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Article

State of the interactomes: an evaluation of molecular
networks for generating biological insights
Sarah N Wright , Scott Colton , Leah V Schaffer, Rudolf T Pillich, Christopher Churas, Dexter Pratt &

Trey Ideker ✉

Abstract

Advancements in genomic and proteomic technologies have pow-
ered the creation of large gene and protein networks (“inter-
actomes”) for understanding biological systems. However, the
proliferation of interactomes complicates the selection of networks
for specific applications. Here, we present a comprehensive eva-
luation of 45 current human interactomes, encompassing protein-
protein interactions as well as gene regulatory, signaling, coloca-
lization, and genetic interaction networks. Our analysis shows that
large composite networks such as HumanNet, STRING, and Fun-
Coup are most effective for identifying disease genes, while smaller
networks such as DIP, Reactome, and SIGNOR demonstrate
stronger performance in interaction prediction. Our study provides
a benchmark for interactomes across diverse biological applica-
tions and clarifies factors that influence network performance.
Furthermore, our evaluation pipeline paves the way for continued
assessment of emerging and updated interaction networks in the
future.
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Introduction

Molecular networks (“interactomes”) are a crucial tool in
biomedical research for translating complex biological data into
actionable insights. These networks are constructed from diverse
genomic, proteomic, biochemical, and statistical data sources to
represent known or measured biological interactions among genes,
proteins, and other biological entities (Tolani et al, 2021).
Interactions encompass a wide range of types, including physical
protein-protein interactions, regulatory relationships, signaling and
metabolic pathways, and functional associations, each of which
contribute to our understanding of molecular and cellular
mechanisms.

By leveraging the information in these interactomes, network
biology offers the potential to understand gene and protein
functions at a systems level, thus enabling a comprehensive
understanding of biological and disease processes. Network
approaches have enabled the interpretation of genome-wide
association studies (GWAS) (Leiserson et al, 2013; Wang et al,
2019; Visonà et al, 2024; Carlin et al, 2019), prioritized disease
genes (Magger et al, 2012; Prajapati and Emerson, 2020),
accelerated the discovery of gene functions (Kim and Lee, 2017;
Depuydt and Vandepoele, 2021), and revealed functional simila-
rities and differences between species and cell types (Wan et al,
2015; Huttlin et al, 2021). The success of each approach can depend
critically on selecting an appropriate interactome for study.
However, the rapid generation of biological data has led to a
proliferation of available networks, making network selection
increasingly challenging.

No matter the type of analysis performed, the ability of a
network approach to generate biological insights depends on what
information is and is not present in the interactome. It is widely
recognized that our knowledge of biological interactions is
incomplete, especially for experimentally supported interactions
(Menche et al, 2015; Kovács et al, 2019; preprint: Brunson et al,
2023). However, the extent to which gaps are skewed towards
certain genes or biological processes is less well understood. Many
factors could potentially cause skew, including experimental
constraints or biases towards highly studied or highly expressed
genes (Gillis et al, 2014). Beyond gaps in interactome knowledge,
network resources may contain false positive interactions, which
can dilute biological signals. Understanding these biases and other
effects is important, as any bias in an interactome will likely be
reflected in analyses that use that interactome.

Several years ago, we established methods for systematically
evaluating human molecular networks and demonstrated that large
composite interactomes provided the best performance for
prioritizing disease genes (Huang et al, 2018). This work
culminated in the Parsimonious Composite Network (PCNet), a
consensus network that includes the most supported interactions
across different network resources while excluding potentially
spurious relationships (Huang et al, 2018). Given the continued
increases in size and quantity of interactomes, ongoing bench-
marking of molecular networks is essential for guiding network
selection. Accordingly, here we present an updated and expanded
evaluation, providing the most extensive assessment to date of the
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contents and performance of publicly available human molecular
networks. Concomitant with these efforts is the release of
PCNet2.0, a new and improved consensus human gene network.

In addition to the established procedure for evaluating the
performance of interactomes via disease gene prioritization, we
introduce an interaction-centric evaluation metric. This approach
leverages interaction prediction algorithms, which provide an
efficient method for addressing network incompleteness and have
previously been used to identify and prioritize novel interactions
(Johnson et al, 2021; McDowall et al, 2009). Earlier benchmarking
studies have assessed the performance of different prediction
algorithms across a small number of human interactomes (Zahiri
et al, 2020; Wang et al, 2023). Building on these studies, we now
implement interaction prediction across a wide range of inter-
actomes to assess the influence of the underlying network
architecture on prediction accuracy. We define external interaction
sets for this evaluation and create an in silico assessment pipeline
for novel predictions using AlphaFold-Multimer (preprint: Evans
et al, 2021). Through this comprehensive evaluation, we aim to
provide an up-to-date survey of 45 interactomes, equipping
researchers with the information necessary to navigate network
selection and thereby power the generation of biological insights
across various applications. Our consensus networks are easily
accessible via the Network Data Exchange (NDEx (Pratt et al, 2017;
Pillich et al, 2021), www.ndexbio.org), and our evaluation pipeline
is also available (https://github.com/sarah-n-wright/
Network_Evaluation_Tools), allowing for ongoing analysis of
biological networks.

Results

A plethora of interaction networks from diverse but
overlapping sources

We performed a census of current biomolecular network resources,
focusing on gene and protein-centric human interactomes. Our
survey identified 45 publicly available networks (Appendix
Table S1), which we classified into three categories: Experimental
—networks formed from a single experimental source, Curated—
networks curated manually from literature sources, and Composite
—networks incorporating multiple curated or experimental data-
bases. Across these categories, we observed substantial diversity in
the network features and data sources (Fig. 1A). For example, while
93% of the interactomes incorporated physical protein-protein
interactions (PPIs), fewer than 25% contained information from
genome or protein structural similarities. The majority of network
resources we surveyed (71%) contained interaction evidence from
multiple species. We excluded all non-human interactions from
these networks for our human-centric analysis, except where the
authors explicitly used orthologous interactions from model species
to infer human networks.

All networks were standardized to map gene identifiers to NCBI
Gene IDs, remove duplicates and self-interactions, and filter to
human interactions where applicable. Composite networks tended
to be much larger than experimental and curated networks, both in
the number of genes represented and the number of reported
interactions (Fig. 1B). Building on the 21 networks analyzed in our
prior publication (Huang et al, 2018), we noted that 14 of these had

been significantly updated while 7 represented static databases; we
also extended the corpus with 24 additional interactomes. Of the 14
updated networks, the Human Reference Interactome (Luck et al,
2020) (HuRI) grew the most, with a 2.6-fold increase in genes and a
4.6-fold increase in interactions compared to the previously
evaluated Human Interactome (Rolland et al, 2014) (HI-II-14)
(Fig. EV1A). While the number of distinct databases has increased
substantially, most available networks rely on similar sources and
have extensive dependencies (Fig. 1C). The interactomes most
frequently identified as dependencies of other network resources
were IntAct (Orchard et al, 2014) (20/45 databases), BioGRID
(Stark et al, 2006) (19/45 databases), DIP (Xenarios et al, 2000) (16/
45 databases), MINT (Licata et al, 2012) (15/45 databases), and
HPRD (Peri et al, 2003; Mishra et al, 2006; Keshava Prasad et al,
2009) (15/45 databases).

Gaps remain in coverage of the human proteome

By definition, a network analysis can only discover genes and
processes that exist within the interactome selected for study.
Despite 99% of protein-coding genes (as defined by the HUGO
Gene Nomenclature Committee, HGNC (Seal et al, 2023)) being
represented in at least one interactome, we found that their
distribution varies widely across networks (Fig. 2A). Other genetic
elements, such as non-coding RNAs and pseudogenes, are sparsely
represented (Fig. 2B). Looking at the gene citation counts for
protein-coding genes, we found that genes in PID v2.0 (Pillich et al,
2023), DIP (Xenarios et al, 2000), and PhosphoSitePlus (Hornbeck
et al, 2015) showed the most skew towards high citation counts
(Fig. 2C). Further, we observed a significant correlation between a
gene’s network coverage, which we defined as the number of
interactomes a gene appears in, and the gene’s citation count
(Fig. EV1B, rs,citation = 0.80, p = 1 × 10−50). The relationship between
network coverage and citation was diminished but not eliminated
when considering only experimental networks (Fig. EV1C, rs = 0.48,
p = 1 × 10−50). High mRNA expression (Data ref: GTEx Portal,
2017) and protein abundance (Uhlén et al, 2015, Data ref: The
Human Protein Atlas, 2023) also significantly correlated with
increased network coverage (rs,mRNA = 0.59, rs,protein = 0.40, p = 1 ×
10−50, Fig. EV1D,E). Among the interactomes, we observed that
experimental networks tended to show skew towards highly
expressed genes and abundant proteins (Fig. 2C). These same
networks also tended to enrich for highly conserved genes
(Fig. EV1F) and demonstrated under-enrichment for tissue-
specific genes (Appendix Figs. S1 and S2). After adjusting for
mRNA expression and protein abundance, the correlation between
network coverage and gene citation was partly reduced (rs,citation =
0.59, p = 1 × 10−50), indicating that expression levels contribute to,
but do not completely explain, the observed citation bias
(Fig. EV2A).

We next hypothesized that gaps and biases in the genes
represented in each interactome would cause gaps in knowledge
of biological function. Gene set enrichment analysis using Gene
Ontology (GO) annotations showed that experimental interactomes
favor translational machinery while being systematically under-
enriched for receptor-ligand and cyclase activities, possibly due to
experimental limitations (Fig. 2D). Furthermore, many small
curated and composite networks such as SIGNOR (Lo Surdo
et al, 2022), PID v2.0 (Pillich et al, 2023), and DIP (Xenarios et al,
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2000) were enriched for inflammation and immune response genes,
while protein glycosylation and transporter activity were generally
underrepresented.

Across all interactomes, 23.6 million distinct interactions were
reported, with 98% representing interactions between proteins or
protein-coding genes. The majority of interactions (73.5%) were
unique to a single network, while those reported in 13 or more
networks comprised only 1% of the interactions (Fig. 2E). High

expression and citation levels were generally associated with high
interaction density among protein-coding genes (Fig. 2F). For
example, among the 266 most cited genes, 80% of possible pairwise
interactions were reported at least once, while only 0.1% of possible
interactions were reported between the 480 genes with only one
citation. However, an increased density of interactions was observed
among a subset of genes with low mean mRNA expression - driven by
interactions between tissue-specific genes of whole blood, thyroid, and
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Figure 1. Network contents, sources, and dependencies.

(A) Interactome classification, interaction types, and network features. Crosses indicate that non-human interactions were filtered out in data processing. The bar chart
shows the percentage of all interactomes with each feature. See Appendix Table S2 for interaction type definitions. (B) Interactome size plotted by the number of genes
versus the number of interactions. Counts represent distinct genes and interactions after data processing and conversion of identifiers to NCBI Gene IDs. Color indicates
interactome classification. (C) Dependency relationships between interactomes, colored by interactome classification. Arrows represent that the source interactome is
incorporated into the target interactome. Node size indicates the “Dependency Count,” defined as the number of times a given interactome was identified as a source by
other evaluated network sources (Methods). The arrow color indicates the interactome classification of the source network. PC: Pathway Commons; iRef: iRefIndex; React:
Reactome, Cons DB: ConsensusPathDB.
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skin (Fig. EV2B). In contrast, the interaction density was largely
uniform within and between chromosomes, except for the Y and
mitochondrial chromosomes (Fig. 2F).

Analysis of interaction density among GO Biological Process
annotations highlighted a high density of interactions among genes

involved in a broad range of nucleic acid and metabolic functions
(Fig. 2G). In contrast, genes associated with some functions and
components, such as cyclase activity and the peroxisome, had a
high density of interactions amongst themselves but fewer
interactions with outside genes. To further test each interactome’s
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ability to represent GO annotations, we tested physiological gene
function prediction using guilt-by-association (Ballouz et al, 2017).
HumanNet (Kim et al, 2022), Wan (Wan et al, 2015), Havugimana
(Havugimana et al, 2012), DIP (Xenarios et al, 2000), Reactome
(Gillespie et al, 2022), and PTMCode2 (Minguez et al, 2015)
showed the best recapitulation of GO annotations (Fig. EV2C),
with performance generally best for cellular compartments
(Fig. EV2D–F). However, it should be noted that some resources,
such as HumanNet and Havugimana, utilize GO to prioritize
network interactions during construction (Kim et al, 2022;
Havugimana et al, 2012).

Large composite networks remain the most powerful for
disease gene prioritization

Next, we assessed each interactome’s ability to recover a range of
disease-associated gene sets using a network propagation frame-
work (Methods, Fig. 3A). This approach is based on the principle
that genes in close proximity within a biological network are likely
to share biological functions. For disease gene set recovery, we used
network propagation to rank all genes within an interactome based
on their proximity to a known set of disease genes. We then
assessed the position of held-out members of the gene set within
these propagation ranks to determine how well the network
structure recovered known disease associations. To quantify this
gene set recovery performance, we compared the results to ranks
generated with shuffled interactomes, yielding performance
Z-scores (Huang et al, 2018). Our analysis evaluated gene set
recovery performance for all interactomes using diverse gene sets
sourced from DisGeNET (Piñero et al, 2020) (“Literature”; n = 906)
and the GWAS catalog (Sollis et al, 2023, Data ref: GWAS Catalog,
2024) (“Genetic”; n = 699). Literature gene sets, being larger,
generally showed better interactome coverage and gene set recovery
performance (Fig. EV3A).

Averaging the performance Z-scores across all gene sets
revealed that large composite networks HumanNet (Kim et al,
2022) and STRING (Szklarczyk et al, 2023) were most effective for
prioritizing Literature and Genetic disease genes, respectively
(Fig. 3B). Given the previously established relationship between
network size and gene set recovery performance (Huang et al,
2018), we also computed size-adjusted performance metrics by
regressing the number of interactions per network. Smaller
networks, such as DIP (Xenarios et al, 2000), SIGNOR (Lo Surdo
et al, 2022), and PTMCode2 (Minguez et al, 2015), rose in the
rankings after adjustment, indicating that their interactions are

highly informative on a per-edge basis (Fig. 3B). When controlling
for gene set coverage, a positive correlation was maintained
between performance and network size (Fig. EV3B). However, the
magnitude of this effect was significantly reduced (pLiterature = 8.8 ×
10−34; pGenetic = 4.1 × 10−6; Fig. EV3C), indicating that larger
networks are, in part, advantaged by capturing a greater proportion
of the known genes.

Interactome performance was consistent across Literature and
Genetic gene sets (rs = 0.80, p = 3.0 × 10−11), with exceptions for
networks such as ConsensusPathDB (Kamburov et al, 2008), DIP
(Xenarios et al, 2000), and ProteomeHD (Kustatscher et al, 2019),
which showed discrepancies across gene set sources (Fig. 3C).
These exceptions indicate that some interactomes are better suited
to analyzing certain data types. To address potential circularity in
our analysis due to literature curation—a concern that arises
because some gene sets and interactomes may be derived from
overlapping literature sources—we also assessed performance with
additional gene sets derived from GWAS published after July 2023
(“Genetic 2023+”; n = 48) and experimental studies published after
January 1, 2024 (“Experimental”; n = 17). Thus, the Genetic 2023+
and Experimental sets were generated from data available only after
the release of any interactome in our corpus that utilized text
mining of biomedical literature. Performance rankings for Genetic
gene sets were highly correlated with those for Genetic 2023+ gene
sets (rs = 0.84, p = 4.2 × 10−13, Fig. 3C), indicating minimal bias
from literature curation for Genetic gene sets. Correspondence to
Experimental gene sets was also positively correlated, though some
interactomes, such as ConsensusPathDB (Kamburov et al, 2008),
showed reduced performance for non-literature gene sets. Overall,
the strong correlations in network rankings across different gene
sets underscored the robustness of our analysis against concerns of
circularity due to literature curation.

Not all interaction types are created equal

The highest-performing networks for gene set recovery were
composite networks comprising many evidence types, leading us
to hypothesize that different interaction types did not contribute
equally to the observed performance. We examined the contribu-
tions of the various interaction types in two large network
databases: HumanNet (Kim et al, 2022) and GeneMANIA
(Mostafavi et al, 2008). We defined interaction-type-specific
networks from each source, ranging from the small HumanNet
orthology network to the large GeneMANIA co-expression network
(Fig. EV3D). The two physical interaction networks were highly

Figure 2. Biological representation of interactome genes and interactions.

(A) Network coverage of individual genes after mapping to NCBI Gene IDs, separated into protein-coding and non-coding genes based on HGNC locus type. (B) Presence
of genes in at least one interactome by HGNC locus type, compared to total genes of each type. (C) Median citation count, mRNA expression, and protein abundance for
protein-coding genes in each interactome. Dashed line represents the median of all protein-coding genes. Colored bars show networks with significantly higher median
values than the baseline of all protein-coding genes (permutation test, q < 0.05, Bonferroni correction). (D) Functional enrichment of network genes across the Gene Slim
Ontology (Fisher’s Exact test, BH correction). Terms are grouped based on GO branches: BP: biological process, CC: cellular component, MF: molecular function. To
highlight GO terms that are poorly represented in at least one interactome, the visualization includes networks with <10,000 genes and terms with at least one nominally
significantly under-enriched network (p < 0.01). Full results are in Dataset EV1. (E) Network coverage of distinct interactions after interactome processing, separated into
those between two protein-coding genes (“Coding only”) and those involving at least one non-coding gene (“All other interactions”), as defined by HGNC locus type. (F, G)
Interaction density of all distinct interactions as a function of gene annotations. Genes are binned based on increasing citation count, mRNA expression percentile, protein
abundance percentile, and chromosome (F) or GO Slim annotations (G). The interaction density is calculated per pair of bins as the number of observed interactions
divided by the number of possible interactions between all combinations of gene A and gene B for a bin pair. The diagonal entries, therefore, represent the interaction
density between genes with similar annotation values, while off-diagonal entries represent the interaction density between genes with differing annotation values.
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similar (Jaccard = 0.58), indicating a high degree of consistency in
physical interaction definitions, especially compared to other
interaction types (Fig. EV3E).

Analysis of gene set recovery performance revealed that domain
similarity, pathway, and physical interactions were particularly informative
across both HumanNet and GeneMANIA (Fig. 3D). In contrast, results
for genetic, orthologous, and co-expression interactions were inconsistent
between the two sources, reflecting the influence of differing network
construction procedures. For example, the higher-performing GeneMA-
NIA-orthology network includes interactions predicted from non-human
species (Mostafavi et al, 2008), a data source excluded in the latest version
of HumanNet (Kim et al, 2022). The HumanNet co-citation network
outperformed the full HumanNet interactome (all types) in recovering
Literature gene sets, likely highlighting some circularity between the
literature-focused network and literature-derived gene sets.

Consensus networks enhance gene set
recovery performance

As part of our earlier systematic evaluation of molecular networks
(Huang et al, 2018), we demonstrated that creating consensus
networks, such as the Parsimonious Consensus Network
(PCNet1.0), could enhance gene set recovery performance. Such
an approach leverages the complementary information contained
in different databases while excluding non-reproduced interactions.
To assess the ongoing benefits of combining interactomes, we
evaluated two approaches to assembling consensus networks:
“global composites” and “ranked composites” (Fig. 4A). Global
composite networks were constructed following the methodology of
PCNet1.0, in which a progressive series of composites was
constructed by requiring interaction coverage from an increasing
number of the 45 interactomes evaluated. Alternatively, we
constructed ranked composite networks by varying the number
of top interactomes ranked based on median size-adjusted
performance. For each ranked composite network threshold, we
created two networks requiring interaction coverage from at least
two or three interactomes, respectively.

Our evaluation showed that the gene set recovery performance
of global composite networks steadily decreased as the interactome
coverage threshold became stricter (Fig. 4B). For ranked compo-
sites, performance increased as more interactomes were considered,
up until 10–15 networks, after which it began to decay. The best
overall gene set recovery performance was observed for the ranked
composite networks requiring interaction support from two of the
top-ranked interactomes. We also evaluated “co-citation-free”
ranked composite networks to mitigate the possible confounding
effects of co-citation (CC) interactions (Fig. 4C). While less
powerful than their CC-inclusive counterparts, these CC-free

consensus networks still generated strong gene set recovery
performance results.

From these results, we defined an updated set of Parsimonious
Composite Networks (PCNets), balancing performance and
parsimony. First, we defined the best-performing ranked composite
(top 15 interactomes, 3.85 M interactions) as PCNet2.0. While
larger than the latest PCNet1.4 (2.69 M interactions), PCNet2.0 is
smaller than many component interactomes, such as STRING
(Szklarczyk et al, 2023) and FunCoup (Persson et al, 2021)
(Fig. 4D). For situations with computational constraints, we also
defined the smaller PCNet2.1 (top 8 interactomes, 1.75 M
interactions), and for a CC-free alternative, we defined PCNet2.2
(top 10 CC-free interactomes, 3.32 M interactions). These con-
sensus networks are publicly available via NDEx (Pillich et al, 2021)
(ndexbio.org) and include details of supporting interactomes for all
interactions.

Evaluation of predicted interactions and complexes

We leveraged advances in interaction prediction algorithms (Wang
et al, 2023) as yet another methodology to evaluate the performance
of the panel of interactomes. Using the L3 (paths of length 3)
(Kovács et al, 2019) and MPS (Maximum similarity Preferential
attachment Score) (preprint: Martini et al, 2021; Wang et al, 2023)
algorithms, we predicted interactions using each interactome. The
predicted interactions were assessed against held-out interactions
from the same network using a 10-fold cross-validation proce-
dure. We further assessed predicted interactions against external
sets of physical interactions from multimeric protein complexes
recorded in the Comprehensive Resource of Mammalian Protein
Complexes (CORUM) database (Giurgiu et al, 2019) and pathway
interactions derived from curated, primarily signaling, pathways
from the PANTHER knowledgebase (Mi and Thomas, 2009).

To evaluate interactome performance, we focused on the
precision of the most confident predictions. Across all inter-
actomes, prediction precision was higher for held-out interactions
than external interactions, and MPS generally produced stronger
predictions than L3 (Fig. 5A–C). DIP (Xenarios et al, 2000) and
Reactome (Gillespie et al, 2022) showed the highest precision for
the held-out task, predicting interactions with average precisions at
k (P@k) via MPS of 0.57 and 0.55, respectively (Fig. 5A). For
CORUM interactions, networks such as Havugimana (Havugi-
mana et al, 2012) (P@k = 0.21, L3) and PTMCode2 (Minguez et al,
2015) (P@k = 0.16, MPS) led in precision (Fig. 5B). In contrast,
curated interactomes such as SIGNOR (Lo Surdo et al, 2022)
(P@k = 0.05, L3) and Reactome (P@k = 0.04, L3) showed the best
performance for predicting PANTHER pathway interactions
(Fig. 5C). We further observed that smaller interactomes tended

Figure 3. Disease gene set recovery performance.

(A) Overview of the gene set recovery pipeline to generate performance Z-scores based on areas under the precision-recall curve (AUPRC). (B) The mean network
performance of each interactome across all Literature (left) and Genetic (right) gene sets, measured as the mean centralized rank of interactomes. A more negative rank
indicates better relative performance. Arrows and colored circles show the mean size-adjusted rank, and background indicates network classification. (C) Mean
centralized ranks compared across Literature, Genetic, Genetic 2023+, and Experimental gene sets. Genetic 2023+ gene sets were defined from GWAS published July 27,
2023 or later. Experimental gene sets were defined from publications dated after January 1, 2024. Spearman correlations reported. (D) Box plot illustrating the gene set
recovery performance of interaction-type-specific subnetworks from HumanNet and GeneMANIA for the subset of Literature and Genetic gene sets assessed for all type-
specific networks. ‘ALL TYPES’ refers to the full HumanNet and GeneMANIA networks. The center of each box plot represents the median performance, the box
boundaries correspond to the upper and lower quartiles, and the whiskers extend to the 5th and 95th percentiles. See Dataset EV2 for full results.
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to predict high-quality interactions, as evidenced by broad support
from other networks (Fig. 5D). While all interactomes shared some
interactions with the CORUM and PANTHER sets (Fig. EV4A,B),
the extent of this overlap did not drive predictive performance for
these external interaction sets (Fig. EV4C,D).

In addition to predicting binary interactions, analysis of
interactome structures can also be used to predict functional
assemblies of genes and proteins. We constructed hierarchical

representations of each interactome by applying the Hierarchical
community Decoding Framework (HiDeF (Zheng et al, 2021)).
Networks such as ConsensusPathDB (Kamburov et al, 2008),
FunCoup (Persson et al, 2021), PROPER (Johnson et al, 2021),
TFLink (Liska et al, 2022), and hu.MAP (Drew et al, 2021)
identified a large number of small assemblies, while others, such as
STRING (Szklarczyk et al, 2023), HumanNet (Kim et al, 2022), and
Pathway Commons (Rodchenkov et al, 2020), tended to identify
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Figure 4. Definition and evaluation of Parsimonious Composite Networks (PCNets).

(A) Schematic representation of approaches and thresholds for defining global and ranked composite networks. Global composites include all interactions present in at
least k of 45 interactomes. Ranked composites include all interactions present in at least m of the top-k interactomes. (B, C) Median gene set recovery performance for
global and ranked composite networks across a range of network thresholds with (B) and without (C) co-citation evidence (“CC-free”). Bar charts show equivalent results
for comparison interactomes. In (B), results are compared to top-performing individual networks and PCNet1.4. In (C), results are compared to full and CC-free versions of
HumanNet and STRING, as well as PCNet2.0 and PCNet2.1 from the present analysis. All error bars show 95% confidence intervals on the median. The specific number of
gene sets evaluated with each network ranges from 820 to 904 for Literature, 75 to 437 for Genetic, 54 to 108 for Genetic 2023+, and 9 to 17 for Experimental. See
Dataset EV2 for details and full results. (D) Number of distinct interactions and genes in global and ranked composite networks across a range of network thresholds,
compared to top-performing individual interactomes and PCNet1.4.
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larger assemblies (Fig. EV4E). Interactomes such as DIP (Xenarios
et al, 2000) and Havugimana (Havugimana et al, 2012) captured the
greatest number of CORUM complexes (Fig. EV4F), while PrePPI
(Petrey et al, 2023) and SIGNOR (Lo Surdo et al, 2022) identified
complexes with the highest GO annotation similarities among
complex members (Fig. EV4G). It should be noted that some
interactomes use CORUM or GO during construction, leading to
potential biases. Therefore, as an independent metric, we also
examined the mean clustering coefficient of predicted complexes,
observing the highest clustering for GeneMANIA (Mostafavi et al,
2008), STRING (Szklarczyk et al, 2023), and HumanNet (Kim et al,
2022) (Fig. EV4H). Reactome (Gillespie et al, 2022) and
ReactomeFI (preprint: Brunson et al, 2023) were consistently
among the top-performing interactomes across all three metrics.

In silico assessment of predicted interactions

Finally, we utilized AlphaFold-based modeling to assess the
interactomes and previously unreported interactions predicted by
the MPS algorithm. Though not a substitute for experimental
validation, AlphaFold-Multimer (preprint: Evans et al, 2021)
provides an in silico approach for assessing potential physical
protein interactions. This model builds on the success of AlphaFold
(Jumper et al, 2021), a deep-learning model for predicting the
structure of individual proteins. AlphaFold-Multimer specifically
trains an AlphaFold model using multimeric structures from PDB
(wwPDB consortium, 2019) to enable predictions of protein
interfaces. Applying AlphaFold-Multimer (AF) to random selec-
tions of interactions with varying network coverage, we observed
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higher interface predicted template modeling (ipTM) scores for
interactions present in more than 25 interactomes (Fig. 5E),
especially for the most supported interactions (≥33 supporting
interactomes). This pattern was consistent with higher proportions
of experimentally resolved structures amongst highly supported
interactions (Appendix Fig. S3A). We further identified nine
interactomes containing interactions with significantly higher
ipTM scores than randomly generated protein pairs (Fig. 5F,
q < 0.15). Again, we observed a correlation between the presence of
experimentally resolved structures in PDB and ipTM scores,
though these generally accounted for fewer than 20% of tested
interactions (Appendix Fig. S3B,C).

Next, we applied AF to assess the top 50 previously unreported
interactions predicted by each interactome via MPS. We identified 126
distinct interactions with an ipTM score in the 95th percentile of
scores from randomly generated protein pairs (ipTM > 0.53), which
we defined as AF-supported interactions. The ipTM scores of
predicted interactions were significantly higher than randomly
generated protein pairs for SIGNOR (Lo Surdo et al, 2022), Reactome
(Gillespie et al, 2022), SPIKE (Paz et al, 2011), and DIP (Xenarios et al,
2000) (Fig. 5G, Appendix Fig. S3D). While the AF status of an
interaction was not independent of the existence of experimentally
resolved structures (p = 0.048, χ2 test), we observed that the AF-
supported interactions were, in fact, less likely to involve proteins with
existing structures. Specifically, 124/126 AF-supported interactions
involved at least one protein with no structure in PDB (Appendix
Fig. S3E). The AF-supported interactions represented functionally
coherent pairs (Fig. EV5), and the proteins involved showed
enrichments for G-protein coupled receptor (q = 9.9 × 10−12), GTPase
(q = 1.1 × 10−6) and hydrolase (q = 7.5 × 10−4) activities. Interactions
predicted by SIGNOR (Lo Surdo et al, 2022) showed particularly high
ipTM scores, with 64% being AF-supported, indicating that many of
these predictions likely represent true physical interactions.

Discussion

As the range and scope of molecular networks and network databases
increase, it is essential to continually evaluate and assess these valuable
resources. Here, we have presented the most expansive snapshot of

network resources to date (Fig. 1), assessing the current state of a
diverse range of 45 interactomes, including their features, contents,
and performance for discovering disease genes and prioritizing novel
interactions. Our analysis highlights the leading interactomes across
various applications (Table 1), revealing significant differences
depending on the task at hand. Many of these interactomes now
cover nearly all protein-coding genes (Fig. 2A), though not all
biological domains are equally represented, with biases particularly
prevalent amongst experimental networks (Fig. 2C,D, Table 1).
Consequently, biological representation should be carefully considered
when selecting a network. While some underrepresentation may
reflect genes with truly fewer interactions, these results suggest a need
for increased focus on less-studied proteins and functions such as
transporter and receptor activity.

As interactomes have become more numerous, understanding
the utility of different data sources and network structures has
become critical for network biology applications, such as disease
gene prioritization (Huang et al, 2018; Kim et al, 2022; Mosca et al,
2021). A small set of networks, including HumanNet (Kim et al,
2022), STRING (Szklarczyk et al, 2023), and FunCoup (Persson
et al, 2021), consistently produced the strongest disease gene set
recovery performance across Literature and GWAS-derived
Genetic gene sets (Fig. 3B, Table 1). However, differences in
performance across gene set sources highlighted the importance of
careful network selection. Performance was consistently higher for
Literature gene sets than Genetic gene sets, possibly due to a
combination of gene set size and the shared reliance on
publications between the Literature gene sets and the sources used
to construct many of the interactomes. However, the interactome
rankings remained stable when considering recent genetic findings
and experimentally derived gene sets (Fig. 3C).

Consistent with previous observations (Huang et al, 2018;
Mosca et al, 2021), gene set recovery performance was highly
correlated with the number of interactions in each network. After
adjusting for this size effect, we found that HumanNet (Kim et al,
2022) and DIP (Xenarios et al, 2000) had the highest performance
per interaction, indicating that the information in these networks is
of very high quality (Fig. 3B). In contrast, some high-performing
interactomes’ rankings suffered after size adjustment, indicating
that they may contain many lower-quality interactions that are

Figure 5. Interaction prediction performance and AlphaFold evaluation.

(A) Interaction prediction evaluation by L3 and MPS algorithms for held-out self-interactions via 10-fold cross-validation. Mean (bar) and individual fold (points) precision
at k (P@k, k = size of test set) for the 15 top-performing interactomes based on mean P@k. (B, C) Interaction prediction evaluation by L3 and MPS for external interactions.
Precision at k (P@k, k = size of test set) for external interaction sets defined from (B) CORUM complex interactions and (C) PANTHER pathway interactions for the 15
top-performing interactomes with each external interaction set based on mean P@k. (D) Distribution of network coverage for the top 100 interactions predicted by each
interactome by MPS and L3. A network coverage of 0 indicates that an interaction was not reported in any of the 45 interactomes. The top bar plot shows the number of
edges in the corresponding interactome. Only networks with predictions from both algorithms are shown. (E) AlphaFold-Multimer (AF) interface predicted TM-score
(ipTM) for interactions with varying network coverage. The center bar represents the median, the box represents the interquartile range (Q1–Q3), and the upper and lower
whiskers represent Q1− 1.5IQR and Q3+ 1.5IQR. The violins extend to the minimum and maximum observations, and represent 50 randomly sampled interactions per
network coverage value. (F) AF ipTM scores for samples of 50 interactions per network. Interactomes shown are enriched for interactions with high interface scores
(q < 0.15, Mann–Whitney U-test, BH correction), as compared to a background distribution of 1779 randomly generated protein pairs. The center bar represents the
median, the box represents the interquartile range (Q1–Q3), and the upper and lower whiskers represent Q1− 1.5IQR and Q3+ 1.5IQR. The violins extend to the minimum
and maximum observations, and represent 50 interactions per network. See Appendix Fig. S3B for results for all interactomes. (G) AlphaFold-Multimer assessment of 50
previously unreported interactions per network predicted using MPS. The top 10 interactomes ranked by mean ipTM score of previously unreported interactions are
shown. AF-supported interactions were defined as protein pairs with an interface score in the 95th percentile (ipTM > 0.53, dashed line) of the background distribution of
1779 randomly generated protein pairs. The distribution of ipTM scores for previously unreported interactions was assessed against the distribution of scores from
randomly generated protein pairs by a Mann–Whitney U-test (*q < 0.1, ***q < 10–5, BH correction). The center of each box plot represents the median score, the box
boundaries correspond to the lower (Q3) and upper (Q3) quartiles, and the whiskers extend to Q1− 1.5IQR and Q3+ 1.5IQR. See Appendix Fig. S3D for results from all
interactomes. See Dataset EV3 for full interaction prediction results and Dataset EV4 for full AF results.
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nevertheless overcome by the network propagation procedure. We
found that some low-quality and potentially spurious interactions
can be excluded by selecting only those interactions present in
multiple sources. In this vein, we used the size-adjusted interactome
rankings to construct high-quality parsimonious composite net-
works (PCNets), requiring all interactions to be supported by at
least two databases. Despite our approach not explicitly accounting
for redundancy between sources (Melkonian et al, 2022), the higher
gene set recovery performance (Fig. 4) indicates an improvement in
true biological signal. These networks, PCNet2.0, PCNet2.1, and
PCNet2.2, are publicly available via NDEx.

Further, we developed an additional evaluation metric to assess the
quality of available interactomes based on their capacity for interaction
prediction. In contrast to gene set recovery results, the precision of
interaction prediction was not driven by interactome size, and overall
interactome rankings for interaction prediction varied substantially
from rankings for gene set recovery (Fig. 5A–C, Table 1). In particular,
the top-performing networks included many with improved size-
adjusted performance in gene set recovery, indicating the quality
rather than quantity of interactions is crucial for interaction
prediction. Our in silico assessment with AlphaFold-Multimer further
reinforced the importance of network selection, with a small subset of
interactomes such as SIGNOR (Lo Surdo et al, 2022) and Reactome
(Gillespie et al, 2022) predicting interactions with high AlphaFold-
Multimer support (Fig. 5F, Table 1). While experimental physical
protein-protein interaction networks such as Havugimana

(Havugimana et al, 2012) remain optimal for predicting stable
multiplex complexes (Figs. 5B and EV4F), our results suggest that
networks incorporating signaling and pathway interactions could be
more frequently utilized to predict binary protein interactions
(Fig. 5G). The majority of previously unreported interactions
supported by our AlphaFold-Multimer analysis involved receptor
and regulatory interactions, suggesting that in silico approaches may
indeed help fill gaps in interactomes caused by experimental
limitations related to transmembrane proteins and dynamic interac-
tions (Fig. 2D). On the other hand, the absence of in silico support for
other predicted interactions should not be considered evidence against
their existence. AlphaFold-Multimer specifically models direct physi-
cal interactions and thus does not capture the full range of potential
gene-gene relationships. Additional in silico and in vitro validation of
these predicted interactions is essential to build on the evaluations
presented here.

We must also acknowledge the contributions of other studies to
understanding the current state of interactomes. Here, we have
used a biological lens to understand the information contained
within human molecular networks and their performance across a
broad range of applications. This work, therefore, complements
other detailed studies that have focused on network topology
(Mosca et al, 2021; Ramos et al, 2024), re-wiring (Huttlin et al,
2021), and disease and tissue context (Greene et al, 2015; Zitnik and
Leskovec, 2017; Li et al, 2024) across interactomes. Additionally,
interactome data are increasingly used to provide machine learning

Table 1. Summary of interactome recommendations across network biology applications.

Outcome/Analysis Top Network Choices Important Considerations

Best Gene Coverage Experimental BioPlex293T, BioPlex HCT116, HuRI •Many databases continue to expand
• Experimental and curated interactomes contain high-quality
interactions but are more incomplete

• Composite interactomes depend on a wide variety of sources

Curated BioGRID, HINT, HPRD

Composite HIPPIE, GeneMANIA, Pathway Commons

Biological Representation Least Citation and
Expression Bias

GeneMANIA, STRING, HumanNet • Bias towards highly cited and highly expressed genes reflects
a combination of experimental and curation biases, and gene
functional importance

•Networks should be examined for coverage of relevant
tissues and biological functions

Highest Citation Bias PID2, DIP, PhosphoSitePlus

Highest Expression and
Abundance Bias

Havugimana, ProteomeHD, Wan

Gene Function
Prediction

HumanNet, Havugimana, Reactome
(GO:BP), PTMCode2 (GO:CC),
ReactomeFI (GO:MF)

Best Disease Gene
Prioritization

Literature HumanNet, ConsensusPathDB, PCNet2.0 • Large networks demonstrate higher performance using
network propagation due to better coverage of genes of
interest and a greater range of prior knowledge

• Certain interaction types, such as co-citation and domain
similarity, contribute strongly to performance

Genetic STRING, HumanNet, FunCoup, PCNet2.0

Excluding co-citation
interactions

FunCoup, PCNet2.2, STRING (CC-free)

Best Interaction
Prediction

Self-interactions DIP, ReactomeFI, Reactome, ProteomeHD • Smaller networks with high-quality and relevant interaction
types perform better

• Interaction prediction with large networks can become
computationally intractable

• Some interactomes incorporate CORUM and PANTHER

CORUM interactions Havugimana, PTMCode2, ReactomeFI

PANTHER interactions SIGNOR, Reactome, HPRD

Best Protein Assembly
Prediction

CORUM Recapitulation DIP, Havugimana, Reactome •Different network topologies lead to different hierarchical
assembly structures

• Some interactomes incorporate CORUM and GO during
network construction

Functional Coherence PrePPI, SIGNOR, TFLink

Best in silico assessment
(AlphaFold)

Self-interactions SIGNOR, PID2, HPRD, ProteomeHD • Combining interaction prediction with in silico assessment
may help address systematic gaps in interactomes

• Experimental validation remains necessary for confirming
predicted interactions

Previously unreported
interactions

SIGNOR, SPIKE, Reactome
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features and determine the architecture of neural networks. These
applications warrant a specific and detailed analysis of interactome
resources beyond our study.

We anticipate that molecular network data generation and
analysis will continue apace, making regular evaluations of available
networks essential for optimizing biological discovery. This work
provides both an up-to-date benchmarking of available interactomes
and a set of refined and expanded tools for ongoing evaluation of
biological networks in the future (https://github.com/sarah-n-wright/
Network_Evaluation_Tools). While no framework can evaluate all
possible interactomes for all applications, we hope this work will
serve as a broad guide for network selection, and we welcome the
continued development of complementary approaches.

Methods

Reagents and tools table

Reagent/
Resource Reference or Source

Identifier or
Catalog
Number

Experimental Models

N/A

Recombinant DNA

N/A

Antibodies

N/A

Oligonucleotides and other sequence-based reagents

N/A

Chemicals, Enzymes and other reagents

N/A

Software

neteval 0.2.2 https://github.com/sarah-n-wright/
Network_Evaluation_Tools, this study

BEDOPS 2.4.41 https://bedops.readthedocs.io/ (Neph
et al, 2012)

NDEx2 Python
Client 3.5.0

https://github.com/ndexbio/ndex2-client
(Pillich et al, 2021)

EGAD 1.32.0 https://doi.org/doi:10.18129/
B9.bioc.EGAD (Ballouz et al, 2017)

L3 1.0.2 https://github.com/kpisti/L3 (Kovács
et al, 2019)

MPS https://github.com/spxuw/PPI-
Prediction-Project/ (Wang et al, 2023)

HiDeF 1.1.5 https://github.com/fanzheng10/HiDeF
(Zheng et al, 2021)

ColabFold 1.5.5 https://github.com/YoshitakaMo/
localcolabfold (Mirdita et al, 2022)

Python 3.10 https://www.python.org/

R 4.4 https://www.r-project.org

Adobe
Illustrator CC
2024

https://www.adobe.com/

Scipy 1.7.2 https://scipy.org/ (Virtanen et al, 2020)

Reagent/
Resource Reference or Source

Identifier or
Catalog
Number

Networkx
2.6.3

https://networkx.org/

Statsmodels
0.13.5

https://www.statsmodels.org/ (Seabold
and Perktold, 2010)

goatools https://github.com/tanghaibao/goatools
(Klopfenstein et al, 2018)

Cytoscape
v3.10.2

https://cytoscape.org/ (Shannon et al,
2003)

Other

N/A

Methods and protocols

Data collection and processing
Collection and standardization of interaction data. Where
possible, all networks were downloaded from primary sources
(Appendix Table S1). DIP (Salwinski et al, 2004) and BIND (Bader
et al, 2003) were downloaded from PathwayCommons v12
(Rodchenkov et al, 2020), and PCNet 1.4 (Huang et al, 2018) and
PID v2.0 (Pillich et al, 2023) were downloaded from NDEx (Pratt
et al, 2017; Pillich et al, 2021) (ndexbio.org). All non-human
interactions were excluded, except in cases where the authors used
orthologous interactions to enhance human networks (Fig. 1A). All
networks were standardized to:

• Remove duplicate interactions.
• Remove self-interactions.
• Binarize any interactions involving more than two genes by
defining edges between all pairs of genes.

• Convert all interactions to undirected.

The GeneMANIA (Mostafavi et al, 2008), GIANT (Greene et al,
2015), and hu.MAP 2.0 (Drew et al, 2021) interactomes contained
more than 15M interactions. Therefore, we filtered these networks to
the top 10% of interactions using the provided interaction scores. For
HumanNet, we used the functional network extended by co-citation
(HumanNet-XC) as the primary interactome and defined the
functional subnetwork (HumanNet-FN) as the co-citation-free
HumanNet (CC-free). The STRING co-citation-free (CC-free)
network was defined by excluding interactions supported solely by
the “textmining” channel.

Collation of network metadata. Network dependencies and
interaction types were collated from publicly available information
based on definitions in Appendix Table S2. Dependencies and
interaction types were manually curated from associated publications
and websites, as well as metadata available within the interactome
data files (such as “Source,” “Database,” and “Interaction Type”
columns). Where available, PMIDs associated with interactions were
used to identify experimental sources. A network dependency
between a target and a source network was defined as a relationship
where interactions from the source network were directly incorpo-
rated into the target network. Using a network to train, prioritize, or
score interactions was not considered a dependency.
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Standardization of gene identifiers. We mapped all gene
identifiers to NCBI Gene IDs using APIs from MyGeneInfo (Wu
et al, 2013; Xin et al, 2016), UniProt (UniProt Consortium, 2023),
HGNC (Seal et al, 2023), and Ensembl (Cunningham et al, 2022).
Input identifiers were first updated using the most relevant database
to address out-of-date identifiers and then converted to NCBI Gene
IDs. For mapping HGNC Gene Symbols, previously approved
symbols were prioritized over alias symbols. The performance of our
gene mapping pipeline was compared to the use of MyGeneInfo
alone, achieving a reduction of over 60% in genes that could not be
mapped to NCBI gene identifiers (Appendix Fig. S4A).

Collation and processing of gene metadata. We sourced gene and
protein annotation features from HGNC (Seal et al, 2023) (chromo-
some, locus type, locus group) and NCBI (Sayers et al, 2022) (citation
count) on December 20, 2023. The set of protein-coding genes was
defined by the HGNC Locus Group “protein-coding gene.” Functional
Gene Ontology (GO) associations were downloaded from NCBI using
goatools (Klopfenstein et al, 2018) on March 29, 2023.
To assess mRNA expression patterns, we sourced and processed

median gene-level TPM by tissue from GTEx v8 (Data ref: GTEx
Portal, 2017):

• For genes with multiple transcripts, we consolidated the values for
all transcripts within each tissue. We took the mean of all
transcripts if all values had a similar magnitude (all TPM
observations above or below 10−4); otherwise, we took the
maximum.

• Overall expression levels were calculated as the mean across all
tissues.

For protein abundance, we utilized normal tissue abundance
values by tissue reported by the Human Protein Atlas (HPA) v23
(Uhlén et al, 2015, Data ref: The Human Protein Atlas, 2023).

• Entries with “Uncertain” reliability were excluded.
• Tissues with fewer than 1000 observations were excluded.
• The categorical abundance levels provided by HPA were converted to
numerical values (Not detected = 0, Low = 1, Medium = 2, High = 3).

• Converted numerical values for each gene were consolidated by taking
the mean of associated protein abundance values across all tissues.

Positional gene conservation scores (phyloP) were sourced from the
UCSC Genome Browser (Nassar et al, 2023, Data ref: UCSC Genome
Browser, 2017), calculated using the PHAST package for multiple
alignment of 29 vertebrate species to the hg38 human genome.

• PhyloP scores from the reference chromosomes were aggregated
for each transcript using BEDOPS v2.4.41 (Neph et al, 2012)
based on coding sequences (CDS) derived from GENCODE
(Frankish et al, 2019) v46 Basic Gene Annotation (Data ref:
GENCODE, 2024).

• The final gene conservation score was defined per gene as the
mean phyloP across all positions within the gene’s CDS.

Lists of experimentally resolved structures in the Protein Data
Bank (PDB) (wwPDB consortium, 2019) were downloaded on
August 14, 2024.

• Interactions with experimentally resolved structures were
broadly defined as any protein pair reported as part of a
human complex with at least two distinct protein entities
that could be mapped to NCBI Gene IDs via UniProt
Accession Codes.

• Proteins with individual experimentally resolved structures
were broadly defined as any protein identified from structures
containing one distinct protein entity (including homodimers
and partial structures) that could be mapped to NCBI Gene IDs
via UniProt Accession Codes.

Definition of gene and interaction sets. We generated collections
of gene sets from three sources to evaluate gene set recovery
performance. All gene identifiers were converted to NCBI Gene IDs.

• Literature: we obtained literature-curated disease gene sets from
DisGeNET (Piñero et al, 2017) via the disgenet.com API, utilizing
BEFREE (Bravo et al, 2015) gene-disease associations sourced
from the text-mining of MEDLINE abstracts. All data was
downloaded on December 22, 2023. We retained sets with a
maximum of 500 genes and at least 5 genes in every interactome
to give 906 Literature sets.

• Genetic: we created genetic gene sets from genome-wide
association studies (GWAS) via the GWAS Catalog (Sollis et al,
2023, Data ref: GWAS Catalog, 2024). All data was downloaded
on January 22, 2024. From the full download, we extracted all
SNPs mapped to an NCBI Gene ID with a significant association
(p-value < 5 × 10−8) to a phenotype in the Experimental Factor
Ontology (EFO). We created gene sets for all phenotypes with
fewer than 500 distinct gene associations across all studies to give
699 Genetic gene sets.

• Genetic 2023+: we created a collection of recent genetic gene sets
using only GWAS with a publication date after July 27, 2023, thus
postdating the latest update of interactomes incorporating co-
citation interactions. This produced 48 sets which we termed the
“Genetic 2023+” gene sets.

• Experimental: we identified gene sets generated from experi-
mental data published between January 1 and January 24, 2024.
Candidate studies were identified from PubMed using grouping
keywords such as “module,” “profile,” “gene set,” and “compo-
nent,” combined with experimental context keywords such as
“transcriptional,” “regulatory,” “differentially expressed,” “bio-
marker,” “single-cell,” and “gene expression.” Studies were
selected if they generated publicly available gene sets between
20 and 250 genes (or data from which these could be readily
defined) and did not utilize literature or network resources for set
definition, resulting in 17 Experimental gene sets (Appendix
Table S3).

To analyze each interactome, we selected gene sets with a
minimum of 20 (Literature, Genetic) or 10 (Genetic 2023+,
Experimental) genes present in the interactome. All gene sets are
available in Dataset EV5.
External sets of complex and pathway interactions were sourced

from CORUM (Giurgiu et al, 2019) and PANTHER (Mi and
Thomas, 2009) via PathwayCommons (Rodchenkov et al, 2020).
Interactions were standardized using the same procedure as for
interactomes to generate interaction lists.
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Creation of interaction-type-specific networks. We defined
interaction-type-specific subnetworks from HumanNet (Kim et al,
2022) and GeneMANIA (Mostafavi et al, 2008). From HumanNet, we
downloaded HumanNet-co-citation (HS-CC), HumanNet-coexpression
(HS-CX), HumanNet-pathway (HS-DB), HumanNet-domain (HS-DP),
HumanNet-genetic interaction (HS-GI), HumanNet-phylogenetic simi-
larity (HS-PG), and HumanNet-physical (HS-PI). These type-specific
HumanNet networks were constructed via combinations of curated and
experimental sources under a supervised learning framework. All
HumanNet networks were downloaded from https://
staging2.inetbio.org/humannetv3/ and standardized per our pipeline
outlined above. From GeneMANIA, we downloaded source files based
on assigned types (“Co-expression,” “Genetic_Interactions,” “Pathway,”
“Physical_Interactions,” “Predicted,” and “Shared_protein_domains”)
from https://genemania.org/data/current/Homo_sapiens/. All interac-
tions within a source were concatenated to form interaction-type-specific
GeneMANIA networks. GeneMANIA sources for genetic and co-
expression interactions include large-scale screens with interaction
scores. Therefore, using the maximum interaction score for each distinct
interaction, we filtered these interaction-type-specific networks to the top
10% of genetic interactions and the top 3% of co-expression interactions.
While drawing on different data types, we assigned HumanNet-
phylogenetic similarity and GeneMANIA-predicted to the category
“Orthology” as both utilized information from non-human species.
Interaction-type-specific network similarities were calculated as the
Jaccard similarity of undirected interactions after network processing.

Deposition of interactomes to NDEx. All standardized source
networks were uploaded to the NDEx network set “State of the
Interactomes: source networks” via the NDEx2 Python Client (Pillich
et al, 2021) v3.5.0. All genes were indexed by NCBI Gene IDs and
annotated with current approved HGNC Symbols as of April 2, 2024.
The original gene identifiers used by the source database were
maintained, as were additional edge annotations where available, such
as PubMed IDs, interaction type, or detection method. PCNet2.0,
PCNet2.1, and PCNet2.2 were similarly uploaded via the NDEx2
Python Client. PCNet genes were annotated with the current approved
HGNC Symbols, and interactions were annotated with the number of
supporting interactomes and a list of those supporting interactomes. All
network figures were generated using Cytoscape (Shannon et al, 2003).
NDEx is an open-source, publicly available software infrastructure

that facilitates the storage, exchange, visualization, and publication of
network models and data among scientists. Thanks to its full
integration with the Cytoscape desktop application, users can employ
NDEx to import, export, and analyze biological networks using the
large variety of tools and applications available in the Cytoscape
ecosystem. The platform’s key advantages include fostering collabora-
tive research through shared networks, enabling the reproducibility of
scientific findings, and promoting the discovery of new biological
insights by integrating disparate data types into comprehensive
network models. NDEx thus offers a centralized resource to enhance
the utility and accessibility of network-based data and analyses in
elucidating complex biological systems. To learn more about NDEx,
please review the FAQ page at www.ndexbio.org.

Representation analysis

Gene-level annotations. For each quantitative gene-level annota-
tion (citation count, mRNA expression, protein abundance, and gene

conservation), we assessed whether each interactome contained
genes with greater median annotation values different than would be
expected by chance using a permutation test.

1. Calculate the median annotation value for each interactome as the
median value for protein-coding genes contained in that
interactome. The set of protein-coding genes was defined by the
HGNC Locus Group “protein-coding gene.”

2. For each of 10,000 random samples, take a sample without
replacement of size N from the set of all protein-coding genes,
where N is the number of genes in the interactome. Take the
median annotation value of all genes in the sample.

3. Generate empirical one-sided p-values by calculating the number
of permuted medians that are greater than the observed median.
If no permuted medians are greater than the observed median,
assign a p-value of 1 × 10−4.

4. Calculate Bonferroni corrected q-values based on the number of
interactomes q = min(45·p, 1).

Global correlations between network coverage and gene features were
calculated using Spearman correlation via scipy (Virtanen et al, 2020).
Where the reported p-value is lower than the precision of the test we
report p = 1 × 10−50. For mRNA expression all genes with mRNA data
were binned into 20 percentile bins based on the mean expression
across all tissues. Due to the number of genes with near-zero average
mRNA expression, the lowest 20th percentile was treated as a single bin
for mRNA expression. For protein abundance, all genes with protein
abundance data were binned into 20 percentile bins based on the mean
abundance across all tissues. All correlations were calculated for protein-
coding genes only. Citation counts were adjusted for mean mRNA
expression using a log–log ordinary least squares linear regression via
statsmodels (Seabold and Perktold, 2010), excluding genes with zero
citations or a mean mRNA expression of zero.
Sets of tissue-enhanced genes for mRNA expression and protein

abundance were defined using the criteria outlined by the Human
Protein Atlas (HPA) (Uhlén et al, 2015, Data ref: The Human Protein
Atlas, 2023). Using mRNA Expression data from GTEx (Data ref: GTEx
Portal, 2017), all protein-coding genes were classified as one of:

(a) Low Expression—TPM < 1 in all tissues.
(b) Tissue Enriched—five-fold higher TPM in one tissue compared

to all other tissues.
(c) Group Enriched—five-fold higher TPM in a group of 2–7

tissues compared to all other tissues.
(d) Tissue Enhanced—five-fold higher TPM in one tissue compared

to the average of all other tissues.
(e) Broadly Expressed—all genes not otherwise classified.

The genes classified as Tissue Enriched, Group Enriched, or Tissue
Enhanced for a given tissue were considered part of the tissue-
enhanced mRNA expression gene set for that tissue. All protein-coding
genes were similarly classified based on the quantified HPA protein
abundance levels (see the “Collation and processing of gene metadata”
section) of associated proteins. Low Abundance was defined as
abundance <0.5, and Tissue Enriched, Group Enriched, and Tissue
Enhanced genes were defined based on three-fold, rather than five-fold,
higher abundance levels. All genes classified as Tissue Enriched, Group
Enriched, or Tissue Enhanced for a given tissue were considered part of
the tissue-enhanced protein abundance gene set for that tissue. Tissues
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with more than 10 genes assigned were maintained for analysis. The set
of genes in each interactome (filtered to those present in the mRNA
expression or protein abundance data, respectively) was tested for
enrichment of tissue-enhanced genes using a two-sided Fisher’s Exact
Test via scipy (Virtanen et al, 2020) with BH correction via
statsmodels (Seabold and Perktold, 2010). The number of genes with
reported mRNA or protein levels (after conversion to NCBI Gene IDs)
was used as the background for the Fisher’s Exact tests.

Interaction-level annotations. To assess the relationships between
gene annotation features and the presence of interactions across all
networks, we assessed the density of interactions between genes with
varying citation count, mRNA expression, protein abundance, and
chromosome number. Densities were calculated between genes
binned based on annotation value using the following procedure:

1. Construct annotation gene bins based on the annotation values for all
genes that are protein-coding or present in at least one interactome.
Previously calculated percentile bins are used for mRNA expression
and protein abundance (see the “Gene-level annotations” section).
Fifty bins of approximately equal size are constructed for gene
citation count, such that all genes with equal citation counts are in the
same bin. Chromosome bins are defined by chromosome number.

2. Assign every interaction GeneA-GeneB present in at least one
interactome to two bins: BinA corresponding to the annotation value
for GeneA and BinB corresponding to the annotation for GeneB.

3. For each combination of BinA and BinB, count the number of distinct
interactions (nAB) between genes in BinA and genes in BinB across all
45 interactomes.

4. Normalize each observed count of interactions based on the number
of possible interactions to give the interaction density D (Eq. 1). The
number of possible interactions between BinA and BinB is calculated
based on genes that are present in at least one interactome, where A
represents the set of genes in BinA, and B represents the set of genes
in BinB:

DAB ¼ nAB � Aj j Bj j
2

� ��1

if A≠B; elseDAA ¼ nAA
A2

(1)

Gene and interaction functional annotations. To assess the
representation of biological processes, molecular functions, and
cellular compartments, we calculated gene set enrichment for GO
Slim terms (https://current.geneontology.org/ontology/subsets/
goslim_generic.obo, accessed on June 19, 2023) using a two-sided
Fisher’s Exact Test via scipy (Virtanen et al, 2020) with BH
correction via statsmodels (Seabold and Perktold, 2010).

• From the GO Slim ontology, we selected terms with between 100
and 4000 associated genes and excluded any terms that were
parents of other terms in the group, resulting in a group of 93 terms.

• The background for the enrichment analysis was set to all protein-
coding genes as defined by HGNC with at least one GO association.

• All genes associated with a term were also considered to be
associated with all parents of that term.

The interaction density (Eq. 1) was calculated within and between
the group of 93 GO Slim terms, where each term represented a bin,
and genes were permitted multiple bin associations. The denomi-
nator of Eq. 1 was set based on the number of unique pairwise

combinations of genes between GO terms, accounting for over-
lapping genes between GO terms.

Gene function prediction via guilt-by-association. Guilt-by-
association analysis was performed using Extending Guilt by Associa-
tion by Degree (Ballouz et al, 2017) (EGAD), as implemented in the R
package EGAD v1.32.0. Briefly, this method utilizes a neighbor-voting
framework and compares the results to a baseline prediction based
solely on the degree of genes within the network. We identified a broad
group of GO annotation gene sets from GO associations from NCBI
(see the “Collation and processing of gene metadata” section). Again, all
genes associated with a term were assumed to be associated with all
parent terms. We performed the guilt-by-association analysis using
5-fold cross-validation, holding out one-fifth of genes in each GO set
per fold, followed by calculation of the AUPRC for prediction of the
held-out genes. Null AUPRC values were reported for each fold using
predictions based on genes ranked by node degree, acting as a measure
of degree bias (Ballouz et al, 2017). For each interactome, the observed
AUPRC values were averaged over all GO terms with more than 10 and
fewer than 250 genes present in the interactome.

Gene set recovery evaluation

Network propagation with subsampling. Gene set recovery via
network propagation was implemented following the procedure
previously established (Huang et al, 2018) for each interactome.

1. Curate gene sets (see the “Definition of gene and interaction sets”
section) and take the intersection of each gene set and the
interactome genes.

2. Randomly subsample a proportion ρ without replacement from
this intersection as seed genes, with the remaining portion of the
gene set becoming the held-out set.

3. Create the binary vector F0 representing each gene’s initial seed
gene status.

4. Propagate from the seed genes through the network using a
random walk with restart model (Vanunu et al, 2010), utilizing
the closed-form solution (Leiserson et al, 2014):

F ¼ ð1� αÞF0 � ðI � αAnormÞ�1 (2)

Where F is the vector of propagation scores for all genes, α is the
network propagation constant, and Anorm is the degree-
normalized adjacency matrix of the interactome.

5. Define the held-out set h as the true positives, and rank all non-
seed interactome genes by propagation score. Then, calculate the
area under the precision-recall curve (AUPRC) for recovering h.

6. Repeat the subsampling, propagation, and AUPRC calculation
steps for 50 gene set samples and average the observed AUPRC
values to give a mean AUPRC for each gene set.

7. Construct 50 randomized versions of each interactome via
degree-matched edge shuffling and repeat steps 2–6 for each
gene set to create a null distribution of mean AUPRC values.

8. Calculate the “Performance” score, defined as the robust
Z-statistic (Rousseeuw and Croux, 1993) between the observed
and null mean AUPRC values for each gene set. This statistic uses
the median absolute deviation (MAD) as a scale estimator,
making it more robust to outliers and more reliable for non-
normally distributed data.
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9. Calculate the “Performance Gain” for each gene set, defined as the
difference between the observed mean AUPRC and the median
mean AUPRC from the associated null networks, normalized by
the median mean AUPRC from the associated null networks.

10. Repeat steps 1–9 for all interactomes.
11. Calculate size-adjusted performance metrics by fitting a linear

regression model for each gene set between the log10 interaction
count of each interactome and the observed performance scores.
The residual for each interactome is the size-adjusted performance
of the interactome for that gene set.

Parameter optimization for gene set recovery. Previous studies
have shown that the optimal gene set recovery parameters can vary
between networks (Huang et al, 2018). Therefore, to enable assessment
of interactomes under their best conditions, we performed optimization
of the two key gene set recovery parameters α (network propagation
constant) and ρ (subsampling proportion) for each interactome and
gene set using the 50 MSigDB Hallmark pathways (Liberzon et al, 2015)
as an independent source of gene sets. The Hallmark pathways provide a
source of high-quality gene sets, independent of the larger and disease-
focused Literature, Genetic, and Experimental gene sets used for
evaluation.We compared gene set recovery performance across intervals
of α ∈ {0.2, 0.3,…0.9} and ρ ∈ {0.1, 0.0,…0.8} for all interactomes and
MSigDB gene sets (Appendix Fig. S4B, Dataset EV6) and used a linear
regression of mean performance using Huber Regression (Huber, 1964)
via sklearn (Pedregosa et al, 2011) with α, ρ, network size (log10 of
normalized interaction count) and gene set coverage (normalized size of
intersection between gene set and interactome genes) as features. This
analysis identified that the subsampling parameter ρ had a stronger
influence on performance than the network propagation constant α. To
identify the optimal parameters, we first calculated the average optimal
parameter values for each interactome-gene set pair by taking the mean
of the five top-performing parameter sets. We then fit the average
optimal subsampling parameter to the normalized network size and
gene set coverage (Appendix Fig. S4C). The resulting formula was used
to set the subsampling parameter:

ρ ¼ 0:44þ 0:0093 � S� 0:0013 � C (3)

Where S is the log10 network size (interaction count), and C is the
gene set coverage. We restricted the value to 0.1 < ρ < 0.8. Next, we fit
the optimal propagation constant for each interactome to the
normalized network size S, the average subsampling parameter ρ,
and the average gene set coverage C across all MSigDB gene sets
(Appendix Fig. S4D). The resulting formula was used to set the
propagation constant for interactomes:

α ¼ 0:59þ 0:24 � ρ� 0:058 � Sþ 0:00036 � C (4)

Where ρ is the mean subsampling parameter across all gene sets, S is
the log10 network size (interaction count), and C is the mean gene set
coverage across all gene sets. We restricted the value to 0.2 < α < 0.9.
By setting the parameters in this way, we reduce the chance that gene
set recovery performance is driven by variation in how close the
chosen parameters are to the optimal for each interactome. For type-
specific, global composite, and ranked composite networks, we set
the subsampling parameter using Eq. 3, and we set the propagation
constant by taking the mean optimal value (α = 0.64) across all
interactomes.

Network performance rankings. For each individual gene set, we
ranked the performance of all interactomes assessed with that gene set.
Because not all interactomes had sufficient coverage of all gene sets, the
number of interactomes assessed with each gene set varied (Fig. EV3A).
To account for this, we transformed the rank values into a centralized
rank.We ranked the performance scores of allm successfully evaluated
interactomes for each gene set and centralized this rank to give values
evenly distributed around zero. Thus, for a given gene set:

If ranks ¼ 1; 2; 3; :::;m½ �; then rankscentral ¼ ranks�mþ 1
2

(5)

The overall rank of an interactome was calculated as the mean of
the centralized ranks it achieved. As is typical for rank measures, the
lower the centralized rank, the better the relative performance of an
interactome. In this way, a negative centralized rank reflects an
interactome in the top 50% of interactomes assessed, and a positive
centralized rank reflects an interactome in the bottom 50% of
interactomes assessed. This measure ensures the most weight is given
to results for gene sets assessed with all interactomes while still
utilizing results from smaller gene sets that could only be assessed
with a minority of large networks. Centralized ranks were calculated
separately for Literature, Genetic, and Experimental gene set sources
for both raw and size-adjusted performance scores.
Gene set coverage and interactome size. We defined a subset of
interactomes and gene sets to assess the influence of gene set
coverage on the observed correlation between interactome size and
gene set recovery performance.

1. Define a set of 16 interactomes (BioPlex 293T, BioGRID,
ConsensusPathDB, DIP, FunCoup, GIANT, HPRD, HumanNet,
InBio, InnateDB, MatrixDB, PTMCode2, PrePPI, ReactomeFI,
SignaLink, STRING) to represent the range of interactome sizes.

2. From the previously analyzed Literature and Genetic gene sets
(“original sets”), identify the maximal subsets (“reduced sets”) of
each gene set such that all members of each maximal subset are
present in all 16 interactomes.

3. Filter the reduced sets to those containing a minimum of 30 genes
for Literature sets (n = 343) or 15 genes for Genetic sets (n = 46).

4. Using the reduced sets, assess the gene set recovery performance
for the 16 interactomes using the procedure outlined above (see
the “Network propagation with subsampling” section) with the
mean optimal gene set recovery parameters of ρ = 0.3 and α =
0.64. All other genes from the original sets not present in the
reduced sets are excluded from the calculation of the performance
metrics to avoid incorrect labeling of true gene set genes excluded
from the maximal subset as false positives.

5. For the reduced gene sets and matched original gene sets, fit
linear regressions between the mean performance score and the
log10 interaction count.

6. Calculate the size-adjusted performance for original and reduced sets
separately, and extract the slopes of the fitted models for each gene set.

7. Compare the slopes between the original and reduced sets using a
Wilcoxon paired test as implemented in scipy (Virtanen et al, 2020) or
a sign rank test as implemented in statsmodels (Seabold and Perktold,
2010).

The Wilcoxon paired test assumes a symmetric distribution of the
differences between paired observations, while the sign rank test makes
no such assumption. The distribution of differences between paired
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observations for Literature gene sets was significantly skewed (skew = 6.9,
Fisher-Pearson; p = 4 × 10−12), calculated by scipy’s skewtest (Virtanen
et al, 2020). The distribution of differences was not significantly skewed
for Genetic gene sets (skew = 1.3, p = 0.2). Therefore, we implemented a
sign rank test for the Literature gene set slope comparison, and the
Wilcoxon paired test for the Genetic gene set slope comparison.

Creation of composite consensus networks
First, we defined “Global Composite” networks Gk based on the
frequency of each interaction across all 45 interactomes. For global
composite networks, we defined the network threshold k as the
minimum number of supporting networks for each interaction. For
example, Gk=2 includes all interactions present in at least two
interactomes. Formally, let i be an undirected interaction, n be the
number of interactomes, Ii,j indicate whether an interaction i is
present in interactome j, and k be the network threshold. Then:

Gk � i ; if
Xn

j¼1
Ii;j

� �
� k (6)

Secondly, we defined “Ranked Composite” networks Rk
m based on

the frequency of each interaction in the top-k best-performing
networks. The best-performing individual networks were selected
based on the average centralized rank of size-adjusted gene set recovery
performance across all Literature and Genetic gene sets. For ranked
composite networks, we defined the network threshold k as the number
of top-performing networks considered. We defined a second thresh-
oldm to represent the threshold on the number of supporting networks
for each interaction. For example, Rk¼8

m¼2 includes all interactions
present in at least two of the top eight interactomes. Formally, let i be
an undirected interaction, n be the total number of interactomes sorted
by rank, Ii,j indicate whether an interaction i is present in interactome j,
k be the network threshold (number of top networks considered), and
m be the minimum support threshold. Then:

Rk
m � i ; if

Xk

j¼1
Ii;j

� �
� m ; where m � k � n (7)

Gene set recovery performance was assessed across a range of
network thresholds. From these results, PCNet2.0, PCNet2.1, and
PCNet2.2 were selected based on the mean centralized rank across
Literature and Genetic gene sets. For PCNet2.1, we additionally
restricted the maximum number of interactions to two million.

Interaction and complex prediction

Interaction prediction algorithms. We implemented two edge
prediction algorithms to assess interaction prediction accuracy: L3
(Kovács et al, 2019) and MPS (preprint: Martini et al, 2021; Wang et al,
2023). The L3 algorithm (Kovács et al, 2019) ranks predicted interactions
based on the number of paths of length three between two nodes,
normalized by the degree of the intermediate nodes. Formally, it
calculates a degree normalized probability of interaction based on the
number of paths of length three connecting two nodes X and Y such that:

L3XY ¼
X

U;V

aXUaUVaVYffiffiffiffiffiffiffiffiffiffiffi
kUkV

p (8)

Where kU is the degree of node U and aXU = 1 if proteins X and U
interact and zero otherwise. All possible interactions are ranked based on

decreasing L3 scores to determine the most likely predicted interactions.
The Maximum similarity and Preferential attachment Score (MPS)

algorithm (preprint: Martini et al, 2021) utilizes two measures of
topology to rank potential interactions based on the hypothesis that the
probability of two proteins interacting is proportional to the similarity
between one protein and the most similar interactors of the other
protein. The maximum topological similarity between two nodes is
calculated from the similarities of their neighboring nodes in the
network. First, define N(u) as the set of direct neighbors of node u and
the Jaccard Similarity between two nodes u and v based on the similarity
of their neighbors:

Jðu; vÞ ¼ NðuÞ \ NðvÞj j
NðuÞ∪NðvÞj j (9)

The maximum topological similarity between nodes x and y is
then defined based on the maximum Jaccard similarity between any
neighbor of x: a∈N(x) and y, and the maximum Jaccard similarity
between any neighbor of y: b∈N(x) and x such that:

Maxsimðx; yÞ ¼ maxa2NðxÞJða; yÞ þmaxb2NðyÞJðb; xÞ (10)

The preferential attachment score P for two nodes x and y is
defined as:

Pxy ¼ kx ´ ky (11)

Where k is the node degree. All possible interactions were ranked
based on both similarity metrics, consistent with previous imple-
mentations (Wang et al, 2023).
Implementations of the L3 and MPS algorithms were sourced

from GitHub: L3 v.1.0.2 (https://github.com/kpisti/L3) and MPS
(https://github.com/spxuw/PPI-Prediction-Project/). We standar-
dized the evaluation of predicted interactions for both methods
rather than using built in functions. STRING and TFLink were
excluded from all interaction prediction tasks due to
computational cost.

Prediction of held-out self-interactions. We measured the
performance of interaction prediction for held-out self-interactions
via a cross-validation procedure for each interactome, using the
precision at k (P@k) as the primary evaluation metric. Our
evaluation thus focused on the top predicted interactions, which
are typically of most interest to researchers, and allowed more
efficient calculation by avoiding consideration of up to 400M
interactions for the largest networks. To create a fair benchmark
between interactomes, we set k to be the size of the test set (i.e., 10%
of interactome size).

1. Partition the interactome to create 10 predict-test folds, such that
prediction is performed with 90% of network edges and 10% of
network edges are held out for evaluation.

2. Calculate interaction prediction scores using the L3 or MPS
algorithm above. Both algorithms will generate scores for all
possible interactions.

3. Calculate P@k for the predictions by defining the held-out
interactions as positives. For predictions made using L3, this is
achieved by taking the top-k lines of the algorithm output. For
predictions made using MPS, all predictions must be sorted first
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to identify the top k predictions. For efficiency, we implemented a
heap structure to scan the output for the top k predictions.

In some cases, network structure and edge removal led to genes
with a degree of zero. Because the prediction algorithms utilize
network topology, predicting interactions involving genes with no
existing interactions is not possible. Therefore, any interactions
involving such genes in the held-out set were excluded from
performance calculations. Due to computational constraints, Con-
sensusPathDB, FunCoup, and GIANT were excluded from the held-
out interaction evaluation, and hu.MAP, Youn, and SignaLink were
excluded from held-out interaction evaluation via MPS.

Prediction of external interaction sets. In addition to predicting
held-out interactions, we assessed the ability of networks to predict
external complex and pathway interaction sets defined by CORUM
(Giurgiu et al, 2019) and PANTHER (Mi and Thomas, 2009),
respectively. Interaction prediction was performed for the full
interactomes with the L3 and MPS algorithms, and evaluated against
the external sets of complex and pathway interactions. Any complex
and pathway interactions already present in the interactomes were
excluded at the evaluation step, as were any interactions whose
prediction was not possible due to the absence of necessary genes.
Due to computational constraints, hu.MAP was excluded from
external interaction evaluation, and GIANT, ConsensusPathDB,
GIANT, FunCoup, SignaLink, and Youn were excluded from
external interaction prediction via MPS.
A small number of interactomes utilized CORUM and PANTHER

resources for network construction and were therefore excluded from
the impacted external evaluations. ReactomeFI and Pathway Commons
interactomes were excluded from both CORUM and PANTHER
analyses, and GeneMANIA, ConsensusPathDB, and iRefIndex were
excluded from analysis with CORUM. We calculated the percent
overlap of CORUM and PANTHER by assessing the proportion of the
external interaction sets present in each interactome.
Finally, we defined the set of interactomes as an additional external

set. We took the top 100 predictions from analysis with the full
interactomes and assessed the support for these interactions based on
their coverage within the corpus of other interactomes. Those not
appearing in any of the 45 interactomes (network coverage of zero)
were considered previously unreported.
Prediction and evaluation of hierarchical assemblies. Hierarchical

community structures were generated using the Hierarchical commu-
nity Decoder Framework (Zheng et al, 2021) (HiDeF) via the Python
package hidef v1.1.5. All interactomes were assessed with a maximum
resolution of 10, and all other parameters default.

• A recovered CORUM complex was defined as one reaching a
Jaccard similarity of at least 0.5 with any predicted assembly.

• The GO Score was calculated for assemblies with fewer 200 genes
based on the semantic similarity of genes present within each
assembly (Fossati et al, 2021). The pairwise semantic similarity,
implemented by goatools (Klopfenstein et al, 2018), was
calculated separately for each branch of GO for each pair u, v
of genes within the assembly N according to Eq. 12.

GO Nð Þ ¼ 1
3

X
u2N

X
v2N;v>u

ðBP u; vð Þ þMF u; vð Þ þ CC u; vð ÞÞ
(12)

In silico assessment of predicted interactions. Computational
modeling of predicted interactions was performed using AlphaFold-
Multimer (preprint: Evans et al, 2021) (AF) using ColabFold
(Mirdita et al, 2022) v1.5.5 (https://pypi.org/project/colabfold/) via
localcolabfold (https://github.com/YoshitakaMo/localcolabfold). For
all analyses, interactions were first subset to those between genes that
could be mapped to a protein sequence in UniProt (UniProt
Consortium, 2023). Protein sequences were sourced from UniProt
on February 5, 2024. For each protein pair:

1. Create a FASTA file containing the protein pair identifier in the
definition line (e.g., “>ProteinA_ProteinB”), followed by the two
protein sequences concatenated with a colon.

2. Run the localcolabfold command colabfold_batch with para-
meters –num-recycle 3 –model-type alphafold2_multimer_v3,
and all other parameters set to defaults.

3. Extract the predicted template modeling (pTM) and interface
predicted template modeling (ipTM) scores. These can be
found in the “ProteinA_ProteinB_scores_rank*.json” files
generated by AF.

4. For each protein pair, five models are generated by AF by default.
From the pTM and ipTM scores, take the results from the model
with the highest confidence (preprint: Evans et al, 2021)
defined by:

model confidence ¼ 0:8 � ipTM þ 0:2 � pTM (13)

For assessment with AF, we first established a baseline relationship
between the network coverage of an interactome and its ipTM score.
To construct this baseline, we randomly sampled groups of 50
interactions with network coverage between 1–33 interactomes and
50 interactions with network coverage ≥34.
Secondly, we assessed the ipTM scores for reported interactions

within each interactome. We evaluated a sample of 50 protein pairs
from each network and compared them to a background distribution
of ipTM scores for 1779 randomly generated protein pairs selected
independently of this study. The ipTM scores were non-normally
distributed and both the network-specific and randomly generated
scores displayed similar positive skew (skewnetwork = 22, skewrandom =
20; Fisher-Pearson). Therefore, statistical testing was performed
using a two-sided Mann–Whitney U-test.
Lastly, we extracted the top 50 protein pairs predicted by MPS for

each interactome, requiring that both proteins had available protein
structures from UniProt and that the pair was not reported as an
interaction in any of the 45 interactomes studied. We defined these
pairs as ‘previously unreported’ interactions. We modeled the
interactions between these protein pairs and compared the resulting
ipTM scores to the background distribution from randomly
generated protein pairs using a Mann–Whitney U-test. The
distribution of ipTM scores for previously unreported interactions
had a similar shape to the randomly generated scores (skewunre-

ported = 20, Fisher-Pearson). We defined an AF-supported interaction
as an ipTM score >0.53, corresponding to the 95th percentile of the
background distribution.
To test whether the AF-supported classification was independent

of the presence of PDB structures, we performed a χ2 independence
test based on the number of AF-supported and AF-unsupported
interactions with PDB structures. Because the expected number of
AF-supported interactions with both proteins having PDB structures
was <5, we grouped the PDB classifications of “one individual
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protein,” “both individual proteins,” and “interaction” into a single
category of “any PDB structure.”
All AlphaFold-Multimer evaluations were conducted using

NVIDIA Tesla V100 GPUs operating under Rocky Linux
release 8.9. Each evaluation was allocated one CPU and 14 GB of
memory and was subject to a 5-h time limit. Of all protein
pairs, 95% of network coverage pairs, 94% of network-specific
pairs, and 90% of previously unreported pairs were successfully
evaluated.

Data availability

Data presented in the figures are available in Datasets EV1–6, and full
details of source databases utilized are provided in Appendix Table S1.
Computer code and network resources produced in this study are
available in the following databases: Computer scripts for data
processing, analysis, and visualization: GitHub (https://github.com/
sarah-n-wright/Network_Evaluation_Tools/releases/tag/v0.2.2). All
networks utilized in this study: NDEx (https://www.ndexbio.org/
index.html#/user/bae4da70-e22d-11ee-9621-005056ae23aa)—Stan-
dardized source networks: NDEx (https://doi.org/10.18119/N95C9J),
PCNet2.0 network: NDEx (https://doi.org/10.18119/N9JP5J),
PCNet2.1 network: NDEx (https://doi.org/10.18119/N9DW40), and
PCNet2.2 network: NDEx (https://doi.org/10.18119/N9960N).

The source data of this paper are collected in the following
database record: biostudies:S-SCDT-10_1038-S44320-024-00077-y.

Expanded view data, supplementary information, appendices are
available for this paper at https://doi.org/10.1038/s44320-024-00077-y.
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Expanded View Figures

Figure EV1. Global patterns in interactome gene representation.

(A) Interaction and gene counts for networks updated between Huang et al (2018) and the present study. Updated networks are those where the corresponding database
has been updated or where our source of the network was changed. Values represent distinct genes and interactions after data processing and mapping of identifiers to
NCBI Gene IDs. (B) Comparison of network coverage and NCBI gene citation count as of December 20, 2023, for genes that are protein-coding or present in at least one
interactome. Genes with no reported citations are excluded. Spearman correlation reported for protein-coding genes. (C) Box plots of citation count for protein-coding
genes with at least one citation and network coverage in the nine experimental interactomes. Top bar plot shows the number of distinct interactions per network coverage
value. The center of each box plot represents the median, the box boundaries correspond to the upper and lower quartiles, and the whiskers extend to the 5th and 95th
percentiles. Spearman correlation reported. (D, E) Network coverage of protein-coding genes as a function of mean mRNA expression across all tissues in GTEx (D) and
mean protein abundance across all tissues in the Human Protein Atlas (HPA) (E). The center of each box plot represents the median, the box boundaries correspond to the
upper and lower quartiles, and the whiskers extend to the 5th and 95th percentiles. Spearman correlations reported. In (D), each box represents 1740 genes, except for the
≤20th percentile box which represents 6963 genes. In (E), each box represents between 520 and 596 genes (median 557 genes). (F) Median gene conservation scores for
protein-coding genes in each interactome, compared to the median of all protein-coding genes (black line). Colored bars show networks with significantly higher median
conservation scores than the baseline of all protein-coding genes (permutation test, q < 0.05, Bonferroni correction). Networks plotted in the same order as in Fig. 2C.
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Figure EV2. Expanded analysis of interactome biases and physiological gene function predictions.

(A) Correlations between citation count and mRNA expression, protein abundance and network coverage for protein-coding genes. Original citation counts (“Raw”), and
citation counts adjusted for mean gene mRNA expression using log–log ordinary least squares regression (“Adjusted”). Spearman correlations reported. (B) Interaction
density of genes from the 20–25th percentile of mean mRNA expression across select tissues. Genes were filtered to those with non-zero expression in a maximum of two
tissues (1400/1740 genes). Tissues with at least one reported interaction amongst the filtered genes are shown and clustered by minimum distance. The inset shows the
corresponding bin location in Fig. 2F. (C–F) Gene Ontology (GO) gene function prediction via neighbor-voting. The area under the precision-recall curve (AUPRC) was
calculated using 5-fold cross-validation with error bars indicating 95% confidence intervals, with mean taken across all GO annotations tested. Points colored by network
classification. (C) Mean AUPRC across all GO annotations tested compared to mean Null AUPRC calculated from gene degree alone. The specific number of GO terms
evaluated per network ranged from 268 to 1459 (median 1301) terms. See Dataset EV1 for full details. (D–F) Mean AUPRC for GO annotations within each GO branch (BP:
biological process, CC: cellular component, MF: molecular function). Purple dashed lines show the mean null AUPRC from node degree alone across all interactomes. Black
dashed lines are the identity lines. The specific number of GO terms evaluated per network per branch ranged from BP: 133 to 843 (median 731) terms, CC: 71 to 317
(median 295) terms, MF: 64 to 301 (median 278) terms. See Dataset EV1 for full details.

Molecular Systems Biology Sarah N Wright et al

24 Molecular Systems Biology Volume 21 | Issue 1 | January 2025 | 1 – 29 © The Author(s)



Sarah N Wright et al Molecular Systems Biology

© The Author(s) Molecular Systems Biology Volume 21 | Issue 1 | January 2025 | 1 – 29 25



Figure EV3. Descriptive statistics of gene set recovery performance and type-specific networks.

(A) Distributions of gene set statistics and gene set recovery performance metrics for 45 interactomes. Gene set size: number of unique genes in each set after mapping to
NCBI Gene IDs. Network Coverage: number of networks containing with at least 20 set genes. AUPRC, Performance, Performance Gain metrics: median metric of a gene
set across all networks containing at least 20 set genes. See Dataset EV2 for full gene set recovery results and Dataset EV5 for full gene lists. (B, C) Gene set recovery
performance for a subset of 16 interactomes, controlling for gene set coverage. Given a set of disease-associated genes, the “original” set represents the genes present in
each interactome independently, while the “reduced” set represents the maximal subset of genes present in all 16 interactomes. (B) Mean gene set recovery performance
with Literature and Genetic gene sets for each interactome relative to interactome size (interaction count). The lines show log-linear fits with 95% confidence intervals.
See also Dataset EV2. (C) Distribution of regression slopes between interactome size and gene set recovery performance for Literature and Genetic gene sets, as
calculated for size-adjusted performance. Arrows indicate the median regression slopes. (D) Sizes of interaction-type-specific interactomes defined from HumanNet and
GeneMANIA. Crosses indicate that a network could not be defined from available data. Interaction type ‘ALL TYPES’ refers to the HumanNet and GeneMANIA networks
used in the primary analysis, which include all types of interactions. (E) Interaction similarities of interaction-type-specific networks. Similarities measured by the Jaccard
Index of network interactions, and clustered using the Ward variance minimization algorithm.
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Figure EV4. Overlap with external complex and pathway interaction sets and quality of predicted complexes.

(A, B) Distribution of the fraction of CORUM (A) and PANTHER (B) interactions present in each interactome. Interactomes with the highest overlap are labeled. (C, D)
Interaction prediction performance (mean of P@k using the MPS algorithm) as a function of interaction overlap with CORUM (C) and PANTHER (D), with associated
Pearson’s correlation value. (E) Size distributions of protein assemblies detected via hierarchical community detection for each interactome, sorted by median assembly
size. (F–H) Evaluation of protein assemblies predicted by hierarchical community detection. The 15 top-performing networks are shown for each metric and colored by
interactome classification. (F) Number of CORUM complexes recovered, defined as the number of CORUM complexes with a Jaccard similarity of ≥0.5 with any predicted
assembly. (G) Functional coherency of predicted assemblies with fewer than 200 proteins based on the mean semantic similarity of GO annotations between assembly
proteins (Methods). (H) Distribution of clustering coefficients of predicted assemblies with fewer than 200 proteins. In (G, H), the violins extend to the minimum and
maximum observations, and represent the number of complexes with fewer than 200 genes per network as displayed in (E). The center bar represents the median, the box
represents the interquartile range (Q1–Q3), and the upper and lower whiskers represent Q1− 1.5IQR and Q3+ 1.5IQR.
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Figure EV5. Subnetwork of all previously unreported interactions classified as AF-supported.

Node color indicates broad protein function and edge color indicates the predicting interactome. Protein pairs linked by multiple edges were predicted in the top 50
previously unreported interactions by multiple networks.
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