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Abstract
Comparison of the ability of different computational cogni-
tive models to simulate empirical data should ideally take into
account the complexity of the compared models. Although
several comparison methods are available that are meant to
achieve this, little information on the differential strengths and
weaknesses of these methods is available. In this contribu-
tion we present the results of a systematic comparison of 5
model comparison methods. Employing model recovery sim-
ulations, the methods are examined with respect to their ability
to identify the model that actually generated the data across 3
pairs of models and a number of comparison situations. The
simulations reveal several interesting aspects of the considered
methods such as, for instance, the fact that in certain situa-
tions methods perform worse than model comparison neglect-
ing model complexity. Based on the identified method charac-
teristics, we derive a preliminary recommendation on when to
use which of the 5 methods.
Keywords: computational cognitive models, model compari-
son, model mimicry, model generalization

When computationally modeling cognition, often several dif-
ferent models are available or conceivable as explanations for
the cognitive ability in question. In such a situation, the aim
is to select the best of these candidate models according to
a set of criteria. Among others (e.g., falsifiability or inter-
pretability) the extent to which the different models are able
to simulate observed human behavior is usually considered a
key criterion for selecting from the candidate models.

A naı̈ve approach to gauge the models’ ability to simulate
the existing observations is to fit each model to the available
data and choose the model that provides the tightest fit as indi-
cated, for instance, by the models’ Root Mean Squared Error
(RMSE). Such an approach is problematic, because it does
not take into account the complexity of the compared mod-
els. As a result, there is a tendency for overfitting and for
selecting more complex models even if simpler models pro-
vide the better explanation of the considered cognitive ability
(Pitt & Myung, 2002).

Several methods taking into account model complexity
have been proposed to avoid the pitfalls of the naı̈ve ap-
proach (see Shiffrin, Lee, Kim, & Wagenmakers, 2008, for
an overview). However, common use of such more sophisti-
cated model comparison methods is partly hampered by the
fact that many properties of the different methods are in-
sufficiently investigated. Only very few studies (e.g., Co-
hen, Sanborn, & Shiffrin, 2008) have systematically exam-
ined different comparison methods with respect to their dif-
ferential advantages and disadvantages. Consequently, when

faced with a situation that requires comparing models regard-
ing their ability for simulating human behavior, modelers are
often faced with the problem that it is unclear which model
comparison methods could reasonably and should ideally be
employed in a given situation.

In this contribution we present the results of a systematic
comparison of 5 model comparison methods. The methods
are examined with respect to their ability to select the model
that actually generated the data across 3 pairs of models and a
number of contextual variations (e.g., tightness of fits, amount
of noise in the data). The obtained results highlight impor-
tant properties of the different comparison methods. Together
with the fact that all 5 considered methods are general in the
sense that they place no restrictions on the type of models that
can be compared, these results are, we believe, conducive to
increasing the frequency with which more sophisticated com-
parison methods instead of the naı̈ve approach will be em-
ployed for model evaluation and comparison.

The remainder of this article is structured as follows. First,
we list and briefly describe all considered methods. Second,
the employed models, contextual variations, and procedu-
ral details of the method comparison are described. Subse-
quently, comparison results are presented and discussed be-
fore we conclude our considerations and highlight topics for
future work.

Methods
The 5 methods we compared are the bootstrap, the bootstrap
with standard error (SE) and confidence interval (CI), the
data-uninformed parametric bootstrap cross-fitting method,
henceforth called cross-fitting method (CM), the simple hold-
out, and the prediction error difference method (PED). Each
of these was applied to 3 pairs of models and will be described
in turn below.

Bootstrap
Given a set of n observations, the bootstrap method of model
comparison proceeds as follows (see Efron & Tibshirani,
1993, for an overview of bootstrapping procedures). First,
an arbitrary but fixed number B of bootstrap samples is gen-
erated. A bootstrap sample is a set of n data points ran-
domly drawn with replacement from the n original obser-
vations. Due to sampling with replacement, most bootstrap
samples will contain only a subset of all original observa-
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tion (but some of these more than once). Second, each of
the to-be-compared models is fitted to each bootstrap sample.
Third, for each bootstrap sample, the fitted models are used to
predict those data points that were not in the bootstrap sam-
ple and the deviation of the predictions from the original data
points is measured (e.g., by the mean squared error). Fourth,
the measures of deviation are combined for each model across
all bootstrap samples to obtain an overall measure for the pre-
diction error ( ¯Err) of each model. The model that has the
lowest ¯Err is assumed to be the best approximation to the
process that actually generated the n original data points.

Due to the randomness in generating the bootstrap samples
as well as the noise that is likely included in the original ob-
servations, ¯Err only constitutes an estimate of the models’
true prediction error. Accordingly, the model showing the
lowest ¯Err may do so because of chance and not because it
is the best model. Knowing the variability, that is, the SE, of
the error estimates can potentially help alleviating this prob-
lem. Given the standard error, CIs on the true prediction er-
ror can be derived. If the CIs of the models’ error estimates
do not overlap, one may conclude with more confidence—
depending on the confidence level employed to construct the
intervals—that the model with the lower ¯Err in fact provides
the better approximation to the process that generated the n
original data points.

In our simulations we assess both the bootstrap considering
the SE and the bootstrap not considering the SE for deciding
which of the two models is more appropriate. We construct
the CIs by (a) computing the SE as proposed in Efron and
Tibshirani (1997), (b) employing a confidence level of 99%,
and (c) assuming that the prediction error estimates are dis-
tributed approximately normal. The runtime complexity of
both bootstrap variants is O(B∗ f itCost), where B is the num-
ber of bootstrap samples and f itCost is the time complexity
of estimating model parameters.

CM
The CM was proposed by Wagenmakers, Ratcliff, Gomez,
and Iverson (2004) as a way to assess to what extent two
models are able to mimic each other’s behavior. Since model
complexity and the ability to mimic other models are often
related, the obtained mimicry information potentially allows
reducing the bias towards selecting more complex models.

The following steps are involved in the CM: First, for one
of the models (say, model 1) a certain number, NDS, of sets
of parameter values are randomly drawn from the feasible
range of the model’s free parameters. Second, model 1 is
used to generate NDS data sets employing each of the NDS
parameter value sets, respectively. Third, both models are fit-
ted to each of the NDS data sets yielding NDS measures of
goodness of fit (GOF, e.g., the mean squared error) for both
models. Fourth, the pairwise GOF differences are computed
for all datasets. By repeating these four steps for the second
model (model 2), one obtains two distributions of GOF dif-
ferences, one for data generated from model 1 and one for
data generated from model 2.

Given a set of observations, these two distributions can be
utilized to decide which of the two models provides the bet-
ter account of the observations. Both models are fitted to the
observations and the difference in the models’ GOFs are com-
puted. If the resulting difference is classified to more likely
come from the distribution resulting from data generated from
model 1, model 1 is assumed to be more appropriate; other-
wise the model 2 is assumed to be more appropriate.

Based on the results reported in Schultheis and Singhaniya
(accepted), we employed a variant of the k-Nearest Neighbor
algorithm (k = 10) for classification. The runtime complexity
of the CM is O(NDS∗ f itCost).

Simple Hold-Out
This method gauges the to-be-compared models by repeat-
edly splitting the set of available n observations into a train-
ing and test set. For each of these splits, both models are
fitted to the respective training set. The fitted models are then
used to generate predictions for the data points in the test set
and the corresponding prediction error is determined. Ac-
cordingly, using I different splits results in I prediction error
values for each of the two models. The model that has the
lower median prediction error is selected as the more appro-
priate model. The runtime complexity of the simple hold-out
method is O(I ∗ f itCost).

PED
Similar to the simple hold-out the PED (van de Wiel,
Berkhof, & van Wieringen, 2009) employs I splits of the orig-
inal data set into training and test set to compare models. For
both models the prediction error is computed for each point
in the test set after fitting the models to the corresponding
training set. Subsequently, pairwise differences between pre-
diction errors for model 1 and model 2 are calculated. These
signed error differences are subjected to signed rank tests to
derive the probability of the observed distribution of signed
ranks under the null hypothesis that the models do not differ
in predictive accuracy.

Thus, the PED yields I probability values. If the median
of these values is below or equal to a pre-specified signif-
icance level α, the models are assumed to be significantly
different in their predictive accuracy and the model with the
smaller prediction error is assumed to be the more appropri-
ate model. In our simulations we used the Wilcoxon signed
rank test with α = 0.05. The runtime complexity of the PED
is O(I ∗ f itCost).

Method Properties
The procedural details of the methods described above imply
a number of (differences in) crucial properties of the methods
regarding model comparison.

First, the methods apply different criteria for judging the
suitability of the compared models for a given data set. Both
bootstrap variants, the PED, and the simple hold-out judge
the models based on their ability to generalize to new data
points, that is, these methods attempt to optimize what has
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been called the generalization criterion (Busemeyer & Wang,
2000). In contrast, the CM has been argued to be optimal ”un-
der the validation criterion of selecting the generating model”
(Cohen et al., 2008, p. 698). Since our simulations check the
methods ability to recover the generating model, they test the
conjecture of (Cohen et al., 2008) or, more generally, examine
to what extent methods employing different criteria perform
(dis)similarly in model recovery.

Second, only the bootstrap without SE and the simple hold-
out method can straightforwardly be extended to the simulta-
neous comparison of more than two models. All other meth-
ods are (currently) restricted to comparing pairs of models.

Third, the bootstrap with SE and the PED are the only
methods that explicitly take into account the statistical vari-
ability and reliability during comparison. This renders these
methods potentially superior to the other methods, because
statistically reliable decisions between models can be as-
sumed to be more accurate. On the other hand this property
comes with the potential disadvantage that no decision may
be possible in certain situations1. Accordingly, the overall
quality of the bootstrap with SE and the PED will depend on
the precise tradeoff between how accurately a decision be-
tween models can be taken and the number of situations in
which a decision is reached.

Approach
Three hypothetical models of memory decay, M1,M2, and
M3, were used to assess the model comparison methods.
Each of these models predicts the probability of recall in
dependance on the time t that has passed since the to-be-
remembered items have been learned. The models are defined
by the following formulas (see Pitt & Myung, 2002):

M1 : (1+ t)−a, a ∈ [0,2]

M2 : (b+ t)−a, a ∈ [0,2], b ∈ [1,2]

M3 : (1+bt)−a, a ∈ [0,2], b ∈ [0,2]

Note that M1 is nested in both M2 and M3, but nesting is
different in the two cases. Since, furthermore, M2 and M3
are not nested, the three models allowed to examine the com-
parison methods regarding their ability to cope with different
types of nesting as well as non-nested models.

Each method was applied to all three possible pairs of mod-
els, M1 vs. M2, M1 vs. M3, and M2 vs. M3 using the follow-
ing general procedure. Given one of the three models, first,
a set of parameter values was randomly drawn according to a
uniform distribution from the range of parameter values spec-
ified above. Second, probabilities for this set of parameter
values were generated from the model. Third, these probabil-
ities were used to randomly sample the number of successful

1Some may also consider this a strong point of the methods, since
the methods make explicit if too little information is available for a
reliable decision. Yet, assuming that modelers often need to take a
decision based on a set of available data, an equivocal comparison
outcome is disadvantageous.

recalls from a binomial distribution assuming a certain num-
ber learned items (NL). Fourth, this set of numbers of suc-
cessful recalls was treated as if it was a set of empirical ob-
servations for which to identify the most appropriate model.
Accordingly, the comparison method in question was applied
as described above to the model pair and the set of observa-
tions. Fifth, which (if any) of the two compared models was
found to be more appropriate was noted. This procedure was
repeated R = 100 times for each model in each model pair.
Across all model pairs and methods the measure to assess
model fits and prediction error was always the mean squared
error and the models were fit using a variant of the Metropolis
algorithm (Madras, 2002).

Following this general procedure, our simulations varied 5
factors that potentially impact the performance of the com-
parison methods. Besides allowing to assess the importance
of each of these factors for method performance, factor vari-
ation ensured a more general view on the methods accuracy
in model recovery, that is, a view that is not specific to only
one particular combination of factor levels. The considered
factors are tightness of fit, strength of noise, number of data
points, number of samples, and split ration and are described
in the following.

Tightness of fit Fitting a model to a set of observations is a
specific instance of a general type of optimization problems:
Find the optimal set of parameter values for the given obser-
vations. It is well known that one is rarely guaranteed to find
the optimum in such optimization problems. Thus, model
fits may often be suboptimal to greater or lesser extent. This
raises the question how susceptible the different comparison
methods are to suboptimal model fits. To investigate this, we
considered 3 levels of tightness of fits by varying how thor-
oughly the Metropolis algorithm searches the models’ param-
eter space. More precisely, we varied the number of sets of
parameters that were sampled (called swaps) for model fit-
ting, using swaps = 100,1000, and 10000. Simulations look-
ing at the rates for recovering the generating model when fit-
ting to the probabilities directly (i.e., looking at model behav-
ior without adding sampling noise) corroborated that these
numbers of swaps realized increasingly accurate model fits.

Strength of noise Since the only noise in the data is sam-
pling noise, the amount of noise in the data is determined
exclusively by the number of learned items: The higher NL
is the lower is the influence of sampling noise. Accord-
ingly, employing NL = 5,50, and 1000 allowed to examine
the methods’ capability to cope with noisy data.

Number of data points The information about the process
that has generated a set of data can be assumed to increase
with the number of available observations in the data set. To
what extent the different methods require few or many data
points for performing well was explored by varying the num-
ber of data points (NDP). Levels of NDP = 5,20, and 100
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were employed and the corresponding data points were gen-
erated for t distributed equidistantly in the range [0.1,8.1].

Number of samples All of the methods come with a pa-
rameter that controls the amount of resources that are in-
vested for model comparison. For PED and simple hold-
out this parameter is the number of splits that are considered
(I), for both bootstrap variants this parameter is the number
of bootstrap samples (B), and for the CM this parameter is
the number of GOF difference samples (NDS) each GOF dif-
ference distribution consists of. By using I = 10,100,1000,
B = 100,1000, and NDS = 100,1000 we gauged the models
resource-performance trade-offs.

Split ratio Application of the PED and the simple hold-out
requires splitting the set of observations into training and test
sets and the relative sizes of the two sets is potentially crucial
for comparison performance. If the training set is too small,
insufficient information about the generating process may be
available. If the training set is too large, the danger of over
fitting may arise and the test set may become too small to
obtain a reliable estimate of generalization performance. In
our simulations we investigated splits with Q = 0.2,0.4, and
0.6, where Q indicates the fraction of the original observa-
tions that are used for the training set.

To assess the methods’ ability to outperform less elaborate
approaches to model comparison, our simulations comprise
the Akaike Information Criterion (AIC, Akaike, 1973) as the
sixth method and a seventh method that we term simple re-
covery. Following the same general procedure as described
above, simple recovery compares models by only consider-
ing the GOF of each model on the given data set: The model
that provides the tighter fit is assumed to be the more appro-
priate model. Simple recovery and AIC simulations involve
the same variations of the factors tightness of fit, strength of
noise, and number of data points as employed for the 5 more
sophisticated methods.

Results
To characterize the methods’ performance we computed, for
each method, model pair, and situation, the sum of the per-
centages of cases in which both (a) a clear decision between
the two models of pair could be taken and (b) the actually
generating model was correctly recovered. If, for example,
for the model pair M1-M2, M1 was correctly recovered 90%
of the time and M2 was correctly recovered 43% of the time,
the performance measure was computed to be 90+43 = 133.
Similarly, for BSSE and PED the percentages of cases where
no model could be recovered with certainty was computed as
the sum of the percentages of such cases for each of the two
compared models.2. From the such obtained values the first,

2Given this procedure, BSSE and PED sometimes show both
high performance and high percentages of situations where no model
was recovered. Such a pattern indicates that the method in question
only rarely recovered any model, but if it did, it was accurate
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Figure 1: Quartiles of performance for the three considered
model pairs and the seven considered methods. AIC = Akaike
Information Criterion, BSSE = bootstrap with standard error,
SHO = simple hold-out, CM = cross-fitting method, BS =
bootstrap, SR = simple recovery, PED = PED method.
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second (median), and third quartiles (and associated stan-
dard errors) were determined for each method and model pair
across all situations. Figure 1 and Figure 2 display the quar-
tiles for the different methods.

As is evident from Figure 1, there are marked performance
differences between model pairs and comparison methods.
As one may have expected, the nested model pairs generally
prove more difficult than the non-nested model pair, with M1-
M3 being even more difficult than M1-M2. It is mainly in the
nested pairs that the less elaborate methods, AIC and simple
recovery perform worse than all of the 5 more elaborate meth-
ods. Of the 5 more elaborate methods, PED, simple hold-out,
and BSSE generally outperform BS and CM. In sum, PED,
simple hold-out, and BSSE tend to perform best, AIC and
simple recovery perform worst, and CM and BS show inter-
mediate performance, but are only better than AIC and simple
recovery for nested model pairs. As Figure 2 shows, the su-
perior performance of PED and BSSE comes at the cost of a
substantial number of cases in which the two methods do not
allow to take a clear decision for one or the other model.

Several aspects of this pattern of results seem noteworthy.
In contrast to the assumption that the CM is optimal for re-
covering the generating model (Cohen et al., 2008), the CM
performs comparatively bad. On average, the CM is only bet-
ter than SR for nested models, and generally worse in avoid-
ing misclassifications than the PED, BSSE, and the simple
hold-out. In fact, given its comparative simplicity, the simple
hold-out performs remarkably well. While providing a deci-
sion for 100% of the cases, these decision are correct in more
than 90% of the cases on average. This set of results also
provides further evidence for dissimilarity in model recovery
performance depending on whether a generalization criterion
or a model recovery criterion is instantiated by the employed
comparison method. Comparing the simple hold-out and CM
indicates performance differences depending on which crite-
rion is used and, more interestingly, that a method using the
generalization criterion can outperform a method using the
recovery criterion in model recovery.

In addition to the results across all factor combinations,
considering the impact each factor has on method perfor-
mance yields a number of interesting insights.

Tightness of fit Across all methods, the influence of the
tightness of fit (if present at all) is only considerable be-
tween loose fits (swaps = 100) and moderate to tight fits
(swaps = 1000 and 10000). In simple recovery, the tendency
to select the more complex models increases with tightness
of fits such that for moderate and tight fits the nesting model
is selected more often even if the nested model generated the
data. Except for pair M1-M3, performance of AIC increases
considerably with tighter fits. In comparison, the bootstrap
with SE and the CM, exhibit less (but still noticeable) sus-
ceptibility to tightness of fit in the sense that with tighter fits
for nested model pairs the overall correct recovery rate in-
creases by selectively increasing the correct recovery rate of
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Figure 2: Quartiles of the number of cases for which BSSE
and PED do not allow to take a decision.

the nesting model. Put differently, for loose fits, the CM and
the bootstrap with SE tend to erroneously favor the simpler
model; a problem that is mitigated when using tighter fits.
The remaining three methods are largely insensitive to tight-
ness of fits indicating that, for these methods, it may not be
the absolute but the relative tightness of fit that matters.

Strength of noise Not surprisingly, all methods get con-
sistently better with decreasing strength of noise. Further-
more, all methods encounter severe difficulties with the high-
est noise level (NL= 5) that leads to near chance performance
for most model pairs and methods. The methods differ, how-
ever, regarding the level of noise from which they start to
show good or very good performance. While the simple hold-
out, the bootstrap with SE and the PED achieve high accuracy
already for NL = 50, the CM and the bootstrap tend to do so
only for NL = 1000.

Number of data points Although all methods but the AIC
tend to improve with an increase in the number of data points,
there are marked differences with respect to the strength of
the influence of this factor. The PED and the bootstrap with
SE are impacted severely by the number of data points im-
proving considerably – especially for nested models – with
an increase from NDP = 5 to NDP = 20 as well as from
NDP = 20 to NDP = 100 both regarding accuracy and the
percentage of decision that can be made. The other four meth-
ods are much less sensitive to NDP levels, but exhibit a ten-
dency for a reduction in erroneously selecting a nested model
when the data was generated from a nesting model. Interest-
ingly, the performance of the AIC drops with increasing NDP
due to an increased tendency to erroneously pick the nested
model.
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Number of samples Effects of increasing the number of
samples are mixed across the methods. This factor has virtu-
ally no effect on the bootstrap. Yet, for the bootstrap with SE
increasing the number of samples leads to a decrease in the
percentage of cases in which a decision can be made and to
a tendency to more often select the simpler of the two com-
pared models. Both PED and simple hold-out perform better
with increased I, but this trend is largely due to the difference
between I = 10 and I = 100. Similar to the bootstrap with
SE, the PED allows (slightly) fewer decision with increasing
I. The CM exhibits a shift towards more often selecting the
more complex model with increased numbers of samples.

Split ratio The split ratio has only little impact on the per-
formance of the PED and the simple hold-out. While the
number of cases that cannot be decided by the PED slightly
increases with an increase in Q, the accuracy remains gener-
ally high. Only for comparing M1 and M3 do higher values
of Q lead to pronounced performance decrements. Similarly,
the simple hold-out becomes slightly but consistently worse
in correctly recovering the nested model in the two nested
model pairs with an increase in Q.

Conclusion
Our simulation studies revealed a number of interesting prop-
erties of the considered comparison methods. First, methods
employing a generalization criterion for model comparison
(e.g., simple hold-out) can outperform methods supposedly
optimal for model recovery (the CM) in model recovery. Sec-
ond, although all 5 considered methods can substantially im-
prove on less elaborate approaches (as instantiated by the AIC
and the simple recovery method), the less elaborate methods
may perform better under certain conditions. Thus, whether
the use of one of the examined methods is advantageous will
depend on the precise nature of the model comparison situa-
tion at hand (e.g., how many data points are available and how
noisy the data is). Third, the considered methods differ no-
ticeably in the degree to which their performance depends on
the characteristics of the comparison situation. The compara-
tively low quartiles of the bootstrap and the CM indicates that
these methods outperform the less elaborate approaches only
in comparatively few particular settings. Fourth, the highest
accuracies were achieved by the PED, but this method allows
decisions about which of the compared models is more ap-
propriate only in very few cases. Furthermore, performance
of the PED breaks down if only few data points are available.
Fifth, despite its comparable simplicity, the simple hold-out
method achieves high accuracies while allowing to select one
of the models in 100% of all cases. In addition, the simple
hold-out is the only method that can be easily extended to
comparing more than two models.

Against this background our results suggest to employ the
PED if only pairs of models have to be compared and if ac-
curacy is more important than being able to reach a decision.
The simple hold-out appears to be a good choice if more than

two models need to be compared and / or if it is important to
reach a decision on which of the compared models to select.

Although this initial assessment already highlights impor-
tant properties of the comparison methods, it is best viewed
as a first glimpse on the methods’ characteristics. Further
research considering a range of different (types of) models
is required to provide a more comprehensive picture of the
strengths and weaknesses of available comparison methods.
Besides taking up this task we intend to explore modifica-
tions of the CM, PED, and bootstrap with SE that renders
them applicable to comparing more than two models in our
future work.
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