risk being overgeneralized. Accordingly, the tasks are to identify a 

sufficiently parsimonious but robust model for the question at hand and to draw conclusions 

commensurate with the limitations of the modeling exercise (Getz 1998; Johnson and Omland 

2004). Given the great number of model structures available, as well as the choices inherent to 

evaluating any modeling exercise, this may be an appropriate juncture to recall that, paraphrasing 

the aphorism, all models – conceptual, statistical, mechanistic – are wrong … but some are 

useful (Box and Draper 1987). 

 In this chapter, I develop and apply a mechanistic model to investigate the postulated 

relationship between community-level coverage of LPG-Cs and individual-level reductions in 

exposure to PM2.5. Model simulations are intended to help (1) demonstrate whether and to what 

degree a coverage effect may manifest, (2) explore conditions influencing a relationship between 

coverage and efficacy, and (3) submit strategies to further enlighten comprehension of a 

coverage effect. The modeling exercise ventures to be primarily a “proof-of-concept” analysis, 

and secondarily, an initial first-order approximation and qualitative screening tool. Moreover, the 

overarching purpose is to encourage approaches that consider − and where or when appropriate, 

leverage − a coverage effect from clean cooking interventions. 
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4.1.5. Overview of  Dispersion Models 

 Mechanistic modeling approaches to air pollutant dispersion are diverse and numerous, 

reflecting the import of air quality to human well-being across a spectrum of settings and 

circumstances. In this section, I outline features of the three major categories of dispersion 

models, located along a continuum of sophistication, and discuss the applicability of each 

category to modeling primary PM2.5 mass concentrations (henceforth, simply “PM2.5 

concentrations”) derived from cookstoves at the scale of a household or community in an LMIC. 

Within such a domain, a net change to PM2.5 concentration, either from aerosol dynamics (i.e., 

losses from coagulation or gains from phase-change at the margins of the size class) or 

multi-pollutant chemistry (i.e., formation of secondary particulate matter), would be negligible in 

most cases (Morawska et al. 2013), and consequently, modeling approaches for these processes 

are not considered here. At wider scales, as these processes become more significant and even 

dominant (Gelencsér et al. 2007; Fine et al. 2008), dispersion models may be integrated with 

modules for aerosol dynamics and/or multi-pollutant chemistry (e.g., see Byun and Schere 2006).  

 At one extreme of sophistication are computational fluid dynamic (CFD) models. CFD 

models approximate solutions to the Navier-Stokes equations for dissipative fluid flow by using 

various numerical methods for closure and discretization within a three-dimensional mesh 

architecture (Ferziger and Perić 2002). CFD models are valued for their capacity to adeptly 

handle multiscale turbulence, fine resolutions, and complex environments. Provided with 

well-defined boundary conditions and detailed input data, CFD models can achieve reasonable 

agreement with experimental or empirical results (Gousseau et al. 2011; Tilley et al. 2011). Yet, 

this potential accuracy must be balanced against a workflow far more demanding than for 

alternatives with respect to model specification, parameterization, execution, and interpretation 

(Lateb et al. 2015). Moreover, because each CFD model is designed to simulate a unique 

scenario, results may be difficult to generalize. Standardized procedures for validating and 

verifying CFD models (Oberkampf and Trucano 2002), with their more complicated but 

seemingly realistic appearing output, remain ongoing (Britter and Schatzmann 2007). 

Nonetheless, CFD models are rapidly proliferating to address air quality questions at moderate 

spatial and temporal scales for both indoor and outdoor environments (Yan et al. 2009; 

Habilomatis and Chaloulakou 2015). Applications of relevance to LMIC settings remain, 

however, rare. As mathematical and computational innovation progresses, CFD models certainly 

hold considerable promise for providing tailored insights into the core concerns of this chapter 

(Pepper and Carrington 2009; Blocken et al. 2013), but to do so will require the support of 

exceptionally detailed site-specific data, as well. 

 At an intermediate level of sophistication are the dispersion models based on Gaussian or 

Lagrangian approaches (Collett and Oduyemi 1997). This category of models is widely used to 

serve research, risk assessment, and regulatory purposes for simulating, in particular, ambient air 

quality (Holmes and Morawska 2006). There are dozens of such models, each tailored to 

particular applications. For example, models in this category may be integrated with different 

algorithms for approximating turbulence; pre-processing inputs (e.g., terrain, to set source and 

receptor heights, or meteorology, to model wind and temperature gradients); and post-processing 

outputs (e.g., to transform results into the spatiotemporal scale of interest). A Gaussian plume 
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model describes a concentration field under relatively stable meteorological and emissions 

conditions. Pollutant dispersal in the vertical and horizontal directions follows a normal 

distribution modified by downwind distance and atmospheric turbulence. The American 

Meteorological Society/Environmental Protection Agency Model or AERMOD, the current 

recommended United States Environmental Protection Agency (USEPA) Gaussian model, 

extends its applicability by accounting for factors such as Monin-Obukhov length based on land 

use, plume reflection by the ground surface or an inversion layer, and dry or wet deposition 

(Cimorelli et al. 2005). A Lagrangian puff model tracks plume parcels as they disperse across a 

landscape, utilizing a moving reference frame and random walk process to map pathlines. The 

California Puff Model or CALPUFF, the current recommended USEPA Lagrangian model, 

includes a capacity to address more complicated scenarios such as complex terrains or coastal 

regions with alternating sea and land breezes (Scire et al. 2000).  

 Although constituting a grouping with an active and ample user base, this category of air 

pollution models is infrequently applied to scales similar to that of a typical neighborhood. 

AERMOD and CALPUFF generally utilize horizontal grids of several-to-tens of kilometers 

(“local scale”) or tens-to-hundreds of kilometers (“regional scale”), with resolution also 

restricted by the level of detail in terrain or meteorology (Dresser and Huizer 2011). At such 

scales, simulating the planetary boundary layer becomes important, and methods for doing so 

differ among models. Most of the handful of efforts to apply AERMOD, CALPUFF, and related 

models to sub-kilometer near-fields have witnessed poor agreement with field measurements 

(Isakov et al. 2004; Donaldson et al. 2008; Sivacoumar et al. 2009; Kim 2010; Cohan et al. 2011; 

Thatcher and Kirchstetter 2011). Tight calibration with field measurements has been shown to 

improve model predictions in at least one instance (Isakov and Venkatram 2006). Models in this 

category designed to simulate emissions from roadways, for which comparatively fine 

resolutions are key, perform better (Vardoulakis et al. 2003). However, the concentration fields 

from quasi-constant line-sources versus intermittent and distributed volume-sources would be 

expected to differ considerably. Gaussian and Lagrangian models may be able to better address 

the sub-kilometer near-field through still evolving approaches such as multiple nested grids and 

plume-in-grid models (Karamchandani et al. 2011). Hence, with further refinement in future, this 

category of models may become well-suited to engage HAP’s impact on AAP, provided that 

topographic, meteorological, and built environment data, which heretofore has not been routinely 

collected during studies on air pollution in villages and slums, becomes more available. 

 At the other extreme of sophistication are the relatively straightforward mass-balance 

models which, as the name implies, rely on the principle that pollutant mass is conserved within 

a defined region (Jacob 1999). In such a compartment, alternatively termed a zone or box, PM2.5 

concentration is regulated, at minimum, by emission and transport processes, and optionally by 

reactions and/or deposition. For each compartment, these processes are collectively described by 

a single, first-order, ordinary differential equation (Nazaroff 2004). The solution to this 

differential equation depicts the consequent temporal evolution of pollutant concentration within 

the compartment. In implementation, the differential equation is either solved analytically, or for 

more complex models, numerically, incorporating time-varying parameters and/or discontinuous 

events as necessary. Multiple compartments representing, for instance, rooms within a building, 

can be linked together, provided that flow between compartments can be reasonably estimated. 
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This latter method can also be extended such that a matrix of hypothetical air parcels comprising 

a volume are described by a system of advection-diffusion partial differential equations – an 

approach referred to as an Eulerian model. 

 Notably, mass-balance models assume that pollutants are instantaneously and 

homogenously mixed throughout the entire volume of a compartment. Addressing this core 

assumption, which often does not comport to the real world, could involve the use of a mixing 

factor (Jayjock et al. 2000) or multiple sub-compartments (Furtaw et al. 1996). But such 

remedies introduce their own issues: mathematical inconsistencies, in the case of mixing factors 

(Nicas 1996), and potentially challenging-to-characterize parameters, in the case of 

sub-compartments (Nicas et al. 2009).  

 Nevertheless, mass-balance model naturally lend themselves to many purposes. In the 

early-00s, USEPA developed a multi-compartment mass-balance model for simulating inhalation 

exposure to air pollution within indoor environments (Guo 2000) which has witnessed recent 

application (Wang 2009; Motlagh et al. 2011; McCready et al. 2012). Mass-balance models have 

also proven useful for scenarios in which it can be reasonably argued that spatial heterogeneity in 

PM2.5 concentrations regresses to central values, such as for long averaging times or large sample 

sizes. Still, mass-balance models must be applied with careful but appropriate attention to their 

limitations, especially for conditions in which imperfect mixing may predominate.  
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4.2. Model Development 

4.2.1. Mass-Balance Models for Household Cookfuel Combustion  

 Mass-balance models, their caveats notwithstanding, continue to enjoy currency not only 

with regards to air pollution (Hellweg et al. 2009; Zhang et al. 2010; Bond et al. 2011) and 

environmental health (Mason 2006; Breivik et al. 2007; Knaebel et al. 2016) but also across the 

environmental sciences (Minasny et al. 2008; Pellicciotti et al. 2014; Ofir et al. 2016). For indoor 

PM2.5, single-compartment mass-balance models have achieved sufficient agreement with 

empirical data to be used for simulating concentrations from secondhand smoke (Ott 1999; 

Klepeis and Nazaroff 2006) and occupational sources (Ten Berge 2000; Nicas 2008), as well as 

to estimate the effectiveness of interventions such as portable air purifiers (Lee et al. 2015) and 

air filtration systems (Zhao et al. 2015). Applications for modeling indoor concentrations of 

PM2.5 of outdoor origin have also been common (Mohammed et al. 2015), including one study 

on naturally ventilated schoolrooms in Delhi (Goyal and Khare 2011). For outdoor PM2.5, 

single-compartment mass-balance models, by leveraging long averaging times and large sample 

sizes, have been utilized relatively recently to determine intake fractions from non-point sources 

within urban areas (Marshall et al. 2005; Stevens et al. 2007; Humbert et al. 2011; Apte et al. 

2012).  

 With respect to PM2.5 arising from solid fuel combustion in LMICs, Smith et al. (1983) 

first used a mass-balance model to derive initial estimates for the concentrations experienced by 

women villagers in Gujarat, followed soon thereafter by a similar effort undertaken in Nepal by 

Davidson et al. (1986). Mass-balance models have also been utilized to back-calculate emission 

rates for cookstoves (Prasad et al. 1985) and kerosene lamps (Schare and Smith 1995). More 

recently, Johnson et al. (2011) deployed a single-compartment mass-balance model with a focus 

on India to simulate daily indoor PM2.5 concentrations from different cooking technologies. In 

this study, the authors were especially cognizant of variability in key parameters driving indoor 

PM2.5 concentrations. As a result, they drew on cookstove tests (for stove power, thermal 

efficiency, and emission factors) and empirical data (for household volumes, ventilation rates, 

and energy requirements) to set parameter means, assumed parameters vary lognormally, and 

then conducted simple Monte Carlo runs by sampling across the outlined parameter distributions. 

The approach led to reasonable agreement for TSF-Cs-using, indoor cooking, one-room 

households as appraised by the output from a statistical model based on a vast number of field 

measurements (Balakrishnan et al. 2013). Given the wide diversity of conditions present on the 

subcontinent, this is a somewhat surprising but reassuring result.  

 In fact, factors beyond those parenthetically listed above would also be anticipated to 

impact indoor PM2.5 concentrations. These include fuel characteristics: type, quality, preparation, 

or moisture content; non-cooking-related stove use: water purification, area heating, or animal 

feed; other indoor PM2.5 sources: tobacco smoke, resuspension, kerosene lamps, incense, etc.; 

and emissions of PM2.5 from outdoor sources which penetrate households: trash or crop burning, 

wildfires, transportation, industry, etc. Perhaps most importantly, households commonly use 

more than one cookstove, also referred to as “stacking,” and thus the number, type, condition, 

and use of all cookstoves will collectively determine indoor PM2.5 concentrations (Ruiz-Mercado 
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et al. 2011; Ruiz-Mercado and Masera 2015). Yet the results of the single-compartment 

mass-balance model of Johnson et al. (2011), which awaits further validation and verification, 

does intimate that these other sources of variability, though they may be vital to accurately 

explaining and predicting PM2.5 concentrations within many particular settings or circumstances, 

may be less important at a regional or country level. Indeed, the approach, with only slight 

modification, contributed towards the development of the World Health Organization’s (WHO’s) 

Indoor Air Quality Guidelines for Household Fuel Combustion (Johnson 2014; World Health 

Organization 2014b).  

 Imprecision arising from the mass-balance model’s inability to factor in the many 

variables that influence indoor PM2.5 concentrations is amplified by the mass-balance model’s 

well-mixed assumption. Mass-balance models cannot readily capture heterogeneity in pollutant 

concentrations within an individual compartment. Considering PM2.5 from household cookfuel 

combustion
6
 for illustration, concentrations would be expected to exhibit substantial spatial 

variation both indoors and outdoors. Indoors, concentrations are higher closer to the cookstove 

and vertically stratified to at least some degree (Kandpal et al. 1995). Outdoors, concentrations 

would be anticipated to be higher proximate to PM2.5 sources, such as homes actively 

combusting solid cookfuels. Upwind homes would be projected to impact air quality more than 

downwind homes. Furthermore, at the scale of a household or community, many features, both 

natural and human-made, complicate wind-flow fields, and hence pollutant transport, by 

introducing zones of recirculation, stagnation, and acceleration. Indoor examples would include 

household layout, including the number, size, location, arrangement, and use of rooms, doors, 

windows, eaves, and chimneys. Outdoor examples would include local geography, including the 

position of households relative to one another and environmental attributes. Accordingly, PM2.5 

concentrations, especially over brief timespans or for a small number of households or 

communities, might be expected to vary spatially, perhaps markedly, for a multiplicity of 

reasons. 

 

4.2.2. Coverage Effect Model − Overview 

 Despite caveats, a mass-balance modeling approach lends itself well to the core pursuit of 

this chapter, a theoretical investigation of whether and to what extent a coverage effect may 

manifest from clean cooking interventions to reduce exposure to PM2.5. For these objectives, the 

success of a modeling exercise hinges not on its predictive power in a strict statistical sense, but 

instead, on its capacity to clarify and generalize the consequences of processes and parameters 

understood to govern PM2.5 emissions, concentrations, and exposures (Caswell 1988; Servedio et 

al. 2014). Given this criteria, the simplified context of a mass-balance model is both an 

advantage and a disadvantage. Mass-balance models involve comparatively few assumptions, 

which eases specification, parameterization, execution, and interpretation, and allows for 

mechanisms to be isolated and results to be interrogated in a relatively straightforward and 

                                                 
6
 “Household cookfuel combustion” refers to cooking with any type of combustible cookfuel − solid, liquid, or gas. 

Thus, as used in this chapter, the phrase includes cooking with either a TSF-C or LPG-C. 
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transparent manner. But mass-balance models demand judicious use given their intrinsic 

assumptions and simplifications, discussed in general and in detail throughout this section. 

 The coverage effect model endeavors to translate into a mathematical and algorithmic 

formulation the essential mechanisms that control air pollution from household cookfuel 

combustion. The model depicts a community of 100 households, each with one woman and one 

child. Households exclusively use either a TSF-C or LPG-C. For simplicity, there is only one 

cookstove per household, no other cookstove use besides meal preparation, and no other indoor 

source of PM2.5. Indoor PM2.5 concentrations are a function of a household’s use of either TSF-C 

or LPG-C, as well as infiltration of PM2.5 from outdoors. Outdoor PM2.5 concentration, in turn, is 

a function of exfiltration from the mix of TSF-C and LPG-C used within the community, with no 

other outdoor sources of PM2.5 endogenous to the community itself, and a background 

concentration from regional sources exogenous to the community. One hundred separate 

single-compartment mass-balance models simulate indoor PM2.5 concentrations for each 

household. These household models are nested within a single-compartment mass-balance model 

that simulates outdoor PM2.5 concentrations for the community airshed. For parameterization and 

calibration, the coverage effect model, to the degree feasible, focuses on Indian or neighboring 

South Asian contexts, as this is the country and global region that bears the highest burden from 

HAP (Balakrishnan et al. 2011a; Rohra and Taneja 2016). 

 Four scenarios are modeled: two residential densities, representative of moderately dense 

rural and urban locations, or a “village” and “slum”, respectively; and two background 

concentrations, representative of low and high regional emissions of PM2.5. Community-level 

LPG-C coverage is modeled from 0% (the counterfactual) to 100% in 5% increments. Each 

model iteration, by drawing new parameters for house volumes and ventilation rates, constitutes 

a unique community that then experiences simulations at each coverage level increment for one 

year at a time. For each day within a simulation year, parameters for average temperature and 

average windspeed are resampled and then transformed into quasi-sinusoidal diurnal patterns. 

Meteorology contributes to the calculation of plume rise, which sets the height for the vertical 

dimension of the community airshed. Emission rates and the timing of events related to cooking 

and time-activity patterns also vary daily within assumed distributions.  

 To minimize less critical sources of variation, the model does not simulate seasonal 

effects, for instance in background concentration, fuel availability, cooking intensity, or 

time-activity patterns. Conversely, the model assumes no autocorrelation within parameters or 

correlation between parameters, choices which may increase overall variability. 

 One thousand iterations of each scenario yield ensemble distributions of PM2.5 

concentrations for indoor and outdoor environments and PM2.5 exposures for women and 

children. As appropriate, results are stratified by scenario, coverage, and TSF-C versus LPG-C. 

 The coverage effect model is coded in R 3.2.3 (R Core Team 2015) using the Microsoft R 

Open enhanced distribution and its associated Intel Math Kernel Library (Microsoft R 

Application Network 2015). The script utilizes the following packages not included in base 

installations: 'deSolve' (Soetaert et al. 2012), 'doParallel' (Revolution Analytics and Weston 

2015a), 'doRNG' (Gaujoux 2014), 'foreach' (Revolution Analytics and Weston 2015b), 'ggplot2' 

(Wickham 2009), 'reshape2' (Wickham 2007), 'plyr' (Wickham 2011), 'triangle' (Carnell 2013), 

and 'truncdist' (Novomestky and Nadarajah 2011). 
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4.2.3. Coverage Effect Model − Details 

4.2.3.1. Residential Densities and Background Concentrations 

 The two residential density scenarios are based on a ~100 households per hectare (hh/ha) 

rural village in Haryana (Ajay Pillarisetti, personal communication, 2016 Feb 16) and a 

~400 hh/ha urban slum in Dhaka (Angeles et al. 2009). In implementation, the model is specified 

in terms of a linear dimension (L; row #1 of Table 4.1), referring to both the length and width of 

a community. The low and high residential densities correspond to linear dimensions of 100 m 

and 50 m, respectively. Data on residential density, unfortunately, is far less common than that 

for comparatively crude measures of population density which encompass both inhabited areas 

and also areas devoted to every other purpose from cultivation to commerce. Within South Asia, 

there are communities with residential densities less than 100 hh/ha and greater than 400 hh/ha. 

The values used for the coverage effect model scenarios are moderate, viz. they are not outliers, 

but their representativeness cannot be readily quantified. In rural areas where habitations are 

scattered instead of clustered in hamlets or a village center, residential densities may be far lower 

than 100 hh/ha. In such locales, a much less connected community airshed would render any 

coverage effect negligible. In urban areas where high-rise developments predominate, residential 

density may be far higher than 400 hh/ha. But ventilation rates in modern buildings are generally 

quite low and again a community airshed would be, as a result, much less connected, attenuating 

any coverage effect. 

 The two background concentrations which model PM2.5 concentrations from regional 

sources (Creg; row #2 of Table 4.1) are based on annual averages reported for the 140 South 

Asian cities present in the WHO Ambient Air Pollution in Cities Database (2014a). Within this 

region, as elsewhere, ambient air pollution monitoring stations are virtually always located in or 

near urban areas. Crudely, without weighing by population or exposure, the low value of 

10 μg/m
3
 corresponds to the 1

st
 percentile (Thimpu) and the high value of 100 μg/m

3
 to the 95

th
 

percentile (Ahmedabad). The low value also corresponds to the WHO guideline for annual 

average PM2.5 concentration both outdoors and indoors (World Health Organization 2006; World 

Health Organization 2014b). Consequently, 10 μg/m
3
 often serves as the explicit or implicit 

counterfactual for many investigations of ambient and household air pollution, including 

comparative risk assessments (Lim et al. 2012). Many populous cities of the Indo-Gangetic Plain 

experience annual average PM2.5 concentrations above the high value, for example, Karachi 

(117 μg/m
3
), Delhi (153 μg/m

3
), and Patna (149 μg/m

3
). Typically, the low value would be more 

representative of rural villages and the high value urban slums. Yet this is not always the case. 

Rural areas may experience high background concentrations in the tens of μg/m
3
 or more 

(Balakrishnan et al. 2013), whereas urban areas may experience low background concentrations 

in the teens (e.g., Pondicherry).  

 In reality, PM2.5 concentration from regional sources would most likely fluctuate 

episodically in response to natural or human events, and systematically in a diurnal and/or 

seasonal fashion. Since patterns would vary from site-to-site and cannot be easily generalized, 

the coverage model adopts time-invariant constant value for background concentration. 

 



 

102 

4.2.3.2. Cooking Events and Time-Activity Patterns 

 The coverage effect model makes use of common-sense assumptions to craft cooking 

start times, cooking durations, and time-activity patterns (Table 4.2), each of which varies on a 

daily basis for each household according to a uniform distribution. Cooking start times and 

durations help determine concentrations. Time-activity patterns do likewise for exposures. There 

are three cooking events with the start times commencing within a two-hour timeframe with a 

uniform distribution: morning (5 a.m. to 7 a.m.); mid-day (11 a.m. to 1 p.m.), and evening (5 

p.m. to 7 p.m.). Cooking continues for anywhere from 45 to 90 minutes, a duration understood to 

meet energy requirements for the vast majority of meals (Johnson and Chiang 2015a).  

 With respect to time-activity patterns, women and children (“individuals”) are assumed to 

be together at all times follow the same patterns. For neonates and infants, groups which 

experience the bulk of the disease burden from pneumonias associated with HAP (Bruce et al. 

2013), this is a reasonable assumption. As children age, the correlation between their 

time-activity patterns and their mothers’ gradually weakens. Sampling from a uniform 

distribution, individuals move outdoors 30 to 90 minutes after the morning meal, return indoors 

30 to 90 minutes before the mid-day meal, move outdoors again 30 to 90 minutes after the 

mid-day meal, and return indoors again 30-90 minutes before the evening meal. The delays both 

before and after cooking events simulate time devoted to meal-related and other household tasks. 

The two outdoor periods, one in the morning and one in the afternoon, simulate time spent away 

from home, not indoors in other households, but outdoors within the community. To be clear, the 

model does not incorporate movement outside the residential area of the village or slum, a 

constraint which makes this schema less appropriate for individuals who work or otherwise 

frequently travel away from their communities. 

 

4.2.3.3. Indoor Concentrations 

 The coverage effect model’s single-compartment abstraction of a house equates to a 

single, common, room for all household activities – cooking, studying, relaxing, sleeping, etc. 

One-room houses remain widespread among the socioeconomic strata most likely to use 

traditional fuels. The 2011 Indian Census tabulated that 37% of the country’s households live in 

a one-room house; 32% and 31% of all households reside in a two-room or three-plus room 

house, respectively (Office of the Registrar General and Census Commissioner 2012). A multiple 

room house would not be much more challenging to simulate, but a one-room house obviously 

necessitates fewer assumptions and parameters. 

 The coverage effect model parameterizes median ventilation rate (α; row #3 of Table 4.1) 

at 20 air exchanges per hour (1/hr) (Bhangar 2006; Brant et al. 2009; Brant et al. 2010; 

Balakrishnan et al. 2011b). Ventilation rate is lognormally distributed, truncated at a minimum 

corresponding to modern homes (6.7/hr), and a maximum corresponding to the outdoors (60/hr). 

The impact of this draftiness on indoor air quality, holding all other variables constant, is not 

immediately apparent. For an isolated household, increasing ventilation would likely decrease 

indoor PM2.5 concentration, as a test kitchen study discovered (Grabow et al. 2013). 

Understandably, behavioral and technological interventions that target ventilation are 
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consequently being contemplated (Johnson and Chiang 2015b). However, enhancing ventilation 

for a household using an LPG-C that is subject to emissions from either its neighbors or regional 

sources could, in fact, increase exposure. Similarly, enhancing ventilation for a household using 

a TSF-C that is proximate to other households may levy costs as well as benefits, although this is 

a complicated calculus, the conclusions of which are likely specific to a site.  

 Household volume (V; row #3 of Table 4.1) exhibits a direct relationship with indoor 

PM2.5 concentration since larger volumes dilute pollution more than smaller volumes. Median 

household volume (V; row #4 of Table 4.1) is 30 m
3
 (Bhangar 2006; Brant et al. 2009; Brant et 

al. 2010; Balakrishnan et al. 2011b) equivalent to a cube roughly three meters in all dimensions. 

House volume is lognormally distributed with a minimum of 10 m
3
 and a maximum of 90 m

3
.  

 Emission rates for TSF-Cs (ETSF-C ; row # 5 in Table 4.1) and LPG-Cs (ELPG-C ; row # 6 

in Table 4.1) are based on laboratory tests (Jetter et al. 2012; Edwards 2014). On one hand, this 

is a standardized approach, but on the other hand, test conditions may not reproduce real-world 

use since emission rates for TSF-Cs vary for a myriad of reasons (International Organization for 

Standardization 2012). Jetter et al. (2012) provides measurements for a three-stone traditional 

cookstove combusting wood fuel at high versus low output and minimally versus carefully 

tended situations. The coverage effect model uses the simple average of these four values, 

65825 μg/min, as the median emission rate for TSF-Cs. The median emission rate for LPG-Cs is 

set by measurements from Edwards (2014) at 730 μg/min (a remarkable 90× lower than 

TSF-Cs). Both emission rates are lognormally distributed, truncated at 0.5× and 1.5× the 

medians.  

 As noted, ventilation rates and house volumes values are resampled only at the start of 

each simulation, and as a result, each simulation constitutes a different community. The coverage 

effect model resamples emissions rates for every household daily during the year-long 

simulations. Resampling attempts to model changes in emission rates owing to host of reasons 

from fuel quality to number of guests. Even within the same household, emission rates can vary 

over the course of a day but the coverage effect model disregards this variability. Lognormal 

distributions characterize many environmental variables (Limpert et al. 2001), hence their use for 

all four indoor compartment parameters. 

 The differential equation describing the rate of change per unit time of the indoor PM2.5 

concentration for household i (Cin,i) is presented in Equation 4.1. The three right-hand terms 

signify, in sequence, (1) infiltration of outdoor air (Cout) at the ventilation rate (αi), (2) PM2.5 

emissions from TSF-C or LPG-C (ETSF-C|LPG-C,i) into the house’s volume (Vi), and (3) exfiltration 

of indoor air out at the ventilation rate (αi). Implementation of Equation 4.1 is covered in the 

next section. 

 

Equation 4.1: Indoor PM2.5 Concentrations 

𝑑𝐶𝑖𝑛,𝑖
𝑑𝑡

= 𝛼𝑖𝐶𝑜𝑢𝑡 +
𝐸𝑇𝑆𝐹̄ ­𝐶|𝐿𝑃𝐺­𝐶,𝑖

𝑉𝑖
− 𝛼𝑖𝐶𝑖𝑛,𝑖 

 

 Equation 4.1 does not model chimney use or indoor deposition. Chimneys are among the 

most self-evident of clean cooking interventions but the focus of the coverage effect model is on 
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LPG-C interventions. Chimneys could be modeled by a fraction, f, multiplied by the second 

term. In that case, 1 − f multiplied by the cookstove emission rate would be directly vented 

outdoors. By assuming that deposition is negligible, the coverage effect model asserts, not 

unreasonably, that PM2.5 removal is dominated by ventilation. Alternatively, deposition could be 

modeled as a fourth term on the right-hand side of the equation with an appropriate loss rate 

multiplied by the indoor PM2.5 concentration. 

 Concentrations calculated by Equation 4.1 represent a mechanistic modeling analog to 

area monitoring, data which are frequently collected as part of studies on air pollution from 

household cookfuel combustion. 

 

4.2.3.4. Outdoor Concentrations 

 The coverage effect model’s single-compartment abstraction of a community airshed 

requires calculating the corresponding volume. The community airshed is intended to represent 

the volume within which plumes of PM2.5, originally emitted by cookstove combustion and 

eventually emanated by drafty houses, might be reasonably expected to disperse outdoors. The 

horizontal dimensions of the community airshed are effectively set by residential density. 

Determining the height of the vertical dimension, however, is a more complicated enterprise. 

 Single-compartment mass-balance models applied to urban domains rely on atmospheric 

mixing depths, as reported by meteorological instruments, for setting vertical dimension heights. 

At such a scale of many kilometers or more, emission plumes gradually disperses to this 

approximate height. Mixing depths can range from several tens of meters, for example during an 

atmospheric inversion on a winter early-morning, to several kilometers, for example during an 

unstable atmosphere on a summer mid-afternoon. However, within a village or slum scale of 50 

to 100 m in horizontal distance, emission plumes are very unlikely to rise to the mixing depth. A 

zeroth order approach might be to assume a constant height to which plumes rise within the 

community airshed. But there is no obvious way to set such a height beyond the anecdotal or 

arbitrary. The coverage effect model, instead, relies on the physics of plume rise (Hanna 1982). 

 Outdoor plume rise can be described by Newtonian equations of motion (Macdonald 

2003). Briggs formulated a suite of semi-empirical and semi-mechanistic solutions to the 

equations of motion for plume rise (Briggs 1975) which have been widely adopted, most 

prominently by the USEPA Industrial Source Complex (ISC) family of dispersion models 

(United States Environmental Protection Agency 1995; Schnelle and Dey 2000), the previously 

widely-used precursor to AERMOD. Recent efforts to model dispersion from amorphous sources 

such as wildfires (Achtemeier et al. 2011) or pool fires (Fisher et al. 2001) have also leveraged 

the Briggs Equations. The Briggs Equations require the calculation of a plume’s buoyancy and 

momentum fluxes, coupled with information on environmental conditions, particularly 

temperature, windspeed, and atmospheric stability class, to calculate the plume’s centerline 

height as a function of distance from the source (see Appendix B for full complement of Briggs 

Equations). 

 



 

 

1
0
5
 

  

Table 4.1: Model Parameters 

# Parameter Definition Units Distribution Expectation Type Dispersion Type Min Max 

1 L 
linear dimension 

(length and width of community) 
m fixed n/a n/a n/a n/a 50

*
 100

*
 

2 Creg 
background concentration 

(PM2.5 from regional sources) 
μg/m

3
 fixed n/a n/a n/a n/a 10 100 

3 α air exchange rate of house 1/min lognormal 0.333 median 0.5 COV 0.111 1 

4 V volume of house m
3
 lognormal 30 median 0.5 COV 10 90 

5 ETSF-C 
PM2.5 emission rate for  

traditional biomass cookstove 
μg/min lognormal 65825 median 0.2 COV 32913 98738 

6 ELPG 
PM2.5 emission rate for  

liquid petroleum gas cookstove 
μg/min lognormal 730 median 0.2 COV 365 1095 

7 T ambient temperature °C triangular 25 mode 8.167 variance 18 32 

8 tTmax time of maximum ambient temperature 
min 

(time) 
uniform 

840 

(14:00) 
mean 1200 variance 

780 

(13:00) 

900 

(15:00) 

9 U windspeed m/min Weibull 60  mode 30  variance 33.333 100 

10 tUmax time of maximum windspeed 
min 

(time) 
uniform 

840 

(14:00) 
mean 1200 variance 

780 

(13:00) 

900 

(15:00) 

11 h height of plume rise m 
calculated parameter 

see Section 4.2.3.4 and Appendix B for details 

 
Abbreviations: PM2.5 = fine particulate matter; COV = coefficient of variation; hh = households. 

Note: 
*
For a community of 100 households, these values correspond to 400 hh/ha or 100 hh/ha, respectively. See Section 4.2 for sources. 
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Table 4.2: Model Events 

Event Definition Units Distribution Expectation Type Dispersion Type Min Max 

cooking 

start time 
time at which emissions begin min (time) uniform 

360 (06:00) 

720 (12:00) 

1080 (18:00) 

mean 1200 variance 

300 (05:00) 

660 (11:00) 

1020 (17:00) 

420 (07:00)  

780 (13:00) 

1140 (19:00) 

cooking 

duration 
duration of emissions min (time) uniform 67.5 mean 168.75 variance 45 90 

time-activity 

pattern 

individual is outdoors 

‘x’ minutes after/before 

cooking event stops/starts
*
 

min (time) uniform 45 mean 300 variance 30 90 

Note: 
*
Individuals are outdoors only between morning and midday meals and between midday and evening meals; otherwise, they are indoors. 
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 In order to employ the Briggs Equations, two simplifying assumptions must be made: (1) 

the plume is advected by the mean windspeed over its depth and (2) the plume’s density is equal 

to that of ambient air. Two additional assumptions must be made for plumes emanating in the 

context of the coverage effect model. First, a plume temperature must be established. The value 

assumed, 313°K (40°C), is based on the observation that cookstove smoke cools significantly 

while indoors but remains modestly warmer than indoor temperature. Second, an exit velocity 

must be imputed which, for a volume source such as a household, necessitates an assumption 

about the area of all vents via which emissions exit. Vent area– doors, windows, and eaves – is 

assumed to be 2 m
2
 for the median house volume of 30 m

3
 and scales linearly with volume. It 

follows that house volume times ventilation rate divided by vent area yields an exit velocity. As 

an example, the median values of model parameters leads to an exit velocity of 0.083 m/s.  

 In practice, using the Briggs Equations, of which there are four sets, requires establishing 

whether atmospheric stability is unstable or stable and whether the plume is buoyancy or 

momentum dominated. For simplicity, the coverage effect model assumes atmospheric stability 

is unstable during the day (5 a.m. to 7 p.m.) and stable during the night (7 p.m. to 5 a.m.). Given 

the slow exit velocity for emissions emanating from drafty houses, plumes are usually buoyancy 

dominated, the exception being exceptionally hot days. If the distance at which final plume rise 

occurs is less than the average distance between two randomly selected houses (Mathai et al. 

1999), 50 or 25 m in the village or slum residential density scenarios, respectively, then this 

value is retained. Otherwise, the calculated plume rise at 50 or 25 m is employed.  

 The Briggs Equations utilize ambient temperature and ground-level windspeed, and the 

latter variable is also used directly in the differential equation for outdoor PM2.5 concentration. 

The coverage effect model draws on annual daily averages from a 1997 to 2012 time-series of 

meteorological data for Lucknow (WeatherSpark 2016). Lucknow was chosen because it lies in 

the approximate geographical center of Uttar Pradesh, the most populous state of India. Extreme 

values of neither temperature nor windspeed are considered. Instead, sinusoidal patterns during 

the course of a day allow for high/low temperatures ±7°C relative to the daily average and 

high/low windspeeds ±50% of the daily average. 

 Each day’s average temperature (T; row #6 in Table 4.1) is sampled from a triangular 

distribution with a mean of 25°C, minimum of 18°C, and maximum of 32°C. These values 

correspond to Lucknow’s annual mean, lowest daily average, and highest daily average 

temperatures, respectively (WeatherSpark 2016). The diurnal temperature pattern is replicated by 

a cosine curve from 6 a.m. to 6 p.m. and a linear decline from 6 p.m. to 6 a.m. as proposed by 

Ephrath et al. (1996). An hour-long adjustment period from 12 a.m. to 1 a.m. harmonizes curves 

between consecutive days. Maximum temperature occurs sometime between 1 p.m. and 3 p.m. 

(tTmax; row #8 in Table 4.1), sampled daily from a uniform distribution, and minimum 

temperature always happens at 6 a.m. 

 Each day’s average windspeed is sampled from a Weibull distribution (Justus et al. 1978) 

with shape and scale parameters that equate to a mean of 3.6 km/hr (60 m/min), truncated at a 

minimum of 2.0 km/hr (33.3 m/min) and maximum of 6.0 km/hr (100 m/min). As with 

temperature, these values correspond to Lucknow’s annual mean, lowest daily average, and 

highest daily average windspeeds, respectively (WeatherSpark 2016). Windspeeds are usually 

gauged at a reference height of 10 m, so these values are adjusted to ground-level (1.5 m) 
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windspeeds (U; row #9 in Table 4.1) by employing a logarithmic wind profile with a roughness 

length of 0.2 m (Gowen et al. 2004). The diurnal wind pattern is replicated by a cosine curve as 

proposed by Guo et al. (2016). Again, as with temperature, an hour-long adjustment period from 

12 a.m. to 1 a.m. harmonizes curves between consecutive days. Maximum windspeed happens 

sometime between 1 p.m. and 3 p.m. (tUmax; row #10 in Table 4.1), sampled daily from a uniform 

distribution, and minimum windspeed occurs twelve hours prior. 

 Both temperature and windspeed, it should be noted, exert dual opposing influences on 

plume rise. The consequent impacts on PM2.5 concentration are not easy to unravel. Ambient 

temperature and plume buoyancy have an inverse relationship. As temperature declines, 

buoyancy enhances, so plumes rises higher (and vice versa). But at lower temperatures, 

atmospheric inversions are more likely. Inversions cap the height of plumes from regional 

sources, thereby boosting background concentration. With wind, higher windspeeds evacuate 

plumes from the community airshed more rapidly, but in doing so, limit the time available for 

plumes to rise. Conversely, lower windspeeds allow plumes to persist longer within the 

community airshed, but as a result, plumes also rise higher and dilute within a larger volume. 

 Plume rise, as ascertained by the Briggs Equations, is the centerline height above the 

emission source. So, the height of the emission source must be added to the result of the Briggs 

Equations. The coverage effect model uses 1.5 m, the midpoint of a single story hut, as the 

height of all emission sources. Additionally, the vertical dispersion of the plume, which entrains 

ambient air, expanding as it rises, must also be added to the result. The coverage effect model 

relies on the power law specification of the vertical dispersion coefficients for a Gaussian plume 

model to calculate this additional height (Turner 1970; United States Environmental Protection 

Agency 1995). There are separate dispersion coefficient curves for each of the six 

Pasquill-Gifford (P−G) atmospheric stability classes (Gifford 1961; Pasquill 1961). For 

simplicity, the coverage effect assumes daytime (5 a.m. to 7 p.m.) atmospheric stability is 

consistently P-G class B or moderately unstable, and nighttime (7 p.m. to 5 a.m.) atmospheric 

stability is consistently P-G class D or slightly stable (see Appendix B for equations to calculate 

vertical dispersion coefficients). 

 Based on procedure just explained, the vertical dimension of the community airshed (h; 

row #11 in Table 4.1), recalculated at each time-step, varies from ~5 m to ~17 m for the village 

residential density and from ~4 m to ~16 m for the slum residential density. The 

three-to-four-fold difference between low and high heights stresses the importance of plume rise 

to outdoor PM2.5 concentration at a sub-kilometer scale.  

 The differential equation describing the rate of change per unit time of outdoor PM2.5 

concentration for the community airshed (Cout) is presented in Equation 4.2. The four right-hand 

terms signify, in sequence, (1) inflow of background concentration from regional sources of 

PM2.5 (Creg) at the exchange rate of ground-level windspeed (U) over linear dimension (L), (2) 

emissions vented by all households (summation from i = 1 to 100 of αiViCin,i) and diluted by 

community airshed volume (L
2
h), (3) outflow of community airshed PM2.5 at the exchange rate 

of ground-level windspeed over linear dimension, and (4) dilution of community airshed PM2.5 

by incremental growth of community airshed height (1/h×dh/dt). The ϕ acts as a binary switch to 

address expansion and contraction of the vertical dimension of the community airshed (Stevens 



 

109 

et al. 2007). If height is increasing, ϕ is unity. Otherwise, ϕ is zero, preventing PM2.5 from being 

artificially condensed because height decreases. 

 

Equation 4.2: Outdoor PM2.5 Concentration 

𝑑𝐶𝑜𝑢𝑡
𝑑𝑡

=
𝑈

𝐿
𝐶𝑟𝑒𝑔 +

∑ 𝛼𝑖𝑉𝑖𝐶𝑖𝑛,𝑖
100
𝑖=1

𝐿2ℎ
−
𝑈

𝐿
𝐶𝑜𝑢𝑡 − 𝐶𝑜𝑢𝑡𝜙

1

ℎ

𝑑ℎ

𝑑𝑡
 

 

 In implementation, there is one Equation 4.1 per household, each of which is coupled to 

Equation 4.2. All equations are numerically integrated using Euler’s Method. Comparisons to 

simulations using the analytical solution and fourth-order Runge-Kutta Method reveal 

discretization errors between these three approaches are less than 1%. The combination of the 

coverage effect model’s one-minute time-step and 50 or 100 m linear domain prevents it from 

handling sustained high windspeeds events (Lakshmanan et al. 2009) during which the residence 

time of an air parcel drops below the time-step.  

 Concentrations calculated by Equation 4.2 represent a mechanistic modeling analog to 

ambient monitoring, data which, at present, are infrequently collected as part of studies on air 

pollution from household cookfuel combustion. 

 

4.2.3.5. Exposures 

 Time-activity patterns and indoor/outdoor concentrations are tracked on a 

minute-by-minute basis. Combining this information yields the exposure for each individual, 

equivalent to the time-weighted average of concentrations experienced indoors and outdoors. 

Formally, exposure is expressed as the average annual PM2.5 concentration experienced by an 

individual. 

 Exposures calculated in this fashion represent a mechanistic modeling analog to personal 

monitoring, data which are often collected as part of studies on air pollution from household 

cookfuel combustion. Personal monitoring, however, is less common than area monitoring, since 

adherence to continually wearing cumbersome equipment can be taxing. 

 

4.2.4. Coverage Effect Model − Core Assumption 

 The core assumption of a mass-balance modeling approach is that pollution 

instantaneously and homogenously mixes within a compartment, be that compartment a 

household or a community. Most apparently, concentrations would be, in reality, higher closer to 

sources (cookstoves or TSF-C-using households). Complicated wind-flow fields, as discussed in 

Section 4.2.1, introduce further heterogeneity. But the well-mixed assumption leads to several 

additional complications to consider. 

 For the household-level model, the ratio of personal exposure to area concentration is 

assumed to be simply unity for all inhabitants. Field studies which simultaneously conducted 

both personal and area monitoring found varying ratios between these two measures for different 

age-sex subpopulations: 0.24 to 1.02 for women, 0.39 to 0.84 for children, and 0.27 to 0.85 for 
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men (Balakrishnan and Mehta 2014). Since subjects do not remain in one micro-environment all 

the time, however, these results do not necessarily violate the ratio of one assumption. A related 

issue is that women tending cookstoves would be expected to experience higher exposures than 

children or men. Field studies which simultaneous monitored personal exposure for both women 

and children have not arrived at a consistent conclusion about the magnitude of differences 

between the two groups (e.g., Smith et al. 2010; Baumgartner et al. 2011). The pooled analysis of 

Balakrishnan and Mehta (2014) suggests that the global average of children’s exposure to PM2.5 

may be, on balance, ~80% that of women’s. Certainly, each age-sex subpopulation’s exposure 

will be differentially influenced by complex interactions between household-level variables and 

time-activity profiles in a site-specific fashion. Although field studies suggest that children’s 

personal exposures may well be less than either area concentrations or women’s personal 

exposures, the model makes no compensatory adjustment given continued uncertainty about why 

− including where, when, and to what degree − these measures differ. 

 For the community airshed-level model, the well-mixed assumption equates to a 

“spatially implicit” conceptualization with regards to household location. Households are 

spatially linked insofar as they share the community airshed. But, besides assigning a residential 

density to a community, the model ignores the precise location of households relative to one 

another. Within the community airshed, just as within a house, all locations are equivalent with 

respect to PM2.5 concentrations. As a result, at least three additional assumptions underpin the 

model’s spatially implicit structure. Firstly, households using TSF-C and LPG-C are uniformly 

distributed within the community such that there are no clusters of high or low emissions 

households. Secondly, wind direction varies more-or-less uniformly over all compass points such 

that there is no distinction between upwind and downwind houses. Thirdly, individuals do not 

preferentially spend time outdoors in areas with low or high emissions, for instance mostly 

upwind or downwind or primarily proximate to households using TSF-C or LPG-C. Clearly, 

these assumptions are unlikely to uphold in most, if not all, locations and situations but provide a 

starting point for analysis.  

 Alternatively, this trio of assumptions could be relaxed and replaced by a different 

interpretation. For exposures conveyed via the shared community airshed, the model reproduces 

the average experience of individuals. In other words, the model acknowledges that 

concentrations are higher near clusters of TSF-C-use and downwind areas, lower near clusters of 

LPG-C-use and upwind areas, and intermediate in between. These distinctions are smoothed out 

by imposing a mean concentration field on the outdoor compartment. 

 For the coverage effect model, several of its features may partially but not fully alleviate 

shortcomings with the spatially implicit suite of assumptions. Simulations are run over the course 

of one year. Furthermore, each simulation represents a unique community and each 

scenario-coverage combination is simulated 1000 times. Both the long averaging times of 

individual simulations and large number of total simulations may attenuate the magnitude of 

heterogeneities in exposures. Nevertheless, no approach fully avoids spatial indeterminancy 

(Kwan 2012). It remains imperative to recall that the coverage effect model does not aspire to 

fully recreate reality, but rather, merely distill the more salient features of an idealized system, 

relevant to a postulated coverage effect, into a tractable form for analysis.  
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4.3. Results & Discussion 

 The coverage effect model emphasizes four scenarios which differ from one another in 

residential density and/or background concentration (see Section 4.2.3.1). For ease of discussion 

in this section, the scenarios are designated by the letters A−D as in Table 4.3.  

 

Table 4.3: Scenario Letter Designations 

 

Low Emission 

Regional Sources 

High Emission 

 Regional Sources 
 

Village Scenario A Scenario B 
Residential 

Density 

100 hh/ha 

Slum Scenario C Scenario D 
Residential 

Density 

400 hh/ha 

 
Background Concentration 

10 μg/m
3
 

Background Concentration 

100 μg/m
3
 

 

 

 Also recall that each model iteration represented a unique community that experienced 

simulations at each coverage level increment for one year at a time. One thousand iterations of 

each scenario produced the ensemble distributions of results covered in this section.  

 

4.3.1. Concentrations 

 Figures 4.1A−D present box plots by coverage level for annual average PM2.5 

concentrations in three environments: indoors for households using either LPG-Cs (top panel) or 

TSF-Cs (middle panel), and outdoors (bottom panel). Letters designations correspond to 

scenarios. Results are the equivalent of year-long area monitoring in all three environments. 

 In all scenarios, for each additional increment of coverage, PM2.5 concentrations improve 

modestly for indoor LPG-C environments and outdoors, whereas they remain high and 

seemingly less diminished for indoor TSF-C environments. (Note the different scales for the 

middle panel versus the top and bottom panels.) In all three environments, the declines are 

roughly linear. Since concentrations decrease as a function of coverage, these results lend 

credence to the emergence of a coverage effect.  
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Figure 4.1A: Annual Average PM2.5 Concentrations by Coverage − Scenario A. For scenario A, 
residential density is 100 hh/ha and background concentration is 10 μg/m

3
. For each box plot, medians 

are represented by the middle dark segment, 75
th
 and 25

th
 percentiles by top and bottom hinges, 

respectively, and 97.5
th
 and 2.5

th
 percentiles by top and bottom whiskers, respectively. Indoor LPG-C (top 

panel) and outdoor (bottom panel) environments share the same y-axis scale, whereas indoor TSC-C 
(middle panel) uses a different y-axis scale. These y-axis scales are consistent across Figures 4.1A−D.  
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Figure 4.1B: Annual Average PM2.5 Concentrations by Coverage − Scenario B. For scenario B, 
residential density is 100 hh/ha and background concentration is 100 μg/m

3
. For each box plot, medians 

are represented by the middle dark segment, 75
th
 and 25

th
 percentiles by top and bottom hinges, 

respectively, and 97.5
th
 and 2.5

th
 percentiles by top and bottom whiskers, respectively. Indoor LPG-C (top 

panel) and outdoor (bottom panel) environments share the same y-axis scale, whereas indoor TSC-C 
(middle panel) uses a different y-axis scale. These y-axis scales are consistent across Figures 4.1A−D.  
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Figure 4.1C: Annual Average PM2.5 Concentrations by Coverage − Scenario C. For scenario C, 
residential density is 400 hh/ha and background concentration is 10 μg/m

3
. For each box plot, medians 

are represented by the middle dark segment, 75
th
 and 25

th
 percentiles by top and bottom hinges, 

respectively, and 97.5
th
 and 2.5

th
 percentiles by top and bottom whiskers, respectively. Indoor LPG-C (top 

panel) and outdoor (bottom panel) environments share the same y-axis scale, whereas indoor TSC-C 
(middle panel) uses a different y-axis scale. These y-axis scales are consistent across Figures 4.1A−D.  
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Figure 4.1D: Annual Average PM2.5 Concentrations by Coverage − Scenario D. For scenario D, 
residential density is 400 hh/ha and background concentration is 100 μg/m

3
. For each box plot, medians 

are represented by the middle dark segment, 75
th
 and 25

th
 percentiles by top and bottom hinges, 

respectively, and 97.5
th
 and 2.5

th
 percentiles by top and bottom whiskers, respectively. Indoor LPG-C (top 

panel) and outdoor (bottom panel) environments share the same y-axis scale, whereas indoor TSC-C 
(middle panel) uses a different y-axis scale. These y-axis scales are consistent across Figures 4.1A−D.  
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 Table 4.4 focuses on mean results at the extremes of coverage. As communities transition 

from 5% to 95% coverage, mean annual average PM2.5 concentrations in all three environments 

drop by similar amounts for scenarios A and B or for scenarios C and D. In absolute terms, the 

declines are greater for scenarios C and D than scenarios A and B. Residential density is higher 

for scenarios C and D. As a result, increasing coverage levels within these communities has a 

proportionately larger effect within the smaller volumes of these community airsheds, which are 

therefore more “shared.” It follows that the slope, or decrease in concentration per unit increase 

in coverage, is steeper in scenarios C and D.  

 

Table 4.4: Mean Annual Average PM2.5 Concentrations 

Coverage 
Indoor 

LPG-C 

Indoor 

TSF-C 
Outdoor 

Indoor 

LPG-C 

Indoor 

TSF-C 
Outdoor 

 

(μg/m
3
) 

 

5% 
50 

(7.2) 

1132 

(73) 

38 

(6.6) 

144 

(8.1) 

1222 

(75) 

132 

(7.5) 
Residential 

Density 

100 hh/ha 

95% 
24 

(1.0) 

1100 

(306) 

12 

(0.5) 

118 

(1.5) 

1205 

(329) 

106 

(1.3) 

Percent 

Difference 
51% 3% 68% 18% 1% 20% 

 

5% 
80 

(14.7) 

1159 

(73) 

68 

(14.2) 

178 

(16.2) 

1258 

(74) 

164 

(15.9) 
Residential 

Density 

400 hh/ha 

95% 
27 

(1.3) 

1113 

(320) 

14 

(1.1) 

124 

(2.8) 

1199 

(314) 

111 

(2.9) 

Percent 

Difference 
67% 4% 79% 30% 5% 33% 

 
Background Concentration 

10 μg/m
3
 

Background Concentration 

100 μg/m
3
 

 

Note: Letters in upper-left of each quadrant correspond to scenario letter designations. Standard 
deviations are in parentheses. 

 

 In relative terms, the declines from 5% to 95% coverage are greater for scenarios A and 

C than scenarios B and D. The lower background concentrations for scenarios A and C translate 

into smaller denominators for calculating proportional impacts. For scenarios A and C, this floor 

is sufficiently low that average communities at 95% coverage approach the WHO’s Interim-2 

PM2.5 guideline (25 μg/m
3
) within indoor LPG-C environments and attaint the Interim-3 PM2.5 

guideline (15 μg/m
3
) in outdoor environments (World Health Organization 2006). Indoor TSF-C 

environments, with mean concentrations above 1000 μg/m
3
 in all scenarios and at all coverage 

levels, cannot benefit as much, in relative terms, from coverage effects in the tens of μg/m
3
, even 

though such benefits do materialize to a similar extent, in absolute terms, as those in indoor 

LPG-C environments. 

 

B A 

C D 
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4.3.1.1 Variability 

 The presentation of concentration results lends itself to a discussion of model variability. 

Distributions for all three environments are unimodal and somewhat positively/right skewed in 

all cases. Means are slightly greater than medians, but not strictly due to the skew, a 

commonplace but erroneous conclusion owing to an outdated rule-of-thumb (von Hippel 2005). 

In any case, the trends for medians, plotted in Figures 4.1A−D, differ subtly from those for 

underlying means, which are listed for 5% and 95% coverage in Table 4.4.  

 Sampling across parameter distributions drawn, as much as possible, from South Asian 

contexts was a deliberate modeling choice intended to capture the spectrum of conditions such as 

they may exist. Distributions of model results thereby attempt to approximate the range of 

outcomes which might be expected in the real world. This variability, therefore, does not 

correspond to error, uncertainty, or other unexplained “noise.” On the contrary, in appraising 

model results, variability informs the generalizability of central values by characterizing the 

frequency with which other outcomes may be realized. The distributions for concentrations 

displayed in Figures 4.1A−D suggest that a coverage effect may be rather difficult to discern for 

indoor TSF-C environments. Conversely, for indoor LPG-C and outdoor environments, 

enhanced benefits from a coverage effect may be more easily discernable, more so for scenarios 

C and D than scenarios A and B, but in all cases with greater likelihood at larger differences in 

coverage.  

 Both Figures 4.1A−D and Table 4.4 show that as coverage expands for the model’s 

communities, variability in annual average PM2.5 concentrations for indoor TSF-C environments 

also widens substantially. The reverse occurs for indoor LPG-C and outdoor environments. 

Variability is wider at higher coverage levels for indoor TSF-C environments because there are 

fewer TSF-C-using households. Extreme values in the sampling of parameter distributions, 

particularly emission rates and cooking durations, become relatively more influential. For the 

outdoor environment, variability narrows at higher coverage levels because, although a single 

TSF-C-using household contributes more to ambient PM2.5 concentrations than its LPG-C-using 

counterpart, the proportionate contribution via exfiltration from indoor TSF-C environments 

diminishes. Narrower variability in indoor LPG-C environments at higher coverage levels is 

explained by the greater number of households using LPG-Cs and the variability trend in outdoor 

environments.  

 

4.3.1.2. Validity 

 Concentration results provide opportunity to qualitatively validate the coverage effect 

model. Because ambient air pollution (AAP) is rarely monitored in rural villages, modeled 

concentrations for the outdoor compartment can only be validated against field measurements 

from urban slums. To my knowledge, there are no pooled estimates from multiple studies, so I 

rely instead on reports from two publications. The previously discussed study on a Delhi slum by 

Saksena et al. (2003) measured outdoor respirable particulate matter during 4-hour sampling 

periods, observing concentrations of 150−380 μg/m
3
. Also working in a Delhi slum, 

Kulshreshtha et al. (2008) monitored outdoor PM2.5 during 6-hour sampling periods, finding 
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concentrations of 53−287 μg/m
3
. The best point of comparison against these measured results are 

the modeled results for scenario D, for which concentrations are 111 μg/m
3
 and 164 μg/m

3
 at 

95% and 5% coverage, respectively. On the basis of these limited comparisons, measured and 

modeled results seem to roughly agree.  

 Modeled concentrations for indoor environments can be validated against pooled 

estimates of field measurements for 24-48 hour kitchen concentrations as reported for the World 

Health Organization’s Southeast Asia Region (Balakrishnan and Mehta 2014), the region 

providing many model parameters. The measured results, by drawing on data from multiple 

studies, span a range of residential densities, background concentrations, and other relevant 

factors. Since it is unclear which of the model’s coverage levels would be most appropriate for 

comparison, I have chosen to use the range of modeled results for 5% and 95% coverage levels 

across all four scenarios. This choice thereby encompasses maximum and minimum coverage 

effects. 

 For LPG-C indoor environments, modeled results are 24−124 μg/m
3
 versus a measured 

result of 72 μg/m
3
 (standard deviation = 41 μg/m

3
). For TSF-C indoor environments, modeled 

results are 1132−1258 μg/m
3
 versus a measured result of 826 μg/m

3
 (standard deviation = 1038 

μg/m
3
) . Hence, there appears to be broad concordance between modeled and measured results 

for indoor LPG-C environments. But for indoor TSF-C environments, modeled results are 

perhaps one-third higher than measured results. 

 Although the source of the discrepancy is undoubtedly multifactorial, aspects of model 

parameterization may warrant re-examination, especially household characteristics and TSF-C 

emission rates. The single-compartment specification and well-mixed assumption of the 

coverage effect model may also merit re-evaluation. Since the indication is that the coverage 

effect model overestimates indoor TSF-C PM2.5 concentrations, an alternative formulation might 

immediately vent the initially most buoyant fraction of TSF-C emissions to the outdoors. The 

effect of doing so would be to elevate outdoor concentrations, a portion of which would again 

contribute to indoor concentrations but to a lesser extent. 

 The discrepancy between modeled and measured results for indoor TSF-C environments 

is not sufficiently vast so as to militate against use of the coverage effect model as currently 

developed. Pooled estimates of field measurements, after all, exhibit a wide standard deviation. 

The measured results include multiple-room households and other locations and situations for 

which lower concentrations, compared to the system simulated by the coverage effect model, 

would be expected. The model does perform acceptably for indoor LPG-C and outdoor 

environments, though the possibility that this agreement may be merely coincidental cannot be 

dismissed. For indoor TSF-C and LPG-C environments, the coverage effect model concurs with 

the modeled results of Johnson et al. (2011) and Johnson (2014). For these reasons, and given the 

exploratory nature of the modeling exercise, I proceed, mindful that further calibration and 

validation of the coverage effect model will be requisite for application to specific settings and 

circumstances. 
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4.3.2. Exposures 

 Combining time-activity patterns with concentrations in different environments enables 

calculation of exposures. Figures 4.2A-B and 4.2C-D present violin plots by coverage level for 

annual average PM2.5 exposure, measured in the same units as concentration (μg/m
3
), for 

individuals (women and children) living in households using either LPG-C (left-hand panels) or 

TSF-C (right-hand panels). Once again, letters designations correspond to scenarios. The width 

of the violin plot conveys the distribution’s density, akin to a histogram sliced in half. Results are 

the equivalent of year-long personal monitoring of individuals. 

 As with concentrations, for each additional increment of coverage, PM2.5 exposures 

improve moderately for individuals living in households using LPG-C (“LPG-C users”), whereas 

PM2.5 exposures remain high and ostensibly less diminished for individuals living in households 

using TSF-Cs (“TSF-C users”). Note the different scales for the left-hand versus right-hand 

panels. In both cases, the declines are approximately linear. In all scenarios, exposures diminish 

as coverage expands, and thus these results evidence a coverage effect.  

 

4.3.2.1. Causal Inference for Coverage Effects 

 These results, at first glance, appear to enable easy estimation of intervention efficacy as 

measured by reductions in PM2.5 exposures. In order to better interpret what these findings truly 

measure, an appreciation of the relevant principles of causal inference will prove helpful. 

Generically, estimating the causal relationship between a treatment (e.g., a clean cooking 

technology) and an outcome (e.g., exposure to PM2.5) is accomplished by comparing units 

(individual, households, communities, etc.) receiving the treatment (“users,” e.g., LPG-C users) 

with those not receiving the treatment (“non-users” or “controls,” e.g., TSF-C users). A 

fundamental assumption accompanies such a comparison − the potential outcomes of units are 

unaffected by the treatment assignment of other units. This is the so-called stable unit treatment 

value assignment (SUTVA) assumption (Rubin 1990), also known as the stability assumption 

(Halloran and Struchiner 1995), underpinning the Neyman-Rubin theory of causal inference 

prevalent in epidemiology and many other disciplines (Neyman 1923; Rubin 1974; Holland 

1986). 

 The SUTVA assumption obviously does not hold for contexts in which treatment effects 

spread between units connected by environmental features or social networks − “dependent 

happenings” as aptly coined a century ago (Ross 1916). If the effect of an intervention disperses 

between units assumed to be independent, then an estimate of efficacy based on an uncritical 

comparison of users and non-users will be biased (Eisenberg et al. 2003). Violations of SUTVA, 

referred to as interference (Cox 1958), may be viewed as a flaw to be avoided or neutralized 

through compensatory strategies in study design or data analysis. Or, interference may also 

create effects of interest.  

 The canonical example of worthwhile interference from an intervention – a coverage 

effect in the parlance of this chapter − is herd immunity from vaccination programs (Fine 1993). 

As discussed in Chapter 3, infectious diseases are intrinsically dependent happenings because 

the incidence of infection depends on the prevalence of infection. Thus, beyond vaccination, 
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Figure 4.2A-B: Annual Average PM2.5 Exposure by Coverage − Scenarios A and B. For scenarios A (top panels) and B (bottom panels), 
background concentrations are 10 and 100 μg/m

3
, respectively. Residential density is 100 hh/ha for both scenarios. For each violin plot, medians 

are represented by the middle dark dot, 75
th
 and 25

th
 percentiles by top and bottom segments, respectively, and 97.5

th
 and 2.5

th
 percentiles by top 

and bottom tips, respectively. Left and right panels use different y-axis scales. These y-axis scales are consistent across Figures 4.2A−D. 
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Figure 4.2A-B: Annual Average PM2.5 Exposure by Coverage − Scenarios C and D. For scenarios C (top panels) and D (bottom panels), 
background concentrations are 10 and 100 μg/m3, respectively. Residential density is 400 hh/ha for both scenarios. For each violin plot, medians 
are represented by the middle dark dot, 75th and 25th percentiles by top and bottom segments, respectively, and 97.5th and 2.5th percentiles by 
top and bottom tips, respectively. Left and right panels use different y-axis scales. These y-axis scales are consistent across Figures 4.2A−D. 
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several other interventions targeting infectious diseases reveal coverage effects. Experimental 

and observational studies have suggested that expanding community-level coverage of 

insecticide-treated bednets (ITNs) for malaria control enhances protection for users and 

non-users alike (Howard et al. 2000; Hawley et al. 2003; Klinkenberg et al. 2010; Larsen et al. 

2014). Similarly, field studies have proposed that community-level coverage of sanitation can 

help explain stunting and wasting (Spears et al. 2013; Andres et al. 2014; Fuller et al. 2016), 

diarrheal disease (Root 2001; Genser et al. 2006; Barreto et al. 2007), and infant mortality 

(Geruso and Spears 2015). Coverage effects have been explored widely with respect to 

interventions targeting water, sanitation, and hygiene (WSH; Eisenberg et al. 2012; Wolf et al. 

2014; Ejemot-Nwadiaro et al. 2015). This is a complex realm, and mixed or null results have 

also been reported (Mausezahl et al. 2009; Clasen et al. 2014; Patil et al. 2014), perhaps 

highlighting the value of devoting due attention to location and situation specific nuances.  

 Environmental proximity is not the only conduit of interference. Interventions that target 

“contagious” behaviors may give rise to coverage effects transmitted by social proximity 

(Christakis and Fowler 2009). In fact, many of the social sciences have contemplated coverage 

effects¸ including education (Rosenbaum 2007), political science (Sinclair et al. 2012), and in 

particular, economics (Manski 1993; Sobel 2006). Economists have long recognized the 

significance of externalities, a similar but broader concept than interference in several regards. 

Just as externalities can be either positive or negative, interference may also be beneficial or 

harmful. Coverage effect, as defined in this chapter, is strictly beneficial interference attributable 

to an intervention. On the other hand, the contribution of a household’s TSF-C use to its 

neighbors’ PM2.5 exposures could be regarded as harmful interference or a negative externality. 

In fact, AAP is such a classic instance of a negative externality that it is taught as such in 

undergraduate textbooks (Tietenberg 1992). Economics teaches that negative externalities can be 

discouraged by compensatory or punitive measures such as taxes or regulation, whereas positive 

externalities can be encouraged through subsidies (Baumol and Blinder 1988). Heretofore, HAP 

has not been viewed in this light. I do not pursue this line of reasoning further but simply note 

the idea may deserve further deliberation. 

 Comparing LPG-C and TSF-C users within any scenario-coverage combination would 

seem to characterize the efficacy of the intervention in reducing PM2.5 exposures for LPG-C 

users. And in practice, intervention efficacy is often measured this way. However, should a 

coverage effect be prevalent, this comparison actually measures both the reduction in exposure 

from household-level LPG-C use and an additional reduction in exposure from community-level 

LPG-C use. Disentangling the effect of the intervention at the household-level from the effect of 

the intervention program at the community-level requires a different approach (Hayes et al. 

2000; Hudgens and Halloran 2008; van der Laan 2014). 

 Much as there are compensatory strategies for avoiding or neutralizing interference, there 

are also techniques for deliberately bringing into relief effects of interest born by “spillovers,” 

yet another term for interference (Benjamin-Chung et al. 2015). This is not merely an academic 

exercise but an undertaking to understand the full impact of an intervention. In an influential 

exposition, Halloran and Struchiner (1991) extended the potential outcomes framework to 

encompass dependent happenings by defining comparisons that enable estimation of an 

intervention’s direct effect, indirect effect, and total effect.  
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 I will use the LPG-C intervention program simulated by the coverage effect model to 

define this trio of effects. Direct effect is the difference between the outcomes in LPG-C users 

and what the outcomes would have been had the LPG-C users been TSF-C users, without any 

other change to the intervention program including coverage level. A direct effect is what a 

straight comparison between LPG-C and TSC-F users in the same community would estimate. 

Indirect effect is the difference between the outcomes in TSF-C users and what the outcomes 

would have been for TSF-C users had there been no intervention program in the community at 

all. An indirect effect, as Halloran and Struchiner (1991) refer to it, if beneficial, is equivalent to 

this chapter’s coverage effect. Although the most efficient method to calculate a coverage effect 

involves comparing TSF-C users (for other strategies, see Haber 1999), LPG-C users also 

experience an equivalent coverage effect. Total effect is the difference between the outcomes in 

LPG-C users and what the outcomes would have been had LPG-C users been TSF-C users 

without there being an intervention program in the community. A total effect is the sum of a 

direct effect and a coverage effect. The referent group for estimating coverage and total effects is 

realized by the modeling exercise through the 0% coverage level, or theoretical counterfactual, 

simulated in all iterations. 

 

4.3.2.2. Coverage Effects from LPG-C Interventions 

 Table 4.5 focuses on mean annual average PM2.5 exposures for LPG-C and TSF-C users 

at select coverage levels: 0%, 5%, 25%, 50%, 75%, 95%, and 100%. Table 4.5 includes 

estimates for total, direct, and coverage effects based on the procedure outlined in the previous 

section. Variability in model results means that estimates for this trio themselves vary, but trends 

are clear and disaggregating effects permits a number of insights.   

 Contrasting coverage effects among the four scenarios, Table 4.5 reveals the pattern 

noted for concentration results and the same explanation applies here. Higher residential density 

facilitates a coverage effect in absolute terms, whereas elevated background concentration 

dampens a coverage effect in relative terms. Among the four, scenario B, with its lower density 

and higher background, experiences the smallest coverage effect. 

 As would be expected, for individuals living in a household which switches from TSF-C 

to LPG-C, the vast bulk of their consequent reduction in exposure to PM2.5 is caused by the 

direct effect, or their household-level LPG-C use. Nevertheless, as coverage expands within the 

community, the coverage effect increases, signaling the progressively growing importance of 

community-level LPG-C use to exposure reduction for LPG-C users. For the average LPG-C 

user in scenarios A−D, as coverage goes from 5% to 95%, the coverage effect contributes an 

additional exposure reduction of, roughly, 50%, 20%, 70%, or 30%, respectively. For a 

household already using LPG-C, the coverage effect may be quite substantial.   
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Table 4.5: Mean Annual Average PM2.5 Exposures and Coverage Effects 
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(μg/m
3
) 

0% 
 

      1133 
 

      1222 

Residential 

Density 

100 hh/ha 

5% 50 1083 1082 2 1132 144 1078 1078 1 1221 

25% 45 1088 1081 7 1126 138 1085 1078 6 1216 

50% 37 1096 1083 13 1120 131 1091 1078 14 1208 

75% 30 1103 1077 26 1107 123 1099 1081 18 1205 

95% 24 1109 1076 33 1100 118 1105 1088 17 1205 

100% 23  1110  1080  31  116  1106  1080  26  

0% 
 

      1163 
 

      1262 

Residential 

Density 

400 hh/ha 

 

5% 80 1083 1079 4 1159 178 1084 1080 4 1258 

25% 70 1094 1081 13 1150 167 1095 1080 15 1247 

50% 54 1109 1083 26 1137 151 1111 1079 32 1230 

75% 39 1125 1086 39 1124 135 1127 1078 48 1214 

95% 27 1136 1086 50 1113 124 1138 1075 63 1199 

100% 24  1139  1083  57  121  1141  1079  63  

 

Background Concentration 

10 μg/m
3
 

Background Concentration 

100 μg/m
3
 

 

Note: Letters in upper-left of each quadrant correspond to scenario letter designations. LPG-C users 
benefit from both direct and coverage effects which sum to a total effect. TSF-C users benefit only from 
a coverage effect. Direct effects at 100% coverage are set to the average of the other coverage levels. 

 

 TSF-C users also experience the benefits of a coverage effect (the dashed column divider 

in Table 4.5 seeks to convey this). As coverage expands, TSF-C users are subjected to less PM2.5 

from community-level TSF-C use, but this coverage effect remains swamped by the enormous 

exposures still caused by household-level TSF-C use. For the average TSF-C user in scenarios 

A−D, as coverage goes from 5% to 95%, coverage effects provide only a slight exposure 

reduction of several percentage points. Exposure for TSF-C users, as would be expected, 

continues to be dominated by their households’ TSF-C use.  

 Direct effects for LPG-C users are very similar for all scenario-coverage combinations. 

This finding confirms the logic that, for an isolated household’s inhabitants, exposure to PM2.5 

from LPG-C versus TSF-C would differ by a fixed amount. In the context of a community, 

however, both LPG-C and TSF-C users also experience a coverage effect and to a similar degree. 

Hence, comparing the exposures experienced by LPG-C and TSF-C users in the same 

community would obscure the combined benefits of both household-level and community-level 

LPG-C use. Relying on the direct effect as a measure of intervention efficacy underestimates 

actual efficacy (i.e., total effect). The miscalculation is only slight at low coverage but increases 

as coverage expands.  

 As elucidated by the coverage effect model, an LPG-C intervention program is distinct 

from other public health interventions that also exhibit coverage effects, though some features 

are shared. Perhaps the closest analogs may be a leaky vaccine or ITNs. In these two cases, as 

with LPG-C, direct effects confer the chief benefits but coverage effects supplement protection 

B A 

C D 



 

125 

for users as coverage expands within relevant communities. However, non-users can greatly 

benefit from a leaky vaccine (Halloran et al. 1991) or ITN (Desai and Eisenberg 2007; Killeen et 

al. 2007; Le Menach et al. 2007) program if coverage levels are high enough. In contrast, though 

TSF-C users do experience a coverage effect, it is insufficient to be beneficial. At the opposite 

extreme of LPG-C interventions may be a sanitation program, an intervention which appears to 

be almost entirely efficacious owing to coverage effects (Eisenberg et al. 2007; Luby 2014). 

Most fecal-oral infections can be transmitted through multiple pathways (Conant 2005) which 

may partly explain why the other two arms of WSH – safe water and proper hygiene – 

inconsistently demonstrate coverage effects (Dangour et al. 2013). This may sound a cautionary 

note for coverage effects from LPC-C, since exposure to PM2.5 also occurs via multiple 

pathways.  

 

4.3.2.3. Cooking Events and Time-Activity Patterns Revisited 

 The observant reader will have noticed that the values in Table 4.5 at 5% and 95% 

coverage are nearly identical to those in Table 4.4. For all intents and purposes, results for 

concentrations and exposures are equivalent, including with regards to trend lines and measures 

of dispersion. Thus, before continuing, I address why the coverage effect model’s results for 

concentration and exposure are so similar and what this suggests about choices in model 

development and the nature of a coverage effect.  

 For communities experiencing average daily windspeeds of ~3.6 km/hr (60 m/min) and 

possessing linear dimensions of ~50−100 m, the residence time of an air parcel is on the order of 

minutes. Similarly, for households exhibiting ventilation rates of ~20/hr (0.333/min), the 

residence time of an air parcel is also on the order of minutes. Thus, cookstove emissions exit the 

household relatively rapidly. Upon entering the ambient air, these emissions either exit the 

community airshed swiftly, or a portion enters another household, once again exiting rapidly, and 

so on. The point being that during community cooking windows, concentrations rise and fall 

quickly, returning to background, both within indoor and outdoor environments. Cooking start 

times and durations are stretched out over the community cooking window, so the rise and fall of 

concentrations can be somewhat elongated, but essentially the contribution of HAP to elevating 

PM2.5 concentrations within the community airshed and neighbors’ households is transient.  

 A corollary of these dynamics is that concentrations and thus potential exposures are far 

and away at their highest in all environments, regardless of cookstove technology or coverage 

level, during community cooking windows. Outside these time periods, concentrations in all 

environments – including inside households, given high ventilation rates − revert to background. 

Thus, from the perspective of potential exposure, it makes little difference whether an individual 

is indoors or outdoors for much of the night, mid-morning, or mid-afternoon. 

 The coverage effect model employs a simple algorithm for time-activity patterns. Women 

and children are indoors during their household’s cooking events and for a period both before 

and after cooking events. Thus, when they are outdoors, ambient PM2.5 concentrations have very 

likely returned to near background levels. Given this approach to time-activity patterns, 

exposures are so dominated by indoor concentrations that the distributions of exposures and 

indoor concentrations are exceedingly similar. Women and children are nonetheless subjected to 
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HAP from their neighbors, but via the infiltration of elevated ambient PM2.5 concentrations into 

their households during community cooking windows. 

 The proportion of exposure occurring indoors versus outdoors averages ~90% versus 

~10% for LPG-C users and >99% versus <1% for TSF-C users for all scenario-coverage 

combinations. LPG-C users witness a very slight decline in the fraction of exposure occurring 

indoors (less than a couple percent points) as coverage expands. For all simulations, time spent 

indoors versus outdoors is similar, ~75% versus ~25%, over the course of a solar day.  

 The algorithms for cooking events and especially time-activity patterns explain the 

near-equivalency of exposures and indoor concentrations. I chose to use a straightforward and 

transparent approach for cooking events and time-activity patterns so as not to eclipse the 

influence of other variables such as residential density and background concentration, as well as 

to ensure generalizability. In reality, the timing of cooking events and human movement between 

micro-environments will obviously be quite variable, distinct to an even individual level, and 

challenging to characterize. Perhaps for this reason, there are few, if any, evidence-based 

strategies with wide applicability for coding cooking events and time-activity patterns.  

 Of the two, cooking events, for which there is a two hour window for commencing 

cookstove use, seems less problematic. Time-activity patterns are arguably overly simplistic. 

Children in particular, but women as well, likely move between indoor and outdoor 

environments more than assumed. A different scheme for time-activity patterns could be easily 

instituted since the model calculates concentrations in all indoor and outdoor environments. 

However, if cooking events were kept as currently modeled, then the effect of simulating more 

time spent outdoors during community cooking windows would be to enhance the coverage 

effect. This is because individuals would experience proportionately less exposure from their 

households’ cookstove use and more exposure from their neighbors’ (e.g., this may be the case 

for individuals working outdoors within the community airshed during community cooking 

windows). As a result, the model could be viewed as conservative with regards to its estimates of 

coverage effects. 

 The transiency of elevated PM2.5 concentrations attributable to HAP in all environments 

comports with the physics of plume rise and dispersion. Yet public health researchers and 

practitioners working in villages and slums have anecdotally reported sustained high ambient 

PM2.5 concentrations. If these observations coincided with community cooking windows, the 

explanation seems apparent. But at least some of these observations probably indicate sizeable 

emissions from non-cooking-related sources within communities and/or emissions from regional 

sources. Regional sources, it should be mentioned, could include both primary and secondary 

PM2.5 from HAP generated upwind by other communities. Complex wind-flow fields, for 

example building downwash, may temporarily concentrate emissions, as well. The related 

anecdotal observation of high ambient PM2.5 concentrations during morning hours or wintertime 

inversions may be partially explained by low boundary layer mixing heights which effectively 

condense regional air pollution into a smaller volume. But under calm winds or cool temps, 

community sources such as HAP could disperse more not less (see Section 4.2.3.4). Unless the 

community cooking window spans the day, HAP from within the village or slum itself would 

seem an unlikely source for sustained high ambient PM2.5 concentrations.   
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4.4. Implications 

4.4.1. Insights from the Coverage Effect Model 

 The coverage effect model functions primarily as a “proof-of-concept” analysis, and 

secondarily, as an initial first-order approximation and qualitative screening tool. Ensemble 

results are consistent with the concept that an appreciable coverage effect from LPG-C 

interventions can manifest within moderately dense communities. Benefits for LPG-C users 

derive largely from direct effects; initially, at low coverage levels, almost exclusively so. Yet, as 

coverage expands within an LPG-C user’s community, a coverage effect becomes increasingly 

beneficial. In contrast, TSF-C users, despite also experiencing comparable exposure reductions 

from community-level LPG-C use, cannot proportionately benefit because their PM2.5 exposures 

remain overwhelmingly dominated by household-level TSF-C use.  

 To a first-order approximation, the magnitude of coverage benefits would be expectedly 

slight compared to the direct benefits of LPG-C adoption (~1000 μg/m
3
). But once a household 

switches to LPG-C, the additional exposure reduction attributable to their neighbors’ uptake of 

LPG-C may be quite significant. Given a low background concentration (10 μg/m
3
) and 

residential densities representative of a moderately dense village (100 hh/ha; scenario A) or a 

slum (400 hh/ha; scenario C), inhabitants of typical households using LPG-C could experience a 

coverage effect that further halves exposure to PM2.5 as coverage expands from 5% to 95%. 

Should background concentrations be high (100 μg/m
3
; scenarios B and D), exposure could still 

be reduced by another quarter.  

 The absolute reduction, ~25-30 μg/m
3
 at village residential densities and ~50-60 μg/m

3
 at 

slum residential densities, may seem modest in the context of the exposures experienced by 

TSF-C users, which routinely exceed 1000 μg/m
3
. But an AAP abatement program purporting 

similar reductions in concentration or exposure would entertain widespread consideration. To put 

the magnitude of the coverage effect in context, a reduction in AAP PM2.5 on an average annual 

basis of 60 μg/m
3
 is equivalent to the difference between Beijing and Lhasa, and a 30 μg/m

3
 

reduction corresponds to the difference between Johannesburg and Mauritius (World Health 

Organization 2014a).  

 These quantitative results are intended only to be cautiously suggestive of average 

outcomes under idealized conditions. Recall that model processes incorporate a number of 

simplifications owing to the objective of isolating effects from household fuel combustion. As 

noted, for this reason, the model assumes no other household or community PM2.5 sources and 

no cookstove stacking. Model processes are also constrained by the adoption of a single-

compartment mass-balance approach and its intrinsic well-mixed assumption. In addition, model 

parameters emulate poorer communities in northern India, potentially restricting extrapolation to 

other locations and situations. Furthermore, output distributions overlap at lower residential 

densities, higher background concentrations, and intermediate coverage levels. In spite of these 

limitations, circumscriptions, and variability, the model’s mean PM2.5 concentrations 

qualitatively comport with field measurements of indoor LPG-C and urban outdoor 

environments. Moreover, trends are robust across scenarios, outlining generalizable principles.  
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 In particular, the coverage effect model strengthens the rationale for public health 

programs and policies to encourage clean cooking technologies with an added incentive to 

realize high coverage within contiguous areas. As a screening tool, the model suggests that 

coverage effects would be anticipated to be more prominent at the higher residential densities 

found in urban locales. Here, economic and institutional factors are more easily conducive to 

enabling access to LPG-C and induction cookers. Yet, given the findings of Salje et al. (2013), 

the impetus for expanding coverage, so that coverage effect are maximized, persists. Below ~100 

hh/ha, coverage effects decline as plumes disperse within ever larger volumes and the 

well-mixed assumption becomes less tenable. But in rural locales where dwellings are clustered 

in hamlets or a village center, leveraging a coverage effect could help households and 

communities approach or attain air quality guidelines.  

  Background concentrations from regional sources of PM2.5 temper benefits from not only 

a coverage effect but also the direct effect of LPG-C use. Non-cooking-related community or 

household sources of PM2.5 would incur similar consequences. The impact of other PM2.5 sources 

besides household fuel combustion may help explain why improved cookstove, LPG-C, or 

induction cooker campaigns sometimes do not translate into expected reductions in exposure. An 

additional explanation could be the absence of a coverage effects should uptake of the 

intervention be sparse. Unraveling the real-world implications of a coverage effect will require 

thoughtful approaches to interventions studies and programs. 

 

4.4.2. Data Collection and Effect Estimation 

 The implications of the coverage effect model extend to identifying priorities for 

collecting data and strategies for estimating effects.  The brief residence time of air parcels 

within a household or community airshed means that community residents are exposed to their 

neighbors’ HAP predominantly during community cooking windows. The importance of 

community cooking windows to exposure would hold whether an individual is outdoors, where 

emissions exfiltrate out of households, or indoors, where elevated outdoor concentrations 

infiltrate into households. Much as indoor concentrations are most often monitored during 

cooking events, the coverage effect model would advocate for monitoring outdoor concentrations 

during, as well as before and/or after, community cooking windows. Contrasting the resulting 

measurements would yield an indicator of the fraction of local AAP due to community HAP and 

the fraction of indoor concentrations attributable to neighbors’ TSF-C use. Routine measurement 

of outdoor air pollution as part of investigations on HAP would help avoid exposure 

misattribution. My proposal glosses over the many details that a genuine protocol would require. 

But the point remains that distinguishing outdoor PM2.5 attributable to HAP from other 

community or regional sources will be essential to judging the potential and actual benefits from 

cleaning cooking interventions, including the role of a coverage effect.  

 Relatedly, the modeling exercise recommends regular measurement of physical 

parameters related to ventilation and meteorology, especially for contexts amenable to a 

coverage effect. Ventilation rates, although not easy to gauge, are paramount among these (Desai 

et al. 2011; Mukhopadhyay et al. 2014). In essence, ventilation rates connect indoor and outdoor 

environments and thereby shape connectivity within, and possibly even between, communities. 
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The residents of communities within which drafty homes are the norm may be consequently 

subjected to PM2.5 sources from their community and region indoors as well as outdoors. Several 

additional variable, important for estimating plume dispersal but easier to measure than 

ventilation rates, are lamentably infrequently assessed. These include the temperature of vented 

cookstove emissions, total area of household vents, ambient temperature, and ground-level 

windspeed. These parameters may improve the explanatory and predictive power of statistical 

models for exposure, in addition to being core inputs for air pollution dispersion models. 

 The coverage effect model reinforces the importance of a total exposure perspective 

(Smith 1988; Girman et al. 1989) and information on two behavioral parameters would facilitate 

such an orientation. Time-activity patterns, also discussed in Section 4.3.2.3, are pivotal to 

establishing the balance between exposure to various air pollution sources in various 

microenvironments (Ezzati and Kammen 2002; Barnes et al. 2005). Detailed information on 

cooking practices (Clark et al. 2015), especially the commonplace use of multiple cookstoves 

(Kumar et al. 2016), would inform a more comprehensive metric of coverage, for instance, the 

fraction of total community cooking energy, events, or time that employ a clean cooking 

technology. Time-activity patterns and cooking practices are challenging to characterize but the 

lack of this data restricts the capacity of statistical and mechanistic models to accurately estimate 

and attribute exposures.    

 The possibility of a coverage effect equates to a potential for SUTVA violation (see 

Section 4.3.2.1). Accordingly, strategies to estimate not only direct effects but also coverage and 

total effects can help avoid impaired conclusions. This is especially true with respect to assuming 

that the benefits of clean cooking intervention will transfer from one coverage level to another. 

Using scenario A (see Table 4.5) as an example of real-world conditions, if the exposures 

experienced by LPG-C users in a community with full coverage were assumed to apply to 

LPG-C users in a community with 25% coverage, the expected exposure (23 μg/m
3
) would be 

nearly half as much as reality (45 μg/m
3
). Correspondingly, health benefits would be unlikely to 

materialize to the extent anticipated. 

 As previously explained, an estimate of the coverage effect, and therefore the total effect, 

cannot be ascertained by comparing LPG-C and TSF-C users contemporaneously within the 

same community (this estimates the direct effect). Instead, LPG-C and TSF-C users must be 

compared across both communities and coverage levels, using cluster (Donner and Klar 2004) or 

multilevel designs (Subramanian 2004), or within the same community but across coverage 

levels, using pre-post (Harris et al. 2006) or step-wedge designs (Hemming et al. 2015). A 

number of variants and subtleties exist to these approaches (see excellent discussion in 

Benjamin-Chung et al. 2015) but none has been commonly applied to HAP or clean cooking 

interventions.  

 

4.4.3. Model Refinements and Extensions 

 Exposure results from the coverage effect model could be transformed into incidence 

rates by sampling the integrated exposure-response relationship (IER) for PM2.5 exposure. The 

IER was developed as part of the comparative risk assessment component of the Global Burden 

of Disease Study 2010 (Lim et al. 2012). As its name declares, the IER integrated 
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exposure-response relationships across the continuum of PM2.5 exposures – ambient air 

pollution, secondhand tobacco smoke, household air pollution, and active smoking – to produce 

unified exposure-response curves, spanning several orders of magnitude of PM2.5 concentration, 

for major associated health impacts (Burnett et al. 2014). Although an intriguing extension of the 

coverage effect model, applying IERs to small population sizes would entail navigating a series 

of complications (e.g., background burdens, covariate distributions, vital dynamics, etc.) which 

may introduce problematic uncertainties and limit the applicability of conclusions. Nonetheless, 

as a theoretical exercise to better understand how coverage effects may express in terms of 

protective efficacy or attributable burden, the idea has merit (Goodkind et al. 2014; Pillarisetti et 

al. 2016). 

 The coverage effect model, as currently formulated, appears reasonably robust and valid 

as an instrument for informing implementation science (Lobb and Colditz 2013). Relatively 

modest refinements may well be adequate to the task of considering the coverage effect 

hypothesis amidst more diverse but still generalizable conditions. With regards to improving 

exposure estimates, the priorities for elaborating the coverage effect model would include 

incorporating diurnally-varying background concentrations, cookstove stacking, 

non-cooking-related PM2.5 sources, seasonal patterns, and autocorrelation within or correlation 

between parameters. As relevant empirical data becomes more widely available, the model 

would profit from being calibrated to rural ambient concentrations, time-activity patterns, and 

age-sex specific exposures.  

 Modeling a wider variety of locations and situations could be accomplished by altering 

how the coverage effect model simulates air pollution dispersal in households and community 

airsheds. Outdoor cooking could be simulated by a zone directly above the cookstove (Furtaw et 

al. 1996) and multi-room houses by extra zones for other rooms. Simulation of the outdoor 

environment could leverage anticipated advances in near-field Gaussian and Lagrangian models 

as discussed in Section 4.1.5. Enacting these updates, of course, would require commensurate 

data, for example air flow and human movement between multiple zones or more detailed 

meteorology.  

 To better capture heterogeneity in PM2.5 concentrations and human exposures, more 

ambitious extensions of the coverage effect model would progress towards a “spatially explicit” 

approach based on cell or grid environment (Getz et al. 2015) or a “spatially realistic” approach 

based on a geographic information system (Jerrett et al. 2010). These structures would be 

conducive to simulating Eulerian air pollution dispersion with three-dimensional plumes driven 

by variable environmental conditions, including wind direction and temperature gradients, as 

well as more complex patterns of human movement. The ramifications of a community airshed 

and connectivity among households (e.g., upwind versus downwind houses or clusters of LPG-C 

versus TSF-C users) could be explored. Modeling of this nature could eventually serve as a 

site-specific vehicle for integrating and evaluating causal hypotheses and field measurements 

much as in other domains (Spear 2002). However, it must be stressed, models that generate 

seemingly more realistic output are not necessarily better at modeling reality. Issues pertaining to 

calibration and validation persist but are more complicated for sophisticated models. Moreover, 

there often exists a trade-off between specificity and generalizability.  
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 This chapter’s focus on a coverage effect from clean cooking interventions also raises 

hypotheses about air pollution more generally. Just as a coverage effect may exist within 

communities, there may well be a parallel phenomenon between communities. In fact, over 

regional scales, both primary and secondary PM2.5 from household combustion can markedly 

impact ambient concentrations in downwind communities (Liu et al. 2016). As a result, one 

could conceptualize a region-level coverage effect and possible rationale to initially target  

rolling out or scaling up clean cooking interventions in those communities that exert a greater 

influence on other communities’ exposures. This logic would apply, of course, to any source of 

AAP. In a sense, the benefits from abatement programs for AAP are intrinsically coverage 

effects. Beneficiaries may not only, and perhaps not even primarily, be users, but instead, 

residents of the surrounding community (1
st
 level coverage effect), wider region (2

nd
 level 

coverage effect), and even cross-boundary or global communities (3
rd

 level coverage effect). 

Comprehensively analyzing clean cooking interventions and HAP may well inspire a multiscale 

perspective that extends beyond household and community to broader scales.  

 In conclusion, I have put forth an argument that greater attention be paid to the potential 

benefits, especially for users of clean cooking interventions, of a coverage effect. Momentum to 

mitigate HAP has risen before only to fall, partly owing to misplaced expectations. 

Understanding coverage effects can help ensure effective and efficient strategies for addressing 

HAP, one of the world’s most significant environmental health challenges. For any particular 

case in the real world, the many sources of natural variability will determine the actual strength 

and significance of a coverage effect. This chapter closes with encouragement for this more 

nuanced but essential task, one for public health researchers and practitioners in the field to 

pursue in dialogue and collaboration with their modeling colleagues, given the import of 

leveraging a coverage effect.  
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5. Conclusion 

 In this dissertation, I motivated, developed, and demonstrated three approaches for 

investigating multiscale drivers of global environmental health: (1) a causal metric for analyzing 

contributions and responses to climate change from global to sectoral scales, (2) a conceptual 

framework for unraveling the influence of environmental change on infectious disease at 

regional to local scales, and (3) a mechanistic model for informing the design and evaluation of 

clean cooking interventions at community to household scales. 

The full utility of climate debt as an analytical perspective will remain untapped without 

causal metrics that can be manipulated by a wide range of analysts, including global 

environmental health researchers. Chapter 2 explains how IND apportions global radiative 

forcing from CO2(f) and CH4, the two most significant CAPs, to individual entities − primarily 

countries but also subnational states and economic sectors, with even finer scales possible − as a 

function of unique trajectories of historical emissions, taking into account the quite different 

radiative efficiencies and atmospheric lifetimes of each CAP. Owing to its straightforward and 

transparent derivation, IND can readily operationalize climate debt to consider issues of equity 

and efficiency and drive scenario exercises that explore the response to climate change at 

multiple scales. Collectively, the analyses presented in this chapter demonstrate how IND can 

inform a range of key questions, compelling environmental health towards an appraisal of the 

causes as well as the consequences of climate change. 

 The environmental change and infectious disease (EnvID) conceptual framework of 

Chapter 3 builds on a rich history of prior efforts in epidemiologic theory, environmental 

science, and mathematical modeling to analyze social and ecological drivers of re/emerging 

pathogens. EnvID is distinguished by: (1) articulating a flexible and logical system specification; 

(2) incorporating transmission groupings linked to public health intervention strategies; (3) 

emphasizing the intersection of proximal environmental characteristics and transmission cycles; 

(4) incorporating a matrix formulation to identify knowledge gaps and facilitate research 

integration; and (5) highlighting hypothesis generation amidst dynamic processes. A 

systems-based approach leverages the reality that studies relevant to environmental change and 

infectious disease are embedded within a wider web of interactions. As scientific understanding 

advances, the EnvID framework can help integrate the various factors at play in determining 

environment–disease relationships and the connections between intrinsically multiscale causal 

networks. 

 In Chapter 4, the coverage effect mechanistic model functions primarily as a 

“proof-of-concept” analysis to address whether the efficacy of a clean cooking technology may 
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be determined by the extent of not only household-level use but also community-level coverage. 

Such coverage dependent efficacy, or a “coverage effect,” would transform how interventions 

are studied and deployed. Ensemble results are consistent with the concept that an appreciable 

coverage effect from LPG-C interventions can manifest within moderately dense communities. 

Benefits for LPG-C users derive largely from direct effects; initially, at low coverage levels, 

almost exclusively so. Yet, as coverage expands within an LPG-C user’s community, a coverage 

effect becomes markedly beneficial. In contrast, TSF-C users, despite also experiencing 

comparable exposure reductions from community-level LPG-C use, cannot proportionately 

benefit because their PM2.5 exposures remain overwhelmingly dominated by household-level 

TSF-C use.  

 The coverage effect model strengthens the rationale for public health programs and 

policies to encourage clean cooking technologies with an added incentive to realize high 

coverage within contiguous areas. The implications of the modeling exercise extend to priorities 

for data collection, underscoring the importance of outdoor PM2.5 concentrations during, as well 

as before and/or after, community cooking windows and also routine measurement of ventilation, 

meteorology, time-activity patterns, and cooking practices.  The possibility of a coverage effect 

equates to a potential for SUTVA violation, necessitating strategies to estimate not only direct 

effects but also coverage and total effects to avoid impaired conclusions.  

 A postulated coverage effect from clean cooking interventions also raises hypotheses 

about air pollution more generally. Just as a coverage effect may exist within communities, there 

may well be a parallel phenomenon between communities. Arguably, the benefits from 

abatement programs for AAP are intrinsically coverage effects. Beneficiaries may not only, and 

perhaps not even primarily, be users, but instead, residents of the surrounding community (1
st
 

level coverage effect), wider region (2
nd

 level coverage effect), and even cross-boundary or 

global communities (3
rd

 level coverage effect). Of course, if the specific form of air pollution 

being considered is CO2(f) or CH4, then the analysis has come full circle. 

 The specter of accelerating social and ecological change challenges efforts to respond to 

climate change, re/emerging infectious diseases, and household air pollution. Environmental 

health possesses a verified repertoire of incisive methods but contending with multiscale drivers 

of risk requires complementary approaches, as well. Integrating metrics, frameworks, and 

models − and the resulting insights − into its analytical arsenal can help global environmental 

health meet the challenges of today and tomorrow. 
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Appendix A 

A1. Legend for Database IND 

 Workbook
7
 reports IND and associated data with respect to the year 2005 for 206 

countries, a number which includes California as a distinct entity. In all worksheets, countries are 

presented sorted by population size with population data provided (Population Estimates 

Program of the United States Census Bureau 2011; United Nations Department of Social and 

Economic Affairs, Population Division 2011). All data types are presented as total and per capita 

values, accompanied, for total values, with percent of world (“% World”); for per capita values, 

with percent of world average (“% Average”); and for both, global ranks (1 to 206). The first tab 

provides data on IND (including %CO2(f) and %CH4), INDCO2(f), and INDCH4
. The second tab 

provides data on current (2005), total original, and total remaining emissions of CO2(f) and CH4 

(Air Resources Board of the California Environmental Protection Agency 2007a; Air Resources 

Board of the California Environmental Protection Agency 2013; Boden et al. 2010; Joint 

Research Centre of the European Commission/PBL Netherlands Environmental Assessment 

Agency 2010b; United Nations Framework Convention on Climate Change 2012). The third tab 

provides data on GDP-PPP and DALYs (Global Burden of Disease Study 2010 2012; World 

Bank 2012; Bureau of Economic Analysis of the United States Department of Commerce 2006; 

United States Central Intelligence Agency 2006). The 51 countries with the largest total IND, a 

list which includes California, are highlighted in the first three tabs. The fourth tab provides data 

on INDCH4
 from all sectors combined and disaggregated by sector. The 25 countries with the 

largest total INDCH4
, plus California, are highlighted in this tab. Abbreviations: %CH4  = percent 

of IND from CH4; %CO2(f) = percent of IND from CO2(f); CH4 = methane; CO2(f) = carbon 

dioxide from fossil fuels and cement manufacture; DALYs = disability-adjusted life years lost; 

IND = International Natural Debt, climate debt from CO2(f) and CH4 combined; INDCH4
 = 

climate debt from CH4; INDCO2(f) = climate debt from CO2(f); GDP-PPP = gross domestic 

product at purchasing power parity; pp = per person; U.S. minus CA = United States minus 

California. 

 

                                                 
7
 Database IND is available at http://www.kirkrsmith.org/s/Desai-Dataset-IND.xlsx 

http://www.kirkrsmith.org/s/Desai-Dataset-IND.xlsx
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A2. Adjustments to Emissions Datasets 

 Adjustments were required for the CDIAC dataset (Boden et al. 2010) to account for 

unifications and partitions, affecting 14% of all country-year original emissions data. 

Additionally, for a comparatively small number of country-years, the CDIAC dataset was 

adjusted to address missing data, negative values, and a reporting change for the United States 

and its dependencies. These are other adjustments are detailed below. 

 

Unifications − CDIAC 

 For unifications, listed in Table A1, I merged the time-series of component countries to create 

the time-series for the merged country. 

 

Table A1: CDIAC − Country Unifications 

Component Countries  

(Pre-Unification) 

Merged Country  

(Post-Unification) 

Japan 1952−1972 

Ryukyu Islands 1952−1972  
Japan 1952−1972 

Panama 1950−1979 

Panama Canal Zone 1950−1979  
Panama 1950−1979 

North Vietnam 1955−1969 

South Vietnam 1955−1969  
Viet Nam 1955−1969 

North Yemen 1950−1990 

South Yemen 1950−1990  
Yemen 1950−1990 

Peninsular Malaysia 1957−1969 

Sarawak 1957−1969 

Sabah 1957−1969  

Malaysia 1957−1969 

Tanganyika 1950−1959 

Zanzibar 1950−1959  
Tanzania 1950−1959 

West Germany 1950−1990 

East Germany 1950−1990  
Germany 1950−1990 
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Partitions − CDIAC 

 For partitions, listed in Table A2, I used cumulative emissions from each component country 

during the first five years post-partition to proportionally weight the attribution of emissions 

from the merged country during pre-partition. 

 

Table A2: CDIAC − Country Partitions 

Merged Country 

(Pre-Partition) 

Component Countries 

(Post-Partition) 

Ethiopia 1950−1993  
Eritrea 1950−1993 

Ethiopia 1950−1993 

Indonesia 1950−2001  
Indonesia 1950−2001 

Timor-Leste 1950−2001 

Czechoslovakia 1950−1991  
Czech Republic 

Slovakia 

East & West Pakistan 1950−1971  
Bangladesh 1950−1971 

Pakistan 1950−1971 

French Equatorial Africa
1
 1950−1958  

Central African Republic 1950−1958 

Chad 1950−1958 

Congo (Brazzaville) 1950−1958 

Gabon 1950−1958 

French Indo-China 1950−1954  

Cambodia 1950−1954 

Laos 1950−1954 

Viet Nam 1950−1954 

French West Africa 1950−1957  

Benin 1950−1957 

Burkina Faso 1950−1957 

Côte d'Ivoire 1950−1957 

Guinea 1950−1957 

Mali 1950−1957 

Mauritania 1950−1957 

Niger 1950−1957 

Senegal 1950−1957 

Leeward Islands 1950−1956  

Anguilla
2
 1950−1956 

Antigua & Barbuda
2
 1950−1956 

British Virgin Islands 1950−1956 

Montserrat 1950−1956 

Saint Kitts & Nevis 1950−1956  

Malaya-Singapore 1950−1956  
Malaysia 1950−1956 

Singapore 1950−1956 
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Merged Country 

(Pre-Partition) 

Component Countries 

(Post-Partition) 

Rhodesia-Nyasaland 1950−1963  

Malawi 1950−1963 

Zambia 1950−1963 

Zimbabwe 1950−1963 

Rwanda-Urundi 1950−1961  
Burundi 1950−1961 

Rwanda 1950−1961 

Saint Kitts, Nevis, and Anguilla 1957−1980  
Anguilla

2
 1957−1980 

Saint Kitts & Nevis 1957−1980 

USSR 1950−1991  

Armenia 1950−1991 

Azerbaijan 1950−1991 

Belarus 1950−1991 

Estonia 1950−1991 

Georgia 1950−1991 

Kazakhstan 1950−1991 

Kyrgyzstan 1950−1991 

Latvia 1950−1991 

Lithuania 1950−1991 

Moldova 1950−1991 

Russian Federation 1950−1991 

Tajikistan 1950−1991 

Turkmenistan 1950−1991 

Ukraine 1950−1991 

Uzbekistan 1950−1991 

Yugoslavia 1950−1991  

Bosnia & Herzegovina 1950−1991 

Croatia 1950−1991 

Macedonia 1950−1991 

Serbia & Montenegro 1950−1991 

Slovenia 1950−1991 
1
 Although French Equatorial Africa included Cameroon, the CDIAC dataset reports a full 

time-series for Cameroon. Hence, for the purposes of partition calculations, Cameroon is not 

included here. 
2
 These countries or dependencies are included in the CDIAC dataset but missing from the 

EDGAR dataset and thus not included in the IND database. Data for these entities, however, 

was required for partition calculations.  
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Missing Years − CDIAC 

 A missing year is defined as an annual total of zero. Missing years, which comprised 4.3% of 

all country-year original emissions data, are summarized in Table A3. 

 Missing years that occurred in the middle of a time-series were replaced by linear interpolation 

based on the nearest non-zero years. Missing years that occurred at the start of a time-series 

were replaced by linear extrapolation of the full range of reported data by the least squares 

method. If an extrapolated trend became negative, emissions reverted to zero for that and all 

prior years. It is for this reason that missing years and replaced years differ in Table A3. 

 

Table A3: CDIAC − Missing Years 

Country or Dependency 
Missing 

Years 

Middle 

or Start 

Replaced 

Years 

Anguilla
1
 1981−1996 Start 1992−1996 

American Samoa 1950−1953 Start 1952−1953 

Bhutan 1950−1969 Start none 

Botswana 1950−1971 Start 1969−1971 

British Virgin Islands
2
 1957−1961 Start 1961 

Comoros 1950−1958 Start 1958 

Cook Islands 1950−1968 Start 1950−1968 

Falkland Islands 1968−1969 Middle 1968−1968 

French Polynesia 1950−1954 Start none 

Kiribati 1950−1960 Start 1950−1960 

Macau SAR 1950−1953 Start 1950−1953 

Maldives 1950−1970 Start none 

Mali 1958 Start 1958 

Marshall Islands 1950−1989 Start 1970−1989 

Mauritania 1958 Start 1958 

Micronesia
3
 1950−1998 Start none 

Montserrat
2
 1957−1961 Start none 

Namibia 1950−1989 Start none 

Nauru 1950−1963 Start 1950−1963 

Niue
4
 1950−1969 Start 1950−1969 

Niue
4
 1977 Middle 1977 

Oman 1950−1963 Start none 

Palau 1950−1954 Start 1950−1954 

Saint Helena
4
 1950−1967 Start 1959−1967 

Saint Helena
4
 1969−1980 Middle 1969−1980 

Sao Tome & Principe 1950 Start none 

Seychelles 1950−1962 Start none 

Solomon Islands 1950−1951 Start none 

Somalia 1996−1999 Middle 1996−1999 
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Country or Dependency 
Missing 

Years 

Middle 

or Start 

Replaced 

Years 

Turks & Caicos Islands 1950−1994 Start none 

United Arab Emirates 1950−1958 Start none 

Vanuatu 1950−1961 Start 1950−1961 

Wallis & Futuna Islands
3
 1950−2000 Start none 

Western Sahara 1950−1969 Start 1950−1969 
1
 Anguilla is excluded from the database but its time-series was necessary for the partition 

calculations for Leeward Islands and Saint Kitts, Nevis, & Anguilla. 
2
 For British Virgin Islands and Montserrat, 1950−1956 is covered by Leeward Islands. However, 

interpolation remained infeasible after the partition calculation for Leeward Islands. Thus, 

extrapolation was used to replace 1957−1961. 
3
 Reported data for Micronesia and Wallis & Futuna Islands was insufficient for extrapolation 

(only 7 and 5 years, respectively). Hence, these missing years were left uncorrected. 
4
 Niue and Saint Helena each possessed two different sets of missing years. Interpolation was 

performed first and extrapolation second. 
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A2.4. Negative Values − CDIAC 

 A small number of negative values for original emissions were reported at the source level 

(solid, liquid, or gas fossil fuel; flaring; or cement). Negative values affected 0.2% of all 

country-year original emissions data. These negative values were replaced by linear 

interpolation based on the nearest adjacent non-negative data for that source category. See 

Table A4. 

 In one case (Iran 1950 liquid source category), the negative value occurred at the start of the 

time-series. In this instance the value was set to zero. 

 Replacing negative values in source categories eliminated the previously negative total original 

emissions for a handful of country-years − Iran 1950, Saudi Arabia 1951 & 1952, and Kuwait 

1952 & 1953. 

 

Table A4: CDIAC − Negative Values 

Country or Dependency Source Year 
Negative 

Value 

Interpolated 

Value 

Iran Liquid 1950 -5,965.67 0.00 

Saudi Arabia Liquid 1951 -348.33 3588.44 

Saudi Arabia Liquid 1952 -172.33 2032.56 

Kuwait Liquid 1952 -436.33 546.33 

Kuwait Liquid 1953 -51.33 975.33 

Switzerland Liquid 1956 -3.67 0.00 

Switzerland Liquid 1957 -3.67 0.00 

Switzerland Liquid 1958 -3.67 0.00 

Switzerland Liquid 1959 -3.67 0.00 

Switzerland Liquid 1960 -3.67 0.00 

Switzerland Liquid 1961 -3.67 0.00 

Switzerland Liquid 1962 -3.67 0.00 

Switzerland Liquid 1963 -3.67 0.00 

Switzerland Liquid 1964 -3.67 0.00 

Switzerland Liquid 1966 -3.67 1.22 

Trinidad and Tobago Liquid 1963 -370.33 4222.78 

Kuwait Liquid 1968 -726.00 1873.67 

Senegal Liquid 1968 -179.67 540.22 

Libya Gas 1977 -146.67 498.67 

Brunei Darussalam Liquid 1981 -590.33 670.08 

Brunei Darussalam Liquid 1982 -572.00 665.50 

Brunei Darussalam Liquid 1983 -29.33 660.92 

Panama Liquid 1985 -113.67 24.44 

United Arab Emirates Liquid 1996 -14,498.00 28898.22 

United Arab Emirates Liquid 1997 -14,025.00 32712.78 

United States Virgin Islands Solid 1952 -3.67 0.00 
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A2.5. Reporting Change − CDIAC 

 CDIAC includes original emissions for American Samoa, Guam, Puerto Rico, and United 

States Virgin Islands within the United States’ totals. However, these dependencies’ original 

emissions were reported separately until 2003 and the corresponding dependency-specific 

time-series remain available from CDIAC. Hence, original emissions from the four 

dependencies during 1950−2002 were subtracted from the United States’ original emissions for 

1950−2002, yielding an adjusted time-series for the United States. This reporting change 

affected 1.9% of all country-year original emissions. 

 UNFCCC data were used for the United States’ original emissions, prior to subtraction, for 

1990 to 2005. Thus for those years the reporting change procedure is identical to that for 

UNFCCC adjustment. 

 The situation for 2003−2005 was unique but follows an analogous procedure to a partition. For 

a given source category, the cumulative original emissions during 1998−2002 (the final five 

years of separate reporting) were used to determine proportional weights for the attribution of 

2003−2005 original emissions.  

 CDIAC reports original emissions for American Samoa in 2003, unlike with the other three 

dependencies, whose time-series end at 2002. For consistency with calculations, this data was 

ignored and American Samoa’s time-series is reset to end with 2002 (difference in reported 

versus calculated emissions only ~1%). 

 

A2.6. 1991 Kuwaiti Oil Fires − CDIAC 

 1991 Kuwaiti Oil Fires were included with Kuwait’s energy sector category emissions for 

1991. 
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A2.7. UNFCCC Notes − CDIAC 

 UNFCCC data, reported according to IPCC codes, were mapped to CDIAC source categories 

according to the scheme in Table A5 below. 

 CDIAC's flaring emissions data refer strictly to the practice employed in oil fields. The 

UNFCCC’s procedure, as outlined in the Revised 1996 IPCC Guidelines (Houghton et al. 

1997), includes three subcategories for flaring: oil, gas, and combined, with the last 

subcategory referring to situations in which flaring from oil versus gas cannot be (or simply 

was not) separated. For the purposes of reporting GHG inventories, these three subcategories 

do not overlap.  

 Most Annex I countries either (1) report flaring from oil and gas separately, and report nothing 

as combined; or (2) report all flaring as combined, and report nothing for either oil or gas. 

Canada and France are the exceptions to this practice, reporting data for all three categories. As 

a result, I use one of the two − oil flaring or combined flaring − and in the case of Canada and 

France sum these two categories.  

 UNFCCC adjustments overwrite the results of partition calculations for 1990 and 1991 for the 

countries of Belarus, Estonia, Croatia, Czech Republic, Estonia, Latvia, Lithuania, Russian 

Federation, Slovakia, Slovenia, and Ukraine.  

 In order to avoid circular references in partition calculations, CDIAC data were not updated for 

1990 and 1991. UNFCCC adjustments were utilized from 1992 to 2005 for partition 

calculations. Note, however, that if any partition countries were updated by UNFCCC 

adjustments, then the sums of emissions for daughter countries, being a mix of UNFCCC and 

CDIAC data, will not equal the emissions for the mother country, which are from CDIAC, for 

the years 1990 and 1991.  

 

Table A5: Mapping of CO2(f) Source Categories between CDIAC and UNFCCC 

CDIAC UNFCCC 

Solids Solid Fuels (Reference Approach) 

Liquids Liquid Fuels (Reference Approach) 

Gas Gaseous Fuels (Reference Approach) 

Cement Production 2.A.1 Cement Production (Sectoral Approach) 

Gas Flaring 1.B.2.C.2.1. Oil Flaring + 1.B.2.C.2.3 Combined Flaring (Sectoral Approach) 
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A2.8. UNFCCC Adjustments − CDIAC and EDGAR 

 An additional adjustment was necessary because Annex I countries that possess dependencies 

report original emissions to UNFCCC for both the parent country and its dependencies 

combined. In such instances, to avoid double-counting, CDIAC or EDGAR data for the 

dependencies were subtracted from UNFCCC data (United Nations Framework Convention on 

Climate Change 2012) for the parent country. Table A6, based on 2011 National Inventory 

Reports to the UNFCCC, summarizes the ruling countries and dependencies for which 

adjustments were necessary. For each GHG, 3.6% of all country-years were adjusted in this 

fashion. 

 

Table A6: Parent Countries and Dependencies for CDIAC to UNFCCC Adjustment 

Ruling Country Dependency 

Denmark 
Faeroe Islands 

Greenland 

France 

French Guiana 

French Polynesia 

Guadeloupe 

Martinique 

New Caledonia 

Réunion 

Wallis & Futuna Islands 

New Zealand 
Cook Islands 

Niue 

United Kingdom 

British Virgin Islands 

Falkland Islands 

Gibraltar 

Montserrat 

Saint Helena 

Turks & Caicos Islands 

United States 

American Samoa 

Guam 

Puerto Rico 

United States Virgin Islands 
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A3. Other Tables 

Additional tables follow that list country inclusion/exclusion for Figure 2.8, Figure 2.10, and 

Table 2.1. 

 

Table A7: Countries Missing from Figure 2.8 

Missing 

Country or Dependency 

DALY Data Merged With 

or DALY Data Missing 

American Samoa United States 

British Virgin Islands United Kingdom 

Cook Islands New Zealand 

Faeroe Islands Denmark 

Falkland Islands United Kingdom 

French Guiana France 

French Polynesia France 

Gibraltar United Kingdom 

Greenland Denmark 

Guadeloupe France 

Guam United States 

Hong Kong SAR Missing 

Macau SAR Missing 

Martinique France 

Montserrat United Kingdom 

Nauru Missing 

New Caledonia France 

Niue New Zealand 

Palau Missing 

Puerto Rico United States 

Réunion France 

Saint Helena United Kingdom 

Saint Kitts & Nevis Missing 

Turks & Caicos Islands United Kingdom 

United States Virgin Islands United States 

Wallis & Futuna Islands France 

Western Sahara Missing 
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Table A8: LUCF Region Definitions for Table 2.1

Region 

Member Country 

 
Canada 

Canada 

Greenland 

United States 

Mesoamerica 

Costa Rica 

El Salvador 

Guatemala 

Honduras 

Mexico 

Nicaragua 

Panama 

Caribbean 

British Virgin Islands 

Cuba 

Dominican Republic 

Grenada 

Guadeloupe 

Haiti 

Jamaica 

Martinique 

Montserrat 

Puerto Rico 

Saint Kitts & Nevis 

Saint Lucia 

Saint Vincent & 

Grenadines 

Trinidad & Tobago 

Turks & Caicos Islands 

United States Virgin 

Islands 

Tropical South 

America 

Bolivia 

Brazil 

Colombia 

Ecuador 

French Guiana 

Guyana 

Paraguay 

Peru 

Suriname 

Venezuela 

Temperate South 

America 

Argentina 

Chile 

Falkland Islands 

Uruguay 

Europe 

Albania 

Austria 

Belgium 

Bosnia & Herzegovina 

Bulgaria 

Croatia 

Czech Republic 

Denmark 

Faeroe Islands 

Finland 

France 

Germany 

Greece 

Gibraltar 

Hungary 

Iceland 

Ireland 

Italy 

Luxembourg 

Macedonia 

Malta 

Netherlands 

Norway 

Poland 

Portugal 

Romania 

Serbia & Montenegro 

Slovakia 

Slovenia 

Spain 

Sweden 

Switzerland 

United Kingdom 

Former Soviet Union 

Armenia 

Azerbaijan 

Belarus 

Estonia 

Georgia 

Kazakhstan 

Kyrgyzstan 

Latvia 

Lithuania 

Moldova 

Russian Federation 

Tajikistan 

Turkmenistan 

Ukraine 

Uzbekistan 

Middle East & North 

Africa 

Afghanistan 

Algeria 

Bahrain 

Cyprus 

Egypt 

Iran 

Iraq 

Israel 

Jordan 

Kuwait 

Lebanon 

Libya 

Morocco 

Oman 

Qatar 

Saudi Arabia 

Syria 

Tunisia 

Turkey 

United Arab Emirates 

Western Sahara 

Yemen 

West Africa 

Benin 

Burkina Faso 

Cape Verde 

Chad 

Côte d'Ivoire 

Gambia 

Ghana 

Guinea 

Guinea-Bissau 

Liberia 

Mali 

Mauritania 

Niger 

Nigeria 

Senegal 

Sierra Leone 

Togo 

Central Africa 

Burundi 

Cameroon 

Central African 

Republic 

Congo (Brazzaville) 

Congo (Kinshasa) 

Equatorial Guinea 

Gabon 

Rwanda 

Sao Tome & Principe 

East Africa 

Djibouti 

Eritrea 

Ethiopia 

Kenya 

Seychelles 

Somalia 

Sudan 

Tanzania 
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Uganda 

Southern Africa 

Angola 

Botswana 

Comoros 

Madagascar 

Malawi 

Mauritius 

Mozambique 

Namibia 

Réunion 

Saint Helena 

South Africa 

Swaziland 

Zambia 

Zimbabwe 

South Asia 

Bangladesh 

Bhutan 

India 

Maldives 

Nepal 

Pakistan 

Sri Lanka 

Southeast Asia 

Brunei Darussalam 

Cambodia 

Indonesia 

Laos 

Malaysia 

Myanmar 

Papua New Guinea 

Philippines 

Singapore 

Thailand 

Timor-Leste 

Viet Nam 

China 

China 

Hong Kong SAR 

Macau SAR 

Taiwan 

East Asia 

Japan 

Mongolia 

North Korea 

South Korea 

Oceania 

Australia 

American Samoa 

Cook Islands 

Fiji 

French Polynesia 

Guam 

Kiribati 

Marshall Islands 

Micronesia 

Nauru 

New Caledonia 

New Zealand 

Niue 

Palau 

Samoa 

Solomon Islands 

Tonga 

Vanuatu 

Wallis & Futuna Islands 

 

 

Table A9: WHO Region Definitions for Figure 2.10 

WHO Region 

Member Country 

 

AFR-D 

Algeria 

Angola 

Benin 

Burkina Faso 

Cameroon 

Cape Verde 

Chad 

Comoros 

Equatorial Guinea 

Gabon 

Gambia 

Ghana 

Guinea 

Guinea-Bissau 

Liberia 

Madagascar 

Mali 

Mauritania 

Mauritius 

Niger 

Nigeria 

Sao Tome & Principe 

Senegal 

Seychelles 

Sierra Leone 

Togo 

AFR-E 

Botswana 

Burundi 

Central African 

Republic 

Congo (Brazzaville) 

Congo (Kinshasa) 

Côte d'Ivoire 

Eritrea 

Ethiopia 

Kenya 

Malawi 

Mozambique 

Namibia 

Rwanda 

South Africa 

Swaziland 

Tanzania 

Uganda 

Zambia 

Zimbabwe 

AMR-A 

Canada 

Cuba 

United States 

AMR-B 

Argentina 

Brazil 

Chile 

Colombia 

Costa Rica 

Dominican Republic 

El Salvador 

Grenada 

Guyana 

Honduras 

Jamaica 

Mexico 

Panama 

Paraguay 

Saint Kitts & Nevis 

Saint Lucia 

Saint Vincent & 

Grenadines 

Suriname 

Trinidad & Tobago 

Uruguay 

Venezuela 

AMR-D 

Bolivia 

Ecuador 

Guatemala 

Haiti 

Nicaragua 

Peru 

EMR-B 

Bahrain 

Cyprus 
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Iran 

Jordan 

Kuwait 

Lebanon 

Libya 

Oman 

Qatar 

Saudi Arabia 

Syria 

Tunisia 

United Arab Emirates 

EMR-D 

Afghanistan 

Djibouti 

Egypt 

Iraq 

Morocco 

Pakistan 

Somalia 

Sudan 

Yemen 

EUR-A 

Austria 

Belgium 

Croatia 

Czech Republic 

Denmark 

Finland 

France 

Germany 

Greece 

Iceland 

Ireland 

Israel 

Italy 

Luxembourg 

Malta 

Netherlands 

Norway 

Portugal 

Slovenia 

Spain 

Sweden 

Switzerland 

United Kingdom 

EUR-B 

Albania 

Armenia 

Azerbaijan 

Bosnia & Herzegovina 

Bulgaria 

Georgia 

Kyrgyzstan 

Macedonia* 

Poland 

Romania 

Serbia & Montenegro* 

Slovakia 

Tajikistan 

Turkey 

Turkmenistan 

Uzbekistan 

EUR-C 

Belarus 

Estonia 

Hungary 

Kazakhstan 

Latvia 

Lithuania 

Moldova 

Russian Federation 

Ukraine 

SEAR-B 

Indonesia 

Sri Lanka 

Thailand 

SEAR-D 

Bangladesh 

Bhutan 

India 

Maldives 

Myanmar 

Nepal 

North Korea 

WPR-A 

Australia 

Brunei Darussalam 

Japan 

New Zealand 

Singapore 

WPR-B 

Cambodia 

China 

Cook Islands 

Fiji 

Kiribati 

Laos 

Malaysia 

Marshall Islands 

Micronesia 

Mongolia 

Nauru 

Niue 

Palau 

Papua New Guinea 

Philippines 

Samoa 

Solomon Islands 

South Korea 

Tonga 

Vanuatu 

Viet Nam 

IN IND, NOT IN WHO 

American Samoa 

British Virgin Islands 

Faeroe Islands 

Falkland Islands 

French Guiana 

French Polynesia 

Gibraltar 

Greenland 

Guadeloupe 

Guam 

Hong Kong SAR 

Macau SAR 

Martinique 

Montserrat 

New Caledonia 

Puerto Rico 

Réunion 

Saint Helena 

Serbia & Montenegro 

Taiwan 

Timor-Leste 

Turks & Caicos Islands 

United States Virgin 

Islands 

Wallis & Futuna Islands 

Western Sahara 

IN WHO, NOT IN IND 

Antigua and Barbuda 

Bahamas 

Barbados 

Belize 

Dominica 

Grenadines 

Lesotho 

Monaco 

San Marino 

Tuvalu 

*In lieu of WHO's former use 

of Yugoslavia, Serbia & 

Montenegro and Macedonia 

were placed in EUR-B 
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Appendix B 

B1. Briggs Equations 

Based on equations reported in United States Environmental Protection Agency (1995) and 

Schnelle and Dey (2000). 

 

Notation 

g = gravitational constant (9.8 m/sec
2
) 

s = stability parameter (0.2 °K/m) 

β = entrainment parameter (0.6; unit-less) 

u = windspeed (m/sec) 

vs = stack velocity (m/sec) 

ds = stack diameter (m) 

ΔT = temperature difference between stack and ambient air (°K) 

Ta = ambient temperature (°K) 

Ts = stack temperature (°K) 

V = volume (m
3
) 

α = ventilation rate (1/sec) 

Fb = buoyancy flux (m
4
/s

3
) 

Fm = momentum flux (m
4
/s

3
) 

xf = distance to final rise (m) 

hf = height at final rise (m) 

hx = height at distance x less than final rise (m) 

 

Flux 

Equation B1.1: Buoyancy Flux 










 


s

ass
sb

T

TTd
gvF

4

2

 

Equation B1.2: Momentum Flux 
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Buoyancy versus Momentum 

If ΔT > (ΔT)c, then flux is buoyancy dominated, otherwise flux is momentum dominated. 

Equation B1.3: Buoyancy Versus Momentum for P-G Classes A-D 

 
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Equation B1.4: Buoyancy Versus Momentum for P-G Classes E-F 
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Buoyancy Dominated P-G Classes A-D 

Equation B1.5: Distance to Final Rise for Buoyancy Dominated P-G Classes A-D 
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Equation B1.6: Height at Final Rise for Buoyancy Dominated P-G Classes A-D 
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Equation B1.7: Height at Distance Less Than Final Rise for Buoyancy Dominated P-G 

Classes A-D 
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Buoyancy Dominated P-G Classes E-F 

Equation B1.8: Distance to Final Rise for Buoyancy Dominated P-G Classes E-F 
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Equation B1.9: Height at Final Rise for Buoyancy Dominated P-G Classes E-F 
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Momentum Dominated P-G Classes A-D 

Equation B1.11: Distance to Final Rise for Momentum Dominated P-G Classes A-D 
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Equation B1.12: Height at Final Rise for Momentum Dominated P-G Classes A-D 
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Equation B1.13: Height at Distance Less Than Final Rise for Momentum Dominated P-G 

Classes A-D 
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Momentum Dominated P-G Classes E-F 

Equation B1.14: Distance to Final Rise for Momentum Dominated P-G Classes E-F 
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Equation B1.15: Height at Final Rise for Momentum Dominated P-G Classes E-F 
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Equation B1.16: Height at Distance Less Than Final Rise for Momentum Dominated P-G 

Classes E-F 

3
1

2

)/sin(
3
















su

usx
Fh mx


 

 

  



 

168 

B2. Vertical Dispersion Coefficient Equations 

Based on parameters reported in Turner (1970) and United States Environmental Protection 

Agency (1995). 

 

Notation 

σz = vertical dispersion coefficient (m) 

x = distance downwind (km) 

 

P-G Class B 

Equation B2.1: Vertical Dispersion Coefficient for P-G Class B 

σz = 90.673x
0.93198

 

 

P-G Class E 

Equation B2.2: Vertical Dispersion Coefficient for P-G Class E 

σz = 24.26x
0.8366
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