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Abstract

Some ideas and techniques for visualizing
volumetric data are introduced. The methods
presented are quite different form either "volume
rendering” techniques or "surface contour"” methods.
All of the methods are conceptually quite simple and
rather easy to implement. In addition, they are
intended to be used interactively.

1.0 Introduction

The purpose of this paper is to introduce some
ideas and techniques for visualizing volumetric data.
The methods presented here are quite different form
either "volume rendering" techniques or "surface
contour" methods. All of the methods we present are
conceptually quite simple and rather easy to
implement. In addition, they are intended to be used
interactively.

Volumetric data is data with a domain of three
independent variables. A example of such data would
be temperature measurements taken at various
positions in a furnace. The notation that we use to
represent this type of data is
i=il;ue N (1.1)
Here the three independent variables are those of
position and the dependent variable is a simple scalar
value. While many of our applications are like this,
in that we have a portion of physical space as a
domain, this is not required for the techniques we
discuss here. The independent variables do not have
to indicate a position in space and can be abstract in
the sense that they can represent any quantity. For
example we may have the data (Pj, sj, ri, tj), i=1,.
. ., N, where Pj is an index of the level of
performance which depends on the amount of money
expended, sj, the number of people allocated to the
project, rj and time, tj.

In this paper we cover only the case where the
dependent data is a single scalar. It is a much more
challenging problem to visualize multivariate,

(Fi, xi, yi, zi),
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dependent data. For example, in three dimensional
flow analysis, a velocity vector is given at each
sample location in space and to effectively visualize
such data is a difficult problem (cf. Dickinson[3],
Helman and Hesselink[11], and Hibbard and
Santek[13] ). The techniques discussed here do not
apply to the situation of multivariate range variables,
except that these variables can be "uncoupled” and
treated as a collection of scalar valued relationships;
but this is generally not a good idea.
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Figure 1. Volume Data

Often we will find it useful to view the dependent
data as coming from the evaluation of an underlying
function F so that we have Fj=F(xj, yi,z{,i=1,.
.. » N. For example this gives us immediately the
notation dF/dx, dF/dy and JdF/dz to indicate the
various partial derivative with respect to the
independent variables. In actuality when we have
discrete sampled data and partial derivatives are of
interest, we will have to estimate them by divided
differences or by some other means such as fitting a
trivariate function to the sampled data and then
computing the derivative of this approximation. For
some discussion of some methods of fitting trivariate
scattered data, the reader is refered to Alfeld[1],
Nielson and Dierks[24], Foley[5] and Franke and



Nielson[8]. If a trivariate function, F, defined over
the domain cube

C={(x,y, 2) : X0<x<Xp, YOSYSyn, 20<2<zn}  (1.2)
has been fit to the scattered or "unstructured" data, the

relationship can be sampled on a grid so as to yield
the data

(Fijk: Xib yjp2k) si=1,.. ., Nx; j=1,.. ., Ny;
k=1,. . Nz (13)

where
Fijk = F(xi, ¥j, 2k)

We call this type of data cuberille grid data and it is
exactly this type of data for which the methods of this

paper apply.
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Figure 2. Cuberille Grid Data

In Sections 2 - 5, we describe a collection of
techniques and ideas for "graphing" cuberille grid data.
All of these techniques are quite simple and rather
easy to implement. During the development of these
techniques, we have been particularly concerned with
allowing the user to interact with the system in order
to interrogate and analyze the relationships indicated
by the volumetric data.

As a final note of introduction, we mention two
additional types of methods for visualizing volumetric
data which we do not cover. Both are very important
and much more profound than the methods discussed
here. Volume rendering is a relatively new technique
which is based upon accumulating intensities along
rays cast through the cube of data (cf. See Figure 3).
A variety of methods for doing this have recently
appeared in the literature (cf. Drebin, Carpenter and
Hanrahan[4], Levoy[19], Levoy[20], Levoy[21],
Sabella[27], Keeler and Upson[33], Smith[29],
Kaufman and Bakalash[17], Kaufman[16], Frieder,
Gordon and Reynolds[9], Hohne, Bomans, Tiede and
Riemer[14], Kajiya and Von Herzen[15] ). Regardless
of which particular method is used, one major

research goal is to develop the means of
accomplishing these volume rendered images in real
time. We refer the reader to Foley, Lane and
Nielson[7] for a technique which is based upon the
coherence of images and uses interpolation techniques
to accomplish near real time speeds on conventional
workstations. A typical volume rendered image and
its "real time" approximation computed by the image
interpolation technique is shown in Figure 4.
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Figure 3. Volume Rendering

The second type of method we do not cover here
are contour methods. The contour of a trivariate
relationship is a surface and consequently these
methods are sometimes called "surface based methods"
(cf. Fuchs, Levoy and Pizer[10] or Artzy, Frieder and
Herman[2] ). Often the contour is computed as a
polyhedron and this can result in a tremendously large
number of surface facets. For example, the contour
surfaces of Figure 5 contains approximately 50,000
triangles. In this case, the cuberille data consisted of
64 X 64 X 68 = 278,528 data points.

2.0 The Tiny Cubes Method

The basic idea of the tiny cubes technique is to
place objects in the domain volume whose color is
determined by the value of F at the location of the
object The objects can be almost anything, but
spheres and cubes most readily come to mind. We
have concentrated our implementations on the case of
cubes. Three resolution parameters are specified by
the user: Nx, Ny and Nz. There will be a total of
Nx=Ny+=Nz color coded cubes which are displayed. In
addition, the user specifies a value for the parameter,
M, which controls the amount of open space and
consequently the size of the cubes which are
displayed. We let the width, length and height of
each "tiny" cube be denoted by (Dx, Dy, Dz). The



Figure 4. Volume rendered image and image Figure 5. Surface Contour
interpolation approximation

Figure 6. The Tiny Cubes Method

Figure 8

Figure 8. Color coded contour slice technique. Figure 9. The surface slice method




lower-left-front corner of each cube is given by the
coordinates

Xi=x0+ (i-1)Dx(M+1), i=1,...
Yj=y0+ (-1)Dy(M+1), j=1,...,Ny

Zx =z0 + (k-1)Dz(M+1), k=1,...,Nz

» Nx

where (X0,Y(, Zg) is the lower-left-front corner of
the whole domain and

_Xmax - Xmin_
Dx=x(M+1)-M °

Dy = Ymax - Ymin
Y= Ny(M+1)-M °

_ _Zmax - Zmin
Dz=RzM+1) - M

The function value, Fjjk and the particular color table
used will determine the color that is used at each
vertex. The faces of the cubes are then Gouraud
shaded. Either the original cuberille grid includes the
values (Xj, Yj, Zk) or we use some interpolation
(eg. trilinear) scheme to compute estimates. For each
graph of this type, we end up having to display a
total of 6(Nx=Ny+Nz) rectangles. We have also found
it useful to display lines connecting the centers of the
cubes. Example images which illustrate our
implementation are shown in Figure 6. Figure 6a
illustrates the case where Nz=Ny=Nz=5 M= 1;
Figure 6b, the case where Nx=Ny =Nz =8 M =2
and Figure 6c the case where Nx =Ny =Nz=5 M=
3. The cuberille grid data for these examples were
obtained by evaluating the function

F(x, y, z)=15exp(-.005[ (x-10)2 + (y-10)2 + (z-10)2])
+ exp( -.0025[ (x-15)2 + (y-20)2 + (2-20)2))
+ exp( -.005[ (x-25)2 + (y-25)2 + (z-25)2))}

and the domain is { (x,y,2z): 0<x<39,0<y<
39,0<z< 39 }). An important feature of this
method is to be able to interactively rotate the graph
in order to view different portions. This limits the
size of the resolution parameters, but this often will
not be a problem since the resolution parameters are
also limited by the complexity of the image. We
have found that for resolution values beyond, say 15,
the image is too complex to be understood.

3.0 The Vanishing Cube Method
Like the methods of the previous section, the

vanishing cube method associates a color with
each data location, (xi, yj, zk) and this color is based
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upon the value of dependent variable, Fjjk and the
particular color table used. More precisely,

= (Rjjk Gijk Bijk)
= (R(Fijk), G(FijK), B(FijK) )

wherei=1,...,Nx, j=1,...,Ny,andk=1,..
., Nz and the function notation R( ), B() and G() is
used to represent the color code table. For example
the table used for the example of Figure 8 is

Cijk

index R G B

i=0-255 i 255-i 0

i=256-511 255 i-256 0

i=512-767 255 255 i-512

Table 1. Color Table for Example
of Figure 11

Once we have a color for each vertex, we can entirely
color any of the planes parallel to the axes by using
linear (or Gouraud) shading on each of the rectangles
which comprise the plane. There are Nx+*Ny«Nz
rectangles perpendicular to each axes for a total of
3(Nx=Ny=Nz) rectangles to be displayed. Of course, if
we directly display these rectangles, all that will be
viewed are those on the outer faces. In order to "see
in" we compute an image based upon a simple model
of transparency for the rectangles. The rectangles are
all sorted by distance from the viewpoint and then
displayed from back to front using an a-buffer. The
data for the example of Figure 7 were provided to us
by Marshall Long and represents gas concentrations
from an acoustically-driven forced flow. In Figure 7a,
Nx=8andt=0.5 and in Figure 7b, Nx =8 and t =
0.95. While interaction is possible as far as varying
the transparencey factor, it is not possible to rotate
the graph in real time because of the need to sort the
rectangles. Possible some clever way of using
coherence to update the sorts could lead to real-time

speeds.
4.0 Slice Methods

The basic idea of slice methods is to
simultaneously display three rectangular grid data
sets, each one obtained by taking a slice through the
domain by holding one of the independent variables
fixed. In function notation terms, we simultaneously



display some type of graph of the three bivariate
relationships,

Fx(y,2)=F(x,y,2), Ymin<y<¥Ymax; Zmin<Z< Zmax
Fy(x,2)=F(x, ¥,2), Xmin<X<Xmax; Zmin<Z<Zmax
FZ(X»Y)=F(xnysz)- xmin‘—:xsxmax; ymi]'lsys}’max

The user is then allowed to interactively vary the
fixed ( but arbitrary) point (x, y, z). This can be
done in a convenient manner with an ordinary 2D-
mouse by using the "triad mouse" described in
[Nielson and Olsen, 1986].

In our first implementation of this method, we
used a color coded contour method for displaying the
graphs of the rectangular grid. Color values at each
of the vertices (xj, ¥js zk) are obtained by using the
color table function C(x, y, z) and then smooth
shading is used to color the entire plane. In Figure 8
we show an example. The size of this data set is Nx
=80, Ny =130 and Nz = 20 and is the same as that
used in the examples of Figure 7 . The color table is
shown in the color bar to the far right.

For our next slice method we use a smooth
shaded surface in order to display the three rectangular
grid data sets. These three sets of surfaces could be
located anywhere in the image, but we have found it
convenient to have each of these graphs located on the
face of a cube. We scale the values so that the
minimum value is represented by a point on the cube
and the maximum value is one unit in the direction
normal to this plane. Also, we have found it useful
to use different colors for each of these graphs and to
display information indicating the value of (x, y, z)
for the display graphs. This we accomplish by
displaying three mutually perpendicular planes with
colors associated in the proper manner. This method
is illustrated in Figure 9.
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