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Abstract

Alexander J. Ritter

Connecting Alternative RNA Processing to Post-transcriptional Regulatory
Outcomes

High throughput RNA sequencing (RNA-seq), and more recently, long read (LR) RNA-seq

have revolutionized the study of gene expression. We’re able to sequence massive libraries of

transcriptomic data upon which we can apply manifold analytical approaches to extract

meaningful and actionable biological findings. Short read RNA-seq remains the prevailing

method for transcriptomic characterization, owed to its capacity to accurately quantify gene

expression at the RNA-level and to capture a wealth of information for the study of

alternative RNA processing. However, an intrinsic shortcoming of short read RNA-seq is its

reliance on small fragments of messenger RNAs (mRNA) to infer complete transcript

structures and to resolve isoform-level expression. Additionally, when used on its own, it

lacks the multidimensionality necessary to comprehensively distinguish the modes of

regulation (transcriptional vs. post-transcriptional) that underlie changes in RNA abundance

between conditions or to accurately infer the translational output of mRNAs.

Here, I present my work to integrate small RNA (sRNA) and mRNA sequencing

approaches to explore SARS-CoV-2 (SC2) infection-mediated perturbations to the host

mRNA and sRNA landscape (Chapter 2). I show that dozens of human microRNAs (miR)

and novel SC2-derived small viral RNAs (svRNA) are dynamically expressed during SC2

infection, and I propose the intriguing hypothesis that several of the svRNAs may function

like miRs to confer pleiotropic regulatory impacts to the host transcriptome. I further present

my work on a bioinformatic tool called junctionCounts, which seeks to comprehensively

characterize alternative splicing (AS) events in RNA-seq data (Chapter 3). In concert with its

partner utilities cdsInsertion and findSwitchEvents, junctionCounts stands apart from other
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AS analysis tools both by profiling non-canonical event types and by predicting functional

outcomes of AS events including nonsense-mediated decay (NMD) and coding-to-noncoding

switches induced by the inclusion or exclusion of alternative exons, introns or splice sites.

Finally, in Chapter 4, I present my work on the development of a translatomic method

called long read subcellular fractionation and sequencing (LR Frac-seq). I propose a

framework for integrating both LR and short read Frac-seq data to faithfully capture the

complete structures of ribosome-associated transcripts from long reads, and to accurately

quantify them utilizing the superior throughput of short reads. I show that isoform-specific

ribosome association is pervasive and consistent across embryonic stem cells and neuronal

progenitor cells, and I propose this approach as a novel way to study AS coupled with

translational control (ASTC).
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Chapter 1: Introduction

1.1 Pre-mRNA processing and the establishment of the cis-regulatory landscape

The central dogma of molecular biology posits a paradigm in which genetic information

flows unidirectionally as such: DNA is transcribed into mRNA, and mRNA is subsequently

translated into protein. Within this model are myriad nuanced complexities that can affect the

fate of mRNAs before translation, and contradictory to it are classes of RNAs that play

functional roles without ever being translated, for example. While the factors that control the

process of DNA being transcribed into RNA, termed “transcriptional regulation”, are beyond

the scope of the work herein, I’ll briefly mention that trans-acting factors (molecular

machines including transcription factors, RNA polymerases, etc.) associate with

DNA-encoded cis-elements (i.e. distinct sequence motifs and/or secondary structures) to

initiate, terminate and otherwise regulate transcription.

Analogous to this framework is the relationship between RNAs and trans-acting factors that

recognize RNA-encoded cis-elements to enact the regulatory functions comprising

“post-transcriptional regulation”. These trans-acting factors include RNA-binding proteins

(RBP) and ribonucleoproteins (RNP) that orchestrate and modulate: pre-mRNA processing,

mRNA export, localization, stability and translation. One critical step in eukaryotic

pre-mRNA processing, which is an emphasis of my work, is alternative splicing (AS). AS is a

process that occurs in the vast majority of human protein coding genes by which splicing

factors excise introns from multi-exon genes to produce distinct isoforms from a single

genomic locus. While AS most obviously diversifies the proteome, it importantly also shapes

the cis-regulatory landscape of individual isoforms by the inclusion and exclusion of

particular sequences. Thus, AS calibrates the repertoire of trans-acting factors that can

associate with alternative isoforms to affect their cytosolic fate.
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1.2 Modes of post-transcriptional regulation that impact mRNA stability and

translation

Because the protein products of mRNAs are customarily considered the pinnacle of gene

expression, two factors in particular come into frame as important determinants of a given

transcript’s translational output: mRNA stability and translatability. Nucleotide sequence and

concomitant GC-content can in themselves affect the disposition of transcript local secondary

structures in ways that promote or diminish stability. Additionally, the cis-regulatory code

embedded in the 5’ untranslated region (UTR), the 3’ UTR and the coding sequence (CDS)

has been shown to affect mRNA stability by facilitating interactions with trans-acting factors

that can either directly or indirectly impose stabilizing or degradative effects. One such factor

is an RNP called the RNA-induced silencing complex (RISC) which is composed of an

Argonaute protein associated with a microRNA (miR) that can guide it to complementary

mRNA sequences for subsequent cleavage or translational repression. I will expand upon the

topic of RISC and small noncoding RNAs in Chapter 2.

Arriving at the point of translation – upon which one or more ribosomes traverse the open

reading frame(s) (ORF) of a transcript to generate its encoded protein product – intrinsic

features (i.e. optimality of codons, length and nucleotide composition of UTRs, etc.) and

trans-acting factors can similarly confer translational control of transcripts at each stage: from

translation initiation to elongation to termination. Evocative of Ouroboros, the serpent eating

its own tail, in more ways than one, the nature of the ribosome-mRNA interaction itself can

influence transcript stability. One extremely well-documented example of this phenomenon

across virtually all eukaryotes is a translation-dependent mRNA surveillance mechanism

called nonsense-mediated decay (NMD). This process involves ribosome encounter with a

premature termination codon (PTC) during translation, which recruits NMD factors to

accelerate the degradation of the associated transcript to prevent the generation of aberrant,
2



truncated proteins or to otherwise modulate gene expression. I will elaborate on the topics of

translational control and NMD in Chapters 3 and 4.

Chapter 2: Small Noncoding RNAs as Regulators of Gene Expression

2.1 Chapter Introduction

The primary subject of this chapter’s project is RISC. Initially, we set out to examine the

effects of SARS-CoV-2 infection on the host transcriptome, with special interest to host small

noncoding RNAs. We wanted to test the hypothesis that part of the widespread transcriptomic

dysregulation observed during SARS-CoV-2 infection is due to infection-induced changes to

miR expression. Because individual miRs can have hundreds of potential targets,

perturbations to their steady-state levels can dramatically alter the transcriptome. To that end,

our collaborators in the Mishra Lab at Columbia University conducted time course infection

experiments in African green monkey kidney cells and human lung epithelial cells from

which we isolated sRNA and mRNA for sequencing.

In support of our hypothesis, we identified 28 human miRs that were dynamically regulated

during SARS-CoV-2 infection. More surprisingly, however, we identified a subset of sRNAs

that mapped to the SARS-CoV-2 genome at distinct loci across both human and African

green monkey cell models and were plausibly not degradation products. Dozens of these

small viral RNAs (svRNA) resembled miRs by their lengths, were predicted to hybridize

stably by their seed sequences with complementary sequences in human miRs and mRNAs,

and some were attributable to precursor RNAs that were predicted to form hairpins in silico.

This finding led to the captivating and somewhat controversial hypothesis that

SARS-CoV-2-derived svRNAs could directly antagonize host miRs and mRNAs, with or

without the aid of Argonaute 2.

3



My contributions as a co-first author on this project include: all data analysis, some data

visualization, writing of the methods and editing of the manuscript. This work was published

in Scientific Reports on December 15, 2022. All supplementary materials are available at the

online publication.
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2.2 A potential role for SARS-CoV-2 small viral RNAs in targeting host microRNAs
and modulating gene expression

Zachary T. Neeb1+, Alexander J. Ritter2+, Lokendra V. Chauhan3, Sol Katzman4, W. Ian
Lipkin3, Nischay Mishra3*, and Jeremy R. Sanford1*
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Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease

(COVID-19) in humans, which may be fatal. We used a comparative transcriptomics

approach to investigate the effects of SARS-CoV-2 infection on the host mRNA and sRNA

expression machinery in a human lung epithelial cell line (Calu-3) and an African green

monkey kidney cell line. Upon infection, we observed global changes in host gene expression

and differential expression of dozens of host miRNAs, many with known links to viral

infection and immune response. Importantly, we also discovered an expanded landscape of

more than a hundred SARS-CoV-2-derived small viral RNAs (svRNAs), predicted to interact

with differentially expressed host mRNAs and miRNAs. svRNAs are derived from distinct

regions of the viral genome and sequence signatures suggest they are produced by a

non-canonical biogenesis pathway. 52 of the 67 svRNAs identified in Calu-3 cells are

predicted to interact with differentially expressed miRNAs, with many svRNAs having

multiple targets. Accordingly, we speculate that these svRNAs may play a role in

SARS-CoV-2 propagation by modulating post-transcriptional gene regulation, and that

methods for antagonizing them may have therapeutic value.
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Introduction

Small non-coding RNAs (sRNAs) play diverse roles in gene regulation and genome integrity.

Ranging from ~20-30 nt, this functionally diverse class of RNAs plays important roles in the

regulation of many biological processes [1,2]. Short interfering RNAs and microRNAs

(siRNA and miRNA, respectively) function in post-transcriptional control of gene expression

by regulating messenger RNA (mRNA) translation and stability [3,4]. By contrast,

Piwi-associated RNAs (piRNAs) control transcriptional silencing of transposable elements

and the elimination of entire regions of ciliate genomes [5,6].

sRNAs are derived from larger precursor transcripts. Although biogenesis pathways for the

different types of sRNAs vary widely depending on type and species, processing of

precursors typically involves cleavage by the endonucleases Drosha and Dicer, before they

are loaded onto an Argonaute Family protein (either an AGO or a PIWI) to interact with

downstream targets. However, there are a multitude of alternative mechanisms for sRNA

biogenesis, some of which include Drosha/Dicer-independent mechanisms or even multiple

Argonautes and Dicer-like proteins [7–10]. The level of complementarity of an sRNA to its

target varies from as little as 8 nt in the 5’ seed region (miRNAs) up to 100%

complementarity of the full sRNA sequence (siRNAs and piRNAs), and often is a

determining factor in how an sRNA interacts with its targets. It has also been suggested for

human miRNAs that their abundance directly affects whether they repress translation by

active mRNA degradation, or by interaction with the 3’ UTR when miRNA levels are

insufficient for widespread 3’ UTR binding [11]. Taken as a whole, small RNA biogenesis

and function is complex and exceptions to rules regarding roles and mechanisms are quite

common.
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Viruses such as SARS-CoV-2 remodel host gene expression programs. This occurs through a

variety of mechanisms, including deregulation of post-transcriptional gene regulation. More

recently, viral small non-coding RNAs have also been identified that may play important

roles in adaptation and viral propagation [12–15] in infections with SARS-CoV-1 [12],

Influenza [13], Hepatitis A [14] and EV71 [15]. During the COVID-19 pandemic, multiple

groups also reported the existence of miRNA-like sRNAs derived from SARS-CoV-2,

although the details of their biogenesis and specific function have yet to be elucidated

[16–18]. Small viral RNAs (svRNAs) vary greatly in size and cellular abundance and have

been implicated in a variety of different biological pathways related to infection and host

immune evasion [19].

In this study, we characterize global changes in both host cell mRNA and miRNA expression

using multiple sequencing-based methods. We also report the discovery of a diverse

landscape of svRNAs produced by SARS-CoV-2. Sequence alignments suggest the intriguing

hypothesis that SARS-CoV-2 small RNAs may directly regulate host transcripts, including

microRNAs.

Results

SARS-CoV-2 infection induces global changes in host gene expression

To investigate how SARS-CoV-2 infection influences host gene expression, we analyzed the

transcriptomes of both a human lung epithelial cell line (Calu-3) and African green monkey

kidney cell line (Vero-E6) during the course of SARS-CoV-2 infection. Both cell lines were

infected with SARS-CoV-2 at a multiplicity of infection (MOI) of 0.01. RNA extracts were

made from harvested cell pellets of infected Calu-3 cells at 0 h, 12 h, 24 h, 48 h and 72 hours

post-infection (hpi), and infected Vero-E6 cells at 4 h, 24 h, 48 h, 72 h, 120 h, 165 h and 216

hpi. RNA extracts of cell pellets from uninfected cells were also used as controls and
7
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processed from all time points. Similar to previous studies [20], the majority of reads from

infected cells mapped to the host genomes (60.3 - 100.0% for Calu-3 cells, 88.2 - 95.6% for

Vero-E6 cells), with the remainder mapping to the SARS-CoV-2 genome (Figure 1A,

Supplemental Table 1).

8
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Figure 1. SARS-CoV-2 infection induces global changes in gene expression. A. UCSC
Genome Browser screenshots showing Calu-3 sample-derived mRNA sequencing reads
mapped to the SARS-CoV-2 genome for infected and control cells. Underneath the
screenshots is a schematic representation of the SARS-CoV-2 genome depicting the regions
of ORF1a/1b, the spike protein (S), the envelope protein (E), the membrane protein (M) and
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the nucleocapsid protein (N). B. Heatmap representation of differentially expressed Calu-3
genes over the time course of infection. 4,593 differentially expressed genes are shown.
Heatmaps were generated using hierarchical clustering. C. Enriched Gene Ontology
Biological Process (GOBP) terms are shown for upregulated Calu-3 genes. Only a subset of
significantly enriched GOBP terms are shown. D. Same as C, but with enriched KEGG
Human Pathways. E. Enriched GOBP terms for downregulated Calu-3 genes. Only a subset
of significantly enriched GOBP terms are shown. F. Same as E, but with enriched KEGG
Human Pathways.

SARS-CoV-2 infection induces global changes in gene expression in both Calu-3 cells and

Vero-E6 cells. DESeq2 [21] analysis revealed 4,593 and 1,040 significantly differentially

expressed genes, respectively (Figure 1B, Supplemental Figure 1). Differentially expressed

Calu-3 genes and Vero-E6 genes were used for downstream Gene Ontology Biological

Process (GOBP) and KEGG Human Pathway enrichment analysis. Upregulated genes fell

into enriched gene families related to innate immunity and the inflammatory response

pathways, while downregulated genes tend to be involved in metabolic and other biosynthetic

pathways (Figure 1C-F, Supplemental Table 2). For both Calu-3 and Vero-E6 cells, we

observed significant overlap between GOBP terms for upregulated and downregulated genes

throughout the time course. By contrast, KEGG pathway overlap was only observed for the

upregulated gene sets (Supplemental Figure 2). Interestingly, for both cell types, we observed

gene expression changes to be most significant from 24 hpi - 48 hpi, most likely reflective of

the time required to elicit cellular response to viral infection. Overall, we found SARS-CoV-2

infection to cause global gene expression changes in both Calu-3 cells and Vero-E6 cells.

SARS-CoV-2 expresses a diverse landscape of small RNAs

We analyzed the small RNA transcriptome from mock and infected Calu-3 and Vero-E6 cells

to uncover potential SARS-CoV-2-dependent gene regulatory mechanisms. Following

infection, libraries from both cell lines contained reads mapping to the SARS-CoV-2 genome

(Figure 2A, Supplemental Figure 3, Supplemental Table 1). We found that the distribution of

svRNAs mapping to the SARS-CoV-2 genome was not uniform and that there were

10
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“pile-ups'' in particular regions indicating the RNAs identified are not likely to be degradation

products of the full-length viral genomic or subgenomic RNA, but may be derived from

specific loci (Figure 2A, Supplemental Figure 3). Using Piranha [22], we identified 67

svRNA loci from Calu-3 cells with a mean length of 22 nt and 97 svRNAs from Vero-E6

cells with a mean length of 25 nt (Figure 2B, Supplemental Figure 4, Supplemental Figure 5,

Supplemental Table 3). 28 svRNA loci were shared between the two cell lines (Figure 2B).

svRNA expression is dynamic throughout the time course with peak expression of the

svRNAs between 24 – 48 hpi for both species (Figure 2C, Supplemental Figure 6). Calu-3

svRNAs tend to cluster into three distinct types of expression profiles. Two svRNA groups

showed transient peak expression at 24 and 48 hpi respectively and then returned to

base-level, while another group showed sustained expression from 24-48 hpi (Figure 2C).

The dynamics of svRNA expression follows similar kinetics as changes in host mRNA and

miRNA expression (Figure 1B, Figure 3A, Supplemental Figure 1).

11
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Figure 2. SARS-CoV-2 expresses a diverse landscape of small RNAs. A. UCSC Genome
Browser screenshots showing Calu-3 sample-derived sRNA sequencing reads mapped to the
SARS-CoV-2 genome for both infected and control cells. Reads from infected cells do not
map uniformly to the genome but instead form “pile ups” in particular regions. Underneath
the screenshots is a schematic representation of the SARS-CoV-2 genome depicting the
regions of ORF1a/1b, the spike protein (S), the envelope protein (E), the membrane protein
(M) and the nucleocapsid protein (N). B. Venn Diagram showing the number of svRNA loci
identified in Calu-3 and Vero-E6 cells, with conserved loci indicated. C. Heatmap
representation of Calu-3 cell-derived svRNA expression. Heatmaps were generated using
hierarchical clustering. To the right of the heatmap is an annotation column indicating if the
svRNA is species-specific or conserved between Calu-3 and Vero-E6 cells. D. Sequence
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logos for the first ten and last ten nucleotides of the svRNAs identified in Calu-3 cells.
svRNAs lack a 5’-U signature typical of many canonical miRNAs.

Figure 3. SARS-CoV-2 svRNAs may target host miRNAs. A. Heatmap representation of
the 28 differentially expressed Calu-3 microRNAs over the time course of infection.
Heatmaps were generated using hierarchical clustering. To the right of the heatmap is an
annotation column indicating if the miRNA is a predicted target of an svRNA. B. Circos plot
representation of predicted interactions between svRNAs and DE (human) miRNAs using
RNAhybrid without seed-forcing. The ribbons are colored according to the svRNA that is
predicted to interact with the miRNA to which it connects. There are many examples of
svRNAs targeting more than one miRNA and also examples of miRNAs being targeted by
more than one svRNA. DE miRNAs mentioned in the Results section are labeled. Shown
below are two examples of RNAhybrid predictions for svRNAs and DE miRNAs pictured
above.

13



To illuminate potential biogenesis pathways for SARS-CoV-2 svRNAs, we aligned the 5’ and

3’ ends of svRNAs searching for nucleotide biases. By contrast to miRNAs, the svRNAs did

not possess sequence signatures with the typical 5’-U bias, suggesting a Dicer-independent

processing pathway (Figure 2D, Supplemental Figure 7). Additionally, we found that only 10

of the 67 Calu-3 cell-derived svRNAs and 12 of the 97 Vero-E6 cell-derived svRNAs were

predicted to have an upstream or downstream complementary sequence within 44 nt that may

form a hairpin [23], often required for canonical miRNA processing. (Supplemental Table 4).

SARS-CoV-2 alters host microRNA expression

We hypothesized that global changes in gene expression could be mediated through changes

in host sRNA expression, specifically miRNAs. We analyzed the host small RNA

transcriptomes of infected and control Calu-3 cells (Figure 3A, Supplemental Figure 8-10,

Supplemental Table 1) and discovered that 28 miRNAs are differentially expressed

throughout the infection time course (Figure 3A, Supplemental Table 5). Consistent with our

mRNA sequencing data, we observed differential expression of miRNAs at 24 hpi with the

most significant changes occurring at 48 hpi (Figure 1B).

SARS-CoV-2 svRNAs may hybridize with differentially expressed mRNAs and miRNAs

To investigate the potential function of svRNAs we used RNAHybrid [24,25] to identify

targets within differentially expressed Calu-3 mRNAs and miRNAs. Of the svRNAs

identified in Calu-3 cells, 59 of 67 have predicted mRNA targets within the 3’UTRs of

differentially expressed (DE) genes (Tables 1 and 2, Supplemental Table 3). RNAhybrid

predictions identified svRNAs that can also form stable duplexes with miRNAs, 52 of which

target differentially expressed miRNAs in our data set (Figure 3B, Table 3, Supplemental

Figure 11, Supplemental Table 3). A larger portion of svRNA-target interactions were

14
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predicted to occur with downregulated miRNAs than with downregulated mRNA targets

throughout the time course (Supplemental Figure 10). Interestingly, we found numerous

examples of host miRNAs that can pair with multiple svRNAs (Figure 3B, Figure 4,

Supplemental Figure 11). In addition, we also observed examples of svRNAs that can

potentially hybridize to a broad array of miRNAs (Figure 3B, Figure 4, Table 3,

Supplemental Figure 11). Because the Vero-E6 genome has not been extensively annotated

to include miRNA sequences, we were unable to perform RNAhybrid predictions against

Vero-E6 miRNAs, but found that of the 61 Calu-3-derived svRNAs capable of targeting host

miRNAs, 27 had conserved loci with Vero-E6-derived svRNAs.

15



svRNA Counts # mRNA
targets

Top Enriched GO Term for
Targets

svRNA2875-2897 165 39 Negative Regulation of
CD4-positive, Alpha-beta T
Cell Proliferation
(GO:2000562)

svRNA26927-26947 134 18 Negative Regulation of
CD4-positive, Alpha-beta T
Cell Proliferation
(GO:2000562)

svRNA28260-28289 89 1 Gamma-aminobutyric Acid
Metabolic Process
(GO:0009448)

svRNA27059-27089 88 16 Regulation of Protein Import
into Nucleus (GO:0042306)

svRNA27107-27128 80 11 Heart Field Specification
(GO:0003128)

svRNA26820-26840 77 2 Mesoderm Morphogenesis
(GO:0048332)

svRNA5572-5597 64 4 Regulation of Oxidoreductase
Activity (GO:0051341)

svRNA37-63 57 2 Ribosomal Large Subunit
Assembly (GO:0000027)

svRNA18943-18965 47 1 N/A

svRNA29039-29064 45 5 Extracellular Structure
Organization (GO:0043062)

Table 1. List of the ten most abundant Calu-3-derived svRNAs with DE mRNA targets.
Table listing the ten most abundant svRNAs with DE mRNA targets, normalized counts,
number of differentially expressed mRNA targets and the top enriched GO term for targets.
Counts were normalized to the mean read depth of all sample libraries.
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Top Enriched GO Terms for Downregulated
mRNA Targets of svRNAs

Top Enriched GO Terms for
Upregulated mRNA Targets of

svRNAs

Quinone Catabolic Process (GO:1901662) Cellular Response to Cytokine
Stimulus (GO:0071345)

Leukotriene B4 Metabolic Process (GO:0036102) Cytokine-mediated Signaling Pathway
(GO:0019221)

Menaquinone Metabolic Process (GO:0009233) Regulation of Interferon-gamma
Production (GO:0032649)

Vitamin K Metabolic Process (GO:0042373) Cellular Response to
Interferon-gamma (GO:0071346)

Fat-soluble Vitamin Metabolic Process
(GO:0006775)

Negative Regulation of Natural Killer
Cell Mediated Cytotoxicity
(GO:0045953)

Organic Hydroxy Compound Catabolic Process
(GO:1901616)

Regulation of Apoptotic Cell
Clearance (GO:2000425)

Fat-soluble Vitamin Catabolic Process
(GO:0042363)

Positive Regulation of Apoptotic Cell
Clearance (GO:2000427)

Axoneme Assembly (GO:0035082) interferon-gamma-mediated Signaling
Pathway (GO:0060333)

Diterpenoid Metabolic Process (GO:0016101) Regulation of Immune Response
(GO:0050776)

Phosphate Ion Transport (GO:0006817) Negative Regulation of Natural Killer
Cell Mediated Immunity
(GO:0002716)

Table 2. List of the top enriched GO terms for DE mRNA targets of Calu-3-derived
svRNAs.Table listing the top ten significantly enriched GO terms for all upregulated and all
downregulated mRNA targets of Calu-3-derived svRNAs in our data set.
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svRNA Counts # miRNA targets miRNA

svRNA26741-26761 165 4 MIR128_3p,
MIR1298_5p,
MIR1307_5p,
MIR2277_5p

svRNA28573-28595 134 1 MIR2277_5p

svRNA2868-2897 88 3 MIR106A_5p,
MIR2277_5p,
MIR381_3p

svRNA28704-28725 80 2 MIR138_5p,
MIR2277_5p

svRNA28553-28573 77 4 MIR132_3p,
MIR2277_5p,
MIR23B_3p,
MIR299_5p

svRNA18943-18965 57 1 MIR149_5p

svRNA27578-27602 47 2 MIR26A2_5p,
MIR381_3p

svRNA524-546 45 1 MIR2277_5p

svRNA5423-5445 45 3 MIR1298_5p,
MIR181B2_5p,
MIR3909_3p

svRNA28068-28088 41 1 MIR132_3p

Table 3. List of the ten most abundant Calu-3-derived svRNAs with DE miRNA
targets.Table listing the ten most abundant svRNAs with DE miRNA targets, normalized
counts, number of differentially expressed miRNA targets and miRNA target names.
miRNAs in bold are downregulated in our data set. Counts were normalized to the mean read
depth of all sample libraries.
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Figure 4. Proposed svRNA-miRNA interactions upon SARS-CoV-2 infection. The
illustrated model is briefly described in the Discussion section. svRNAs may interact with
miRNAs in multiple ways, none of which are mutually exclusive. A. A RISC-miRNA
complex targets complementary sequences in the viral genomic RNA. svRNAs are produced
by cleavage and go on to perform downstream functions, such as interacting with host
mRNAs and miRNAs. B. There is direct hybridization of svRNAs and miRNAs without
association with RISC, leading to sequestration of miRNAs, preventing them from interacting
with endogenous targets. C. A RISC-svRNA complex targets miRNAs and prevents them
from interacting with endogenous targets. D. A RISC-miRNA complex targets svRNAs,
preventing the complex from interacting with endogenous targets. Created with
BioRender.com.

Discussion

We analyzed the transcriptomes of two primate cell lines during SARS-CoV-2 infection and

observed global changes in gene expression. Consistent with previous work, we found

enrichment for genes involved in the RIG-I pathway, Toll-like Receptor pathway (TLR)

signaling pathways, NF-kappa Beta pathway, and type 1 interferon (IFN) signaling

[16,26–30] (Supplemental Figure 12). We also identified more than a hundred svRNAs

capable of interacting with host transcripts, including miRNAs. svRNA are expressed from

specific loci, within ORF7a, and the spike (S) and nucleocapsid (N) genes. In addition to
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having predicted target sites in differentially expressed host transcript 3’-UTRs like canonical

miRNAs, 52 of the 67 Calu-3 sample-derived svRNAs are also predicted to form stable

duplexes with differentially expressed miRNAs, many of which have been implicated in other

types of viral respiratory infections (VRIs) [31]. For example, miR-128, miR-2277 and

miR-155 are known to be associated with rhinovirus infection, Middle Eastern Respiratory

Syndrome (MERS) and SARS-CoV-2, respectively. We see many examples of svRNAs with

predicted target sites in more than one differentially expressed miRNA, with 38 of the 67

having two or more predicted targets. svRNAs are most highly expressed at 24 h and 48 hpi,

which corresponds to the time points at which we see the most significant changes in host

gene and miRNA expression. This expression dynamic suggests an interplay between

svRNAs and host miRNAs, in which svRNAs have the capability to interact with host

miRNAs, therefore affecting all downstream target mRNA expression.

Here we describe an expanded landscape of SARS-CoV-2 derived small RNAs including all

four svRNAs previously reported by the Cheng, Meng and Pawlica groups [16–18]

(Supplemental Figure 13). In agreement with what the Meng and Cheng groups observed, we

identified dozens of svRNAs derived from the nucleocapsid (N) gene, many that overlap the

sequences reported in those studies, albeit with varying starting coordinates and lengths

[16,17] (Supplemental Figure 13). In addition to recapitulating the existence of svRNAs

derived from the N gene, we identified an svRNA (svRNA27406-27428) derived from

ORF7a that almost perfectly overlaps with the sequence reported by Pawlica and colleagues

[18] (Supplemental Figure 12). We reason that our experiment has increased sensitivity

because we use a lower MOI (0.01) than previous studies (0.05-5), and performed an

extended time course experiment [16,18].

20

https://paperpile.com/c/eOxaJt/dYsht
https://paperpile.com/c/eOxaJt/XW77f+N8Q5p+XnS2W
https://paperpile.com/c/eOxaJt/XW77f+N8Q5p
https://paperpile.com/c/eOxaJt/XnS2W
https://paperpile.com/c/eOxaJt/XnS2W+XW77f


miRNAs are typically processed via a Dicer-mediated biogenesis pathway. Our data suggest

that many of the svRNAs are generated instead via a Dicer-independent processing

mechanism. Lack of a 5’-U bias in the sequence analyses for svRNAs indicates that

biogenesis may occur in a non-canonical Dicer-independent manner. Other groups have also

reported svRNAs derived from SARS viruses lacking a 5’-U sequence signature and it has

been suggested that these small RNAs may utilize the slicer activity of Ago2 for biogenesis

rather than the traditional miRNA/siRNA processing machinery, similar to what has been

observed for the well-studied human miR-451[10,12,17]. Morales and colleagues observed

svRNA expression following knockdown of the RNase III nucleases Drosha and Dicer [12],

suggesting these canonical enzymes are not necessary for svRNA biogenesis. We also

identified svRNAs derived from ORF7a and the N gene that overlap with svRNAs reported

by the Meng, Cheng and Pawlica groups, but with varied starting coordinates and/or sizes.

This may suggest that isomiRs exist for svRNAs, potentially caused by alternative processing

events such as 5’/3’ trimming variants due to imprecise cleavage of precursors [32]. Further

studies on svRNAs derived from SARS-CoV-2 are necessary to elucidate key players in their

biogenesis and to validate their potential to interact with host transcripts to affect host gene

expression.

Based on our observations, we propose a functional role for svRNAs in which deregulation of

the host mRNA expression program may be a direct effect of svRNAs sequestering or

“sponging” host miRNAs (Figure 4). There are many examples of known miRNA sponges in

the literature, such as HSUR 1 and HSUR 2 from Herpesvirus saimiri [33], and it is entirely

possible that the svRNAs presented here may function similarly [34–36]. An efficient way to

post-transcriptionally alter a gene network or biological system would be to sequester/act on

regulators of the network itself, rather than individual genes separately. As canonical human

miRNAs often have hundreds of predicted target genes each, production of svRNAs that
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interfere with this regulation may confer an evolutionary advantage for SARS-CoV-2 and

other viruses by modulating host gene expression on a global scale, increasing the likelihood

of viral propagation. It has been previously suggested that viral RNA derived from

SARS-CoV-2 may act as a host miRNA sponge to aid in avoiding the host immune response

and our findings add more credence to this hypothesis [37]. Based on RNAhybrid seed-target

predictions, 22 of 33 differentially expressed host miRNAs are capable of targeting svRNAs,

11 of which are upregulated during the time course. It is possible that in addition to svRNAs

sponging host miRNAs, they also directly target miRNAs with or without RISC, preventing

the host miRNAs from interacting with endogenous targets (Figure 4). These potential

svRNA-miRNA interactions are not mutually exclusive and may occur simultaneously,

ultimately leading to the same outcome: global changes in host gene expression. Direct

interactions between svRNAs and their predicted targets must still be validated

experimentally to assess the full extent to which these interactions occur during viral

infection and also to tease apart the actual targeting mechanism itself. In the future, these

interactions could be easily antagonized or blocked using locked nucleic acids (LNAs) or

other methods and potentially used as targets for the therapeutic treatment of patients infected

with the virus.

Data and Code Availability

All RNA-sequencing data can be accessed at the National Center for Biotechnology Institute

(NCBI) Gene Expression Omnibus (GEO) database: GSE197521. No new code was

developed for this study. ***Supplementary materials are

22

https://paperpile.com/c/eOxaJt/T39cc


Acknowledgments

This work was supported by the National Institutes of Health (NIH) (grant no. R35

GM130361), the Tong Tsung and Wei Fong Chao Foundation (grant no. GT007457) and the

Chau Hoi Sheun Foundation (grant no. GT007457).

Author Contributions

Conceptualization, Z.T.N., N.M., and J.R.S.; Methodology, Z.T.N., N.M., J.R.S.; Software,

A.J.R. and S.K.; Formal Analysis, A.J.R. and S.K.; Investigation, Z.T.N. and L.V.C.;

Resources, N.M. and J.R.S.; Data Curation, A.J.R. and S.K.; Writing – Original Draft, Z.T.N.,

A.J.R.; Writing – Review & Editing, Z.T.N., A.J.R., L.V.C., S.K., W.I.L., N.M., and J.R.S.;

Visualization, Z.T.N. and A.J.R.; Supervision, W.I.L., N.M. and J.R.S.; Funding Acquisition,

N.M. and J.R.S.

Declaration of Interest

The authors declare no competing interests.

STAR Methods

Cell Culture and Viruses

African green monkey kidney (Vero-E6) cells and human lung epithelial (Calu-3) cells were

obtained from the ATCC (Manassas, VA). The cells were cultured in Dulbecco’s modified

Eagle’s medium (ThermoFisher Scientific, Waltham, MA, USA) containing 1% heat

inactivated fetal bovine serum (ThermoFisher Scientific), 100 U/mL penicillin, and 100

μg/mL streptomycin. The cells were incubated in 95% air and 5% CO2 at 37°C.

Virus Infection and total RNA extraction
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Vero-E6 and Calu-3 cells (2×105 cells/well in 6-well plates) were cultured in DMEM

containing 1% FBS at 37°C in a CO2 incubator overnight. The cells were washed once with

phosphate-buffered saline (PBS), prototypic SARS-CoV-2 Washington strain

(USA/WA1/2020) in growth media at MOI 0.01 was added into each desired well, and the

plates were incubated for 1.5 h at 37° C in a CO2 incubator. After incubation, 3 mL of

DMEM containing 1% FBS was added to each well and the plates were incubated at 37° C in

a CO2 incubator. Infected Calu-3 cells were harvested at 0 h, 12 h, 24 h, 48 h and 72 hpi (in

triplicate) and Vero-E6 cells were harvested at 4 h, 24 h, 48 h, 72h, 120 h, 168 h and 216 hpi

(in duplicate).

For harvesting, cell culture supernatants were collected and mixed with Trizol (Fisher

Scientific) at a ratio of 1:1. Cells were detached using Trypsin-EDTA 0.25% (ThermoFIsher

Scientific), followed by centrifugation at 1,000 rpm for 5 min at 4°C to form a cell pellet

which in turn was dissolved in 250 ul of Trizol. Both cell supernatant in Trizol and cell pellet

in Trizol were stored at -80’C until further processing. SARS-CoV-2 amplification and cell

culture procedures were performed according to biosafety level 3 (BSL-3) conditions.

Total RNA was extracted using the TRI Reagent protocol for isolation of RNA with the

following modification: one additional RNA ethanol wash step was included. After the total

RNA was solubilized in ddH20, one overnight ethanol precipitation step was included for

further purification of the total RNA.

Illumina sequencing of sRNA libraries

Total RNA was isolated from cell culture pellets as described above. Total RNA from

infected Calu-3 cells, infected Vero-E6 cells and uninfected controls were used for sRNA

library preparation. 1 ug of total RNA for each sample was used for sRNA library preparation
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using the NEXTFLEX small RNA-Seq Kit v3 following the manufacturer’s protocol (Perkin

Elmer Applied Genomics). Adapter dilution was not performed and 17 cycles of PCR

amplification were used before using the gel-free size selection and cleanup protocol. Pooled

sRNA sequencing libraries were sequenced on an Illumina HiSeq 4000 at the UC Davis

Sequencing Core Facility, generating 100 bp single-end reads.

Illumina sequencing of mRNA libraries

Total RNA was isolated for cell culture pellets as described above. Total RNA from infected

Calu-3 cells, infected Vero-E6 cells and uninfected controls were used for mRNA library

preparation. 2 ug of total RNA for each sample was used for mRNA library preparation using

the NEXTFLEX Rapid Directional RNA-Seq Kit 2.0 following the manufacturer’s protocol

(Perkin Elmer Applied Genomics). Before library preparation, total RNA samples were

subjected to Poly(A) selection and purification using the NEXTFLEX Poly(A) Beads Kit 2.0

following the manufacturer’s protocol (Perkin Elmer Applied Genomics). Based on sample

RNA integrity numbers (RINS) and total RNA input, 9 minutes fragmentation time was used,

adapter concentration was diluted by half and 9 cycles of PCR amplification were used before

bead clean up and elution. For Calu-3 cell samples, pooled mRNA sequencing libraries were

sequenced on an Illumina NovaSeq S4 at the UC Davis Sequencing Core Facility, generating

150 bp paired-end reads. For Vero-E6 samples, pooled mRNA sequencing libraries were

sequenced on an Illumina HiSeq 4000, generating 100 bp single-end reads.

Analyses of Calu-3 mRNA sequencing data

The full-length paired-end reads were mapped with Bowtie 2 [38] against the set of human

repeat-masker elements in the hg38 assembly, as well as a constant poly-A sequence. Reads

that were mapped to these elements were removed from further processing. The
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repeat-filtered full-length reads were mapped with STAR 2.5.3a [39], using the

"--alignEndsType EndToEnd" option, to a single joint target consisting of the hg38 genome

assembly plus the wuhCor1 genome. In cases of multiply-mapped reads, only the best

mapping was retained. The STAR mapped bam files were divided into separate hg38 and

wuhCor1 files for further analysis.

Gene-by-gene coverage was extracted from the hg38 mappings that overlapped any potential

exon for each gene in a gene model of hg38. The total coverage for each gene was divided by

the total paired-end read length of each mapping to extract read counts as input to DESeq2

[21]. DESeq2 was run to compare all replicates of conditions as follows:

1. At each time point, the control vs the infected samples

2. For the controls, comparisons between the time points

3. For the infected samples, comparisons between the time points.

Analyses of Vero-E6 mRNA sequencing data

The single-end reads were trimmed at the 3' end to leave 50bp for mapping. The trimmed

reads were mapped with Bowtie 2 [38] against a set of repeat elements in the Vero-E6

genome. The trimmed, repeat-filtered and wuhCor1-filtered, single-end reads were mapped

with STAR 2.5.3a, using the "--alignEndsType EndToEnd" option, to chlSab2 genome

assembly. In cases of multiply-mapped reads, only the best mapping was retained. Potential

PCR duplicates (single-end reads mapped to the identical coordinates) were removed from

the chlSab2 mappings.

Gene-by-gene coverage was extracted from the chlSab2 mappings that overlapped any

potential exon for each gene in a gene model of chlSab2. The total coverage for each gene
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was divided by the single-end read length of each mapping to extract read counts as input to

DESeq2.

DESeq2 was run to compare all replicates of conditions:

1. At each time point, the control vs the infected samples

2. For the controls, comparisons between the time points

3. For the infected samples, comparisons between the time points.

Gene ontology (GO) and KEGG human pathway analyses

GO process annotations and KEGG human pathway annotations were retrieved using the web

tool Enrichr [40–43]. The p-values of enrichment of GO process and KEGG pathways were

determined using Enrichr on differentially expressed upregulated and downregulated genes

from both Calu-3 and Vero-E6 data sets.

svRNA discovery from sRNA-seq data

Potential svRNAs were identified from sRNA-seq reads using a stepwise bioinformatic

approach which incorporates established tools and bespoke analysis methods. Prerequisite

packages include: STAR v2.7.8a [39], BEDOPS v2.4.40 [44], bedtools v2.28.0 [45], Piranha

v1.2.1 [22], Bowtie 2 v2.4.4 [38] and RNAhybrid v2.1.2 [25]. The svRNA-discovery pipeline

entails the following steps:

1. sRNA-seq libraries were first mapped against their respective host genomes

(GRCh38 for human, chlSab2 for African Green Monkey) and against the

SARS-CoV-2 genome (wuhCor1) using STAR [46].

2. Mapping files from the infected samples from Calu-3 and Vero-E6 were subsetted for

sequences between 20-30 nt in length that mapped to the SARS-CoV-2 genome.
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Piranha peaks were called for pooled reads from infected samples for each time point

in each of the two cell types using bins of size 50 and a background threshold of 0.95.

3. Piranha peaks were pooled for each cell type, and unique reads mapping to them

were aligned to their respective host genomes using Bowtie 2 to remove any potential

multi-mapping or host-mapped reads from downstream analysis.

4. Of the remaining sequences, those that met our count-based cutoffs were filtered for

sequences whose counts across infected replicates and time points were the highest

among overlapping sequences. Some overlapping sequences whose counts were

especially relatively high were retained. The count-based cutoffs for a given

sequence were as follows:

a. It must be present in at least 5 infected samples for Calu-3 and at least 4 for

Vero-E6 (due to the difference in replicates).

b. Its total raw counts from infected samples must be at least 20.

c. If present in any control samples, it must not be present in all control

samples.

d. If present in any control samples, its total raw counts from control samples

must be less than or equal to 10% of the total raw counts from infected

samples.

5. Duplexes between host transcripts (all expressed mRNAs and miRNAs) and

SARS-CoV-2-derived sequences from Step 4 were then predicted using RNAhybrid

[24,25], which is a tool that is typically used to predict the hybridization, with the

smallest minimum free energy, of a short RNA molecule with a longer one.

SARS-CoV-2-derived sequences with at least 1 statistically significant (p-value <

0.05) predicted duplex with a host transcript were then considered potential

SARS-CoV-2-derived svRNAs. The resultant target predictions were then subsetted
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for those involving host targets that were significantly differentially expressed

(p-value < 0.05, log2 fold change ≥ 1.0).

6. Potential svRNAs from both cell types with overlaps to each other (across cell types)

greater than or equal to 60% were categorized as svRNAs derived from “conserved

loci”. We define conserved loci as loci in the SARS-CoV-2 genome from which

potential svRNAs were detected in both the Calu-3 and Vero-E6 experiments.

Additionally, overlapping svRNAs within cell type (i.e. shifted 1-2nt down the

SARS-CoV-2 genome sequence) that were retained due to their high relative counts

were denoted as potential viral isomiRs – in this case being svRNAs from the same

approximate locus but with slightly different ends owed to imprecise precursor

cleavage.

7. Lastly, to investigate the potential of identified svRNAs to be products of hairpin

precursors, we used RNAfold [23] to predict the structure of each svRNA with the

addition of 30-45 nt upstream and downstream separately. In order to call potential

hairpin precursors for svRNAs, the structure predictions needed to have: only a single

loop – with no shared nucleotides with the mature svRNA sequence, at least 14 base

pairings in the stem, and a maximum minimum free energy (MFE) of -4.3kcal/mol

[47]. Hairpins that passed these filters were visualized using Forna [48].
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Chapter 3: Methodological Advancements in the Study of Alternative Splicing

3.1 Chapter Introduction

This chapter describes a project in which we sought to design an alternative splicing (AS)

analysis tool, junctionCounts, that resolves a number of shortcomings of existing approaches.

The two primary gaps we aimed to address were the limited event type definitions individual

tools are capable of characterizing and the lack of utilities for predicting transcript-level

functional consequences of splicing events (i.e. induction of NMD). Importantly, this tool was

initially designed by Dr. Andrew Wallace and was a substantial portion of his doctoral

dissertation. Nonetheless, junctionCounts was left unfinished despite several of our

collaborators having since published work that made use of it.

Most crucially, junctionCounts did not include utilities for handling replicates or for statistical

testing of AS events across conditions. Additionally, it was not comprehensively evaluated

against existing tools. To finish this work, I benchmarked junctionCounts against two

well-established AS analysis tools on RT-PCR and simulated datasets. junctionCounts

performed competitively, especially in terms of quantification accuracy, and it notably

captured complex event types beyond the scope of most existing tools. I further designed a

bridge between junctionCounts and DEXSeq [49] to add statistical testing with flexible

replicate-handling to the event-level analysis pipeline. To test the accuracy of NMD

predictions generated by partner utilities, cdsInsertion and findSwitchEvents, I applied them

to a published dataset profiling NMD in emetine-treated HEK 293 T cells [50] and found that

nearly 75% of predicted NMD substrates followed the expected expression changes.

Beyond evaluating junctionCounts and its partner utilities, I next implemented them on a

primate neuronal differentiation RNA-seq dataset [51] to profile conserved and
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species-specific temporal splicing dynamics during neuronal differentiation across human,

chimpanzee, orangutan and rhesus macaque. The findings described in detail in the following

manuscript demonstrate the power of junctionCounts to generate high-quality results and

substantiate its status as a fully-realized and user-friendly tool for researchers studying AS. I

executed all bioinformatic analyses, data visualization and writing and editing of the

manuscript. This manuscript was submitted to Nucleic Acids Research Genomics and

Bioinformatics on February 23rd, 2024.
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GRAPHICAL ABSTRACT

junctionCounts is an alternative splicing analysis tool that identifies both simple and complex
splicing events from a gene annotation and then measures their percent spliced-in from
mapped RNA-seq junction reads.
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ABSTRACT

Alternative splicing (AS) is emerging as an important regulatory process for complex

biological processes. Transcriptomic studies therefore commonly involve the identification

and quantification of alternative processing events, but the need for predicting the functional

consequences of changes to the relative inclusion of alternative events remains largely

unaddressed. Many tools exist for the former task, albeit each constrained to its own event

type definitions. Few tools exist for the latter task; each with significant limitations. To

address these issues we developed junctionCounts, which captures both simple and complex

pairwise AS events and quantifies them with straightforward exon-exon and exon-intron

junction reads in RNA-seq data, performing competitively among similar tools in terms of

sensitivity, false discovery rate and quantification accuracy. Its partner utility, cdsInsertion,

identifies transcript coding sequence (CDS) information via in silico translation from

annotated start codons, including the presence of premature termination codons. Finally,

findSwitchEvents connects AS events with CDS information to predict the impact of

individual events to the isoform-level CDS. We used junctionCounts to characterize splicing

dynamics and NMD regulation during neuronal differentiation across four primates,

demonstrating junctionCounts’ capacity to robustly characterize AS in a variety of organisms

and to predict its effect on mRNA isoform fate.
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INTRODUCTION

Alternative splicing (AS) generates a diverse array of mRNA isoforms from a single locus.

The consequences of this process can have manifold effects on gene expression by altering

mRNA half-life [52], intracellular localization [53], translation efficiency [54], and most

obviously, by producing different protein isoforms [55]. AS plays critical roles in a variety of

biological processes including disease pathology [56], cancer [57], and cellular differentiation

[58]. In cellular homeostasis, AS is tightly regulated to control the precise expression of

diverse mRNA isoforms, allowing cells to adapt to changing conditions and to achieve

different states of activation in immune cells, for example [59]. Regulatory elements,

including cis-acting splicing enhancers and silencers, as well as trans-acting splicing factors,

coordinate the inclusion or exclusion of alternative exons or splice sites during transcription

[60].

Dysregulation of AS can contribute to the production of aberrant protein isoforms, impacting

critical cellular functions. In cancer, this can result in the generation of oncogenic isoforms,

altered signaling pathways, and evasion of regulatory mechanisms [61]. Often, mutations in

splicing factors and in cis-elements underlie oncogenic AS dysregulation [62]. During

cellular differentiation from pluripotent stem cells, AS orchestrates the precise control of gene

expression, directing the development of specialized cell types with distinct functions [63].

This process is intricately involved in shaping the cellular landscape, driving fate decisions,

and maintaining tissue homeostasis [64]. The important impact of AS in disease and cellular

differentiation underscores its significance as a regulatory force in biological processes and

highlights its potential as a therapeutic target in pathological conditions.

It is thus important, in any eukaryotic cellular context, to understand gene expression at the

isoform level. The complex nature of AS, however, creates numerous obstacles to its accurate
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study. mRNA isoforms can, and have canonically been, characterized in terms of binary

events that either include or exclude an alternative feature (exon, intron or splice site). This

mode of characterization faces the challenge of differentiating between complex and

overlapping event features, and also relies on comprehensively annotated gene structures. The

latter problem is highlighted by the lack of records for transcripts clearly supported by

mapped reads in available references. To address this, reference-guided or de novo

transcriptome assembly has become a widely used step in RNA-seq analysis. In this process,

transcript structure is predicted from the data with or without the use of a reference gene

annotation as a template [65]. This process allows analysts to consider potential novel

transcripts and novel alternative event features that may be important to the biological

phenomena under study.

Upon establishing comprehensive gene models, it subsequently becomes important to

understand how AS configures the coding and noncoding regions of resultant mRNA

isoforms. Unfortunately, common tools for transcriptome assembly [66,67] are unable to

provide information on the presence and nature of open reading frames (ORFs) that may be

contained within predicted novel transcripts. One example of an available tool, Transdecoder

[68], somewhat addresses this limitation – however, it was developed for use with Trinity

[68] which is intended for completely de novo transcriptome assembly in the absence of a

reference genome assembly or any annotations. Consequently, Transdecoder performs de

novo ORF prediction with intent towards identifying all ORFs that could convincingly give

rise to proteins. In most well-annotated genomes, however, existing ORF annotations are

available for the majority of genes in which new transcripts might be identified. In these cases

a potentially more reliable approach is to examine novel coding sequences that begin with

high-confidence annotated start codons. This prediction approach is useful not only because it

informs on potential novel peptides, but also because it has the ability to identify the presence
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of premature termination codons (PTCs) or high-confidence start codons that lack an in-frame

downstream stop codon. In these latter cases, translation is expected to result in surveillance

of host transcripts via nonsense-mediated decay (NMD) and non-stop decay (NSD)

respectively.

NMD exemplifies an important potential outcome of AS. This translation-dependent

surveillance mechanism identifies transcripts containing PTCs ≥ 55 nt upstream of a splice

junction and triggers its degradation and translational suppression [69]. PTCs can be

introduced through AS by inclusion of PTC-containing exons (poison exons), through

splicing events that shift the reading frame of the message and by splicing events occurring

within the 3’ untranslated region (3’UTR) [70]. Other outcomes that can dramatically affect

the fate of mRNAs may involve coding-to-noncoding switches, long-to-short UTR switches,

or the inclusion of rare codons. It is thus important to profile mRNA coding features, and to

connect binary AS events to their potential impacts to mRNA fate and function. The

functional impacts of AS, however, remain difficult to predict.

To address this problem we developed junctionCounts comprising: junctionCounts event

identification and quantification modules, cdsInsertion and findSwitchEvents. junctionCounts

identifies and quantifies a diverse array of AS events. cdsInsertion translates provided

transcripts in silico from user-provided overlapping start codons and determines resulting

transcript characteristics such as UTR lengths, putative primary structure, the presence of

PTCs, PTC distances from downstream splice sites, and more. Its partner utility,

findSwitchEvents, bridges the gap between isoform- and event-level analysis, allowing one to

take advantage of the potential superior quantification accuracy and regulatory interpretation

of event-level analysis while still leveraging information that can only be derived from

full-length transcripts [71]. In this study, we present junctionCounts as a powerful and
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flexible tool for studying AS in a variety of cellular contexts, and we demonstrate its utility in

not only identifying significantly regulated splicing events, but also inferring their functional

outcomes.

Figure 1. Overview of junctionCounts and partner utilities: cdsInsertion and
findSwitchEvents. (A) junctionCounts takes a transcriptome annotation and makes pairwise
comparisons of overlapping transcripts within genes, handling them as nodes (exons)
connected by edges (junctions). (B) This iterative process identifies and classifies the
minimal set of binary events that differentiates alternative isoforms. (C) junctionCounts then
assigns mapped junction reads to the unique junctions that define the included and excluded
forms of events and quantifies percent spliced in (PSI) values based on the ratio of included
form and total junction reads mapping to the event. (D) cdsInsertion identifies exons
overlapping annotated start codons, matches annotated coding sequences (CDS) to
transcripts, identifies exons containing PTCs (poison exons), and finally records
isoform-level information about the CDS. (E) Lastly, findSwitchEvents matches the included
and excluded forms of events to isoforms, distinguishes the unique exons of each form, and
predicts the impact of an event’s inclusion/exclusion on the CDS. These predictions specify
events whose inclusion/exclusion may confer: NMD, NSD, a coding-to-noncoding switch, or
simply an alteration of the CDS relative to its opposite form.
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MATERIALS AND METHODS

Alternative event definition and classification in junctionCounts

Alternative events are defined as instances in which pairs of: a) identical upstream 5’- and

identical downstream 3’-exon boundaries, b) non-identical upstream 5’-transcript termini and

identical downstream 3’-exon boundaries or c) identical 5’-exon boundaries and non-identical

3’-transcript termini are separated by any two combinations of distinct exon coordinates.

Cases in which the aforementioned pairs are separated by more than two sets of distinct exon

coordinates result in distinct alternative events for all pairwise combinations of those sets.

Cases in which two or more events share the same splicing structure result in a single

representative event in which the most proximal outer exon boundaries are used. This

approach to event identification encompasses standard alternative event types and further

identifies non-standard events of complex exon structure.

junctionCounts begins by identifying alternative events solely from a user-provided

transcriptome annotation, in contrast to many other tools that also require BAM files, via its

event identification module: infer_pairwise_events.py. This approach allows users to generate

a single event catalog for the latest GENCODE transcriptome annotation [72], for example,

and to use it across multiple datasets involving samples from a common species. If detection

of novel splice sites and consideration of unannotated exons is desired, users can assemble a

transcriptome de novo from the RNA-seq data under study with a tool like StringTie [67] and

provide it as input to the event identification module. junctionCounts begins inferring

pairwise events by generating a dictionary of annotated transcripts containing chromosome

and strand information, a sorted list of exon coordinates and a sorted list of accompanying

junction coordinates which are simply the inner coordinates of any pair of exons. It then

filters the transcript dictionary based on user-defined cutoffs with the following defaults:

exon length within 3 nt - 35 kb and intron length within 20 nt - 1 Mb. Then, it codifies
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transcripts as nodes based on exon boundaries, connected by edges based on junction

coordinates (Figure 1A). After establishing these simplified transcript structures, it makes

pairwise comparisons of overlapping transcripts and iteratively defines the unique nodes that

differentiate them; ultimately arriving at the minimal set of binary events that distinguish

alternative isoforms in a gene (Figure 1B). During this process, events are also classified

based on the nature of component features. The majority of event types in junctionCounts

correspond to types explicitly defined elsewhere [73], but it also adopts previous usage of the

term ”complex” [74,75] to refer to non-standard event types, distinguishing between internal

(CO), 5’-terminal (CF), and 3’-terminal (CL) contexts. Below are descriptions of the criteria

that define each event type:

A3 - alternative 3’-splice site: an event in which an upstream exon and the 3’-boundary of the

downstream exon are common to both isoforms, but the 3’-splice site is distinct. The form

containing the most upstream of the alternative 3’-splice sites is the included form.

A5 - alternative 5’-splice site: an event in which a downstream exon and the 5’-boundary of

the upstream exon are common to both isoforms, but the 5’-splice site is distinct. The form

containing the most downstream of the alternative 5’-splice sites is the included form.

AF - alternative first exon: an event in which each isoform has its own distinct 5’-terminal

exon; each with a distinct 5’-terminus and 3’-splice site. The exon immediately downstream

of the terminal exon is common to both isoforms. The form with the most upstream

5’-terminus is the included form.
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AL - alternative last exon: an event in which each isoform has its own distinct 3’-terminal

exon (i.e. each with a distinct 3’-terminus and 5’-splice site). The exon immediately upstream

of the terminal exons is common to both isoforms. The form with the most downstream

3’-terminus is the included form.

MX - mutually exclusive exons: an event in which a pair of 3’- and 5’-splice sites are

separated by a distinct exon in each isoform. The only requirement for the two exons being

distinct is that they do not share either splice site. It is possible for the alternative exons in an

MX event to partially and completely overlap, provided their boundaries do not coincide. The

form in which the alternative exon’s 3’-splice site is the most upstream of the mutually

exclusive exons is the included form.

RI - retained intron: an event in which a pair of adjacent exons are spliced together in one

isoform, but joined together in another by retention of the intron separating them. The form

with the retained intron is the included form.

SE - skipped exon: an event in which a pair of 3’- and 5’-splice sites are separated by a single

exon (the skipped exon) in one isoform and spliced directly together in another. The form

containing the intermediate exon is the included form.

MF - multiple alternative first exons: an event in which each isoform has its own distinct

5’-terminal set of one or more exons upstream of a single shared exon. This event type is

distinguished from AF in that either isoform must contain more than one unique exon. The

form with the most upstream 5’-terminus is the included form.
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ML - multiple alternative last exons: an event in which each isoform has its own distinct 3’-

terminal set of one or more exons downstream of a single shared exon. This event type is

distinguished from AL in that either isoform must contain more than one unique exon. The

form with the most downstream 3’-terminus is the included form.

MR - multiple retained intron: an event in which a set of three or more exons are spliced

together in one isoform, but connected in the other by two or more consecutive retained

introns. The form with the retained introns is the included form.

MS - multiple skipped exons: an event in which a pair of 3’- and 5’-splice sites are separated

by multiple exons in one isoform, and spliced directly together in another. The form

containing the intermediate exons is the included form.

CO* - complex internal: this is a general category for events that do not meet any of the

above criteria and do not involve transcript termini. The isoform with the longest spliced

length is the included form.

CF* - complex 5’-terminal: this is a general category for events that do not meet any of the

above criteria and involve alternative 5’ transcript termini. The form with the most upstream

5’-terminus is the included form.

CL* - complex 3’-terminal: this is a general category for events that do not meet any of the

above criteria and involve alternative 3’ transcript termini. The form with the most

downstream 3’-terminus is the included form.

42



*Complex event types capture less straightforward cases of binary splicing events that can

involve combinations of multiple alternative features (terminal and internal exons and/or

splice sites).

After generating the initial event dictionary, junctionCounts writes BED files for introns and

exons separately and uses bedtools intersect [45] with the arguments -wa -wb -s -f 1.00 to

identify introns that completely overlap an exon. These introns are then considered putative

RI events. Finally, junctionCounts organizes events by edges (junctions) that are unique to

their included and excluded forms, collapses any redundant events that have identical

included and excluded form edges, and filters them for events that can be quantified by

exon-exon junction reads alone (or by exon-intron junction reads in the case of RI/MR

events).

Alternative event quantification in junctionCounts

junctionCounts employs a junction read-centric approach to alternative event quantification.

First, the event quantification module, junctionCounts.py, generates a nested containment list

[76] of all event junction coordinates. Then, for each read or read pair, junctionCounts

considers matches between splice junctions identified in the alignment and event splice

junctions, as well as overlaps between contiguous mapped read sequence and informative

exon-intron junctions (Figure 1C). Informative exon-intron junctions are those that are

overlapped by an exon in the alternative isoform. Reads overlapping such an exon-intron

junction are considered consistent with the alternative isoform. Key examples of this occur in

the excluded isoform of RI events, which are overlapped by the exon of the included form.

After establishing the event isoforms with which a read is consistent, junctionCounts attempts

to disambiguate the read assignment using exon-exon and exon-intron junctions that are
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unique to specific isoforms, when possible. With this approach, junctionCounts goes beyond

simple junction-by-junction read counting. Both the event and the informative exon-intron

junction definition prohibit scenarios in which reads are assigned to both isoforms of the

same event. With read-to-event isoform consistencies established, read counts are tallied for

each exon-exon and informative exon-intron junction for each isoform of each event. A

percent spliced in (PSI or Ψ) value is calculated for all pairwise combinations of included and

excluded junction counts, yielding the ratio between an included form’s junction counts and

the sum of the included and excluded form’s junction counts:

Ψ
𝑘
 =  

𝑛
𝑖

𝑛
𝑖
 + 𝑚

𝑗

(1.0)

Where ni is the number of reads assigned to the included form junction i and mj is the number

of reads assigned to the excluded form junction j. A set of PSI values is established for each

sample. Additionally, junctionCounts calculates the minimum (Ψmin), maximum (Ψmax) and

span PSI (Ψspan):

(1.1) (1.2) (1.3)Ψ
𝑚𝑖𝑛

 =  𝑚𝑖𝑛(Ψ
𝑘
) Ψ

𝑚𝑎𝑥
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𝑘
) Ψ

𝑠𝑝𝑎𝑛
 =  Ψ

𝑚𝑎𝑥
− Ψ

𝑚𝑖𝑛

The Ψspan serves as a rough measure of within-sample uncertainty. junctionCounts reports

these values as well as the included and excluded junction read counts (n and m in Equation

1.0) for each event. As an optional method of assessing within-sample uncertainty,

junctionCounts offers bootstrap quantification, which repeats a user-specified number of

rounds of bootstrap read selection and re-quantification. For each bootstrap round,

junctionCounts reports all measurements, in addition to the initial non-resampled

quantification.
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Statistical testing of events between conditions in experiments with at least two replicates per

condition is done with the condition comparison module, DEXSeq_comparison.R, which

employs DEXSeq [49]. First, it produces a DEXSeq-compatible GFF file that defines the

included and excluded form of each event as pairs of “exonic parts”. It subsequently writes

included and excluded form junction counts per sample as separate count files. DEXSeq then

normalizes included and excluded junction counts as per its documentation [49], and

estimates included and excluded form junction count dispersions using a Cox-Reid adjusted

profile likelihood estimation followed by fitting of a dispersion-mean relation to the

individual dispersion values and shrinkage of per-form estimates toward fitted values. Next,

DEXSeq compares the deviances of the included and excluded form junction counts in each

event across conditions using a χ2-distribution to produce p-values for each form. Event-level

Q-values are then calculated from the p-values with the Benjamini-Hochberg procedure.

Finally, events are filtered based on user-defined cutoffs with the following defaults: ≥ 0.1

mean PSI in at least 1 condition, ≥ 15 total mean junction counts across all replicates, and ≤

0.03 span PSI for RI/MR events. The final results provide event coordinates, quantification

results, and classification of events as significant based on user-defined cutoffs with the

following defaults: |dPSI| ≥ 0.1 and Q-value ≤ 0.05.

Description and validation of partner utilities: cdsInsertion and findSwitchEvents,

which couple alternative splicing events to isoform-level impacts to the CDS

cdsInsertion translates transcripts in silico from user-provided overlapping start codons and

determines resulting transcript characteristics including: UTR lengths, putative protein

sequences, the presence of PTCs, PTC distances from downstream splice sites and more

(Figure 1D). For a given codon and transcript, cdsInsertion first checks whether the start

codon’s first position overlaps the genomic coordinates of a transcript’s exons. If it does, the
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start codon sequence is checked in the spliced transcript’s sequence. Currently, only AUG

initiation is supported. If the start codon sequence is AUG, cdsInsertion translates the spliced

transcript in silico by looking for an in-frame downstream stop codon, which can be: UAA,

UGA or UAG. If a downstream stop codon is found, the resulting CDS is recorded along with

associated information such as CDS length, coding sequence, PTC presence and PTC

distance. If more than one CDS is found within the transcript, additional CDS features are

associated to the given transcript as distinct CDS features. If no in-frame downstream stop

codon is found, the transcript is recorded as a possible NSD substrate. cdsInsertion outputs a

table with summary information about each transcript and a separate GTF file for potential

non-PTC, PTC, and non-stop transcript-CDS combinations. The GTF file contains separate

transcript records for every CDS-transcript combination. Optionally, cdsInsertion can

additionally output bigGenePred files which enable codon visualization on the UCSC

Genome Browser. cdsInsertion further outputs a pickled Python dictionary containing all of

the aforementioned information associated with each transcript.

Its partner utility, findSwitchEvents, takes an IOE file; a format originally introduced by

SUPPA [77], which is generated by junctionCounts to associate events with transcripts, and

the pickled Python dictionary containing transcript CDS information and associated details

from cdsInsertion. With this information, it evaluates whether isoforms with a specific

property (NMD, NSD or unique CDS) are exclusive to one form of an alternative event

(Figure 1E). Switch events are AS events that meet this condition, meaning that one (either

the included or excluded) form is coupled with a switch to PTC-containing, non-stop or

noncoding isoforms within a gene. We evaluated these tools on two published datasets. First,

we procured RT-PCR data for well-characterized NMD targets and accompanying RNA-seq

data from HEK-293 cells upon UPF1 knockdown versus non-targeting siRNA [78]. We then

ran junctionCounts and its partner utilities with default settings on the RNA-seq data to
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predict NMD switch events within the NMD targets verified with RT-PCR in the original

study. Out of the 13 predicted NMD switch events associated with the NMD targets, 11 had

the expected dPSI directionality (Figure 2L). Additionally, we used the same approach on a

dataset in which treatment with emetine, a translation elongation inhibitor, was reported to

increase the abundance of NMD substrates in HEK-293 T cells [50]. Indeed, cdsInsertion and

findSwitchEvents identified 636 potential NMD switch events with significant changes in

splicing (|dPSI| ≥ 0.1 and Q-value ≤ 0.05) upon emetine treatment, out of which 472 (74.2%)

exhibited the expected dPSI directionality (Figure 2M, N).

Benchmarking performance across five AS analysis tools

junctionCounts was evaluated on its performance relative to four established splicing analysis

tools: MAJIQ v2.5.6.dev1+g8423f68b [79], rMATS-turbo v4.3.0 [80], splAdder v3.0.4 [81]

and Whippet v1.6.2 [71]. We generated four paired-end simulated datasets from real

RNA-seq data using polyester v1.36.0 [82] with the arguments: read.length = 100,

fragment.length.min = 100, fragment.length.max = 500, fragment.length.mean = 180,

fragment.length.sd = 40 and simulated.sequencing.error = TRUE. Three of the simulated

datasets: 25M, 50M and 75M, were used to evaluate performance at different library depths

(25, 50 and 75 million reads per library respectively). These datasets were modeled on mouse

cerebellum and liver RNA-seq data in triplicate for each cell type from Vaquero-Garcia et al.

(2016) [79], who replicated the experiments in Zhang et al. (2014) [83]. The fourth simulated

dataset was modeled on human RNA-seq data from HeLa cells treated with either

spliceostatin A or DMSO [78] at 50 million reads per library with triplicates for each

condition. This dataset introduced a larger pool of potential AS events to test compared to the

murine simulated datasets, and importantly increased the total number of MR events tested.
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To generate these simulated datasets, we first downloaded the FASTQ files for the

aforementioned mouse and human RNA-seq data [78,79] from their respective data

repositories and verified their quality with FASTQC v.0.12.1. Next, we mapped them to their

respective genomes and transcriptomes (GRCm38.p6 with the GENCODE vM20 primary

assembly annotation for mouse data and GRCh38 with the GENCODE v41 primary assembly

annotation for human data) [72] with STAR v2.7.8a [39]. Then, we quantified transcript-level

expression with Salmon v.1.10.2 [84]. The transcript-level quantification results were used as

input for polyester to simulate RNA-seq libraries reflecting the exact transcripts per million

(TPM) specified for each sample in each simulated dataset – thus producing datasets with

known ground truth transcript expression values. Ground truth PSI and dPSI values for

junctionCounts-defined AS events were calculated from the TPM values with a custom

Python script that leverages the event-transcript associations in the junctionCounts IOE file

using the following equation:

(2.0)Ψ =  𝑖=1

𝑛

∑ 𝑇𝑃𝑀
𝑖

𝑖=1

𝑛

∑ 𝑇𝑃𝑀
𝑖
 + 

𝑗=1

𝑚

∑ 𝑇𝑃𝑀
𝑗

where transcripts i in the numerator are those consistent with the included form of the event,

and transcripts j in the denominator are those consistent with the excluded form of the event.

We then mapped the simulated data to the appropriate genomes with STAR [39] and

evaluated each tool’s performance on the resulting BAMs (and FASTQ files in the case of

Whippet). All tools were run on a System76 Lemur Pro laptop with an Intel® Core™ Ultra 5

125U @4.3GHz processor, 14 total cores and 40GB RAM. The total time elapsed for all steps

of each tool’s pipeline and the memory peak among all steps of each tool’s pipeline were

measured with the default linux package “time” (

http://man7.org/linux/man-pages/man1/time.1.html) with the “-v” flag. Below are the run
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parameters for each tool with specific arguments and flags noted, excluding arguments related

to user-specific input/output files and directories. The following variables refer to either the

mouse or human versions of genome sequences and annotations: “$GTF” (GENCODE

vM20/GENCODE v41 primary assembly annotation GTF) “$GFF3” (GENCODE

vM20/GENCODE v41 primary assembly annotation GFF3) and “$FASTA”

(GRCm38.p6/GRCh38 genome sequence FASTA).

junctionCounts was run with default settings:

1. Event identification step: infer_pairwise_events.py --transcript_gtf $GTF

2. Event quantification step: junctionCounts.py

3. Condition comparison step: DEXSeq_comparison.R

MAJIQ:

1. Event identification step: majiq build $GFF3 --minreads 5

2. Event quantification step: majiq psi

3. Condition comparison step: majiq deltapsi

4. Produce output TSV file: voila tsv --changing-between-group-dpsi 0.1 --threshold 0.1

5. Modulize Voila files: voila modulize --show-all --changing-between-group-dpsi 0.1

rMATS-turbo:

1. All steps: rmats.py --gtf $GTF -t paired --libType fr-secondstrand --readLength 100

--variable-read-length --nthread 4

splAdder:

1. Event identification and quantification step: spladder build -a $GTF --remove-se

--validate-sg-count 3 --confidence 2

2. Condition comparison step: spladder test --confidence 2

Whippet:
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1. Preparation step (not included as part of Whippet’s time/memory evaluation because

it’s not a required step): generate a merged, deduplicated and indexed BAM file from

all the sample BAMs as input with samtools merge, sort, rmdup and index

commands.

2. Event identification step: julia whippet-index.jl --fasta $FASTA --bam

merged.sort.rmdup.bam --gtf $GTF --suppress-low-tsl --bam-min-reads 5

3. Event quantification step: julia whippet-quant.jl --biascorrect

4. Condition comparison step: julia whippet-delta.jl

The next step to evaluate performance on the simulated datasets was to identify events

defined by each tool that approximately reproduce the junctionCounts-defined events for

which we have ground truth PSI values. Each tool defines events with their own unique and

valid approach, leading to many events with slightly different exon/splice site/intron node

edges across tools. Therefore, each tool was evaluated on its individual subset of events that

matched junctionCounts-defined events in the simulated datasets with ≥ 95% overlap at each

participating alternative feature. Performance at the event detection and quantification level

(PSI) and at the event change level (dPSI) were then assessed in terms of the following

metrics with specific adjustments to maximize fairness:

(2.1) (2.2) (2.3)𝑇𝑃𝑅 =  𝑇𝑃
𝑇𝑃 + 𝐹𝑁 𝐹𝐷𝑅 =  𝐹𝑃

𝐹𝑃 + 𝑇𝑃 𝑀𝐴𝐸 =  ∑|𝐺𝑇 − 𝑂𝐵|
𝑛

(2.4) (2.5)𝑃𝑃𝑉 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃  𝑁𝑃𝑉 = 𝑇𝑁

𝑇𝑁 + 𝐹𝑁

For event detection and quantification (PSI) metrics, we measured: sensitivity (TPR), false

discovery rate (FDR) and mean absolute error (MAE). True positives (TP) were defined as

events for which the ground truth (GT) and a given tool’s measured/observed PSI values (OB)

were both > 0. False negatives (FN) were defined as events with GT PSI > 0 and OB PSI = 0.

False positives (FP) were defined as events with GT PSI < 0.05 and OB PSI ≥ 0.05. We chose
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this definition of FP because each tool commonly reported miniscule OB PSI values < 0.05

for events with GT PSI = 0, which would in most normal use cases be excluded or filtered in

subsequent analyses unless they had more substantial (typically ≥ 0.1) PSI values in another

condition. TPR and FDR were calculated with the described definitions of TP, FP and FN.

MAE was calculated by summing the absolute differences between GT and OB PSI values for

TP events and dividing it by the number of observations, n.

For event change (dPSI) metrics, we measured: positive predictive value (PPV), negative

predictive value (NPV), FDR and MAE. Each metric was measured at cumulative |dPSI|

thresholds starting at 0.1 and increasing stepwise by 0.05 to 1.0, such that each measurement

considers the subset of events with |GT dPSI| both at and below the given threshold. Each tool

was evaluated based on its accuracy of significant/insignificant calls and quantification of

event changes. Ground truth events with |GT dPSI| ≥ 0.1 were considered significant.

Therefore, each tool’s condition comparison step was given the appropriate argument

specifying a dPSI threshold of 0.1 to be considered statistically significant. Significant events

were defined for each tool as those with |OB dPSI| ≥ 0.1 and the accompanying tool-specific

statistical cutoff: Q-value ≤ 0.05 (junctionCounts), probability_changing ≥ 0.95 (MAJIQ),

p-value ≤ 0.05 (rMATS-turbo), adjusted p-value ≤ 0.05 (splAdder) or probability ≥ 0.95

(Whippet). We did not measure TPR for the dPSI evaluation because while a given event may

meet the |GT dPSI| ≥ 0.1 threshold across conditions, each tool’s statistical evaluation of OB

dPSI measurements may justifiably call the event statistically insignificant based on

numerous factors including junction read support and dispersion characteristics. To mitigate

this possibility, we filtered the ground truth events for those with minimum total junction read

support ≥ 15 in both conditions. For this test, TP were defined as events with either GT dPSI

≥ 0.1 and OB dPSI ≥ 0.1 or GT dPSI ≤ -0.1 and OB dPSI ≤ -0.1 (with the tool-specific

statistical cutoff described earlier). FP were defined as events with |GT dPSI| < 0.02 that were
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called significant by a given tool. We chose this definition of FP because events with |GT

dPSI| < 0.02 were a higher-confidence “not changing” set of events which each tool should

correctly identify as insignificant. TN were defined as events with |GT dPSI| < 0.1 that were

called insignificant by a given tool. FN were defined as events with |GT dPSI| ≥ 0.1 that were

called insignificant by a given tool. PPV, NPV and FDR were calculated with the described

definitions of TP, FP, TN and FN. MAE was calculated as described earlier for the PSI

metrics, but at cumulative |GT dPSI| thresholds.

Analysis of interspecies and temporal alternative splicing dynamics during neuronal

differentiation in primate PSCs

We analyzed RNA-seq data from human and rhesus macaque embryonic stem cells (ESCs) as

well as chimpanzee and orangutan induced pluripotent stem cells (iPSCs) [51]. Field et al.

induced differentiation of the stem cells to cortical neurospheres to model prenatal brain

development. Duplicate RNA-seq libraries from each time point (0, 1, 2, 3, 4 and 5 weeks of

neuronal differentiation) were downloaded as compressed FASTQ files from SRA,

deduplicated and mapped with STAR to the appropriate genome: GRCh38 [72], panTro4

[85], ponAbe2 [86] and rheMac8 [87] for human, chimpanzee, orangutan, and rhesus

macaque respectively. The GENCODE v27 basic gene annotation [72] was used as a basis for

CAT [88] to generate gene annotations of similar complexity for all species. To reduce the

complexity of the input transcriptomes, only basic transcripts were retained. Following this

filtration, these annotations were used as input along with the mapped RNA-seq reads for

StringTie v1.3.6 [67] to assemble unannotated transcripts. Using the StringTie merge

command, comprehensive gene annotations were produced for each species.

To identify orthologous AS events, the whole genome sequences of human (GRCh38),

chimpanzee (PanTro4), orangutan (ponAbe2), and rhesus macaque (rheMac8) were mapped
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to one another using minimap2 v2.11-r797 [89] with parameters --cs and -asm20. The

resulting mappings were used to lift the coordinates of alternative event exons to other

species with a modified version (altered such that the input BED file coordinates are

semicolon-delimited rather than underscore-delimited in the name field of the output BED

file) of the minimap partner utility paftools. Events were reassembled from the lifted

coordinates of component exons, and checked for exon count and event type-concordance

with the original event. Lifted events passing these checks were proposed as putative

orthologs, and then checked against events natively identified in the target species to identify

orthologous relationships. Non-one-to-one relationships were removed from consideration.

Temporal (time points 1-5 weeks of neuronal differentiation versus t0) and interspecies

(paired time points compared across species) AS analyses were performed using

junctionCounts. Events with |dPSI| ≥ 0.1 and Q-value ≤ 0.05 across conditions were

considered significantly different. Events exhibiting significant splicing differences in at least

one temporal comparison for each species were clustered by their temporal PSI trajectories

with CLARA (cluster v2.1.6) [90] using euclidean distance and with 500 iterations.

Conservation of primate temporal splicing dynamics was assessed based on concordance with

human temporal splicing dynamics with regard to PSI measurements. Genes with mean |dPSI|

≤ 0.1 for events in chimpanzee, orangutan and rhesus macaque relative to human in pairwise

comparisons at each time point were categorized as genes with conserved splicing, while

those with mean |dPSI| ≥ 0.3 were categorized as genes with non-conserved splicing. Gene

ontology analyses for genes in the temporal event clusters and conserved and non-conserved

splicing gene sets was done with Metascape [91].

Functional splicing analyses included assessment of switch events and exonic features.

Switch events, which we define as events in which all transcripts consistent with one
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alternative form contain a particular feature while all transcripts consistent with the other

form do not, were identified using cdsInsertion and findSwitchEvents

(https://github.com/ajw2329/cds_insertion). In NMD switch events one form, but not the

other, introduces a premature termination codon (in-frame stop codon ≥ 55 nt upstream of the

final exon-exon junction when translated in silico from any overlapping consensus coding

sequence start codon). In NSD switch events one form, but not the other, results in transcripts

lacking an in-frame stop codon. In coding (to noncoding) switch events one form, but not the

other, results in transcripts lacking a coding sequence. Exon ontology analysis was performed

with Exon Ontology [92] using the included form coordinates of alternative exons as the test

list, and the excluded form coordinates as the background.

Data sources

RNA-seq data from mouse cerebellum and liver cells [83] and RNA-seq data from

spliceostatin A and DMSO-treated HeLa cells [78] was used to generate simulated data for

the benchmarking experiment. RNA-seq data and NMD target RT-PCR data from UPF1

siRNA and non-targeting siRNA-treated HEK-293 cells [93] and RNA-seq data from emetine

and DMSO-treated HEK-293 T cells [50] was used to validate cdsInsertion and

findSwitchEvents NMD predictions. RNA-seq data from human and rhesus macaque ESCs as

well as chimpanzee and orangutan iPSCs [51] was used to demonstrate junctionCounts’

utility in a variety of applications.

RESULTS

junctionCounts and its partner utilities facilitate user-friendly isoform-level analysis

junctionCounts can characterize alternative events in any user-provided transcriptome

annotation. It defines the minimal set of binary splicing events that distinguish alternative
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isoforms within gene models and classifies events into event types that range from simple,

canonical events to complex events that capture coordinated splicing of multiple event

features comprising multiple event types. To be clear, in the context of this work, we define

complex events as those involving multiple alternative feature types (i.e. a CF event

representing coordinated AF-SE-A3 splicing), which excludes MS events, for example. Other

AS analysis tools, including MAJIQ [79] and Whippet [71], can also characterize complex

events. However, junctionCounts uniquely summarizes complex event junction read support

within an easily interpretable binary context; assigning a single PSI value to the included and

excluded form of events rather than to individual splice sites or features. Beyond alternative

event definition and classification, junctionCounts’ partner utilities enable valuable prediction

of functional outcomes, including NMD, by connecting individual splicing events to their

effects on the CDS at the isoform level. cdsInsertion derives CDS information from a

transcriptome annotation and findSwitchEvents uses junction coordinate keys to associate the

included and excluded form of events to their respective alternative isoforms. Altogether,

junctionCounts presents an easy to install, easy to use set of tools with relatively few

dependencies and the novel capability of event-to-isoform CDS characterization within the

AS analysis milieu.

junctionCounts accurately quantifies alternative splicing events

We evaluated junctionCounts’ performance on simulated data, with known ground truth PSI

values for junctionCounts-defined events, modeled on real RNA-seq data with that of four

established AS analysis tools: MAJIQ [79], rMATS-turbo [80], splAdder [81] and Whippet

[71]. We generated four simulated datasets in total: three datasets at 25, 50 and 75 million

reads per library were modeled on mouse cerebellum and liver RNA-seq data [79] with

triplicates per cell type to evaluate performance at different library sizes. The fourth dataset
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was modeled on human RNA-seq data at 50 million reads per library with triplicates for two

conditions: spliceostatin A (SSA) and DMSO treatment. This dataset provided a larger pool

of events to test relative to the murine datasets, including over 2000 MR events of which

there were less than 100 in the murine datasets. Each tool was run on a laptop, as described in

the Materials and Methods, and the time from start to finish of all analysis steps and the peak

memory cost at any point during that time were recorded (Figure 2A, B). junctionCounts

exhibited the median time and memory cost among the other tools, which scaled with library

size and transcriptome complexity for all tools.
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Figure 2. Benchmarking experiment to evaluate junctionCounts performance relative to
similar tools. Four simulated datasets were generated: 25M, 50M and 75M refer to the
library depths of samples simulated from mouse cerebellum and liver RNA-seq in triplicate
for each cell type. SSA refers to samples simulated from human cells treated with
spliceostatin A or DMSO in triplicate for each condition, at 50M reads per library. dPSI
measurements were made across cell types in the mouse data and across conditions in the
human data respectively. (A) Measurements of elapsed wall clock time upon running full tool
pipelines to completion. (B) Peak memory consumption at any point of each tool’s full
pipeline. (C) Upset plot showing the intersection of each tool’s alternative events with
junctionCounts-defined ground truth events in the 25M, 50M and 75M datasets. Gray bars
represent all events detected by a given tool or set of tools which had PSI > 0 in at least 1
condition. Black bars represent events determined to be differentially spliced across
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conditions by a given tool or set of tools (|dPSI| ≥ 0.1 and the tool’s associated statistic
meeting a probability of 0.95 or a FDR/p-value of 0.05 for the event). The horizontal barplot
on the left shows the number of events that didn’t overlap between each tool and
junctionCounts – or in the case of junctionCounts itself, the number of events that were not
reproduced by any other tool. (D) Pearson correlation coefficient of measured PSI values for
each sample compared with its cognate ground truth (6 total replicates and comparisons per
dataset). (E) Sensitivity and (F) false discovery rate of event detection. (G) Mean absolute
error of PSI measurements. Error bars for (D, E and G) depict standard deviation, while those
for (F) show the full range of observations. (H) Pearson correlation coefficient of measured
dPSI values derived from each tool’s respective condition comparison steps with
accompanying statistical filtering (|dPSI| ≥ 0.1 and Q-value/p-value ≤ 0.05 or probability ≥
0.95). (I) Predictive receiver operating characteristic (PROC) showing positive predictive
value (PPV) and negative predictive value (NPV) of significant dPSI calls at cumulative
ground truth dPSI thresholds. (J) False discovery rate of dPSI calls at cumulative ground truth
dPSI thresholds. (K) Mean absolute error of dPSI measurements at cumulative ground truth
dPSI thresholds. (I-K) Only the 75M and SSA datasets (solid and dotted lines respectively)
are shown because the 25M and 50M datasets had nearly identical curves to 75M. (L)
RT-PCR log2(fold change) of NMD targets in UPF1-KD HEK-293 cells vs. DMSO compared
with dPSI measurements of junctionCounts-predicted NMD events within those targets. (M)
Volcano plot of junctionCounts-predicted NMD events in emetine-treated HEK-293 T cells
vs. DMSO. (N) The number of significant predicted NMD events stratified by dPSI
directionality upon emetine treatment in HEK-293 T cells. Events in (L-N) are categorized as
included or excluded NMD form, meaning that the included form or the excluded form,
respectively, is predicted to confer NMD to the resulting transcript. Performance metrics in
(E-G and I-K) are described in detail in the Materials and Methods.

Each publicly available AS analysis tool identifies and quantifies AS events within its own

event type repertoires and definitions, thus complicating their comparison. rMATS-turbo and

splAdder are limited to non-terminal event types, while junctionCounts, MAJIQ and Whippet

are each capable of characterizing terminal events and additionally non-canonical, complex

event types involving coordinated splicing of multiple alternative feature types. Each tool’s

set of events identified from the simulated data were matched to junctionCounts-defined

events to compare ground truth to observed PSI values. In order for an event, identified by a

given tool, to match with a junctionCounts event, the coordinates of its participating features

each had to overlap by ≥ 95%, which provides latitude for minute variation of event

exon/intron nodes across tools. Despite this flexibility, no complex events across

junctionCounts, MAJIQ or Whippet met the requirements for comparison, which reflects
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each tool’s unique approach to event definition, even with canonical event types. The mean

overlap of junctionCounts events with other tools across the four simulated datasets was: 78%

for MAJIQ, 75% for rMATS-turbo, 51% for splAdder and 13% for Whippet – amounting to

thousands of events per tool. Each tool was tested individually on the subset of

junctionCounts-defined events they approximately reproduced (Figure 2C, Supplemental

Figure 1A-E).

We first measured performance at the PSI level (in-depth descriptions of testing procedures in

Materials and Methods). At the PSI level, we evaluated each tool’s event detection and

quantification capabilities. Here, we defined sensitivity (true positive rate; TPR) as the

proportion of events detected that had both a measured and ground truth PSI > 0. In this

context, the sensitivity test measured a tool’s ability to correctly assign read support to an

event rather than its ability to reproduce ground truth events. Next, we tested false discovery

rate (FDR) as the proportion of events that had a measured PSI ≥ 0.05 and a ground truth PSI

< 0.05 relative to all events with a measured PSI > 0. This threshold was applied because

each tool commonly misattributed miniscule PSI values to events with ground truth PSI 0,

which in most normal use cases isn’t a problem as final results are typically filtered for events

meeting a minimal PSI value among conditions or replicates. Instead, this FDR test quantified

the rate at which tools misattributed read support to a substantial degree (≥ 0.05 PSI) that

would be problematic in typical AS analysis settings. Finally, we tested the accuracy of true

positive event (measured and ground truth PSI > 0) quantification in terms of mean absolute

error (MAE). junctionCounts generally represented the median of the five tools across these

metrics (Figure 2D-G), with the caveat that it was tested on the largest number of events and

event types (Supplemental Figure 1A-E). When stratified by event type, we found that

junctionCounts consistently maintains a FDR < 3% and the largest area under curve of
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cumulative mean absolute error distribution relative to the other tools for AF, AL, MX and

MS event types among those directly compared (Supplemental Figure 1F-I).

Next, we assessed performance at the event change (dPSI) level, focusing on each tool’s

accuracy in calling and quantifying significant and insignificant event changes at cumulative

dPSI thresholds. We measured positive predictive value (PPV), which is the proportion of

correct significant event calls made by a given tool that have |ground truth dPSI| ≥ 0.1 relative

to all significant event calls and negative predictive value (NPV), or the proportion of correct

insignificant event calls with |ground truth dPSI| < 0.1 relative to all insignificant event calls.

We also measured FDR, which we defined as the proportion of incorrect significant event

calls with |ground truth dPSI| < 0.02 among all significant calls, and finally the MAE of

measured vs. ground truth dPSI values. junctionCounts had the highest dPSI Pearson

correlation coefficient, just under 0.8, among the other tools on the murine datasets, and

notably never surpassed 0.1 dPSI MAE at any dPSI threshold, while Whippet, rMATS-turbo

and splAdder all surpassed 0.3 dPSI MAE on the SSA dataset. Whippet and junctionCounts

maintained the smallest distance between cumulative PPV/NPV and FDR curves across the

75M and SSA datasets, while junctionCounts achieved the minimal distance of cumulative

MAE curves among the other tools across datasets (Figure 2H-K). Taken together,

junctionCounts had the most consistent performance across dPSI metrics between murine and

human datasets compared to the other tools.

Characterizing temporal and species-specific alternative splicing dynamics during

primate neuronal differentiation

After establishing that junctionCounts competently characterizes AS in simulated data, we

next wanted to examine its utility on real data. To that end, we analyzed a primate neuronal
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differentiation RNA-seq dataset comprising human and rhesus macaque ESCs as well as

chimpanzee and orangutan iPSCs [51] (Figure 3A). We hypothesized that because the four

primates share 90-99% genome sequence conservation [94], junctionCounts should identify a

substantial number of orthologous AS events across the four primates [95]. We further

expected to observe substantial species-specific splicing dynamics during neuronal

differentiation as previous interprimate studies have reported [95].

Figure 3. Application of junctionCounts to a primate neuronal differentiation time
course experiment. (A) Schematic of five-week chimpanzee, human, orangutan and rhesus
macaque neuronal differentiation from pluripotent stem cells and subsequent RNA-seq
analysis workflow. (B) Venn diagram of the events identified by junctionCounts in each
primate transcriptome. (C) The total number of significant events (|dPSI| ≥ 0.1 and Q-value ≤
0.05 in at least 1 temporal or interspecies comparison) by event type for each species. (D) The
fraction of events that were significantly different across species, time or both factors. (E)
Evaluation of conserved splicing by event type, measured by |dPSI| against human PSI
values.
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We used CAT [88] on the GENCODE v27 [72] basic gene annotation to generate gene

annotations of similar complexity for all species. We then used StringTie v1.3.6 [67] on the

resultant gene annotations along with the mapped RNA-seq reads to assemble unannotated

transcripts. Thus we produced comprehensive gene annotations for each species. Using

junctionCounts, we identified approximately 143K, 111K, 151K and 113K possible events in

the chimpanzee, human, orangutan and rhesus macaque gene annotations respectively. And to

identify orthologous AS events, we performed pairwise mapping of the whole genome

sequences of human (GRCh38), chimpanzee (PanTro4), orangutan (ponAbe2), and rhesus

macaque (rheMac8) using minimap2 [89]. Using the mappings, we lifted the coordinates of

alternative event exons to other species using paftools. We then reassembled events from the

lifted coordinates of component exons, assessed exon count and event type-concordance with

the original events and checked these against events identified in the target species to

establish orthologous relationships for which only one-to-one relationships were considered.

In all pairwise interspecies event set comparisons, at least 40% of events were not

species-specific, with over 35K orthologous events common to all four primates (Figure 3B).

We next quantified these events with junctionCounts which uses junction reads from the

mapped RNA-seq data, after which we performed event-level – statistically tested with

DEXSeq v3.19 [49] – pairwise temporal comparisons (weeki versus week0 of neuronal

differentiation) and interspecies comparisons (between corresponding time points; weeki

versus weeki) with duplicates per condition. We identified 61K, 50K, 59K and 51K events

that were significantly differentially spliced (|dPSI| ≥ 0.1 and Q-value ≤ 0.05) in at least one

temporal or interspecies comparison in chimpanzee, human, orangutan and rhesus macaque

respectively. We observed that the majority of splicing changes were in interspecies

comparisons (Figure 3D), with RI, MF, SE and AF constituting the most commonly

differentially spliced event types (Figure 3C). Intriguingly, when we compared orthologous
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event PSI values by event type between each primate and human across corresponding time

points – as a proxy for conservation of splicing dynamics – we found that complex event

types (CF, CL and CO) displayed the closest central tendency of PSI values to those of human

cells (Figure 3E). This finding may lend credence to the value of characterizing complex

event types and their involvement in primate neuronal differentiation.

junctionCounts uncovers novel splicing dynamics in genes relevant to neuronal

differentiation and function

Among the 17K significant events (|dPSI| ≥ 0.1 and Q-value ≤ 0.05 in at least one

comparison) that were orthologous in all four primates (Figure 4A), we hypothesized that

junctionCounts would both recapitulate previously reported splicing phenomena and identify

novel events in genes involved in neuronal differentiation and function. Here, we highlight

several such findings. Amphiphysin 1 (AMPH) and Amphiphysin 2 (BIN1) are both enriched

in the mammalian brain and participate in synaptic vesicle endocytosis [96,97]. Splice

variants of BIN1 have been reported in the brain as well as other tissue types (43), but the

implications of AS in AMPH1 remain unexplored. We report a SE event involving exon 17 of

AMPH1 (Figure 4B), which is the only scenario of AS that affects the CDS among AMPH1

isoforms annotated in GENCODE V44. According to Exon Ontology [92], AMPH1 exon 17

encodes an intrinsically unstructured polypeptide region which contains an

O-phospho-L-serine modification site. This exon is increasingly spliced in over the time

course with species-specific trajectories and magnitudes, possibly indicating a functional role

for AMPH1 exon 17 inclusion in neurons.
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Figure 4. junctionCounts uncovers conserved and species-specific temporal splicing
patterns among orthologous splicing events across the four primates. (A) Heatmap of
Z-score-scaled PSI values for significant orthologous splicing events (|dPSI| ≥ 0.1 and
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Q-value ≤ 0.05 in at least 1 temporal or interspecies comparison) with each row
corresponding to the same event across all four primates. (B) Mean PSI trajectories and
RNA-seq coverage at a skipped exon event in AMPH with species-specific temporal splicing
patterns across chimpanzee, human and rhesus macaque. (C) Mean PSI trajectories and
RNA-seq coverage at a skipped exon event in PACSIN2 with a conserved temporal splicing
pattern. (D) Mean PSI trajectories and RNA-seq coverage at an PTC-containing skipped exon
event in ERC1 with a conserved temporal splicing pattern. (E) UCSC Genome Browser
snapshot of human read support at a complex first exon event in DUT, which measures the
inclusion of one of several distal alternative first exons and its subsequent second exon versus
the proximal first exon which overlaps with the alternative second exon. The subpanel to the
left shows the mean PSI of the included form at each time point of neuronal differentiation in
each primate. In panels (B), (C) and (D) the included form of the alternative event contains
both the dark and light gray components, while the excluded form only contains the dark gray
components. In panel (E), the same is true except the included form does not contain the dark
gray fragment at the 5’ end of the central exon. In panels (B), (C), (D) and (E), the upright
and inverted arches represent junction read coverage for the included and excluded form
respectively.

Protein kinase C and casein kinase II substrate in neurons 2 (PACSIN2) is the only known

member of the PACSINs whose expression isn’t cell type-specific, in humans. All three

PACSINs have been reported to play a role in trafficking AMPA receptors in and out of

synapses, which is a crucial factor in important neuronal processes including synaptic

transmission and plasticity [98,99]. We identified a SE event involving exon 9 of PACSIN2

for which the included form uniformly decreases from the dominant to the minor form over

the course of neuronal differentiation (Figure 4C). Similarly to the aforementioned SE event

in AMPH1, this SE event is the only CDS-altering event among PACSIN2 isoforms

annotated in GENCODE V44. According to the GTEx V8 RNA-Seq Read Coverage by

Tissue track on the UCSC Genome Browser [100], PACSIN2 exon 9 inclusion is dominant in

all non-neuronal tissue types, while the excluded form is dominant in 9 out of 14 neuronal

tissue types. These observations make a compelling case for neuron-specific AS of PACSIN2,

resulting in the preferential exclusion of exon 9 in several neuronal cell types.

We discovered a conserved ERC1 PTC-inducing SE event involving exon 18 in isoform

ENST00000355446.9 (in GENCODE V44), that to our knowledge has not been previously
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reported by other groups (Figure 4D). Inclusion of this exon may produce an NMD substrate,

but could potentially yield a functional protein isoform at least 30 residues shorter at the

C-terminus relative to isoforms consistent with the excluded form. ERC1 has been described

to undergo neuron-specific AS and is implicated in important functions including

neurotransmitter release and neuronal differentiation [101,102]. Over the five week course of

neuronal differentiation, the PTC-inducing SE event follows a consistent pattern of becoming

increasingly spliced in across the four primates. Interestingly, AS at the C-terminus of Erc1 in

rats was shown to generate two isoforms: Erc1a and Erc1b. The latter of which is the

brain-specific, shorter isoform that alone can bind to presynaptic active zone proteins, called

RIMs, that regulate neurotransmitter release [103]. Taken together, these observations suggest

a potential functional role for the inclusion of the ERC1 poison exon in differentiating

neurons.

Deoxyuridine 5′-triphosphate nucleotidohydrolase (DUT) is an important enzyme involved in

genome integrity maintenance that prevents uracil misincorporation into DNA. DUT

expression has been shown, through knockout studies, to be essential to embryonic

development and especially to later stages of differentiation in mice [104]. We identified a CF

event in DUT (Figure 4E), in which the included form corresponds to the DUT-M isoform

and the excluded form corresponds to the DUT-N isoform [105]. The DUT-M isoform

localizes to mitochondria via a mitochondrial targeting presequence located in the first exon

consistent with the included form of the CF event and is expressed constitutively. The DUT-N

isoform localizes to the nucleus and its expression is induced during the G0 to S phase

transition. Exit from the cell cycle into G0 phase triggers DUT-N protein degradation. Thus,

DUT-N isoform expression is tightly linked to nuclear DNA replication [105]. We observed

that the CF event is increasingly spliced in – meaning DUT-M isoform expression gradually

eclipses DUT-N isoform expression over the time course – which is to be expected as the
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primate pluripotent stem cells (PSCs) progressively commit to neuronal cell fates with

decreasing cell cycle activity [106]. These findings demonstrate that junctionCounts can

handily uncover novel splicing phenomena.

Temporal regulation of alternative splicing directs the transition from pluripotent to

neuronal cell fate

High levels of AS and cell type-specific isoform expression are observed in neurons and

during neuronal differentiation [58,107]. We postulated that genes exhibiting dynamic

temporal splicing would be enriched for neuronal biological pathways. Taking the subset of

significant AS events (|dPSI| ≥ 0.1 and Q-value ≤ 0.05 in at least one temporal comparison),

we generated the four most distinct clusters of events based on the Euclidean distance of their

temporal PSI trajectories using CLARA [90] for each species (Figure 5A). Additionally, we

identified subsets of genes with conserved (mean |dPSI| ≤ 0.1 for all events per gene) and

nonconserved (mean |dPSI| ≥ 0.3 for all events per gene) splicing patterns in chimpanzee,

orangutan and rhesus macaque relative to human in pairwise comparisons at each time point

(Figure 5B). We then used Metascape [91] to identify enriched biological pathways in the sets

of genes from each cluster of temporally regulated events (Figure 5C) and for the conserved

and nonconserved splicing gene sets (Supplementary Figure 2).
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Figure 5. Gene ontology analyses for grouped event sets by temporal PSI trajectories.
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(A) Four gene-level clusters derived with CLARA from temporal expression trajectories for
each species. (B) Genes with mean |dPSI| ≤ 0.1 for events in chimpanzee, orangutan and
rhesus macaque relative to human were categorized as genes with conserved splicing.
Boxplots showing the distribution of each primate’s per-gene mean |dPSI| relative to human
(upper subpanel) with Pearson correlation coefficient of species-specific PSI values against
human PSI values above them. The same for genes with nonconserved splicing based on
mean |dPSI| ≥ 0.3 (lower subpanel). (C) Heatmap of Z-score-scaled-log10(Q-value) of
Metascape (38) pathway enrichment in temporal event clusters.

Four similar but distinct event clusters were identified in each primate. Across the primates,

cluster 1 (chimpanzee, human, orangutan and rhesus macaque corresponding to C1, H1, O1

and M1 respectively) generally represents alternative features (exons, introns, splice sites,

etc.) whose inclusion is marginal in PSCs and declines over the course of differentiation.

Cluster 2 (C2, H2, O2 and M2) represents alternative features whose inclusion is dominant in

PSCs and declines during differentiation. Pathways similarly enriched in clusters H1, M1 and

C2 indicate the preferred exclusion of particular alternative features in the mature splicing

program of genes related to: translation, NMD, axon guidance and nervous system

development. Cluster 3 (C3, H3, O3 and M3) generally contains alternative features whose

inclusion is marginal in PSCs and increases during differentiation, while cluster 4 (C4, H4,

O4 and M4) contains dominantly included alternative features that further increase until

peaking at week 4 during differentiation. Clusters H3 and O3 indicate increasing inclusion of

alternative features in the mature splicing program of genes related to: NOVA-regulated

synaptic proteins, axon guidance and nervous system development. Cluster C3 indicates a

slight increase in alternative feature inclusion in genes related to mRNA processing and

translation. The conserved splicing event set was enriched for genes in critical pathways

including cell cycle processes, signaling, AS, and interestingly, in neurodegeneration

pathways. The subset of complex conserved splicing events (CF, CL and CO) was enriched

for nearly all the same pathways, revealing the prevalence of complex events in important

pathways (Supplementary Figure 2). For example, we identified a conserved CO event in
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NCKAP1, which is involved in Rho GTPase signaling, and a conserved CL event in QKI,

which is involved in pre-mRNA processing and AS (Supplementary Figure 3). Taken

together, these results highlight the intricate temporal regulation of splicing as PSCs develop

into neuronal cells and shed light on the biological relevance of species-specific and

conserved splicing dynamics.

Emergent alternative features underlie many instances of species-specific alternative

splicing

Because we observed that some events had miniscule or zero PSI values in particular species,

we hypothesized that a subset of the aforementioned nonconserved event set represents events

that sufficiently map (sequence divergence ≤ 20%) pairwise between all four primate

genomes but contain alternative features that are only used (included) by specific primates

despite the apparent presence of splice site and branch site sequences. We call features used

by specific species emergent alternative features, potentially indicating exonization events.

Indeed, we identified 3753 events, in 1922 genes, exhibiting significant temporal regulation

(|dPSI| ≥ 0.1 and Q-value ≤ 0.05 in at least one temporal comparison) while having a

min(PSI) ≥ 0.05 in only a subset of the four primates (Figure 6A). Of these events, the most

prominent event types were SE, MF, AF and ML (Figure 6B). Protection of Telomeres 1

(POT1) is an example of a rhesus macaque-specific SE event in the 5’UTR (Figure 6C). This

SE event is likely an instance of species-specific differences in exon induction related to

neuronal differentiation, as the alternative exon is annotated in GENCODE V44 and exhibits

cell type-specific expression in a number of human neuronal tissues according to GTEx V8

RNA-Seq Read Coverage by Tissue despite its lack of inclusion in our human samples.

Transmembrane Protein 165 (TMEM165) is an example of a human-specific PTC-containing

SE event that is potentially the product of Alu exonization [108], as it overlaps an antisense
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AluJb element (Figure 6D). Furthermore, one piece of evidence that suggests that it may be a

bona fide emergent alternative cassette exon is that the rhesus macaque genome sequence has

an A-to-G mutation 3 nt upstream of the 3’SS while the other three primates have a canonical

3’SS dinucleotide (Figure 6E). In short, identification of AS events in orthologous sequences

between species may be an effective approach to uncover potential emergent alternative

features.
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Figure 6. Emergent/species-specific alternative feature usage. (A) Barplot showing the
number of species-specific events (min(PSI) ≥ 0.05 in a given species) exhibiting significant
temporal regulation (|dPSI| ≥ 0.1 and Q-value ≤ 0.05 in at least 1 temporal comparison). “C”,
“H”, “O” and “R” are abbreviations for chimpanzee, human, orangutan and rhesus macaque
respectively. Combinations of these abbreviations represent instances of events that meet the
min(PSI) threshold in a set of species and are significantly temporally regulated in at least 1
species in the subset. (B) Barplot displaying the same set of species-specific events as in (A)
but stratified by event type instead of species. (C) Mean PSI trajectories and RNA-seq
coverage at a rhesus macaque-specific skipped exon event in POT1. (D) Mean PSI
trajectories and RNA-seq coverage at a human-specific skipped exon event in TMEM165. (E)
Macaque-specific point mutation just upstream of the 3’SS of the TMEM165 skipped exon
event shown in (D).

cdsInsertion and findSwitchEvents connect alternative splicing events to potential

functional impacts

An enduring problem in the study of AS is the challenging nature of connecting events to

functional impacts, whether at the mRNA or protein level. We used cdsInsertion to annotate

transcripts with information regarding the lengths of the UTRs and CDS, the presence of

potential PTCs and other details gleaned from overlapping annotated start codons. Next, we

employed findSwitchEvents to couple isoform-level CDS information to

junctionCounts-defined events to identify “switch events”, which are instances in which a

particular property is exclusive to transcripts consistent with the included or excluded form.

We propose that this approach enables users to connect AS events to functional outcomes,

comprehensively profile switch event regulation and to discover novel instances of

NMD/NSD.

Among significant events (|dPSI| ≥ 0.1 and Q-value ≤ 0.05 in at least one comparison), we

identified hundreds of events predicted to confer NMD, NSD and coding-to-noncoding

switches as well as >1600 CDS-altering events in each species (Figure 7A). To investigate the

potential structural and functional impacts of CDS-altering events, we mapped event

coordinates to protein features with Exon Ontology [92]. The five protein feature categories
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most frequently overlapping alternative exons were: post-translational modification (PTM),

structure, binding, localization and catalytic activity (Figure 7B). Interestingly, intrinsically

disordered regions (IDRs) were the most highly represented feature (Figure 7C). In

agreement with these findings, IDRs have been described as preferred loci for both AS and

PTMs [109,110].

Figure 7. Analysis of splicing events with potential functional impacts to mRNA
stability, coding capacity or protein function. (A) Total number of significant splicing
events (|dPSI| ≥ 0.1 and Q-value ≤ 0.05 in at least 1 temporal or interspecies comparison) that
are predicted to: induce nonsense-mediated decay (NMD), induce non-stop decay (NSD),
break the open reading frame (coding switch) or alter the coding sequence (CDS). (B) Exon
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feature category support for significant event coordinates overlapping exon features in the
Exon Ontology database. (C) Specific exon features affected by significant events, indicating
potential impacts to structural or functional protein elements. The fraction of events in (A),
(B) and (C) that were significantly different across species, time or both factors (lower
subpanels). (D) Bivariate histogram showing the distribution of NMD switch event dPSIs
over the time course of neuronal differentiation relative to pluripotent stem cells (week 0) in
each primate. (E), (F) and (G) show the same for NSD switch, coding switch and
CDS-altering events, respectively.

At the mRNA-level, NSD and NMD substrates are expected to be degraded via

translation-dependent pathways to prevent the production of potentially harmful truncated

proteins [111]. However, in certain contexts expression and translational activation of NMD

substrates can play important roles in biological functions, including in neuronal

differentiation [112]. Another possible outcome of AS is the generation of noncoding

transcripts from protein coding genes [113]. We characterized the regulation of these three

phenomena during neuronal differentiation and found that NMD and coding-to-noncoding

switch events became progressively more differentially spliced over the course of neuronal

differentiation relative to PSCs (Figure 7D-F). NSD switch events were relatively rare, but

they were surprisingly overrepresented in chimpanzee relative to the other primates (Figure

7E). Overall, we did not observe a monotonic increase in NMD substrate abundance during

neuronal differentiation and we found that NMD/NSD/coding-to-noncoding switch events

generally followed species-specific temporal trajectories (Supplementary Figure 4).

CDS-altering events were also increasingly differentially spliced over the course of

differentiation (Figure 7G), likely owing to the gradual definition of a mature splicing

program that requires cell-type specific expression of isoforms with distinct functions [114].
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DISCUSSION

This paper describes our efforts to develop an accurate, rigorous, easy to use and interpret

alternative splicing analysis tool capable of identifying and quantifying a comprehensive

repertoire of splicing event types, with the addition of novel capabilities. junctionCounts

accurately recapitulates ground truth PSI and dPSI values from simulated data and performed

well in our benchmarking experiment against MAJIQ [79], rMATS-turbo [80], splAdder [81]

and Whippet [71] (Figure 2, Supplemental Figure 1). It identifies and accurately quantifies a

wide array of event types including complex event types that represent coordinated splicing

of multiple alternative features. In contrast to MAJIQ, rMATS-turbo, splAdder and Whippet,

junctionCounts identifies events from a gene annotation alone, eliminating the need to

generate new splice graphs/event dictionaries for each individual dataset. Contrarily, the other

tools use information from mapped RNA-seq data during splice graph generation, so event

identification scales directly with library read depth and can include novel splice junctions.

Novel splice junction detection can be achieved with junctionCounts by providing a

transcriptome assembled from RNA-seq reads using a tool like StringTie [67]. Most uniquely,

junctionCounts, in concert with its partner utilities: cdsInsertion and findSwitchEvents,

couples events to their effects on the isoform-level CDS to predict functional consequences

including NMD. We show through the analysis of published UPF1-knockdown [78] and

Emetine [50] human RNA-seq data that junctionCounts accurately predicts NMD switch

events (Figure 2L-N).

After rigorously testing junctionCounts and its partner utilities, we applied them to a primate

neuronal differentiation RNA-seq dataset comprising human and rhesus macaque ESCs as

well as chimpanzee and orangutan iPSCs [51]. We identified 50-61K significant splicing

events (|dPSI| ≥ 0.1 and Q-value ≤ 0.05 in at least one temporal or interspecies comparison) in

each species, with 17K significant orthologous events across all four primates (Figure 4A).
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Within these orthologous events, junctionCounts recapitulated previously reported splicing

phenomena [105] and identified previously unreported events in several genes relevant to

neuronal differentiation (Figure 4B-E). RT-PCR experiments were used to verify some of

these events, including SE events in GABBR1 and MYCBP2 in human and macaque cells

(Supplementary Figure 5). We additionally clustered events by their temporal splicing

dynamics, uncovering distinct event trajectories that capture the tight regulation of splicing

during development (Figure 5A). Highly relevant biological pathways were represented in

these event clusters, including axon guidance, nervous system development and SLIT/ROBO

signaling. Pathways in chromatin organization, mRNA processing and cell cycle processes

were also shown to undergo and potentially underlie splicing regulation (Figure 5C). Within

the set of events with nonconserved splicing patterns, we uncovered thousands of events

containing alternative features that were used in some primates but not in others, suggesting

potential emergent alternative features (Figure 6). Lastly, we used cdsInsertion and

findSwitchEvents to connect events to predicted NMD/NSD/coding-to-noncoding switches

based on isoform-level CDS properties exclusive to their included or excluded forms. This

allowed us to profile temporal NMD/NSD regulation (Figure 7D-E) and to identify potential

NMD substrates (Figure 4D and 6D). Altogether, we exhibited the functionality of

junctionCounts in a variety of analysis contexts and presented its application to the

characterization of splicing in evolution, neuronal differentiation and NMD.

Besides this work, we further note that several of our colleagues have already implemented

and published results using a beta version of junctionCounts. These studies include a variety

of model systems such as human and non-human primate cell lines, C. elegans, and yeast.

Suzuki et al. (2022) looked at the effects of KIN17 and PRCC mutations on 5’ and 3’SS

usage during development in C. elegans. They found both direct and potentially indirect

changes in alternative 5’ and 3’SS usage, some of which were related to developmental and
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population dynamics. They additionally RT-PCR-verified a number of these events to

differentiate between embryonic-type splicing and somatic-type splicing [115].

Cartwright-Acar et al. (2022) characterized splicing changes in the presence of class II

suppressors of uncoordination in an unc-73(e936) mutant forward genetic screen in C.

elegans. They found that the majority of alternative 5’SS usage changes were in introns

containing true alternative 5’SS and that suppressors rarely activated novel cryptic alternative

5’SS. They further RT-PCR verified several of the alternative 5’SS and 3’SS events, and

finally asserted that the class II suppressors they studied may work at mutually exclusive

stages of spliceosome assembly or use different mechanisms to maintain 5’SS identity based

on their ability to differentiate between alternative 5’ splicing events that are unique to

particular suppressors [116]. Draper et al. (2023) quantified events across polyribosome

fractions and between primates to assess the conservation of alternative splicing coupled to

translational control (ASTC). They identified subsets of alternative events with either

conserved or species-specific sedimentation profiles and discovered that alternative exons

with conserved sedimentation had higher sequence conservation relative to those with

species-specific sedimentation. They additionally tested three ASTC SE events using

translational luciferase reporters [117]. Hunter et al. (2023) examined the effect of splicing

inhibitors on intron splicing efficiency in S. cerevisiae. They found that individual introns had

distinct sensitivities, including during co-transcriptional splicing, to different splicing

inhibitors. Interestingly, they found that yeast sequences including the branch point consensus

motif contribute to the differences in sensitivity [118]. Osterhoudt et al. (2024) explored

changes in 3’SS usage upon SACY-1 perturbation in introns with pairs of 3’ splice sites ≤ 18

nucleotides away from each other. They found that both SACY-1 depletion and a SACY-1

mutation lead to a clear unidirectional increase in proximal alternative 3’SS usage, which

they RT-PCR-verified for several events [119]. Collectively, our collaborators found
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junctionCounts easy to implement and show, through these works, its capacity to generate

high quality results.

Beyond its flexibility and user-friendliness, junctionCounts stands out as a useful approach

because it identifies both canonical and non-canonical alternative events. Many tools are

limited to non-terminal and/or relatively rudimentary event types. The few that characterize

complex or non-canonical event types are difficult to interpret. junctionCounts utilizes the

concept of binary alternative events; identifying clear instances of the inclusion and exclusion

of alternative features. This concept is well-established and pervades the splicing literature. It

remains popular because binary alternative events can be accurately quantified relative to

full-length transcripts, they likely accurately represent (a subset of) transcript structure as

compared with full-length transcripts, and they exclude gene segments not relevant to the

regulation of the event (i.e. introns and exons outside and distal to the event). The first two

reasons will likely decrease in validity as improving long-read sequencing approaches

provide more accurate representations of the ground-truth expressed transcriptome. The

biggest problem may lie with the third reason, considering that the contribution of factors not

necessarily local to an event itself can be important to its regulation [120,121].

At present, however, focusing on the local site of alternative events affords the opportunity to

consider the behavior of hundreds or thousands of similar events and to look for trends in

features that may explain their behavior. However, a key weakness of the traditional binary

event is the existence of loci in which more than two alternative sub-transcripts overlap and

are subject to simultaneous changes in relative abundance. While such non-binary events

could be represented as the collection of binary events involving all possible pairs of

sub-transcripts, this representation loses information as the regulatory decision is likely to be

made in the context of all possibilities. A number of efforts such as MAJIQ [79] and Whippet

79

https://paperpile.com/c/eOxaJt/cyaRa+MTSWZ
https://paperpile.com/c/eOxaJt/NR0sK


[71] have attempted to address this issue with several approaches. Nonetheless,

junctionCounts presents a step in the right direction by characterizing events that don’t fit into

canonical binary event definitions.

Lastly, junctionCounts’ main innovation lies in its ability to bridge the gap between

event-level and isoform-level analysis with regard to the implications of AS events on

transcript coding and translational capacity, via cdsInsertion. In an ideal case, studies that

intend to consider translation and its implications on a transcriptome-wide scale would

include an experimental technique to empirically define CDS regions or start codons. For

example, ribosome profiling and approaches like TI-seq [122] can serve as a basis for

empirically defining whole CDS or translation start sites respectively. However, as such data

are typically unavailable due to the additional cost and complexity of these approaches, tools

like cdsInsertion are useful. cdsInsertion fleshes out the putative characteristics of

unannotated transcripts by performing in silico translation from known overlapping start

codons, and thus permits the development of hypotheses to explain properties imparted by

AS. Its partner tool, findSwitchEvents, infers alternative event characteristics from those of

its constituent isoforms. Altogether, junctionCounts, cdsInsertion and findSwitchEvents

comprise a method for the accurate characterization of AS and the novel capacity to couple

events to potential functional outcomes.
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DATA AVAILABILITY

RNA-seq data from mouse cerebellum and liver cells [83] used to generate simulated data for

the benchmarking experiment: publicly available at the NCBI GEO (Accession no.:

GSE54652).

RNA-seq data from spliceostatin A and DMSO-treated HeLa cells [78] used to generate

simulated data for the benchmarking experiment: publicly available in the ArrayExpress

database (Accession no.: E-MTAB-6060).

RNA-seq data and NMD target RT-PCR data from UPF1 siRNA and non-targeting

siRNA-treated HEK-293 cells [93] used to validate cdsInsertion and findSwitchEvents NMD

predictions: publicly available at the NCBI GEO (Accession no.: GSE176197).

RNA-seq data from emetine and DMSO-treated HEK-293 T cells [50] used to validate

cdsInsertion and findSwitchEvents NMD predictions: publicly available at the NCBI GEO

(Accession no.: GSE89774).

RNA-seq data from human and rhesus macaque ESCs as well as chimpanzee and orangutan

iPSCs [51]: publicly available at the NCBI GEO (Accession no.: GSE106245).

The version of junctionCounts and partner utilities used in this study are published on Zenodo

(https://doi.org/10.5281/zenodo.11186192). junctionCounts and its partner utilities are also

available on GitHub: https://github.com/ajw2329/junctionCounts and

https://github.com/ajw2329/cds_insertion.
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Supplementary data are available at NAR online.
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Chapter 4: Alternative Splicing Coupled with Translational Control (ASTC)

4.1 Chapter Introduction

The project presented in this chapter reports our work to develop a new approach to study

translational control utilizing long read sequencing to capture complete, ribosome-associated

transcript structures. The impetus of this work is the phenomenon of transcripts exhibiting

distinct ribosome association (sedimentation) profiles, most clearly exemplified by instances

of isoform-specific sedimentation within genes. The motivation to incorporate LR RNA-seq

with subcellular fractionation was to directly measure unabridged transcript sequences within

the system to: 1) assign short reads to observed transcripts with high confidence, 2) discover

novel transcripts, and 3) precisely characterize transcript features and termini. We not only

found that isoform-specific sedimentation was widespread, but that it was largely consistent

between stem cells and neuronal progenitor cells. Using machine learning approaches, we

further discovered transcript features that were to a large extent predictive of sedimentation

profiles.

The conceptualization, design and bench execution of this translatomic approach, LR

Frac-seq, was carried out by Drs. Jeremy Sanford and Jolene Draper with the help of Dr.

Chris Vollmers. I contributed all bioinformatic analyses involved in integrating LR and short

read Frac-seq data, data visualization, and writing and editing of the manuscript. This

manuscript was accepted by Genome Research on May 21st, 2024.
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ABSTRACT

Alternative splicing (AS) alters the cis-regulatory landscape of mRNA isoforms leading to

transcripts with distinct localization, stability and translational efficiency. To rigorously

investigate mRNA isoform-specific ribosome association, we generated subcellular

fractionation and sequencing (Frac-seq) libraries using both conventional short reads and long

reads from human embryonic stem cells (ESC) and neural progenitor cells (NPC) derived

from the same ESC. We performed de novo transcriptome assembly from high-confidence

long reads from cytosolic, monosomal, light and heavy polyribosomal fractions and

quantified their abundance using short reads from their respective subcellular fractions.

Thousands of transcripts in each cell type exhibited association with particular subcellular

fractions relative to the cytosol. Of the multi-isoform genes, 27% and 19% exhibited

significant differential isoform sedimentation in ESC and NPC respectively. Alternative

promoter usage and internal exon skipping accounted for the majority of differences between

isoforms from the same gene. Random forest classifiers implicated coding sequence (CDS)

and UTR lengths as important determinants of isoform-specific sedimentation profiles, and

motif analyses reveal potential cell type-specific and subcellular fraction-associated

RNA-binding protein signatures. Taken together our data demonstrate that alternative mRNA
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processing within the CDS and UTRs impacts the translational control of mRNA isoforms

during stem cell differentiation, and highlights the utility of using a novel long read

sequencing-based method to study translational control.

INTRODUCTION

Accurate eukaryotic gene expression requires messenger RNA (mRNA) assembly from

precursor transcripts. Protein coding and regulatory sequences (exons) are distributed across

expansive precursor messenger RNA transcripts. The spliceosome excises intervening

non-coding sequences (introns) from pre-mRNA and ligates the exon sequences together to

generate translation-competent mRNA [123]. Conserved sequences at exon-intron boundaries

(splice sites) direct spliceosome assembly on each newly synthesized intron. Remarkably, the

spliceosome can assemble different combinations of exon sequences to generate mRNA

isoforms from a common pre-mRNA transcript [124,125]. Alternative splicing (AS) not only

generates isoforms with distinct protein coding potential, but also with different

post-transcriptional regulatory capacity. For example, AS decisions that introduce premature

termination codons induce nonsense mediated decay while other splicing events generate

transcripts with distinct subcellular localization or translational control. In addition to

generating alternative isoforms with unique coding sequences (CDS), AS can produce

isoforms that differ only in their untranslated regions (UTRs). Elements in the UTRs of

mature mRNA play pivotal roles in post-transcriptional regulation. In the 5' UTR, regulatory

sequences like upstream open reading frames (uORFs) and internal ribosome entry sites

(IRES) influence translation initiation efficiency [126–128]. The 3' UTR contains various

elements such as microRNA binding sites and RNA-binding protein (RBP) recognition sites

that modulate mRNA stability, localization, and translation [129,130]. Regulatory elements in

the CDS can also influence the fate of mRNAs. For example the RBP, HuR, stabilizes target

mRNAs by binding to AU-rich elements (AREs) within the CDS, preventing their
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degradation. Conversely, RBPs like TTP can promote mRNA degradation by binding to

AREs in coding regions, leading to mRNA decay [131]. Proteins like IGF2BP1 can bind to

coding region instability determinants in the CDS of target mRNAs to enhance their stability

[132]. By and large, AS confers complex and multidimensional consequences to the fate of

mRNAs through shaping the cis-regulatory landscape of alternative isoforms [133–135].

Importantly, there is poor correlation between steady-state mRNA and protein levels in

eukaryotic systems [136–140]. And while factors like mRNA stability and translation

initiation efficiency play a role in this disparity, the influence of AS on translational control is

often overlooked. A number of methods exist to study translational control, which is the

regulatory mechanism in eukaryotic cells that governs the efficiency and timing of protein

synthesis from mRNA. A well-established method called Ribo-seq offers genome-wide

insights into ribosome occupancy and translation dynamics by capturing single

nucleotide-resolution ribosome footprints, but it can be vulnerable to artifacts and signal

biases [141]. RNC-seq captures ribosome nascent-chain complex-bound mRNAs to

characterize the translatome, but it doesn’t provide ribosome footprints or ribosome density

information [142]. TRAP-seq utilizes epitope-tagged ribosomes to enable cell type-specific

translation profiling, which generates data similar to RNC-seq which can be modified to

produce ribosome footprints, but it relies on transgenic models and may not fully replicate

endogenous ribosome behavior [143,144]. Frac-seq, which our proposed method builds on,

isolates actively translating ribosomes and assesses translation efficiency by stratifying

transcripts by the number of ribosomes they are associated with [145]. However, it has the

potential for selective bias toward highly abundant transcripts and it lacks single-nucleotide

resolution of ribosome positions on mRNA. While each method has its strengths and

weaknesses, one shared disadvantage is that they all involve the sequencing of short mRNA

fragments from ribosome-protected or ribosome-associated mRNAs.
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Short read RNA-sequencing methods struggle to accurately capture the complete structures of

complex RNA isoforms [146]. In contrast, long read RNA-sequencing provides full-length

reads that span entire transcripts, enabling precise characterization of intricate isoforms and

annotation-agnostic detection of novel structures. The primary shortcoming of long read

sequencing is its relatively lower throughput compared to short read sequencing platforms,

limiting the depth of coverage for a given budget. To address this limitation and to maximize

the benefits of both long read and short read methods, we employed a complementary

approach. Here we introduce the development of long read Frac-seq to obtain full-length

transcript isoforms with intact records of ribosome association, structural variation, and

long-range interactions. We complement this data with short read Frac-seq to compensate for

the loss of throughput and to provide a more complete and accurate representation of the

translated transcriptome.

RESULTS

Characterization of a transcriptome supplemented with long read-derived novel

transcripts

To investigate the relationship between alternative pre-mRNA splicing and isoform-specific

mRNA translation we capitalized on the capability of long read sequencing to capture

complete transcript structures of polyribosome-associated mRNA, without sacrificing

throughput by generating both long read and short read Frac-seq libraries [145]. We used

human embryonic stem cells and neural progenitor cells (ESC and NPC respectively) as a

model system to characterize the translated transcriptome during early neuronal

differentiation. The resulting samples were the cytosol, monosome, light polyribosome (2-4

ribosomes), and heavy polyribosome (≥5 ribosomes) fractions (Figure 1A). By utilizing the

R2C2 method [147], our long read libraries, with mean read length 2 Kb and mean library
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size 500 K, were reinforced with improved base calling accuracy (93%) and with

high-confidence transcript starts and ends. Fractionation of the long reads was employed to

enhance the likelihood of detecting transcripts which may be preferentially associated with

distinct subcellular fractions. All long read libraries were pooled for de novo transcriptome

assembly using Mandalorion [148], followed by rigorous quality control, filtering, and

functional annotation using all three modules of the Functional IsoTranscriptomics analysis

suite [149]. The resulting long read-derived transcriptome was then merged with

GENCODE’s GRCh38.p13 Release 41 primary assembly annotation[150] to account for

transcripts that weren’t captured by long read sequencing. The following analyses were done

in the context of this “comprehensive transcriptome” containing both annotated and long

read-derived novel transcripts.

Figure 1. Experimental overview and characterization of the comprehensive
transcriptome and the cytosol. (A) Schematic of the experiment and subsequent
bioinformatic analysis workflow of the resulting cytosolic extract and fractionated,
ribosome-associated short and long reads from ESC and NPC. (B) The transcriptome
classified by SQANTI3-defined structural categories of spliced transcripts, including: Full
Splice Match (FSM), Incomplete Splice Match (ISM), Novel in Catalog (NIC), Novel Not in
Catalog (NNC) and intergenic or fusion transcripts (Other). FSM and ISM transcripts match
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annotated splice sites and junctions (in GRCh38.p13 Release 41), while NIC transcripts
comprise novel combinations of annotated splice sites and junctions and NNC transcripts
contain at least one unannotated splice site. (C) The transcriptome classified by productivity
based on the detection of complete or incomplete open reading frames (productive or
noncoding respectively), premature stop codons (NMD) and retained introns (RI). (D)
Stratification of the transcriptome by the number of isoforms and unique coding sequences
per gene. (E-F) Gene-level (E) and transcript-level (F) differential expression between NPC
and ESC cytosolic fractions. (G) Top 12 enriched Metascape pathways in differentially
expressed genes between NPC and ESC cytosolic fractions.

The comprehensive transcriptome had short read coverage meeting a 1 count per million

reads (CPM) cutoff for 37,755 transcripts with 33,561 unique coding sequences (CDS),

arising from 13,161 genes (Figure 1D). Of these, 5,875 and 4,590 transcripts from 4,095 and

3,176 genes were uniquely expressed in ESC or NPC respectively. Transcripts were organized

into SQANTI3-defined structural categories based on their fidelity to transcript structures in

the GRCh38.p13 Release 41 primary assembly annotation [150]. 91.2% of transcripts

matched the annotation, 8.7% were considered novel (containing either novel combinations

of known splice sites and junctions or at least one novel splice site), and 0.1% were

categorized as either genic or fusions (Figure 1B). Additionally, transcripts were categorized

based on their productivity. We define productive transcripts as those encoding a full-length,

canonical protein. Unproductive classes include: noncoding (lacking a complete open reading

frame), nonsense-mediated decay (NMD) and retained intron (RI). 66.1% of transcripts were

considered productive, 0.7% were predicted to be noncoding, 18.1% were classed as NMD

based on the presence of a premature termination codon (PTC), 11.5% had a retained intron

(RI) and the remaining 3.6% met both NMD and RI conditions (Figure 1C).

We used Salmon [84] to pseudoalign the fractionated short reads, with an average library size

of 71.5 M reads, to the comprehensive transcriptome; producing transcript-level

quantification across the gradient. Using the cytosolic fraction, which represents the raw

output of the nucleus, we next tested the baseline transcriptomic differences in NPC relative

to ESC at the gene-level (Figure 1E) and at the transcript-level (Figure 1F) to reveal
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upregulation of NPC and neuronal differentiation markers and downregulation of

pluripotency markers. Metascape [91] pathways further encapsulated these observations

(Figure 1G). Taken together, these results present the framework for an approach to integrate

fractionated long and short reads to study translational control at isoform-level resolution.

Thousands of transcripts exhibit distinct association with particular subcellular

fractions

To discover if mRNA transcripts have distinct ribosome association profiles, we clustered

transcript-level expression trajectories across the gradient using tappAS [149]; revealing

subpopulations of transcripts with clear enrichment in one subcellular fraction over the others

(Figure 2A). Interestingly, a subpopulation of transcripts enriched in both the monosome and

light polyribosome fractions stood out as one of the most populous subsets: making up about

30% of transcripts with enrichment in subcellular fractions in both cell types. Thus,

subsequent analyses class monosome-associated transcripts (Mono) and light

polyribosome-associated (LPR) transcripts as those that are exclusively enriched in those

fractions, leaving the set of monosome and light polyribosome-associated (M+L) transcripts

as a standalone subpopulation. Thousands of transcripts were considered significantly

enriched (log2FC ≥ 1.0, p-value ≤ 0.05) in subcellular fractions relative to the cytosol (Figure

2B). Overall, 7.5% and 6.8% of transcripts were significantly associated with a subcellular

fraction in ESC and NPC respectively. In the context of non-mutually exclusive enrichment in

subcellular fractions, subpopulations of transcripts were generally dissimilar across fractions

within cell type, with the exception of the Mono and LPR fractions with Jaccard similarity of

0.41 and 0.33 in ESC and NPC respectively (Supplemental Figure 1), due to the substantial

M+L transcript subpopulations. When stratified by productivity, Mono- and LPR-associated

transcript subpopulations exhibited pronounced incorporation of unproductive classes relative

to the cytosol. Heavy polyribosome-associated (HPR) transcripts displayed a slight reduction
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of unproductive classes relative to the cytosol in ESC, while an increase is observed in NPC

(Figure 2C). These findings support the hypothesis that levels of ribosome association may

correlate with levels of translatability.

Figure 2. Establishing transcript ribosome association profiles. (A) Clustering of
transcripts by their expression trajectories across the gradient relative to the cytosol. (B)
Extraction of fraction-associated transcripts based on significant enrichment (log2FC ≥ 1.0,
p-value ≤ 0.05) in the Mono, LPR or HPR fractions relative to their abundance in the cytosol.
“C”, “M”, “L” and “H” represent the cytosol, Mono, LPR and HPR fractions respectively.
(C) Categorization of fraction-associated transcripts by productivity. (D) Differential
sedimentation of three isoforms in TMEM59. Above spliced isoform models, histograms of
short read support at exons are colored by fraction. The stacked barplot summarizes the
proportion of total gene expression each isoform contributes in each subcellular fraction.

Alternative splicing confers functional consequences to the stability and translation of

mRNAs

Because we observed transcript subpopulations with distinct ribosome association profiles,

we postulated that alternative mRNA isoforms may likewise sediment discretely. To test this

hypothesis, we calculated the expression of individual isoforms relative to all isoforms from
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the same gene and measured the difference between their gene fractions in subcellular

fractions relative to those in the cytosol. TMEM59 is an example of a gene with three

isoforms, two of which exhibit differential sedimentation in ESC (Figure 2D). TMEM59

expression in ESC is composed of a M+L-associated isoform, a HPR-associated isoform and

a cytosol-associated (not differentially sedimenting) isoform. Interestingly, endogenous

post-transcriptional silencing of TMEM59 by miR-351 in murine neural stem cells has been

implicated to promote neuronal differentiation [151], although the two differentially

sedimenting isoforms share all but the last base of their 3’ UTRs. But along similar lines, it

may be the case that cis-regulatory differences in their 5’ UTRs and CDS influence the

isoform-specific nature of their sedimentation.

We found 3,321 (26.5%) and 2,254 (19.2%) genes in ESC and NPC respectively exhibiting

differential isoform sedimentation (|Δ Gene fraction| ≥ 0.1 and Q-value ≤ 0.05) in a

subcellular fraction relative to the cytosol (Figure 3A). Within those genes, 4,906 and 3,229

transcript isoforms preferentially sedimented (Δ Gene fraction ≥ 0.1) with a subcellular

fraction in ESC and NPC respectively. These instances substantiate alternative splicing as an

architect of isoform-specific translational control. We observed decreasing concordance of

gene fraction changes across the gradient between cell types, with a Pearson correlation

coefficient of 0.59, 0.54 and 0.09 in Mono, LPR and HPR respectively. In fact, 3085

transcripts in 1506 genes exhibit divergent patterns of isoform sedimentation (Supplemental

Figure 2). Together, these findings suggest that isoform-specific sedimentation is likely cell

type-specific, possibly owing to differences in the composition and environment of

trans-acting factors.

Additionally, Figure 3A illustrates that isoforms associated with the Mono and LPR fractions

have a greater magnitude of gene fraction differences than the HPR fraction relative to the
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cytosol. This finding suggests that the Mono, LPR and HPR fractions gradate toward

increasing similarity in transcript abundance and isoform ratios with the cytosol, which is

consistent with findings from other groups [152]. Considering these results, we posit that the

average number of ribosomes per mRNA in the cytosolic fractions of our ESC and NPC

samples may be similar to that of the HPR fraction. Among genes displaying differential

isoform sedimentation, pathways involved in chromatin organization, organophosphate

biosynthesis and phosphorylation were enriched in ESC specifically, while DNA damage,

stress response and cell cycle pathways were enriched in NPC (Figure 3B). Genes

demonstrating divergent isoform sedimentation across cell types were enriched in similar

pathways, with the addition of RNA metabolism. When comparing the gene ontology of

cognate subpopulations of subcellular fraction-associated transcripts across cell types, we

observed that cell cycle, translation and mRNA processing-related pathways were

consistently represented, while cell type-specific pathway enrichment was much more

apparent in the cytosolic fraction (Supplemental Figure 3).
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Figure 3. Differential isoform sedimentation across the gradient and functional
outcomes of alternative splicing. (A) Volcano plots representing differential isoform
sedimentation by changes in isoform gene fraction relative to the cytosol. 3,321 and 2,254
genes in ESC and NPC respectively exhibit significant differential isoform sedimentation (|Δ
Gene fraction| ≥ 0.1, Q-value ≤ 0.05). The central plot shows changes in isoform gene
fraction, with Q-value ≤ 0.05, of isoforms expressed in both ESC and NPC. (B) The first two
bar plots show the top six enriched Metascape pathways in genes containing significant
instances of differential isoform sedimentation exclusively in ESC or NPC. The third bar plot,
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labeled “Divergent”, depicts enriched Metascape pathways in genes displaying contrasting
patterns of isoform sedimentation between ESC and NPC. (C) The first stacked bar plot
categorizes significant alternative splicing events (|ΔΨ| ≥ 0.1, adjusted p-value or Q-value ≤
0.05) as: alternative splicing (AS), alternative splicing coupled with translational control
(ASTC), meaning splicing events that are differentially included across the gradient, NMD,
and alternative splicing coupled with both translational control and nonsense-mediated decay
(ASTC+NMD). The following two bar plots show the breakdown of event types comprising
each category in ESC and NPC. (D-E) UCSC Genome Browser snapshot of long read and
short read coverage at (D) SRSF7, exhibiting subcellular fraction-associated inclusion of a
conserved retained intron, and at (E) ATRAID, exhibiting subcellular fraction-associated
alternative first exon usage. “C”, “M”, “L” and “H” represent the cytosol, Mono, LPR and
HPR fractions respectively. (F) Luciferase assay measuring the translational impact of using
either the distal or the proximal ATRAID 5’ UTR in HEK-293 cells.

To examine the types of alternative splicing (AS) that give rise to the diversity of the

transcriptome, we categorized AS events as: AS (0.1 ≤ Ψ ≤ 0.9, adjusted p-value ≤ 0.05

within condition), ASTC (|ΔΨ| ≥ 0.1, Q-value ≤ 0.05 across subcellular fractions), NMD

(events that introduce a PTC) and ASTC+NMD (NMD events that adhere to the mentioned

cutoffs for significant ASTC events) (Figure 3C). Notably, 11.8% and 7.0% of significant AS

events were classified as either ASTC or ASTC+NMD in ESC and NPC respectively. We

found that alternative first exon, retained intron, and skipped exon events feature most

prominently among ASTC events, while skipped exons and retained introns comprise the

majority of ASTC+NMD events. 2,456 and 1,257 CDS-altering events (A3, A5, MS, MX and

SE event types) and 526 and 359 terminal events (AF and AL event types) were linked to

translational control (either ASTC or ASTC+NMD) in ESC and NPC respectively. Because

of the mentioned similarity between the HPR fraction and the cytosol, the majority of

ASTC/ASTC+NMD events were Mono (79.1% in ESC, 62.1% in NPC) and LPR-associated

(42.5% in ESC, 54.8% in NPC).

In our dataset, SRSF7 presents one complete and one partial retained intron event associated

with NMD via induction of a PTC in the highly conserved SRSF7 intron 3 locus, which has

been previously described to contain a conserved poison exon [153,154] (Figure 3D).

Preferential association of PTC-containing isoforms with the Mono, and modestly with the
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LPR fraction, is consistent with our understanding of NMD’s effect on translation [155–157].

ATRAID (also known as APR3), a relatively poorly understood gene implicated to play roles

in all-trans retinoic acid-induced apoptosis, osteoblast differentiation and some cancer types

[158,159], demonstrates marked patterns of alternative first exon usage across the gradient.

The proximal first exon of ATRAID was preferentially spliced into the Mono-associated

isoform, which may indicate its reduced translation. Indeed, a Renilla-firefly luciferase assay

comparing Renilla incorporating either the proximal or the distal 5’ UTR of ATRAID in

HEK293 cells exhibited significant differences in fluorescence (Figure 3F). Interestingly, the

two isoforms of ATRAID may be functionally different, as the distal first exon contains an

upstream open reading frame which may encode a signal peptide with potential importance to

its localization with lysosomes [159]. Collectively, these results demonstrate the widespread

functional impacts of alternative splicing to the cytosolic fate of mRNAs.

Intrinsic features and cis-elements correlate with transcript polyribosome profiles

Given that AS defines the cis-regulatory landscape of mature mRNAs, we sought to identify

intrinsic transcript features that may encode the underlying regulatory grammar of ASTC. We

define intrinsic transcript features as measurements and functional elements that are native to

the sequence of a spliced transcript. To extract the relative predictive weight of features on

ASTC, we employed random forest classifiers (RFC) to perform feature selection. Across the

transcriptome, we measured the length and GC-content of the transcript, CDS, and UTRs.

Additionally, our feature set included 5’ and 3’ UTR motifs, uORFs, repeat sequences, coding

capacity, codon frequency, the presence of PTCs and retained introns. Given these features,

RFCs were assigned binary classification tasks to predict the correct subcellular fraction for

transcripts between every combination of subcellular fraction-associated transcript

subpopulations at an 80:20 train:test split using 300 estimators. From the results, we extracted
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permutation feature importance, with 50 repeats, and found that the number of exons, length

of the CDS and UTRs, and the GC-content of the UTRs were important features for our

models to correctly classify transcript polyribosome profiles. We note, however, that while

our RFC models outperformed unskilled models/chance levels, the combination of generally

adequate receiver operating characteristic curves with suboptimal Precision-Recall

performance highlights class imbalances, the need for more data points in each fraction, and

further indicates the requirement of additional features beyond those included in this study

(Supplemental Figure 4).

Our findings that CDS and 3’ UTR length positively correlate with association with heavier

polyribosome fractions is consistent with previous reports [152] (Figure 4A). This is not to be

confused with ribosome density, which other groups have shown to be inversely correlated

with CDS length [160,161]. Although a longer CDS can theoretically accommodate a greater

number of ribosomes, the increased potential for incorporation of non-optimal or rare codons

may trigger codon usage-dependent negative impacts to translation initiation and elongation

[162]. Additionally, longer CDS and transcript lengths have been observed to be negatively

correlated with translation initiation rates in the context of intrapolysomal ribosome

reinitiation [163]. En masse, inference of ribosome association based on the CDS alone is

likely too simplistic to make accurate predictions.

To more clearly understand changes in feature length that may impact ribosome association,

we also measured the change in CDS, 5’ UTR and 3’ UTR length relative to the dominant

cytosolic isoform among isoforms belonging to genes with differentially sedimenting

isoforms (termed gene-linked isoforms). Distinctly, Mono- and LPR-associated isoforms

displayed a clear signal of relatively shorter CDS and longer 3’ UTR, while HPR-associated

isoforms remained largely similar or equivalent to the dominant cytosolic isoform (Figure
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4B). Relatively longer 3’ UTRs in gene-linked isoforms are connected to strong effects on

ribosome association, and isoforms with 5’ UTRs ≥ 1000 nt in length have been observed to

be relatively poorly ribosome-associated relative to their shorter 5’ UTR-containing

counterparts within the same gene [152]. These phenomena could be due, in part, to potential

increased inclusion of cis-regulatory elements in UTRs including miRNA target sites, uORFs

and iron-responsive elements which can negatively impact mRNA stability and translation.

Our summary analyses of GC-content measurements yielded less clear patterns in relation to

ribosome association (Figure 4B). Nonetheless, about 30% of isoforms preferentially

sedimenting in lowly ribosome-associated fractions (Mono and LPR) exhibited decreasing 3’

UTR GC-content relative to the dominant cytosolic isoform, which may support findings that

relate lower 3’ UTR GC-content to increased association with P-bodies and enhanced

susceptibility to miRNA targeting [164]. The other 70% of lowly ribosome-associated

isoforms showed the opposite characteristic regarding 3’ UTR GC-content, which is

concordant with reports that suggest an inverse relationship between 3’ UTR GC-content and

mRNA stability [165]. Overall, broad measurements like length and GC-content were

predictive of ribosome association to some degree, but appear to lack the granularity required

to definitively elucidate the mechanisms underlying instances of ASTC. Comparisons

between cell types regarding feature measurements also reveals cell type-specific differences

in trends that indicate further layers of complexity (Supplemental Figures 5-6).
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Figure 4. Analysis of features correlated with ribosome association profiles. (A) The
number of exons and summaries of length and GC-content, with 90% confidence interval, of
the CDS, 5’ UTR and 3’ UTR of transcripts associated with subcellular fractions. “M”,
“ML”, “L”, “H” and “C” represent the Mono, Mono+Light, LPR, HPR and cytosolic
fractions respectively. (B) Measurement of the change in isoform gene fraction relative to the
cytosol and differences in CDS, 5’ UTR and 3’ UTR length and GC-content of differentially
sedimenting isoforms relative to the dominant isoform in the cytosol. Kernel densities for all
coding isoforms are drawn with a 0.2 threshold. Subplots in the bottom left of each plot
summarize the relative abundance of observations in each quadrant of their respective main
plot, colored by fraction. (C) HOMER-derived de novo sequence motif and known RBP

99



motif enrichment ratios in skipped exons enriched in subcellular fractions versus skipped
exons not enriched in each given fraction. “M” and “L” refer to the Mono and
LPR-associated FASE sets, while “HvM” and “HvL” refer to the HPR-associated FASE sets
relative to the Mono and LPR fractions respectively. (D) Enrichment of motifs using the same
approach as in (C), but in 30 nt windows of the CDS, 5’ UTR and 3’ UTR of isoforms
exhibiting divergent sedimentation profiles across cell types. The target sets were made from
isoforms that preferentially sediment with each given subcellular fraction in one cell type, and
the background sets were made from isoforms exhibiting the same in the other cell type. The
standard-scaled enrichment ratio colorbar is shared by (C) and (D).

To look beyond length and GC-content measurements, we identified sequence motifs that are

associated with subcellular fractions. To do this, we took fraction-associated skipped exons

(FASE) – exons that were determined to be significantly enriched in a subcellular fraction

(ΔΨ ≥ 0.1, Q-value ≤ 0.05 across subcellular fractions) relative to the cytosol – and sliced

them into 30 nt windows. Each set of windows was complemented with a background set

consisting of windows made from skipped exons that were not significantly enriched in their

given subcellular fraction. The HPR fraction was tested for enrichment against the Mono and

LPR fraction (HvM and HvL, respectively) to produce HPR FASE sets due to a dearth of

HPR-enriched exons relative to the cytosol. The resulting sets of FASEs included about 415

and 240 exons on average for each subcellular fraction in ESC and NPC respectively.

Using HOMER [166] on each set of windows, we discovered 111 de novo motifs, in total,

that were significantly enriched (p-value ≤ 0.05, FDR ≤ 0.2) in the target sequences over their

respective background sets. We used Tomtom [167] to identify the best matches (p-value ≤

0.05) between the de novo motifs and known RBP motifs in the Ray 2013 Homo sapiens

dataset [168]. We next combined the set of motifs with the CISBP-RNA Homo sapiens RBP

motif set [168] and used SEA [169] to measure their enrichment (p-value ≤ 0.05, enrichment

ratio ≥ 1.1) in each set of FASEs (Figure 4C). Several motifs exhibited enrichment in at least

one fraction, with motif enrichment bissecting into clusters of Mono and LPR FASE sets, and

HPR-associated FASE sets regardless of cell type.
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We applied the same approach to the CDS, 3’ UTR and 5’ UTR of divergently sedimenting

isoforms between ESC and NPC to identify cell type-specific motifs that may underlie the

differences in their sedimentation. Target sequences were generated from isoforms

preferentially sedimenting with each given fraction in one cell type versus those preferentially

sedimenting with the same fraction in the other cell type. Strikingly, motif enrichment in

these sets of sequences cluster more distinctly by cell type than by fraction, and most motifs

are exclusively enriched in one cell type and not the other. We acknowledge, however, that

motif analyses are limited by the fact that RBP binding specificities are often multivalent and

difficult to predict. Nonetheless, we report the presence of statistically significant sequence

motifs enriched in FASEs, and those that are differentially enriched and utilized between

divergently sedimenting isoforms. Altogether, 19 of the 43 known RBPs identified as

fraction- or cell type-specific have been previously implicated in translational control or

observed to associate with polyribosomes (Supplemental Tables 10, 11) [170–180].

Additional studies are necessary to test the role of these potential factors in ASTC. Because

we were specifically interested in motifs related to ribosome association, we did not perform

motif analysis on introns. As a whole, these results suggest that ribosome association is

impacted by the composition of intrinsic transcript features; likely with combinatorial effects.

DISCUSSION

Here, we report the first integration of long read RNA sequencing with a translatomic

method, which we call LR Frac-seq, and we describe an approach to integrate long read and

short read Frac-seq to characterize the translated transcriptome in human ESC and NPC. We

took a complementary approach to capitalize on the major strength of long read sequencing in

capturing complete transcript structures, while leveraging short read sequencing’s

significantly higher throughput for accurate quantification. Many examples of hybrid
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sequencing approaches have previously been applied to complex biological problems by

other groups (Reese et al. 2023; Puglia et al. 2020). For the long reads, we employed the

R2C2 method to generate high-confidence consensus sequences with high base calling

accuracy and well-defined transcript start and end sites. From these, we performed de novo

transcriptome assembly to generate the set of full-length transcripts detected in the system,

deemed the long read-derived transcriptome. Indeed, the long read-derived transcriptome

does not comprehensively capture the entirety of the expressed transcriptome in ESC and

NPC, as indicated by short read transcript-level mapping rates: on average, 87% of short

reads mapped to the genome, while 42% mapped to the long read-derived transcriptome. The

high quality of the short reads suggests that the lower transcriptomic mapping rate is due to

the incomprehensive nature of the long read-derived transcriptome, which can likely be

improved by deeper sequencing; ideally at 1 million or greater reads per long read library. To

account for transcripts potentially missed by long read sequencing, we merged the long

read-derived transcriptome annotation with GENCODE’s GRCh38.p13 Release 41 primary

assembly annotation [150] to produce a non-redundant, “comprehensive” transcriptome

annotation for downstream analyses. The much deeper fractionated short read libraries were

utilized to quantify the comprehensive transcriptome across the gradient, consisting of: the

cytosol, monosome, light polyribosome (2-4 ribosomes), and heavy polyribosome (≥ 5

ribosomes) fractions. Highlighting one of the major benefits of long read sequencing, we

found 3,281 transcripts with either novel combinations of known splice sites or ≥ 1 novel

splice sites; accounting for 8.7% of the expressed (≥ 1 CPM) comprehensive transcriptome.

We compared transcript abundances in subcellular fractions to their cognate cytosolic

fractions to identify transcripts with enrichment in particular fractions relative to the cytosol,

which represents the raw output of the nucleus. We found that 7.5% and 6.8% of transcripts,
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in ESC and NPC respectively, preferentially associate with subcellular fractions and that the

proportion of productive transcripts associated with a given fraction directly correlates with

ribosome association (Figure 5). Isoforms observed to preferentially sediment in subcellular

fractions accounted for 13% and 9.8% of transcripts in multi-isoform genes. We trained RFCs

to select features at the transcript level and we found that the number of exons, CDS, 5’ UTR

and 3’ UTR length along with 5’ UTR and 3’ UTR GC-content were the most important

features in our feature set for the accurate prediction of transcript polyribosome profiles in

our dataset.

Among multi-isoform genes expressed in both ESC and NPC, gene-linked differences in

isoform sedimentation relative to the cytosol were largely cell type-specific, although patterns

of intrinsic transcript feature differences between fractions were similar between cell types

(Supplemental Figures 2, 5 and 6). We found that isoforms with a shorter CDS and longer 3’

UTR relative to the dominant isoform in the cytosol corresponded most clearly to Mono and

LPR sedimentation. Additionally, motif analyses revealed potential RBP motifs in

fraction-associated skipped exons and in divergently sedimenting isoforms. Interestingly,

these motifs cluster by fraction and by cell type respectively (Figure 4C,D). In total, binding

sites for 43 unique RBPs exhibited fraction-specific enrichment and nearly half (44%) have

previously established roles in translational control or demonstrated association with

polyribosomes (Supplemental Tables 10, 11). For example, proteomic analysis of

polyribosomes revealed numerous splicing factors, including hnRNPC, SRSF10, and SRSF7

as polyribosome-associated [172]. Intriguingly, many of these factors have distinct

sedimentation profiles across sucrose gradients, an observation that is consistent with the

fraction-specific enrichment of RBP binding sites observed here. As a whole, our results

present intrinsic feature measurements and potential RBP motifs that likely enact
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combinatorial effects on translation, providing both previously reported and novel insights

into the underlying mechanisms of ASTC. Because the most predictive intrinsic features were

rather broad, we hypothesize that inter-isoform differences in length and GC-content more

likely vaguely encapsulate changes to the isoform-specific cis-regulatory landscape. Several

factors may affect an mRNA’s translational output, including: intrinsic and trans-acting

influences to mRNA stability, post-transcriptional modifications and combinatorial

interactions with multiple RBPs. Therefore, it may be difficult to distill trends in

transcript-level features across polyribosome fractions without also measuring

transcriptome-wide mRNA half-life and capturing RBP-mRNA interactions, for example.

Figure 5. Summary of transcriptomic ribosome association profiles. (A, C) We identified
thousands of transcripts in ESC and NPC whose expression was significantly higher (log2FC
≥ 1.0, p-value ≤ 0.05) in a subcellular fraction relative to the cytosol. We also identified
thousands of isoforms in multi-isoform genes whose gene fraction was significantly higher (Δ
Gene fraction ≥ 0.1, Q-value ≤ 0.05) in a subcellular fraction relative to its gene fraction in
the cytosol. (B, D) The proportion of productive and unproductive transcript classes in each
subpopulation of transcripts enriched and/or preferentially sedimenting in subcellular
fractions. “T” represents the whole expressed transcriptome in the given cell type, “C”
represents the cytosol, “M”, “ML”, “L” and “H” represent the Mono, Mono+Light, LPR and
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HPR fractions respectively. “C*” represents the subset of transcripts comprising
multi-isoform genes specifically, in the cytosol.

Because the light and heavy polyribosome fractions were pooled sets of individual

polyribosome fractions, we could not assess features in the context of ribosome density. To be

clear, LR Frac-seq can be performed without pooling individual polyribosome fractions,

which would enable ribosome density-level analyses. We note that the heavy polyribosome

fraction is likely composed of both efficiently and inefficiently translated transcripts

depending on their ribosome density, and that trends of feature length and GC-content are

subject to exceptions in each subcellular fraction. Additionally, Frac-seq differs from

ribosome profiling methods in that it doesn’t capture single-nucleotide resolution ribosome

footprints. Rather, it stratifies the translated transcriptome in terms of the number of

ribosomes associated with full-length mRNAs. Therefore, it is not intended to replace

ribosome profiling methods and is instead an alternative approach that benefits from retaining

UTRs. We recommend LR Frac-seq for the study of translational control in cases where

complete isoform structures and detection of novel isoforms is desired.

A major implication of LR Frac-seq in the field of translatomics is that its library preparation

can be modified to enable direct RNA sequencing after fractionation to detect

post-transcriptional modifications which are understood to significantly influence translation.

For instance, RNA methylation, specifically N6-methyladenosine (m6A), can alter translation

efficiency. Pseudouridylation can affect translation dynamics by influencing ribosome stalling

and pausing during protein synthesis. RNA editing events, such as adenosine-to-inosine

(A-to-I) editing, can modify regulatory sequences, altering the fate of mRNAs. These

post-transcriptional modifications exemplify some of the multifaceted ways in which RNA

modifications can impact translational control. By coupling accurate positions of

post-transcriptional modifications with polyribosome profiles at isoform resolution, LR
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Frac-seq could enable more direct correlation of modifications with their effects on

translation. Because we used R2C2, which is a cDNA method, to strengthen the confidence

of isoform structures, we did not capture modification information beyond RNA editing

events. But future adopters of LR Frac-seq can employ direct RNA sequencing methods after

fractionation to gain that additional layer of data.

In conclusion, LR Frac-seq enables polyribosome profiling at isoform resolution, retaining

complete information about UTRs and novel transcript structures. We tested this method in

the context of neuronal differentiation, revealing thousands of transcripts enriched in

subcellular fractions relative to the cytosol and largely cell type-specific patterns of

isoforms-specific sedimentation between ESC and NPC. Our results present intrinsic

transcript features and known and novel RBP motifs that may be important determinants of

ribosome association, and this work presents a promising new approach to study translational

control without the information loss suffered by ribosome profiling and short read

sequencing-based methods.
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METHODS

H9 cell culture and differentiation to NPC

H9 cells in feeder-free culture were disaggregated using accutase and resuspended in hESC

medium (StemMACS) containing 10 µM Rock inhibitor (Y27632). Cells were then seeded on

a matrigel-coated 12-well plate at 50k live cells per well. Rock inhibitor was withdrawn the

next day and the cells were cultured in hESC medium for 3 days. Neural differentiation was

then induced over 7 days using KSR medium (for 500.5 mL stock: 415 mL KO-DMEM, 75

mL KSR, 100X Glutamax, 100X NEAA, 1000X bME, 10 µM SB431542, 100 nM

LDN-193189). A subset of differentiated cells were stained for PAX6 to confirm neural

differentiation.

Short read Frac-seq

Cytosolic extracts from monolayer-cultured H9 cells and H9-derived NPCs, both in triplicate,

were separated on sucrose gradients as described in the original Frac-seq publication [145].

From these, the monosome fraction (RNAs associated with 1 ribosome), light polyribosome

fraction (2-4 ribosomes) and heavy polyribosome fraction (≥5 ribosomes) were isolated using

the Gradient Station (Biocomp Inc). RNA was extracted with TRIzol, polyA selected, and

converted to directional RNA Seq libraries (BIOO Scientific qRNA) from these fractions in

addition to total cytosolic RNA. Biological and technical replicates were sequenced using

Hiseq 4000 PE150 (50-100M reads per library).

Long read Frac-seq

From the same fractionated mRNA used prior for Illumina sequencing, full-length

cDNA was prepared using the Rolling Circle Amplification to Concatemeric

Consensus (R2C2) method [147]. Libraries were pooled and sequenced on an ONT

PromethION, generating 12.11M reads with read length N50 of 17.6Kb.
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De novo transcriptome assembly from long reads

R2C2 long reads were basecalled with Bonito v0.0.1

(https://github.com/nanoporetech/bonito). Subsequent polyA tail and adapter

trimming followed by definition of high-confidence isoform consensus sequences

was carried out using Mandalorion v4.0.0 [148] with all sample FASTAs (from ESC

and NPC, all subcellular and cytosolic fractions in duplicate) as input. The resultant

transcriptome was filtered for redundant transcripts using GFFCompare v0.12.6 [181]

against the GRCh38.p13 Release 41 primary assembly annotation [150], and then

further filtered and annotated using SQANTI3 v5.1.1 and IsoAnnot Lite v.2.7.3

[149]. SQANTI3 filtering was done using the machine learning filter with a training

set proportion of 80% and a correct classification probability threshold of 70%. The

final, filtered long read transcriptome was then merged with the GRCh38.p13

Release 41 primary assembly annotation [150], producing a “comprehensive

transcriptome”, to account for transcripts that were potentially missed by long read

sequencing.

Short read data analysis

Short reads were adapter-trimmed with cutadapt, then mapped to the GRCh38.p13

primary assembly genome with the comprehensive transcriptome annotation using

STAR v2.7.8a [39]. Transcript-level quantification was performed from the

alignments using Salmon v1.9.0 [84] in alignment-based mode. Differential

expression analysis at the gene, transcript, and isoform level were carried out using

tappAS v1.0.7 [149], which utilizes maSigPro v1.72.0 with the following analysis

parameters: polynomial degree of 3, significance level of 0.05, R2 cutoff of 0.7, fold

change of 2, and 9 K clusters. Differential expression analyses were performed for

each subcellular fraction against its cognate cytosolic fraction (all in triplicate) for
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each cell type, and between subcellular and cytosolic fractions across ESC and NPC.

Pathway analyses were done using Metascape [91].

Alternative splicing (AS) analysis was performed using junctionCounts [182], which

identifies and quantifies binary splicing events from RNA-seq data, including:

alternative 5’ and 3’ splice sites (A5SS and A3SS), alternative first and last exons

(AFE and ALE), skipped exons (SE), retained introns (RI), and mutually exclusive

exons (MXE). AS events were then statistically tested by comparing the dispersions

of junction support for their included and excluded forms using DEXSeq v1.46.0

[49]. Events were considered significant if they had 0.1 ≤ Ψ ≤ 0.9 and adjusted

p-value ≤ 0.05 when assessing splicing within a condition, or |ΔΨ| ≥ 0.1 and Q-value

≤ 0.05 when assessing changes in splicing across conditions.

Feature analysis

Transcript features were collected from the transcriptome IsoAnnot Lite annotation

and by using custom python scripts, including length measurements of: transcript,

CDS, upstream open reading frames (uORF), 5’ and 3’ UTRs. Total counts of: 5’

UTR (TOP and UNR_BS) and 3’ UTR (BRD-BOX, CPE, DMRT1_RE, GY-BOX,

K-BOX, MBE and UNR_BS) motifs, uORFs and repeat sequences

(DNA/hAT-Charlie, DNA/TcMar-Tigger, LINE/L1, LINE/L2, low complexity,

LTR/ERVL-MaLR, retroposon/SVA, simple repeat, SINE/Alu, SINE/MIR and

srpRNA). Binary features: coding/noncoding, proximal/distal polyA tail usage,

predicted nonsense-mediated decay (NMD)/no NMD and intron retention/no intron

retention. And lastly, codon frequencies and GC-content of the transcript, CDS, and

5’ and 3’ UTRs. Feature selection for binary classification between transcripts

belonging to subcellular fractions was performed using the Random Forest Classifier

(RFC) method from the sklearn.ensemble module of scikit-learn v1.2.2
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(https://scikit-learn.org/stable) and evaluated using permutation importance from the

sklearn.inspection module. RFC models were generated with the interest of

identifying predictive features of ribosome association and were limited by the

relatively small subsets of transcripts classed as associated with a particular

subcellular fraction.

Motif analysis was performed using HOMER v4.11 [166]. Target sequences were

produced by slicing fraction-associated skipped exons (in the monosome relative to

cytosol, the light polyribosome fraction relative to cytosol, and the heavy

polyribosome relative to the monosome and the light polyribosome separately) into

30 nt windows. Each set was subjected to de novo motif discovery against

background sets of 30 nt windows produced from skipped exons that were not

enriched in their given fraction. Significant motifs (p-value ≤ 0.05, FDR ≤ 0.2) plus a

set of known RBP motifs – CISBP-RNA Homo sapiens [168] – were then tested for

enrichment across all sets of windows in each fraction using SEA v5.5.4 [169]. Motif

enrichment scores were filtered for p-value ≤ 0.05. De novo motifs enriched in at

least one set of windows were compared to RNA-binding protein motifs in the Ray

2013 Homo sapiens dataset ([168]) for potential matches using Tomtom v5.5.4

([167]). The best RBP motif match (p-value ≤ 0.05, Q-value ≤ 0.2) for each de novo

motif was assigned accordingly.

The same approach to motif analysis was taken with transcripts exhibiting divergent

isoform sedimentation between cell types. 30 nt windows were generated for the

CDS, 3’ UTR and 5’ UTR of each such isoform. De novo motif discovery and

enrichment was performed on windows from sets of isoforms preferentially

sedimenting with each fraction in each cell type versus those preferentially
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sedimenting with the same fraction in the other cell type. These isoforms had inverse

sedimentation profiles: meaning that those that preferentially sediment with a fraction

in ESC show the opposite sedimentation in the same fraction in NPC.

Luciferase reporter assays

Luciferase reporters designed to test translational control by alternative first exon

sequences were assembled from gene blocks (IDTDNA) and cloned into

pLightSwitch 5’ UTR report (Switchgear Genomics). HEK293 cells, grown on 6 well

plates in DMEM supplemented with 10% FCS, were transfected with 2.5 µg

pLightswitch reporter plasmid and pMIR (Ambion). 24 hours post-transfection, cells

were lysed with Passive Lysis Buffer and analyzed by dual luciferase assay

(Promega). Experiments were performed in triplicate. Relative luciferase activity

(Renilla vs. Firefly) was plotted in Graphpad and analyzed by paired T-test.
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Chapter 5: Future Directions and Other Works

5.1 Future Direction: The Next Iteration of junctionCounts

Ideally, junctionCounts will advance to characterize non-binary event types. For instance, if

three or more overlapping events within a gene were detected, junction reads could be

assigned by expectation maximization to quantify Ψ values for a single multi-isoform event

rather than multiple binary events. Such instances could further involve the assignment of

canonical event types as attributes to each isoform to clarify the moving parts involved in the

event for easier interpretation.

Additionally, cdsInsertion was validated for NMD event predictions, but its

coding-to-noncoding switch and NSD event predictions have not been assessed. These classes

of events could be tested by comparing the translational output of predicted

coding-to-noncoding switch and NSD substrates to their coding and non-NSD counterpart

isoforms respectively in vitro. cdsInsertion could also be expanded to include characterization

of codon optimality, especially to highlight the presence of rare codons associated with

consequences to mRNA stability and/or translation.

5.2 Future Direction: Towards a Mechanistic Understanding of ASTC

While work from many groups, including our work on LR Frac-seq, has provided some

insights into transcript-level features that correlate with specific sedimentation profiles,

there’s still a lot of room for discovering the specific mechanisms that control

isoform-specific ribosome association. Additionally, most studies, including ours, have

focused on steady-state sedimentation profiles without perturbation conditions. Two ideas for

future studies of ASTC that could make use of Frac-seq are to associate the landscape of

RNA modifications with sedimentation, and to correlate mRNA secondary structure with
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sedimentation. Moreover, it would be interesting to parse between isoform-specific

sedimentation due simply to transcript half-life versus other factors.

5.3 Other Work: Internship at Genentech, Inc.

During my Summer Computational Biology internship at Genentech, Inc. I had the pleasure

of working on the development of a long read transcript discovery and quantification tool

called Isosceles, which is currently in pre-print [183]. This tool importantly outperforms

available tools in terms of sensitivity and quantification accuracy across single-cell,

pseudo-bulk and bulk resolution levels. My specific contribution to the project was to

benchmark Isosceles against Bambu [184], FLAIR [185], LIQA [186] and NanoCount [187]

using downsampled simulated datasets. This experience serendipitously primed me for the

benchmarking experiments I would later conduct with junctionCounts.

5.4 Other Work: The Role of IGF2BP3 in B-cell Acute Lymphoblastic Leukemia

Despite decades of research and much progress, certain subtypes of leukemia remain highly

resistant to treatment. One recently discovered determinant of the aggressive behavior of

leukemia is a protein that regulates post-transcriptional gene expression, insulin-like growth

factor 2 mRNA binding protein 3 (IGF2BP3 or IMP3). This oncofetal RNA-binding protein

(RBP) is undetectable in most adult tissues but is strongly expressed in embryos and diverse

tumor types [188]. IMP3 is known to regulate genes that are related to proliferation,

migration, and signaling – which are important in fetal development – but also in cancer.

Concordant with this gene regulatory function, IMP3 is overexpressed in a wide range of

malignancies (approximately 15% of all cancers), including acute leukemia, and portends a

poor prognosis when highly-expressed [189].
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Recent studies conducted by our lab in collaboration with the Rao Lab at University

of California, Los Angeles have revealed that IMP3 binding sites are enriched in the 3’

untranslated region (UTR) of target mRNAs to regulate their stability via a mechanism that

involves the RNA-induced silencing complex (RISC). Using novel, murine models of IMP3

deficiency, we have discovered that IMP3 is required for the development of a

fully-penetrant, lethal leukemia in vivo. Together, our extensive prior work provides a

mechanistic framework for IMP3’s function and a solid foundation for its importance in

disease.

To fully understand the nature of IMP3’s effect on RISC-mRNA association and to

understand its role in cancer, I performed global characterization of RISC-associated mRNA

transcripts in the presence and absence of IMP3 using conditional enhanced cross-linking

immunoprecipitation sequencing (eCLIP-seq). Next, our lab plans to employ bioinformatic

analyses aimed at discovering features in mRNA 3’ UTRs that are necessary for IMP3-RISC

allostery. Following that, we hope to experimentally dissect the mechanisms by which IMP3

enables or obstructs RISC association by manipulating the accessibility and stability of RISC

target sites in mRNA 3’ UTRs.
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