
UCLA
UCLA Previously Published Works

Title

The role of Th17-associated cytokines in the pathogenesis of experimental autoimmune 
uveitis (EAU).

Permalink

https://escholarship.org/uc/item/43492717

Journal

Cytokine, 74(1)

Authors

Liang, Dongchun
Kaplan, Henry
Shao, Hui
et al.

Publication Date

2015-07-01

DOI

10.1016/j.cyto.2014.12.017
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/43492717
https://escholarship.org/uc/item/43492717#author
https://escholarship.org
http://www.cdlib.org/


The role of Th17-associated cytokines in the pathogenesis of 
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Abstract

The proinflammatory and pathogenic function of Th17 cells in autoimmune diseases have been 

established but the mechanism by which such cells cause disease remains to be determined. 

Inflammatory cytokines produced by Th17 cells may either promote or inhibit disease 

development. The major cytokines produced by the uveitogenic T cells, such as IL-17 and IL-22, 

are not always pathogenic, and the disease-inducing ability of pathogenic T cells is not 

immediately correlated to the amount of cytokine they produce. Future studies identifying factors 

causing increased Th17 responses and determining the types of cells that regulating Th17 

autoreactive T cells should facilitate our effort of understanding Th17-mediated disease 

pathogenesis.
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1. Introduction

Recent studies have identified a major subset of pathogenic autoreactive T cells, designated 

Th17 cells, which are now defined by their production of interleukin (IL)-17A, IL-17F, 

IL-21 and IL-22, and to a lesser extent, their production of tumor necrosis factor (TNF)-α 

and IL-6 [1]. A characteristic feature of Th17 cells is their expression of RORγt, the master 

transcription factor controlling Th17 differentiation [2; 3]. In addition, Th17 cells express 

high levels of CCR6, a chemokine receptor that was not expressed by Th1 and Th2 cells [4]. 

Available studies have shown that cytokines produced by Th17 cells have been associated 
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with several autoimmune diseases [5–7]. Mice lacking IL-17 are resistant to both collagen-

induced arthritis (CIA) and experimental autoimmune encephalomyelitis (EAE), and 

treatment of mice with a neutralizing anti-IL-17 monoclonal antibody reduces inflammation 

in the joints and central nervous system (CNS) in these animal models [8; 9].

One of the major biological functions of IL-17 is its effect on the rapid recruitment of 

neutrophils. IL-17 promotes the production of IL-1, IL-6, IL-8, CXC ligand 1 and TNF in 

stromal, epithelial and endothelial cells, and also in a subset of monocytes. Together, these 

proinflammatory cytokines rapidly recruit neutrophils to the site of infection. IL-17 also 

promotes TNF-α and IL-1β [10], as well as chemokine production [11], and thereby 

promotes inflammation and tissue damage. Our laboratory has been studying the 

pathogenesis of autoimmune disease using a well-established experimental autoimmune 

uveitis (EAU) model, which serves as a model for several posterior uveitides in man, such as 

Bechcet’s disease, Vogt-Koyanagi-Harada syndrome, birdshot retinochoroidopathy, and 

sympathetic ophthalmia [12; 13]. EAU is induced in animals by immunization with retinal 

antigens or by the adoptive transfer of retinal antigen-specific T lymphocytes [14; 15]. 

Among the ocular antigens known to induce EAU in rodent models are interphotoreceptor 

retinoid-binding protein (IRBP) [16] and the soluble retinal antigen (S-antigen) [17; 18]. 

Both have been identified as major autoantigens of the retina. The availability of these 

experimental models provides us with an excellent opportunity to study the pathogenesis of 

chronic uveitis and to dissect the pathogenic mechanisms by which uveitis progresses. Such 

studies have important implications in the treatment of human uveitis, given that a major 

goal of clinical treatment is to control the progressive disease.

To determine the immune factors that are important for Th17 autoimmune uveitis and to 

differentiate those factors from those associated with Th1 (IFN-γ+) autoreactive T cells, we 

have conducted studies examining the importance of Th17-associated cytokines such as 

IL-17, IL-22, and IL-23 in autoreactive T cell development and function and examining their 

roles in uveitis progression. Our results showed that cytokines involved in Th17-mediated 

autoimmune diseases are important contributors to the pathogenic changes observed in 

EAU. A better understanding of the effects of these cytokines should provide clues to new 

therapeutic interventions.

2. Pro- and anti-inflammatory effect of IL-17

Early studies showed that the biological actions of IL-17 are proinflammatory. IL-17 

increases the local production of chemokines [19–22] by epithelial cells, thereby promoting 

the recruitment of monocytes and neutrophils. By stimulating the production of the 

hematopoietic cytokines granulocyte colony-stimulating factor (G-CSF) and granulocyte-

macrophage colony-stimulating factor (GM-CSF), IL-17 also promotes the expansion of 

myeloid lineages [23; 24]. IL-17 drives T cell responses, notably through induction of the 

costimulatory molecules [25–27]. Our initial studies showed that during the induction of 

EAU by immunization with IRBP, complete Freund’s adjuvant and pertussis toxin, IRBP-

specific IL-17+ CD4 and CD8 T cells were detected in lymphoid tissues. When these IRBP-

specific Th17 cells were expanded in vitro by IL-23 and injected into naïve mice, they 

induced a severe EAU, which could be ameliorated by anti–mouse IL-17 antibodies [8; 9]. 
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These results supported the proinflammatory role of IL-17 in autoimmune disease. However, 

others have reported conflicting results. For example, the severity of EAE in transgenic mice 

in which T cells produce high levels of IL-17A was not increased [28], and mice deficient in 

IL-17A still developed disease [30; 29; 28]. In some cases, anti-inflammatory effects of 

IL-17 were observed; for example, depletion of IL-17 exacerbated, rather than ameliorated, 

inflammation in the dextran sulphate sodium model of colitis in mice [31]. Our own study 

also collected evidence showing that augmented IL-17 production does not always associate 

with increased disease incidence. In a study comparing pathogenic function of antigen-

specific and non-specific Th17 cell, we found that induction of EAU in the B6 mouse elicits 

two functionally distinct types of IL-17+ T cells: the IRBP-Th17 cells, which specifically 

react to the immunizing autoantigen IRBP1-20, are pathogenic; the bystander-Th17 cells, 

which do not recognize the immunizing peptide, are non-uveitogenic. The frequency of 

bystander-Th17 cells is approximately 10 times greater than that of the IRBP-Th17 cells. 

Both T cell types produce IL-17 and IL-22; but only bystander Th17 cells produce IL-10. 

When the bystander-Th17 cells are adoptively transferred into syngeneic naïve mice, they 

neutralize the pathogenic activity of the IRBP-Th17 cells [8; 32], suggesting that mere 

production of IL-17 does not confer the pathogenic activity of IL-17+ T cells. Our 

experiments to distinguish between the role of a direct cellular effect and the effect of the 

cytokines produced by IL-17+ autoreactive T cells in their pathogenic and 

immunoregulatory activity showed that in rats and B10RIII mice that were injected with 

IRBP-inducing peptide, treatment with recombinant IL-17 significantly inhibited the 

development of EAU, rather than promoting disease development [33]. The treated animals 

showed significant amelioration of disease; and both the intensity of the autoreactive 

response and cytokine production by the autoreactive T cells induced by immunization with 

uveitogenic peptides were significantly decreased. Our previous study has established 

chronic/recurrent uveitis models induced by adoptive transfer of IRBP-specific T cells [34–

36]. Using a relapsing rat EAU model [37], we investigated the effect of a similar cytokine 

treatment on the rats whose EAU was already in progression [33]. Our results showed that 

rats suffering from a chronic relapsing EAU also developed much milder relapses compared 

to controlled mice, both in terms of the number of relapses and the intensity of ocular 

inflammation. The treated rats had significantly increased numbers of Foxp3+ T cells in T 

cells isolated from the spleen or the inflamed eye. Hence, our results show that IL-17 has 

anti-inflammatory activity and that this cytokine can suppress the development of 

autoimmune disease. Due to the limited amount of recombinant protein, we were unable to 

test whether larger doses of IL-17 tend to be pro-inflammatory and smaller doses 

immunosuppressive. In addition, it would also be of interest to test whether administration 

of IL-17 at different phases of an autoimmune disease has different clinical effects. Possible 

mechanisms have been considered. It is also likely that injected IL-17 sequesters the PMNs 

in the injection site in specific anatomic locations, which may affect the development of 

inflammation. Our results suggested that therapeutic interventions targeting cytokines 

produced by the pathogenic T cells may only yield the desired effect under specific 

environmental conditions.

Sun et al. Page 3

Cytokine. Author manuscript; available in PMC 2016 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. The role of IL-22 in disease pathogenesis

IL-22 is a member of the IL-10 family that is preferentially produced by terminally 

differentiated Th17 cells [38]. It is expressed in T cells, NK cells, and NK T cells [39]; but it 

was found to be highly expressed by Th17 cells [38; 40; 41] and in lesions of chronic 

inflammation, even though Th1 and Th2 T cells also produce this cytokine, albeit at much 

lower levels. The expression of IL-22 was enhanced by dendritic-cell-derived IL-23 [38; 

41]. Increased IL-22 expression was found to be strongly linked to chronic inflammation 

[38; 41; 42]. It is considered an effector cytokine of Th17 cells [43] and its major effect is 

proinflammatory [44; 45]. However, IL-22-deficient mice do not always show susceptibility 

to autoimmune induction [40], indicating that IL-22 has different effects in various 

autoimmune diseases and inflammatory disorders [43]. The biological functions of IL-22 are 

not fully understood. There are reports that IL-22 was proinflammatory, inducing the 

production of MCP-1 in synovial fibroblasts [44] and an increase in inflammatory cytokines 

and chemokines in colonic subepithelial myofibroblasts [45].

To determine whether IL-22 has a role in the pathogenesis of EAU, we examined the 

biological effect of IL-22 in EAU in B10RIII mice by injecting the mice with IL-22 during 

the disease-induction process. Our results showed that administration of small doses of 

IL-22 to EAU-susceptible mice significantly reduced the severity of EAU [46]. In addition, 

mice treated with IL-22 generated decreased numbers of IFN-γ+ and IL-17+ uveitogenic T 

cells, but increased numbers of Foxp3+ regulatory T cells. Mechanistic studies showed that 

IL-22 treatment changed the function of Ag-primed CD11b+ APCs, which expressed 

increased levels of IL-22 receptor during induction of disease following immunization with 

uveitogenic antigen. In vitro IL-22 treatment of CD11b+ APCs collected from antigen-

primed mice resulted in increased expression of PD-L1 and in the production of increased 

amounts of IL-10 and TGF-β. Moreover, IL-22-treated CD11b+ APCs caused IRBP161-180-

specific T cells to lose their uveitogenic activity and acquire immunosuppressive activity, 

which suppressed the induction of EAU by additional pathogenic IRBP161-180-specific 

effector T cells [46]. Indeed, a similar protective role of IL-22 has been reported in 

inflammatory bowel disease [47; 48], experimental hepatitis [49], experimental autoimmune 

myocarditis [43], and liver injury [49]. It appears that this cytokine might be either pro- or 

anti-inflammatory, depending on the inflammatory tissues involved [39; 45; 50; 51]. It is 

generally believed that IL-22 exerts its biologic functions through a two-component receptor 

comprising IL-22R1 and IL-10R2 on tissue cells. In our study, during disease induction, 

IL-22R is up-regulated on CD11b+ APCs, which may respond to IL-22 differently than 

tissue cells.

That a specific cytokine possesses both pro- and anti-inflammatory activities is not a 

surprising observation. For example, an anti-inflammatory effect of the classic 

proinflammatory cytokine TNF-α has been reported [52; 53]. A dual role of TNF-α in type 1 

diabetes has also been observed [54]. Likewise, IFN-γ has been found to be either pro- [55; 

56] or anti- [57–62] inflammatory, as are IL-6 [63–69] and IL-17, as we previously 

mentioned.
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4. IL-23 and IL23R in disease pathogenesis

IL-23 is a maturation factor and a potential growth factor for pathogenic Th17 cells [70]. It 

is a heterodimeric cytokine comprising a unique p19 subunit linked to a p40 subunit that is 

common with IL-12 [71]. A functional receptor for IL-23 (IL-12Rβ1 and IL-23R) was found 

on αβ and γδ T cells, as well as on innate leukocytes [72; 73]. Among these, Th17 cells are 

enriched for expression of IL23R [6]. Early studies demonstrated that IL-23 is a major 

pathogenic factor in organ specific autoimmunity and chronic inflammation [5; 74; 75], 

which play pivotal roles in the development of organ-specific inflammatory autoimmune 

diseases. IL-23 promoted the effector function of Th17 cells [5]. IL-23–deficient 

(IL-23p19−/−) mice are resistant to EAE [76], CIA [5; 6; 74], inflammatory bowel disease 

(IBD) and EAU [76]. Th17 cells require exposure to IL-23 to become encephalitogenic. 

IL-23 induced production of the cytokine GM-CSF in Th17 cells, and GM-CSF had an 

essential role in their encephalitogenicity [77]. In addition to its effects on T cell responses, 

IL-23 also has potent effects on cells of the innate immune system, inducing the production 

of inflammatory cytokines, such as IL-1, IL-6, and TNF-α, by monocytes and macrophages 

[78; 79]. Later studies reported, however, that naïve CD4+ T cells do not express IL-23R 

receptor; and consequently, the effect of IL-23 on Th17 cells will only occur until naive 

CD4+ T cells up-regulate IL-23R expression by IL-6 and IL-21 [80–84]. In fact, as an early 

infiltrating cell component, the innate γδ T cells accumulated in the inflammatory site 

express IL-23R, and thus will compete with IL-23 binding, leading to an aborted Th17 

response. IL-23-activated γδ T cells can also suppress Foxp3+ T cell formation, leading to 

enhanced autoimmune response [85; 86]. The mechanism by which IL-23 affects Th17-

mediated disease pathogenicity remains to be further clarified, even though IL-23 and/or its 

receptor are now attractive targets for the treatment of autoimmune diseases [87].

The finding that γδ T cells are major IL-23R-expressing cells [86] and our previous finding 

that γδ T cells have a major role in regulating Th17 autoimmune responses [88–90] 

convinced us to examine the role of IL-23R on γδ T cells. Our study showed that the ability 

γδ T cells acquire to express IL-23R was closely associated with their potential to inhibit the 

subsequent Th17 response, conceivably via a mechanism by which αβ and γδ T cells 

compete for IL-23. The large amount of IL-23 consumed by γδ T cells, in circumstances in 

which IL-23 production is limited, would prevent later initiating αβTCR-expressing Th17 

cells from being fully differentiated [91].

Our study showed that the earliest IL23R-expressing cells in disease-inducing mice are γδ T 

cells [91]. Neither γδ nor αβ T cells expressed appreciable levels of IL-23R in naïve mouse; 

however, in immunized mice, more than 50% of the γδ T cells, but only a limited number of 

αβ T cells, turned out to be IL-23R+ [91]. Since IL-23R expression on γδ T cells is 

determined by their state of activation, it is our hypothesis, to be further determined, that the 

balance between the enhancing and inhibitory effects of γδ T cells is regulated by their level 

of IL-23R expression; and treatments rendering enhanced IL-23R expression on early 

activated γδ T cells would favor restricting the subsequent Th17 activation. Such a 

hypothesis is supported by the observations that IL-23R+ γδ T cells had the strongest 

suppressive effect on IL-17+ autoreactive T cells and that this effect was inhibited when the 

IL-23R was blocked by anti-IL-23R antibody or in the presence of excessive amounts of 
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exogenous IL-23 [91]. Continuation of the study should elucidate the role of IL-23 in 

regulation of Th17 response and help to address the question of whether IL-23R could be 

one of the targets allowing us to manipulate the intensity of Th17 responses.

5. The role of adenosine on IL-23 production by Dendritic cells

Given that IL-23 is one of the key cytokines regulating Th17 response, unresolved questions 

include the determination of factors regulating the levels of IL-23 production in vivo. 

Indeed, our early attempts at determining the IL-23-promoting factors were not very 

successful. Both bone marrow-derived DCs and splenic isolated DCs tend to be more easily 

induced to produce IL-12 than they are to produce IL-23; and the detectable range of 

induced IL-23 among various macrophage/DC preparations was mostly within the range of 

100 pg/ml. A recent study in our laboratory revealed, however, that adenosine receptor (AR) 

agonists are strong co-stimulators for IL-23 production of DCs (unpublished observation). 

Our results showed that the strongest production of IL-23 by BMDCs can be consistently 

generated when such cells are exposed to a combination of TLR ligand and A2BR agonist, 

even though A2BR agonist by itself was not stimulatory and TLR ligand alone was only 

mildly stimulatory; a combination of the two stimulates 10–100 times higher amounts of 

IL-23 than either by itself (unpublished data). Adenosine is an endogenous purine 

nucleoside that modulates a wide range of pathophysiological functions [92; 93], including 

inflammation. In healthy individuals, extracellular adenosine levels are low [94]; but these 

levels increase 100- to 1000-fold during tissue injury and inflammation [95] due to the 

increased release of adenosine triphosphate (ATP) from activated and dying cells, followed 

by its dephosphorylation to ADP and AMP, and finally by the conversion of AMP to 

adenosine [96; 94]. Recent studies have shown that adenosine maintains tissue integrity and 

modulates various immune functions [95; 97; 98]. Our recent study showed that interactions 

among adenosine receptor (AR) agonists and inflammatory cytokines play an important role 

in modulating autoimmune response, particularly in the Th17-type of autoimmune response 

(unpublished data). AR agonists had a strong suppressive effect on αβ T cells and Th1 

autoimmune response; but they had an enhancing effect on Th17 and γδ T cells [99; 100]. 

We have demonstrated that the enhancing and suppressive effects of AR agonists are also 

convertible: adenosine exerts a suppressive function in microenvironments lacking 

proinflammatory factors, whereas, its suppressive effect is converted into a proinflammatory 

effect [100] in microenvironments rich in proinflammatory cytokines and TLR ligands, 

indicating that the enhancing and inhibitory effects of inflammation-related molecules are 

more sophisticatedly regulated than we have known and that inflammatory molecules may 

regulate each others’ functions.

6. Concluding remarks

The inflammatory response in injured tissues is sophisticatedly orchestrated; either 

insufficient or excessive inflammation can have pathogenic consequences. Available studies 

showed that inflammatory cytokines produced by Th17 cells may either promote or inhibit 

disease development. As a result, therapeutic interventions targeting these cytokines need be 

used with caution. The major cytokines produced by the uveitogenic T cells, such as IFN-γ, 

IL-22, and IL-17, are not always pathogenic, and the disease-inducing ability of pathogenic 
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T cells is not immediately correlated to the amount of cytokine they produce. The cellular 

and molecular basis for the enhancing and inhibitory effects of cytokines produced by 

autoreactive T cells remain to be further determined, and the outcome of the study should 

improve current available therapies, including the adenosine- and γδ T cell-based 

immunotherapies.
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CIA Collagen-induced arthritis

EAE experimental autoimmune encephalomyelitis

EAU experimental autoimmune uveitis

IBD inflammatory bowel disease

IRBP interphotoreceptor retinoid-binding protein

R16 bovine IRBP peptide 1177-1191
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Highlights

• Cytokines produced by Th17 cells does not directly correlate to Th17 

pathogenesis

• Increased γδ T cell activation play an important role in Th17 Pathogenesis

• Adenosine receptor activation plays an important role in Th17 pathogenesis
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