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The recent Chu et al. (2012) manuscript discusses two key findings regarding feature selection (FS): (1) data
driven FS was no better than using whole brain voxel data and (2) a priori biological knowledge was effective
to guide FS. Use of FS is highly relevant in neuroimaging-based machine learning, as the number of attributes
can greatly exceed the number of exemplars. We strongly endorse their demonstration of both of these findings,
andwe provide additional important practical and theoretical arguments as towhy, in their case, the data-driven
FS methods they implemented did not result in improved accuracy. Further, we emphasize that the data-driven
FS methods they tested performed approximately as well as the all-voxel case. We discuss why a sparse model
may be favored over a complex one with similar performance. We caution readers that the findings in the Chu
et al. report should not be generalized to all data-driven FS methods.

© 2013 Elsevier Inc. All rights reserved.
Comment: We emphasize that their findings that DD-FS did not improve accuracies

Recently, Chu et al. (2012) assessed how feature selection (FS)

affected classification accuracy on a series of two class problems using
gray matter voxel features. FS techniques are categorized typically as
filter based, embedded, or wrapper based methods (Tuv et al., 2009).
Within the neuroimaging community, data-driven FS (DD-FS) methods
have been used commonly because they are generally effective: univar-
iate t-test filtering (e.g. Esterman et al., 2009; Johnson et al., 2009 and
wrapper-based SVM recursive feature elimination (RFE) approaches
(established in Guyon et al., 2002; effective in De Martino et al., 2008;
Ecker et al., 2010; Dai et al., 2012).

Chu et al. (2012) presented a principled analysis that compared the
performance of these two DD-FS approaches with voxelized features
from a region of interest (ROI) based on a biological hypothesis, t-test
in combination within an ROI constraint, and in the absence of any
first stage FS. Their analysis revealed that the DD-FS methods tested
were unable to outperform simply using all ~300,000 voxel features
for discrimination, similar to results published by Cuingnet et al.
(2011) who tested a series of FS methods. While Chu et al. clearly
discuss that these results are data specific, their findings nonetheless
highlight the essential importance for further analysis of FS methods
in neuroimaging applications where the data is both noisy and vast.
itiative. “Does feature selection
d feature selection on classifica-
Image. 2012;60(1):59–70.
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should be limited to a certain class of FS methods, for a limited set of
parameter choices and kernels. The sensitivity of SVM accuracy to
DD-FS methods with respect to changing kernels was discussed by
Song et al. (2011), so we focus on the specific DD-FS methods
implemented by Chu et al. We caution readers that their results should
not be generalized to other DD-FS methods.

We first discuss the two DD-FS methods that were tested, and point
out certain theoretical constraints that are common across both tech-
niques. These limitations are well established in the machine learning
(ML) literature, and have been discussed by the primary author of the
fundamental RFE manuscript (Guyon and Elisseeff, 2003). Both t-test
filtering and RFE favor selection of features that maximize accuracy
individually, assuming that these will provide the highest discrimina-
tion accuracy when used in aggregate (Guyon et al., 2002). Consider
however, examples where multiple features provide largely redundant,
yet highly diagnostic, information (i.e., spatially adjacent neuroimaging
voxels), while other features with lower margins and t statistics hold
unique information (Haxby et al., 2001). Within this framework, the re-
dundant features will be retained, while the features that provide unique
information that could improve performance will be discarded. Both of
these factors contribute to a decrease in classification accuracy, rather
than an increase, as discussed for neuroimaging data by Kriegeskorte
et al. (2006), Pereira and Botvinick (2010) and Björnsdotter et al. (2011).

Further, features that are not themselves diagnostic, but which con-
trol for nuisance factors (e.g. age-associated atrophy; Farid et al., 2012)
are expected to have extremely low univariate |t| values and reduced
margins. To determine the utility of each feature in RFE, themultivariate
separability vector,w, is projected onto each feature-dimension to get a
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Fig. 1.A reproduction of Chu et al.'s Fig. 9Ewhere the added shading indicates the 95% con-
fidence interval for the no feature selection accuracy using the normal approximation of
the binomial distribution. Accuracy using all voxelized features was not significantly
higher than data-driven feature selection accuracy at the optimum C, C*. At multiple
non-optimum C values, the accuracy using data-driven feature selection was significantly
higher than using all voxelized features.
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univariate margin,wj. In RFE, features with the smallest univariatemar-
gin, ‖wj‖, are excluded iteratively until the desired number of features is
achieved. We expect that the margin of nuisance-controlling factors
would be greater than noise but smaller than themargin of the diagnos-
tic feature. In this case, the smallest margin and |t| statistic features
would be excluded before the diagnostic features by these DD-FS
methods because the stopping criterion used by Chu et al. was the
number of selected input features. The stopping criterion is defined by
the criteria used to determine exactly how many features are included
in the final model. If one had used the observed training or testing accu-
racy (as in backward or forward selection) or an arbitrary fixed criterion
for ‖wj‖ or |t| to determine the stopping criterion, we would expect that
these nuisance features may be included in the final model learned
using RFE, but not using t-statistic filtering.

In contrast, the least-squares (ℓ2 ) regularization in SVM, itself a
multivariate DD-FS method, likely includes these nuisance factors: in
regularization, features are selected based on the degree to which they
maximize classification accuracy instead of reducing the number of
input features using an indirect proxy for classification accuracy. The
RFE model is mathematically equivalent to the ℓ2 SVM model in
which the smallest SVM margins are set to be identically zero instead
of their small estimated value. Similarly, t statistics assumes that the
margins of low |t|-statistic features should be zero. This assumption is
identical to the sparsity assumption of anℓ1 regularized SVM. However,
ℓ1 SVMs only outperform ℓ2 SVMs when the underlying solution itself
is sparse (Liu et al., 2007). By extension,we believe that RFE and t statis-
tic filtering will only outperform ℓ2 SVM if the best diagnostic model is
sparse.

As shown by Chu et al., RFE and t-statistics did not improve per-
formance, suggesting that these assumptions of non-redundancy
and sparsity may have been violated. These shortcomings suggest
that, while t-statistics and RFE have practical value, they are not
general panaceas.

The limited efficacy of RFE, or univariate t statistics, does not
predict that alternate unsupervised DD-FS algorithms will, or will
not, outperform regularization. Independent and Principal Component
Analysis (ICA and PCA), for example, can both in effect project multiple
linearly correlated, or redundant, features onto a reduced number of
features (Comon, 1994; Hyvarinen, 1999; Jutten and Herault, 1991;
Wold et al., 1987). In contrast to RFE and t-statistics, these methods
that combine highly correlated and, frequently, spatially continuous
voxels into regional features improve generalization substantially
(e.g. Douglas et al., 2010; Franke et al., 2010, 2012; Hinrichs et al.,
2009; McKeown et al., 1997). Both ICA and PCA can control for the
variation in highly diagnostic independent or principal components
due to nuisance factors. Other DD-FS methods such as information
criteria (Ding and Peng, 2005; Peng et al., 2005), genetic algorithms
(Yang and Honavar, 1998), and Markov Chain Monte Carlo methods
(Green, 1995) select a single representative of each set of redundant
diagnostic features. This perspective on DD-FS does not modify the
original input features; instead it aims to more efficiently select the
minimum subset of non-redundant features that maximizes perfor-
mance. Numerous other DD-FS approaches employ clever algo-
rithms that overcome some of the limitations of RFE and t statistics
(i.e. Dietterich, 2000; Freund and Schapire, 1997; Friedman et al.,
2000; Kwak and Choi, 2002; Leiva-Murillo and Artes-Rodriguez,
2007; Liu and Setiono, 1997; Setiono and Liu, 1997; Sindhwani
et al., 2004; Zhang and Sun, 2002; for a review see Saeys et al.,
2007). Therefore, we emphasize again that the findings for RFE and
t statistics should not be generalized to all DD-FS methods.

As a second practical point, we consider the conclusion that DD-FS
performedworse than the feature selection inherent to SVM.We direct
attention to Fig. 9E of the original manuscript, which shows how accura-
cy changes with decreasing values of the SVM regularization parame-
ter, C, as a function of the DD-FS method employed for the largest
sample size. We remind the reader of the original soft margin SVM
formulation presented famously by Cortes and Vapnik (1995) that pre-
sents the Lagrange functional for the two-class problem as:

L w; b;R; ξð Þ ¼ 1
2

wk k2−
Xn
i¼1

αi yi xi �wþ bð Þ−1þ ξi½ �−
Xn
i¼1

riξi þ C
Xn
i¼1

ξi ð1Þ

where n, i,w, b, Y, X,α, r, and ξ are the total number of exemplars, exem-
plar index, margin, intercept, output class vector, input data matrix,
support vector Lagrange parameter, soft margin Lagrange parameter
and soft margin misclassification penalty, respectively. The linear
decision function in the feature space takes the form:

I zð Þ ¼ sign
X

Support Vectors

αixi � zþ b

 !
ð2Þ

where z is the hyperplane perpendicular to w. If αi = 0, then the
corresponding sample was classified correctly and is irrelevant to
the final solution. If αi = C, then the sample was misclassified, and
if 0 b αi b C, then the sample is located on the margin. If αi N 0, the
sample is called a support vector (Biggio et al., 2011). When solving
for very large values of C, the problem tends towards the hardmargin
solution that can be solved using quadratic programming. With
smaller C, the soft margin functional can be optimized through its
dual formulation with quadratic programming.

Within their analysis, Chu et al. assessed their accuracy with several
parameter choices of C without cross-validation. The global optimum
accuracy was obtained in the absence of FS. However, we would like
to emphasize that even for the optimum C case (indicated by C*), the



1109W.T. Kerr et al. / NeuroImage 84 (2014) 1107–1110
performance of the other FS algorithms were all within the 95% confi-
dence interval of the no FS approach (Fig. 1). For moderate to small
choices of C, FS methods systematically outperformed no FS, and were
overall less sensitive and more robust to the choice of C. As discussed
by Chu et al., the selection of this C is computationally intense therefore
it is frequently simply selected a priori.

Whilewe agree that DD-FS does not always improve classification ac-
curacy, it may nevertheless help elucidate the pathology or physiology of
the system under study, and can reduce the sensitivity of performance to
tuning parameters when applied to the data in a principled manner.
Overall, a parsimonious model made possible by DD-FS allows models
to be more transparent, and thereby more useful for neuroscientific in-
terpretation (Hanke et al., 2010). This sparsity can be implemented
through separate FS methods, or within the SVM itself. While ℓ2

regularization already applies a degree of sparsity (Cortes and Vapnik,
1995), ℓ0 regularization imposes a stricter penalty and has been used
to interpret dynamic causal modeling features (Brodersen et al., 2011).

In the ML literature, it is common to evaluate methods primarily, or
solely, on their classification accuracy. For typical cases, this is entirely
appropriate: the goal is to classify, and not to explain. In investigative
research, however, the needs are broader and more nuanced. In our
own work, we use ML to aid in our understanding of brain function
and dysfunction. We have shown previously that in some cases high
classification accuracy can be obtained either from nuisance factors
(Anderson et al., 2011), or from factors in the data, such as demo-
graphics, unrelated to neuroimaging (Colby et al., 2012). While these
have the potential to generate clinically meaningful accuracies, they pro-
vide limited neurophysiological insight. If, on the other hand, the feature
space is selected to project onto well-defined, neurally-oriented sub-
spaces, it is possible to jointly achieve excellent accuracy and explanatory
power to aid in neuroscientific discovery. For example, independent
components identified from functional MRI data frequently identify the
defaultmode network (Greicius et al., 2004) and have been used for clas-
sification (Douglas et al., 2010) as well as the generation of meaningful
feature dictionaries (Anderson et al., 2011; Zibulevsky and Pearlmutter,
2001). Although these dictionary elements would vary across subjects
and scans, we and others have shown that they are consistent enough
to have an identifiable manifestation, an assumption underlying group-
ICA methods (Franco et al., in press; Sui et al., 2009). Therefore, these
methods accomplish the tasks of feature ‘identification’ and ‘selection’
simultaneously.

The goal of feature selection is to minimize the number of estimated
parameters in the final machine-learning model to improve perfor-
mance and generalizability. The concept of balancing the empirical
performance of the model to the data with the number of estimated
parameters iswell established in conventional statistics. For generalized
linear models, the pervasive F test explicitly divides the explained vari-
ance of a model by the number of estimated parameters in themodel to
calculate themean squared error. Additionally, the reference F distri-
bution for determining significance is wider for models with more
estimated parameters. Similarly, the Akaike and Bayesian information
criteria (AIC and BIC) explicitly penalize the observed log likelihood of
models using a function of the number of estimated parameters.
While these criteria cannot formally be applied directly to cross-
validation accuracy, our perspective is that the concept behind these
criteria is applicable to machine-learning models. Based on that idea,
machine-learning models that achieve similar accuracy by operating
on a selected set of features are preferred in investigative research
over machine-learning models that are saturated with input features.
We recognize that, unlike the likelihood or explained variance, cross-
validation accuracies do not monotonically increase with the number
of estimated parameters.We believe that DD-FSmethods, in some situ-
ations, can be used effectively to accomplish this dual goal of model
simplicity and high empirical cross-validation accuracy.

Despite the shortcomings of the methods tested mentioned herein,
we also find it interesting that removal of a vast number of potentially
irrelevant features with FS did not offer improvement, despite the the-
oretical caveats we detail above. It is possible that this lack of improve-
ment is informative in and of itself.We suggest that pre/post FS accuracy
should be reportedmore often, as these resultsmay be helpful in concep-
tualizing how feature interactions are related to information repre-
sentation in neural systems.

Because of this improvement in interpretability, we emphasize that
FS methods are valuable beyond improving classification accuracy; just
as a picture is a thousand words, an interpretable model is oftentimes
immensely more valuable than a marginally superior yet uninstructive
classification tool.
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