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Radiation Multi-Parametric MRI
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Kwongb, Peter Changb, Daniel Chowb, Jeon-Hor Chenb,d, Min-Ying Sub,***

aDepartment of Radiation Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of 
Medicine, Hangzhou, China.

bDepartment of Radiological Sciences, University of California, Irvine, CA, USA.

cDepartment of Radiation Oncology, Rutgers-The State University of New Jersey, New Brunswick, 
NJ, USA.

dDepartment of Radiology, E-Da Hospital and I-Shou University, Kaohsiung, Taiwan.

Abstract

Purpose: To predict the neoadjuvant chemoradiation therapy (CRT) response in patients with 

locally advanced rectal cancer (LARC) using radiomics and deep learning based on pre-treatment 

MRI and a mid-radiation follow-up MRI taken 3–4 weeks after the start of CRT.

Methods: A total of 51 patients were included, 45 with pre-treatment, 41 with mid-radiation 

therapy (RT), and 35 with both MRI sets. The multi-parametric MRI protocol included T2, 

diffusion weighted imaging (DWI) with b-values of 0 and 800 s/mm2, and dynamic-contrast-

enhanced (DCE) MRI. After completing CRT and surgery, the specimen was examined to 

determine the pathological response based on the tumor regression grade. The tumor ROI was 

manually drawn on the post-contrast image and mapped to other sequences. The total tumor 

volume and mean apparent diffusion coefficient (ADC) were measured. Radiomics using GLCM 

texture and histogram parameters, and deep learning using a convolutional neural network (CNN), 

were performed to differentiate pathologic complete response (pCR) vs. non-pCR, and good 

response (GR) vs. non-GR.

Results: Tumor volume decreased and ADC increased significantly in the mid-RT MRI 

compared to the pre-treatment MRI. For predicting pCR vs. non-pCR, combining ROI and 

radiomics features achieved an AUC of 0.80 for pre-treatment, 0.82 for mid-RT, and 0.86 for both 

MRI together. For predicting GR vs. non-GR, the AUC was 0.91 for pre-treatment, 0.92 for mid-

RT, and 0.93 for both MRI together. In deep learning using CNN, combining pre-treatment and 
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mid-RT MRI achieved a higher accuracy compared to using either dataset alone, with AUC of 0.83 

for predicting pCR vs. non-pCR.

Conclusion: Radiomics based on pre-treatment and early follow-up multi-parametric MRI in 

LARC patients receiving CRT could extract comprehensive quantitative information to predict 

final pathologic response.

Keywords

locally advanced rectal cancer; neoadjuvant chemoradiation therapy; radiomics; convolutional 
neural network; multi-parametric MRI

1. Introduction

Neoadjuvant chemoradiation therapy (CRT) followed by total mesorectal excision (TME) is 

the current standard-of-care treatment for locally advanced rectal cancer (LARC). Following 

CRT, around 15% to 27% of patients can achieve pathologic complete response (pCR) [1,2]. 

For these patients without residual invasive cancer remaining, there is a question as to 

whether they need TME, as this intrusive surgery is associated with significant 

complications and morbidity [1,3–5]. Several studies have shown that pCR patients have low 

rates of local recurrence, and thus less invasive, alternative surgical treatments such as 

sphincter-saving local excision, or watch-and-wait approaches are gaining popularity [4–7]. 

However, pCR has to be confirmed after the patient receives surgery, and it is important to 

identify patients who are likely to be clinical complete responders (CCR) so a less 

aggressive surgery (not TME) can be performed to confirm pCR.

Medical imaging, especially magnetic resonance imaging (MRI), which can noninvasively 

evaluate therapeutic response in cancer has shown promise for early predictions of pCR [8–

13]. MR imaging done at different times during the course of CRT, including pre-treatment 

[12,13], during [9,11], and after completing CRT [8,10], can be analyzed separately or in 

combination to provide anatomic and functional information. A few studies have evaluated 

the prognostic value of MRI for assessing CRT outcome for LARC [14–18]. The MRI done 

after completing CRT can be referenced with prior MRI’s to assess clinical response and 

help determine subsequent regimens or select candidates for an alternative surgical plan.

With the advance of MR imaging technology, several different sequences can be included in 

the MRI protocol within a reasonable imaging time (< 30 min), and this multi-parametric 

MRI can provide comprehensive information to facilitate quantitative radiomics analysis for 

tumor response prediction [19,20]. Radiomics extracts hundreds of quantitative image 

features, and then uses sophisticated statistical analysis to classify different groups. A study 

by Nie et al. showed that radiomics analysis based on pre-treatment multi-parametric MRI 

performed well in predicting patients who achieved pCR after completion of CRT [19], with 

a prediction accuracy of 0.8–0.9. Another study by Liu et al. combined the pre-treatment 

MRI with post-CRT treatment MRI, and predicted pCR with an accuracy of 0.97 [20]. These 

studies indicate the great potential of radiomics analysis based on multi-parametric MRI to 

predict CRT response. In addition to radiomics, machine learning with convolutional neural 

network (CNN) provides a new classification strategy based on artificial intelligence pattern 
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recognition of images, without relying on pre-defined metrics. CNN analysis has been 

employed in the field of oncology for noninvasively profiling tumor heterogeneity to predict 

neoadjuvant therapy response [21–24].

The purpose of this work was to apply different analysis methods, including whole tumor 

ROI-averaged analysis, radiomics and deep learning using CNN, to predict pathological 

response in LARC patients receiving CRT. The pre-treatment MRI and early follow-up MRI 

performed 3–4 weeks after staring radiation therapy, were analyzed to differentiate between 

pCR and non-pCR patients, and also between good responders (GR) and non-GR patients.

2. Materials and Methods

2.1 Patients

A total of 51 patients (mean age 60) with locally advanced rectal cancer, based on the 

American Joint Committee on Cancer (AJCC) TNM system, without distant metastasis were 

included in this study. Only complete MRI datasets that included all sequences and had high 

quality for quantitative analysis were analyzed, which included 45 patients with pre-

treatment MRI and 41 patients with mid-RT follow-up MRI. Of these, 35 patients had both 

pre-treatment and mid-RT MRI. Table 1 shows demographic information of these patients. 

This was a retrospective study approved by the Institutional Ethics committee and the 

informed consent was waived.

2.2 Treatment protocol

The chemoradiation therapy protocol was done according to the National Comprehensive 

Cancer Network (NCCN) guidelines. The total radiation dose was 50 Gy, delivered for 25 

fractions in 5 weeks using IMRT technique. Patients also received capecitabine 825 mg/m2 

orally, twice daily for 5 consecutive weeks and oxaliplatin 110 mg/m2 once every 3 weeks. 

After completing the 5-week CRT, the patients received one additional cycle of 

chemotherapy using 5-fluorouracil + oxaliplatin or capecitabine + oxaliplatin. After a 

recovery period of two weeks (6–8 weeks after radiation), TME was performed by either 

anterior or abdominoperineal resection.

2.3 Pathologic response evaluation

Following surgery, the specimen was examined by an experienced gastrointestinal 

pathologist using the modified tumor regression grade (TRG) based on Ryan’s definition 

[25], to determine the pathologic response. The pathologic complete response (pCR) was 

defined as the absence of viable adenocarcinoma cells (TRG 0). Additionally, patients were 

separated into good responders (GR) and non-GR. The GR group included complete 

response with TRG 0 and those with only a small cluster or isolated cancer cells remaining 

(TRG 1). The non-GR group included patients with residual cancer remaining but with 

predominate fibrosis (TRG 2) and patients with poor response with extensive residual cancer 

(TRG 3). The number of patients in each pathological response group is shown in Table 1. 

Among the 45 patients with pre-treatment MRI, 10 (22.2%) were classified as pCR and 35 

(77.8%) were non-PCR; and 31 (68.9%) were classified as GR and 14 (31.1%) were non-

GR.
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2.4 MR imaging protocol

Patients were scanned with a 3.0 Tesla MR (Signa HDxt, GE Medical Systems) using a 

phased-array body coil with no special bowel preparation. The imaging protocol consisted of 

an axial T2-weighted and a T1-weighted image followed by axial diffusion weighted 

imaging (DWI) acquired with b= 0 and 800 s/mm2 using a single-shot echo planar imaging 

sequence. Lastly a multiphase axial T1w DCE-MRI (dynamic-contrast-enhanced) sequence 

was performed using a spoiled gradient echo sequence LAVA (Liver Acquisition with 

Volume Acceleration) with 4 frames, one pre-contrast (L1) and three post-contrast at 15 

seconds (L2), 60 seconds (L3), and 120 seconds (L4) after the injection of 0.1 mmol/kg 

body-weight gadolinium contrast agents (Gd-DTPA). The pre-treatment MRI was performed 

1–2 weeks prior to CRT, and mid-RT follow-up MRI was performed at 3–4 weeks after the 

start of CRT. The representative images of one patient are shown in Figure 1.

2.5 Tumor ROI analysis

All images were reviewed on a MIM Maestro (MIM Software Inc, OH, USA) workstation 

used for radiotherapy planning, by an experienced radiation oncologist. The tumor region of 

interest (ROI) was manually outlined on each slice containing the tumor, excluding the 

intestinal lumen, on the post-contrast image L2 or L3, while all other sequences were 

utilized as references. For each patient, the manually drawn ROI was mapped to other 

images (T2, ADC, other DCE) through co-registration, implemented with a linear rigid 

transformation algorithm, cubic interpolation, and a mutual information cost function. The 

transferred ROI was also inspected by a medical physicist, and if necessary, modified. After 

the ROI is drawn, the total tumor volume was calculated by adding up all tumor areas × slice 

thickness. The mean apparent diffusion coefficient (ADC) was calculated by averaging the 

ADC of all tumor pixels. The mean signal intensity on each DCE image, L1, L2, L3 and L4, 

was also calculated.

2.6 Radiomics

Radiomics analysis was performed following the same procedures reported in Nie et al. [19], 

using two categories: textural features and histogram-based features. The texture was 

extracted using the Haralick’s Gray Level Co-occurrence Matrix (GLCM), including 18 

features: autocorrelation, cluster prominence, cluster shade, contrast, correlation, 

dissimilarity, energy, entropy, homogeneity 1, homogeneity 2, maximum probability, sum 

average, sum variance, sum entropy, difference variance, difference entropy, information 

measure of correlation 1, information measure of correlation 2. For the histogram-based 

analysis, a total of 12 parameters were calculated, including: 10%, 20% … 90%, 100% 

values, kurtosis, and skewness. For each case, a total of 96 parameters were calculated, 

including 18 texture on T1, 18 texture on T2, 18 texture+12 histogram parameters on the 

ADC map and 18 texture+12 histogram parameters on the DCE L2 image.

A 3-layer perceptron artificial neural network (ANN) was utilized to select parameters and 

build the diagnostic model. All parameters from each case were included as input nodes of 

the ANN, and the output node was either pCR vs. non-pCR or GR vs. non-GR. The number 

of nodes in the hidden layer was determined by a formula of m = (n + l)1/2 + α, where m is 

the number of the hidden nodes, and n is the number of nodes in the input layer, l is the 
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number of nodes in the output layer, and α is a constant from 1 to 10. The forward search 

strategy was used to search different combinations of predictors by adding predictors one by 

one to see if the model performance improved. During the training process, the weights were 

updated by minimizing the error function from the output neuron with mean square error 

(MSE). The learning process continued until it converged to a predefined value (<0.001) or 

until the maximum number of iterations, of 10000, was reached. The performance was 

evaluated using 4-fold cross-validation. Each case had only one chance to be included in the 

testing dataset, and after the process was completed, the predicted pCR or GR probability of 

all cases were used to generate the ROC curve. The ANN analysis was performed in the 

Matlab Neural Network ToolBox, software version 7.12 (The Mathworks Inc.).

The features extracted from the T1+T2 images, ADC map, and DCE L2 post-contrast image, 

were first analyzed separately, and then combined. In addition, the ROI-based parameters 

including the total tumor volume, mean ADC, and mean signal intensity on the DCE images 

were added to the radiomics analysis to investigate whether this could further improve the 

prediction accuracy.

2.7 Deep Learning

For the deep learning analysis using CNN, the input was the smallest square bounding box 

covering the tumor ROI. Figure 2 illustrates the determination of the bounding box. The 

ROI’s drawn on all tumor slices were stacked on a projection view, and the smallest square 

bounding box using the centroid as the center point was determined. The bounding box on 

each slice was resized to 32×32 pixels as the inputs to CNN. Figure 2A (top panel) and 

Figure 2B (bottom panel) show the generated smallest bounding box for the pre-treatment 

and mid-RT MRI of one patient. The input box of the T2 and DWI images were processed 

using the same method.

The CNN architecture used in this study is shown in Figure 3. For each patient, the input 

included 6 sets of images: one T2, two DWI with b= 0 and 800 s/mm2, and three LAVA 

frames (L1, L2 and L3). The image intensity was normalized to mean=0, standard 

deviation=1. The two DWI images were normalized together to consider the intensity 

changes between b= 0 and 800 s/mm2 images. Similarly, the LAVA images in the DCE 

sequence were also normalized together. In order to account for the problem of small case 

number, each imaging slice was used as independent input, and data augmentation was 

performed using Affine transformation, to 20 times. The CNN was 7 layers and the size of 

the convolution kernel was 3×3. For the seven layers, the stride number of the 2nd, 4th, and 

6th convolution layers in the output transformation was 2, which reduced the spatial 

resolution to ¼ the size of the input feature map. Training was implemented using the Adam 

optimizer, an algorithm for first-order gradient-based optimization of stochastic objective 

functions, based on adaptive estimates of lower-order moments [26]. Parameters were 

initialized using the heuristic described by He et al. [27]. L2 regularization was performed to 

prevent over-fitting of data by limiting the squared magnitude of the kernel weights. The 

learning rate was fixed to 0.001. Additionally, a batch normalized gradient algorithm was 

employed to allow for locally adaptive learning rates that adjust according to changes in the 

input signal [28]. To control overfitting, dropout layers with 50% preservation rate were 

Shi et al. Page 5

Magn Reson Imaging. Author manuscript; available in PMC 2020 December 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



added after each convolution layer and the last fully connected layer [29]. The Software 

code was written in Python 3.5 using the open-source TensorFlow r1.0 library (Apache 2.0 

license) [30], on a GPU-optimized workstation with a single NVIDIA GeForce GTX Titan 

X (12GB, Maxwell architecture).

The classification performance was evaluated by ROC analysis using 10-fold cross-

validation, 90% cases for training and the remaining 10% for testing. The CNN was first 

done using 45 pre-treatment MRI cases and 41 mid-RT MRI cases separately, with the input 

size of 32×32×6. Then the CNN was done using the 35 patients who had both MRI together, 

with the input size of 32×32×12. For the combined analysis, in order to consider the change 

of tumor volume between the pre-treatment and mid-RT, the input bounding box for the pre-

treatment and mid-RT of each patient was made the same. The center of the projected tumor 

ROI shown in Figure 2A and 2B was matched, and the smallest square bounding box 

covering all pre-treatment and mid-RT tumor ROI was used as the inputs in the CNN 

analysis.

2.8 Statistical analysis

Statistical analysis was performed using the statistical computing software program R 

(version 3.5.0). Individual variables were analyzed to evaluate significant differences 

between groups (pCR vs. non-pCR and GR vs. non-GR) using an independent sample t-test. 
Levene’s Test of Equality of Variance was first conducted to test for equal variance. A two-

tail P-value < 0.05 was considered statistically significant. For radiomics and CNN, the ROC 

analysis was performed to evaluate the accuracy to differentiate pCR vs. non-pCR and GR 

vs. non-GR. The difference between two paired ROC curves was compared using the 

DeLong test.

3. Results

3.1 Whole tumor ROI-based analysis

The tumor volume and the mean ADC and DCE enhancements were calculated from the 

manually drawn tumor ROI. Figure 4 shows the comparison of the mean tumor volume and 

the mean ADC in the 4 different response groups. The tumor volume and ADC value in each 

group (mean with standard deviation) in the pre-treatment and mid-RT MRI are listed in 

Table 1. The tumor volume in the pCR group was significantly smaller than in the non-pCR 

group (p-value 0.009 and 0.047 for the pre-treatment and mid-RT MRI, respectively, and 

also significantly smaller in the GR compared to the non-GR group (p-value 0.01 and 0.03, 

respectively). The results suggested that smaller tumors were more likely to achieve a good 

response either as pCR or GR. Regarding ADC, there was a statistically significant increase 

after treatment in the mid-RT follow-up MRI compared to the pre-treatment MRI in all 4 

groups (p<0.001). However, there was no difference among pCR, non-pCR, GR, and non-

GR groups for either the pre-treatment or mid-RT MRI. For the signal intensity on the DCE 

images, there was no significant difference in different groups, or between pre-treatment and 

mid-RT MRI. The detailed results using ROI-averaged parameters to differentiate pCR vs. 

non-pCR and GR vs. non-GR are included in supplementary Table 1.
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For each patient who had both MRI sets, the percent change in tumor volume in mid-RT 

compared to pre-treatment was calculated. Figure 5 shows the waterfall plots of the 

volumetric percent change in patients achieving pCR/non-pCR and GR/non-GR. The mean 

change was greater in pCR compared to non-pCR groups (−58.1% vs. −45.4%, p=0.28), and 

greater in GR compared to non-GR groups (−56.0% vs. −32.7%, p=0.03).

3.2 Radiomics

The radiomics prediction model was built from 96 features analyzed from the T1 and T2 

images, ADC map, and the L2 post-contrast image using artificial neural network with four-

fold cross-validation. The prediction performance was evaluated using the ROC analysis in 

the entire dataset. The area under the ROC curve (AUC) based on T1+T2, ADC, DCE post-

contrast image, all radiomics, and ROI+radiomics are shown in Table 2. As expected, the 

model developed from more features perform better, and the results combining ROI-based 

parameters and all radiomics features have the highest AUC of 0.80–0.86 (pCR vs. non-

pCR) and 0.91–0.93 (GR vs. non-GR). In paired comparison done by the DeLong test, 

radiomics had a significantly better performance than ROI-based analysis in 3 of 6 response 

predictions, and combining ROI with radiomics significantly improved the performance only 

in GR vs. non-GR prediction using mid-RT MRI.

In radiomics analysis, since a forward search strategy was used by adding predictors one by 

one, we could carefully monitor the trend of change in the training cost and validation cost. 

Early stopping strategy was applied when the validation cost began to increase. Also, L2 

regularization term was added to the cost function to control the overfitting. Finally, the 

selected features were analyzed to find the first feature, the second, the third, … etc., and the 

respective AUC’s generated using the entire dataset are reported in supplementary Table 2. 

In most analysis, the AUC achieved by using the first 3–5 parameters are very close to the 

AUC of the final model, with <0.02 difference. The selected features were also used to build 

diagnostic models by using the logistic regression and support vector machine (SVM), and 

the obtained AUC’s were very close to the results generated by ANN.

3.3 Deep learning using CNN

The prediction performance of the CNN was evaluated using ROC analysis based on ten-

fold cross-validation. The range and mean AUC are also listed in Table 2. Overall, the 

results of CNN were inferior to radiomics, which was most likely due to the small case 

number that was insufficient for training. As shown in the table, when the pre-treatment and 

mid-RT were used together, the AUC was improved substantially. For pCR vs. non-PCR, the 

mean AUC was 0.59 for pre-treatment MRI, 0.74 for mid-RT MRI, and increased to 0.83 

using both MRI, which was approaching the highest AUC of 0.86 based on ROI+Radiomics 

features.

4. Discussion

In this study, we applied radiomics and deep learning using CNN based on the pre-treatment 

and early follow-up MRI after 3–4 weeks of radiation to predict the pathologic response of 

patients with LARC receiving neoadjuvant CRT. For all methods, combining information 
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from the pre-treatment and mid-RT follow-up achieves a higher accuracy in predicting 

response compared to using either set alone. Using ROI-averaged tumor volume and mean 

ADC combined with radiomics features could achieve a high accuracy of 0.86 to 

differentiate pCR from non-pCR, and 0.93 to differentiate GR from non-GR. Although a 

CNN with an appropriate normalization scheme could be implemented to predict the 

response, the range of accuracy was only fair, most likely due to the small number of 

datasets that were not sufficient for training and cross-validation. However, by combining 

the pre-treatment and mid-RT MRI together, the CNN could achieve accuracy of 0.83 in the 

differentiation of pCR and non-pCR, which approaches the best radiomics results.

In our study, 22% of patients achieved pCR following CRT. Studies have found significant 

differences of overall survival (OS) and disease-free survival (DFS) between pCR and non-

pCR patients [14]. For pCR patients, since the recurrence rate is very low, intrusive TME 

surgery probably causes more harm than benefit. Alternative approaches, including watch-

and-wait, have been proposed to spare these patients from morbidities associated with TME. 

Two meta-analyses, including 23 studies of 867 patients and 15 studies of 920 patients, have 

shown no significant difference between clinical complete response (CCR) patients managed 

with a watch-and-wait approach or surgery in terms of DFS or OS [31,32]. Thus, efforts 

have been devoted in finding reliable clinical or imaging parameters that can accurately 

identify CCR patients who have a high likelihood of pCR or close to pCR to spare them 

from surgery.

It was recently shown that the accuracy to predict CRT response was increased when the 

post-CRT MRI information was used in combination with the pre-CRT MRI [19,20]. Since 

the post-CRT MRI was performed after completing the entire course of CRT, very close to 

surgery, it should be highly correlated with pathologic response. However, patients who did 

not respond well have already endured the toxicities of the entire treatment; therefore, using 

the post-CRT MRI to predict response could not provide much help. In this study, we 

investigated the value of an early follow-up MRI done 3–4 weeks after the start of CRT. For 

patients predicted not to respond well to the current regimen, alternative strategies can be 

considered, such as switching to other drug regimens or going to surgery early without 

further delay.

The accurate diagnosis of pCR and GR using visual examination on conventional MRI 

remains challenging in clinical settings. Although methods using multi-modality MRI (e.g., 

combining DWI and conventional MRI [10,33–35], or PET/CT [36] show promise, further 

improvement is needed before implementation in clinical practice. Radiomics analysis is an 

efficient method to extract and integrate many quantitative imaging features, and that has 

been widely applied for many cancer imaging studies, e.g. diagnosis of benign and 

malignant lesions, classification of different molecular subtypes, and prediction of response 

to neoadjuvant chemotherapy, e.g. in breast cancer [37,38]. Our results showed that the pre-

treatment and mid-RT data gave similar prediction accuracies, 0.81 and 0.82 for pCR vs. 

non-pCR, and 0.91 and 0.92 for GR vs. non-GR, respectively. When the pre-treatment and 

mid-RT were combined, although the number of patients was smaller, the accuracy was 

increased to 0.86 for pCR vs. non-pCR, and 0.93 for GR vs. non-GR. The prediction of poor 

response for non-GR patients at an early time is very important, and could be used to 
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optimize their treatment by changing the planned CRT regimen to spare them from 

unnecessary toxicity or to avoid delayed surgery. In a recent radiomics study by Bibault et 

al. [40], treatment planning CT images of 95 LARC patients receiving neoadjuvant CRT 

were analyzed to predict response. One thousand six hundred eighty-three features were 

extracted from the two segmentations of the tumor volume, and only those that had an 

Intraclass Correlation Coefficient (ICC) higher than 0.8 were considered. A Deep Neural 

Network (DNN) trained on 29 variables (T stage and 28 radiomics features) achieved 80% 

accuracy in prediction of pCR, and that done by SVM was worse at 71.58%. The range of 

accuracy was comparable to our results.

We also analyzed the whole tumor ROI-based parameters, including the total tumor volume, 

mean ADC, and mean signal intensity on different frames of DCE images. After 3–4 weeks 

of treatment, there was a significant decrease in tumor volume and increase in ADC in mid-

RT compared to pre-treatment MRI. Although these parameters alone were not good 

predictors for classifying different pathological response groups, they could be added to 

radiomics analysis to improve accuracy. The studies to investigate the change of tumor 

volume, ADC, and DCE signal intensity in an early time after starting of neoadjuvant 

chemotherapy have been reported extensively for breast cancer [39], but not for rectal 

cancer.

Deep learning methods have been applied to evaluate the neoadjuvant therapy responses of 

different cancers, including bladder [21], esophageal [22], and breast cancers [23,24]. In this 

study, a CNN architecture was implemented to classify pCR vs. non-pCR, and GR vs. non-

GR. This CNN model combined T2, DWI, and DCE image datasets as inputs. The results 

showed that the prediction accuracy of the CNN model was inferior to that of radiomics. 

This was very likely due to the small case number that was insufficient for training. For most 

CNN analysis, each 2D image slice was used as independent input, and further, the data 

augmentation was needed. When the pre-treatment and mid-RT datasets were combined 

together, the accuracy was greatly improved compared to using either dataset alone. For 

differentiating pCR vs. non-pCR, the accuracy was 0.59 using pre-treatment, 0.74 using 

mid-RT, and increased to 0.83 using both together. For differentiating GR vs. non-GR, the 

accuracy was 0.52 using pre-treatment, 0.55 using mid-RT, and increased to 0.74 using both 

together.

The major limitation of this study was the small case number, which not only affected the 

CNN, but also limited the choice of features in the radiomics analysis to predict final 

pathologic response. For deep learning using CNN, we have shown that it could be 

implemented by properly considering: 1) the change of signal intensity on the DWI images 

with different b values, 2) the change of signal intensity on the DCE images before and after 

injection of Gd contrast agents, and 3) further considering the change of tumor volume 

between pre-treatment and mid-RT follow-up MRI. These procedures, together with proper 

data augmentation, were critical to yield reasonable prediction results despite of the small 

case number. Lastly, the tumor ROI was only contoured once in our study. In radiomics 

study such as reported in [40], when the segmentation was done twice, it would allow the 

selection of robust features that had a high intraclass correlation coefficient. Our ROI 
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drawing was carefully done using all MR sequences on an RT treatment planning 

workstation, which we believe was valid, and can be implemented in a clinical setting.

In conclusion, we have shown that multi-parametric MRI allows extraction of 

comprehensive quantitative information to predict pathologic response in LARC patients 

after completing CRT. Adding an early-treatment follow-up MRI, at 3–4 weeks after starting 

of therapy, to the pre-treatment MRI could improve the accuracy in predicting final 

response. In this dataset, the radiomics analysis performed better compared to the deep 

learning using CNN. Further development of imaging methods is important to improve the 

care that can be provided to LARC patients. The capability to identify patients who have 

poor response at an early time is important to change their treatment regimen; and on the 

other hand, predicting patients who are likely to achieve pCR or close to pCR is important to 

spare them from morbidities associated with TME surgery.
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Figure 1. 
MR images of a 51-year-old male with low-rectum cancer at stage of cT3N+M0 taken pre-

treatment (top row) and mid-RT (bottom row). (A) T2-weighted image, (B) the diffusion-

weighted image with b=0 s/mm2, (C) the diffusion-weighted image with b=800 s/mm2, (D) 

L1 pre-contrast image, (E) L2 post-contrast image taken at 15 seconds after injection. This 

patient achieved pCR after completing the entire course of CRT.
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Figure 2. 
Determination of smallest bounding box on pre-treatment MRI (A, top panel) and mid-RT 

MRI (B, bottom panel) of a 56-year-old male with mid-rectum cancer at stage of cT3N+M0. 

Tumor ROI (red) outlined on tumor-containing MR slices (1–6) are stacked on a projection 

view to determine the smallest square bounding box.
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Figure 3. 
Overview of CNN architecture with 7 layers to classify different pathologic response 

groups: pCR vs. non-pCR, and GR vs. non-GR. Six sets of images are used as inputs: one 

T2, two DWI with b=0 and 800 s/mm2, and three DCE images (L1, L2 and L3). The 

analysis is done using pre-treatment MR alone and mid-RT alone (6 input channels), and 

patients with both pre-treatment and mid-RT together (12 input channels).
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Figure 4. 
Bar plots showing differences of tumor volume and ADC between the pre-treatment (grey) 

and the mid-RT (white) in 4 response groups. The tumor volume decreases in mid-RT 

follow-up compared to the pre-treatment MRI is significant for the pCR and GR groups. The 

ADC increases in the mid-RT MRI compared to the pre-treatment MRI, and significant in all 

4 groups.
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Figure 5. 
Waterfall plots of percent change in tumor volume of 35 patients who have both pre-

treatment and mid-RT follow-up MRI. Top: Plot of pCR vs. non-pCR patients with mean 

change of −58.1% vs. −45.4% (p=0.28). Bottom: Plot of GR vs. non-GR with the mean 

change of −56.0% vs. −32.7% (p=0.03).
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Table 1.

The demographic information, tumor volume and ADC in different response groups

pCR Non-pCR GR Non-GR

Pre-treatment (N=45) N=10 N=35 N=31 N=14

Male:Female 5:5 26:9 21:10 10:4

Mean age (SD) 56.3 (11.1) 59.7 (8.0) 58.0 (9.0) 61.1 (8.1)

Mean tumor volume (SD, cm3) 14.2 (6.0)* 21.5 (15.8)* 15.3 (8.7)‡ 28.0 (18.9)‡

Mean ADC (SD, mm2/s) 0.93 (0.09) 0.95 (0.14) 0.94 (0.14) 0.94 (0.11)

Mid-RT follow-up (N=41) N=9 N=32 N=27 N=14

Male:Female 5:4 23:9 18:9 10:4

Mean age (SD) 56.4 (11.8) 60.3 (7.9) 58.3 (9.5) 61.9 (7.5)

Mean tumor volume (SD, cm3) 6.6 (4.5)** 11.7 (12.1)** 6.8 (6.1)‡‡ 17.7 (14.5)‡‡

Mean ADC (SD, mm2/s) 1.33 (0.16) 1.37 (0.18) 1.36 (0.19) 1.33 (0.15)

*
The volume is significantly smaller in pCR than in non-pCR (* p=0.009, ** p=0.047)

‡
The volume is significantly smaller in GR than in non-GR (‡ p=0.01, ‡‡ p=0.03)
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Table 2.

The area under the ROC curve in ROI-based parameters, voxelized radiomics analysis and CNN deep learning 

to differentiate pCR vs. non-pCR and GR vs. non-GR

ROI T1+T2 ADC DCE Radiomics ROI +
Radiomics CNN ROI vs. 

Radiomics
Radiomics vs. 

ROI+Radiomics

pCR vs. Non-pCR

Pre-Treatment 0.75 0.72 0.75 0.76 0.78 0.80 0.51–0.68
(mean 0.59) Z=1.13 (p=0.31) Z=1.4

(p=0.43)

Mid-RT Follow-
up 0.77 0.69 0.77 0.74 0.80 0.82 0.71–0.75

(mean 0.74)
Z=3.21 

(p=0.03)*
Z=1.6

(p=0.15)

Pre-Treatment
+ mid RT Follow-

up
0.84 0.74 0.82 0.78 0.81 0.86 0.71–0.89

(mean 0.83) Z=1.5 (p=0.22) Z=1.9
(p=0.07)

GR vs. Non-GR

Pre-Treatment 0.77 0.74 0.76 0.85 0.88 0.91 0.47–0.55
(mean 0.52) Z=4.1 (p=0.01)*

Z=1.6
(p=0.14)

Mid-RT Follow-
up 0.82 0.72 0.80 0.78 0.81 0.92 0.52–0.58

(mean 0.55) Z=1.8 (p=0.15)
Z=3.4

(p=0.01)*

Pre-Treatment
+ mid-RT Follow-

up
0.83 0.76 0.83 0.91 0.92 0.93 0.70–0.77

(mean 0.74) Z=3.1 (p=0.04)*
Z=1.0

(p=0.47)

*
Significant between two ROC curves compared by using the DeLong test
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