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Abstract

Controlling Neural Language Models for

Affective Music Composition

by

Lucas N. Ferreira

Deep generative models are currently the leading method for algorithmic music composition.

However, one of the major problems of this method consists of controlling the trained models to

generate compositions with given characteristics. This dissertation explores how to control deep

generative models to compose music with a target emotion. Given the limitation of labeled data,

this dissertation focuses on search-based methods that use a music emotion classifier to steer the

distribution of a pre-trained musical language model. Three different search-based approaches

have been proposed. The first one is a genetic algorithm to optimize a language model towards a

given sentiment. The second one is a decoding algorithm, called Stochastic Bi-Objective Beam

Search (SBBS), which controls the language model at generation time. The third method is

also a decoding algorithm but based on Monte Carlo Tree Search. SBBS has been applied to

generate background music for tabletop roleplaying games, matching the emotion of the story

being told by the players. A dataset of symbolic piano music called VGMIDI has been created

to support the work in this dissertation. VGMIDI currently has 200 pieces labeled according to

the circumplex model of emotion, and an additional 3,640 unlabelled pieces. The three methods

were evaluated with listening tests, in which human subjects indicated that the methods could

convey different target emotions.
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Chapter 1

Introduction

Music composers have been using algorithms, rules, and general frameworks for cen-

turies as part of their creative process to compose music [101]. For example, Guido of Arezzo

(around 991-1031), in his work Micrologus, described a system for the automatic conversion of

text into melodic phrases. French composers of the ars nova, such as Phillipe de Vitry (1291–

1361) and Guillaume de Machaut (1300–1377), used isorhythms as a method to map a rhythmic

sequence (called talea) onto a pitch sequence (called color). In the The Art of the Fugue, Jo-

hann Sebastian Bach (1685–1750) deeply explored contrapuntal compositional techniques such

as the fugue and the canon, both being highly procedural.

Since the 1950s, scientists, engineers, and musicians have been designing algorithms

to create computer programs capable of composing music automatically. The ILLIAC Suite is

considered the first piece to be fully composed automatically by an electronic computer [101].

Lejaren Hiller and Leonard Isaacson wrote the program that generated this composition with

an ILLIAC computer at the University of Illinois [57]. Since then, many different methods

1



have been proposed to generate music with computers: expert systems [32], generative gram-

mars [73], cellular automata [7], evolutionary algorithms [62], Markov chains [18], and neural

networks [135]. The scientific (and artistic) field that organizes these algorithms is called algo-

rithmic music composition (AMC). The work in this field has influenced music genres such as

generative music [38] and supported applications in music analysis [85], procedural audio [40],

audio synthesis [37], music therapy [142], among others.

With the great advances in deep learning since the 2000s, neural networks achieved

impressive results in many areas of artificial intelligence (AI) such as computer vision, speech

recognition, and natural language processing (NLP) [49]. Consequently, AMC researchers

started exploring different types of neural networks to generate music: recurrent neural net-

works (RNNs) [105], transformers [63], convolutional neural networks (CNNs) [64], varia-

tional autoencoders (VAEs) [119], generative adversarial networks (GANs) [30], among others.

Inspired by NLP, one of the most common approaches to neural AMC consists of using a trans-

former or a RNN to build a musical language model (LM).

1.1 Neural Language Models

In NLP, a LM is a joint probability function of sequences of tokens (e.g., words or

characters) in a language [9]. Modern neural LMs compute the conditional probability of a

token xt given prefix tokens {x1,x2, · · · ,xt−1} by first computing a dense vector representation

(embedding) of the prefix and then feeding it into a classifier to predict the next token [131].

Neural LMs can be trained from a text corpus and then used to generate new sentences similar

2



to the ones in the corpus. Typically, new sentences are generated in an autoregressive way.

Namely, one starts with given prefix tokens {x1,x2, · · · ,xt−1} which are fed into the LM to

generate the next token xt . Next, xt is concatenated with the prefix, and the process repeats until

a special end-of-piece token is found or a given number of tokens are generated. Music can be

seen as a sequence of musical tokens (e.g., notes, chords, and parts), and hence a musical LM

can be defined to generate music similar to natural LMs. Such musical sequences are typically

extracted from a corpus of symbolic music (e.g., MIDI or piano roll) [16]. Modern musical LMs

have been capable of generating high quality pieces of different styles with strong short-term

dependencies1 [63].

Transformers and RNNs can learn a LM by processing input sequences of tokens

{x1,x2, · · · ,xt−1} to predict, with a softmax activation function, an output distribution ŷt for ev-

ery token t. A cross-entropy loss function is then used to compare the predicted probability

distribution ŷt , and the true next word yt . RNNs process sequences step-by-step by keeping an

internal state that is updated every step. Transformers process entire sequences in parallel, asso-

ciating an attention score to each token, which determines how much that token contributes to

the output of the network. Because transformers process tokens in parallel, they can take advan-

tage of the parallel computing offered by GPUs, and hence can be trained considerably faster

than RNNs [137]. One drawback of the transformers is that they can only process sentences

with a fixed size instead of RNNs that can process sentences of any size.

1Supporting strong long-term dependencies (e.g., music form) is still an open problem.
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1.2 Affective Algorithmic Composition

A major challenge of musical LMs consists of disentangling the trained models to

generate compositions with given characteristics [42]. For example, one cannot directly control

a LM trained on classical piano pieces to compose a tense piece for a horror scene of a movie.

Being able to control the output of the models is especially important for the field of affective

algorithmic composition (AAC), whose major goal is to automatically generate music that is

perceived to have a specific emotion or to evoke emotions in listeners [141]. Applications

involve generating soundtracks for movies and video games [140], sonification of biophysical

data [21], and generating responsive music to support music therapy [94].

The AAC community has explored different ways to control AMC approaches. The

traditional AAC methods are typically based on expert systems, evolutionary algorithms, and

Markov chains. These methods require rules encoded by music experts to model principles from

music theory to control the emotion of generated music. These methods are helpful in system-

atically investigating how a small combination of music features evoke emotions. However, due

to the large space of features (e.g., tempo, melody, harmony, rhythm, timbre, and dynamics),

it is challenging to create a fixed set of rules that consider all features. Data-driven methods

(e.g., neural networks) do not have this problem because musical rules are learned directly from

music data. The challenge with data-driven approaches is that it is relatively expensive to create

datasets of music labeled according to a model of emotion. Thus, deep learning for AAC is still

in its early days, and this dissertation is part of the first works in this area.
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1.3 Contributions

This dissertation explores how to control neural LMs to generate music with a target

emotion. Given the limitation of labeled data, the focus of this work is on search-based methods

that use a music emotion classifier to steer the distribution of pre-trained musical LMs. With

this framing, a high capacity LM L is pre-trained with a large unlabelled dataset and a music

emotion classifier E is trained with the labeled data to predict emotions e. In order to boost the

accuracy of the emotion classifier E, it is trained with transfer learning by fine-tuning the LM

L with an additional classification layer. Three different search-based approaches have been

proposed to control the LM L with the emotion classifier E to generate pieces with a target

emotion e.

1.3.1 Learning to Generate Music with Sentiment

Inspired by the work of Radford et al. [113], the first explored approach is a genetic

algorithm that optimizes the neurons of L that carry sentiment signal (positive or negative)2, as

given by E. A reasonably large labeled dataset called VGMIDI was created to train both L and

E. All pieces in the dataset are piano arrangements of video game soundtracks. A custom web

tool was designed to label these piano pieces according to the circumplex (valence-arousal)

model of emotion [121]. Labeling music pieces according to emotion is a subjective task.

Therefore, the pieces were annotated by 30 annotators via Amazon Mechanical Turk (MTurk),

and the mean of these annotations was considered the ground truth. In this first work, the

VGMIDI dataset had 95 labeled pieces and 728 unlabelled ones. The LM L was modeled as

2In this first work, only sentiment (and not emotions) was considered to simplify the problem.
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a long short-term memory (LSTM) network pre-trained with these 728 unlabelled pieces. The

sentiment classifier E was trained by fine-tuning L with an extra linear layer on the 95 labeled

pieces.

L1 regularization was used while training E to enforce a sparse set of weights in E.

This regularization highlighted the subset of neurons in L that carry sentiment signal. Thus, a

genetic algorithm was used to optimize the weights of these L1 neurons to lead L to generate

either positive or negative pieces. This approach was evaluated with a listening test where an-

notators labeled three pieces generated to be positive and three pieces generated to be negative.

Results showed that the annotators agree that pieces generated to be positive are indeed positive.

However, pieces generated to be negative are a little ambiguous, according to the annotators.

This work was published in the Proceedings of the 20th Conference of the International Society

for Music Information Retrieval (ISMIR19) [42].

1.3.2 Computer-Generated Music for Tabletop Role-Playing Games

The second approach is a variation of beam search, called stochastic bi-objective

beam search (SBBS), to decode the outputs of L with the guidance of E into a sequence of

musical tokens that convey e. Unlike the first approach, SBBS does not update the L weights

to control L towards e. Instead, it steers the probability distribution of L in generation time by

multiplying the probabilities of L with E. In this work, E is implemented as two independent

binary classifiers: Ev for valence and Ea for arousal. At every decoding step, SBBS samples

the next beam (set of candidate solutions) from this resulting distribution. SBBS applies top k

filtering when expanding the search space in order to control the quality of the generated pieces.
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In this work, the VGMIDI dataset was extended with extra 105 labeled pieces, in-

creasing the number of labeled pieces to 200. Moreover, a new dataset of unlabelled piano

pieces, called ADL Piano Midi, was created to train a larger L. ADL Piano Midi is composed of

11,086 piano pieces from different genres, where 9,021 of them were extracted from the Lakh

MIDI dataset [116] and 2,065 were scraped from publicly available sources on the internet.

The LM L was implemented with a GPT2 [115] transformer network pre-trained with the ADL

Piano Midi. The emotion classifiers Ev and Ea were both trained by fine-tuning L with an extra

linear layer on the 200 labeled pieces of the VGMIDI dataset.

SBBS was evaluated in the context of tabletop role-playing games. A system called

Bardo Composer was built with SBBS to generate background music for game sessions of

Dungeons & Dragons. Bardo Composer uses a speech recognition system to translate player

speech into text, which is classified as having an emotion e. Bardo Composer then uses SBBS

to generate musical pieces conveying the target emotion e. A user study showed that human

subjects correctly identified the emotion of the generated music pieces as accurately as they

were able to identify the emotion of pieces composed by humans. The contributions of this

work were published in the Proceedings of the 13th [106] and 16th [41] AAAI Conference on

Artificial Intelligence and Interactive Digital Entertainment (AIIDE17 and AIIDE20).

1.3.3 Controlling Emotions in Symbolic Music Generation with MCTS

The third and most recent approach is another decoding algorithm that, similar to

SBBS, does not update the L weights to control L towards the emotion e. This new decoding

algorithm is based on monte carlo tree search (MCTS). At every step of the decoding process,
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MCTS uses predictor upper confidence for trees (PUCT) to search over the space of sequences

defined by L for solutions that maximize the average values of emotion given by E. MCTS

samples from the distribution of node visits created during the search to decode the next token.

In this work, the VGMIDI dataset was extended with extra 2,912 unlabeled pieces,

increasing the number of unlabeled pieces to 3,640. The LM L was implemented with a music

transformer [63] pre-trained with these 3,640 unlabelled pieces. Unlike the second work, where

E was split into two binary classifiers, E was trained as a single multiclass emotion classifier.

Like the previous works, E was trained by fine-tuning L with an extra linear layer on the 200

labeled pieces of the VGMIDI dataset.

Two listening tests were performed to evaluate MCTS. The first one evaluates the

quality of generated pieces, and the second one evaluates the MCTS accuracy in generating

pieces with a given emotion. Results showed that MCTS is as good as SBBS in controlling

emotions while improving music quality. An expressivity analysis of the generated pieces was

also performed to show the music features being used to convey each emotion. The frequencies

of pitch classes and note durations suggest that MCTS can reproduce some common composi-

tion practices used by human composers.

1.4 Dissertation Outline

This dissertation is organized as follows: Chapters 2 and 3 present the background

work that this dissertation builds upon. While Chapter 2 presents an overview of algorithmic

music composition, Chapter 3 dives into the fundamentals of deep learning for music genera-
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tion. Chapter 4 reviews the previous methods to control the emotion of music composed algo-

rithmically. It also reviews techniques developed within the NLP community to control LMs

for different text generation tasks. Chapter 5 describes the work published at ISMIR19, where

a genetic algorithm is used to fine-tune a pre-trained LSTM. Chapter 6 presents the work pub-

lished at AIIDE20, which uses SBBS within Bardo Composer to compose music for tabletop

roleplaying games. Chapter 7 presents this dissertation’s most recent contribution: an MCTS

decoding algorithm to control LMs to generate music with a target emotion. Chapter 8 dis-

cusses the weakness of the methods proposed in this dissertation in order to highlight different

directions of future work. Finally, Chapter 9 concludes this dissertation.
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Chapter 2

A Brief History of Algorithmic Music

Composition

Algorithmic music composition (AMC) can be literally defined as the use of algo-

rithms to compose music. This broad term includes non computational procedures from music

theory developed to guide music composition and computational methods designed to generate

music automatically or semi-automatically. This chapter presents a brief history of AMC to

contextualize this dissertation, from the first procedures created by medieval music theorists to

the modern computational methods designed by scientists and engineers. Most computational

methods are briefly discussed with a few examples in this chapter, except neural networks,

which are covered in greater detail in the next chapter. Moreover, it is important to highlight

that this dissertation focuses on symbolic music composition, and hence audio-based methods

are not covered in this chapter.
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2.1 Procedures in Music Theory

Music composers have been developing procedures for centuries to compose different

aspects of music pieces. Guido of Arezzo (around 991-1031) developed one of the earlier

examples of AMC in his work Micrologus, where he described a method for mapping Latin

lyrics into melodies. The method extracts the vowels from given lyrics and then maps the

vowels into pitches. Figure 2.1 shows how Guido of Arezzo mapped the Latin vowels into the

seven different natural pitches of the western music system1.
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Figure 2.1: Mapping of vowels on natural pitches by Guido of Arezzo.

Since there are more pitches than vowels, some vowels are mapped to different pitches.

When mapping vowels that have more than one associated pitch, the pitch should be selected at

random. For example, consider the verse from the Hymn to St John in Figure 2.2, in which the

vowels are shown in parenthesis. With the mapping rules defined in Figure 2.1, the first line of

the verse can be mapped to the melody DBFCCE.

Around 1280, the music theorist Franco de Cologne, in his work Cantus Mensura-

bilis, introduced a music notation system where the note durations are defined by their shapes.

This new notation allowed composers to treat rhythm independently from pitch. For example,

French composers of the ars nova, such as Phillipe de Vitry and Guillaume de Machaut, used

1C, D, E, F, G, A, B
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REsonare fibris (eoaeii)

MIra gestorum (iaeou)

FAmuli tuorum (auiuou)

SOLve polluti (oeoui)

LAbii reatum (aiieau)

Sancte Ioannes (aeioae)

Figure 2.2: A verse from the Hymn to St John.

a technique called isorhythm to map a rhythmic pattern (named the talea) onto a pitch contour

(named the color). Figure 2.3 shows the tenor melody of the piece De bon espoir-Puisque la

douce-Speravi by Guillaume de Machaut built using the isorhythm technique.
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Music engraving by LilyPond 2.20.0—www.lilypond.org

Figure 2.3: The tenor melody of the piece De bon espoir-Puisque la douce-Speravi by Guil-
laume de Machaut.

The first staff is the talea and the second one is the color. The third staff is the resulting

melody of applying the former onto the latter. In this example, the talea has twelve notes and

five rests, whereas the color has eighteen notes. The note durations of the talea are applied in

order onto the respective notes of the color. Whenever there is a rest in the talea, that rest is
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merged into the pitches of the color. If the last note of the talea is mapped and there are still

notes left in the color, the mapping process continues from the first note of the talea.

In the Baroque Period (1600–1750), Johann Sebastian Bach wrote The Art of Fugue, a

musical work that explores different fugues and canons from a single musical subject2. Fugues

and canons are highly procedural contrapuntal compositional techniques. Counterpoint con-

sists of interleaving two or more melodies that are harmonically dependent but independent in

rhythm and melodic contour. For example, in a canon, the composer starts with a melody, called

the leader, which is strictly followed at a delayed time interval by another voice, called the fol-

lower. The follower may present a variation of the leader through transformation operations

such as transposition3, augmentation4, or inversion5 [126]. For example, Figure 2.4 shows the

first 13 measures6 of the Canon per Augmentationem in Contrario Motu from The Art of Fugue.

Figure 2.4: The first 13 measures of the Canon per Augmentationem in Contrario Motu from
The Art of the Fugue by Johann Sebastian Bach.

2A subject is the material, usually a recognizable melody, upon which part or all of a composition is based.
3Moving a set of notes up or down in pitch by a constant interval
4Repeating a set of notes with longer durations.
5Playing a given set of notes upside down, reversing the contour of the notes.
6A measure (or bar) refers to a single unit of time featuring a specific number of beats played at a particular

tempo. Measures are indicated by vertical bar lines on the staff.
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The first 4 measures of the upper voice present the subject (leader) of the canon.

In measures 5 to 13, the lower voice (follower) transforms the leader using augmentation and

inversion. Note that each ascending interval in the leader becomes a descending interval in the

follower. Figure 2.5 highlights these transformations by aligning the leader (upper voice) with

the follower (lower voice). Due to augmentation, the follower needs 8 measures to answer the

first 4 measures of the leader.

Figure 2.5: The leader (upper voice) aligned with the follower (lower voice) of the Canon per
Augmentationem in Contrario Motu from The Art of the Fugue.

In the Classical Period (1750-1827), Musikalisches Würfelspiel (german for a musi-

cal dice game) became a popular method to generate music randomly. It consists of selecting

precomposed snippets of music according to the result of dice rolls. One of the most famous

applications of this method is attributed to Wolfgang Amadeus Mozart, although this attribution

has not been authenticated [22]. Mozart’s dice game was designed to generate sixteen-measure-

long minuets7. The game works by creating an eleven-by-sixteen table, where the rows repre-

sent possible results of rolling two six-sided dice and columns are the indices of each measure

of the minuet. Each element in the table is a precomposed measure.

7A minuet is a classic form of dance from the classical period.
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Part 1
I II III IV V VI VII VII

2 96 22 141 41 105 122 11 30
3 32 6 128 63 146 46 134 81
4 69 95 158 13 153 55 110 24
5 40 17 113 85 161 2 159 100
6 148 74 163 45 80 97 36 107
7 104 157 27 167 154 68 118 91
8 152 60 171 53 99 133 21 127
9 119 84 114 50 140 86 169 94

10 98 142 42 156 75 129 62 123
11 3 87 165 61 135 47 147 33
12 54 130 10 103 28 37 106 5

Table 2.1: Example of Mozart’s dice game. Each element in the table is an integer representing
the number of a precomposed measure.

Table 2.1 shows an example of Mozart’s dice game with only the first part of the

minuet and hence only eight columns. To generate the first part of the minuet with this imple-

mentation, one has to roll two six-sided dice for each column j of Table 2.1. After each roll, the

sum i of the two dice is used to look up the row number i for column j. The element i, j in Table

2.1 is then used to retrieve a single measure from a collection of musical fragments. Figure 2.6

shows the first eight measures of a minuet that can be generated using Table 2.1.
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Figure 2.6: Example of minuet generated using Mozart’s dice game.

In the Romantic Period (1800–1850), composers developed a harmonic vocabulary
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with extensive use of chromaticism8. In the transition from Romanticism to Modernism, Arnold

Schoenberg, with his students, Anton Webern and Alban Berg, established new procedures for

music composition called Twelve-tone serialism. Serial composition consists of arranging a

series of musical elements (e.g., pitches and rhythms) into a pattern that repeats itself throughout

a composition. A basic form of serial composition consists of selecting a given number of notes

on the chromatic scale9 and creating permutations using only that number of notes. The selected

notes, called the row, must all be played once before repeating, although a note can be repeated

immediately after it has been played (for example, A, and then A). The first arrangement of

the row is called the tone row. Transformations such as transposition, inversion, retrograde10,

or retrograde inversion11 can be applied to the tone row to introduce variation into a serial

composition.

Twelve-tone serialism is a serial technique where the tone row is an ordered arrange-

ment of all the twelve notes of the chromatic scale. The goal of this technique was to replace

tonal music, which is built based on keys (such as C major or D minor). By focusing on the

twelve notes of the chromatic scale, no emphasis is given to any single key. Figure 2.7 illustrates

the tone row used by Alban Berg in the Lyric Suite for string quartet composed in 1926.
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Figure 2.7: Tone row used by Alban Berg in the Lyric Suite for string quartet composed in 1926.

8Chromaticism is the use of notes outside the scale of which a composition is based.
9A musical scale with twelve pitches, each a semitone, above or below its adjacent pitches.

10Playing a sequence of notes backwards.
11Playing a sequence of notes backwards and upside down.
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Table 2.2 shows different transformations that can be applied to the tone row showed

in Figure 2.7. The first row, when read from left to right, is the tone row. When read from right

to left, the first row is the retrograde form of the tone row. The inversion of the tone row is the

first column when read from top to bottom. The retrograde inversion is found by reading the

first column from bottom to top. Each row and column is labeled with Ti, where 0≤ i≤ 11. A

label Ti means that the respective row is the transposition of the tone row by i half steps. For

example, T5 means the tone row has been transposed up five half steps.

T0 T11 T7 T4 T2 T9 T3 T8 T10 T1 T5 T6

T0 F E C A G D Ab Db Eb Gb Bb B
T1 Gb F Db Bb Ab Eb A D E G B C
T5 Bb A F D C G Db Gb Ab B Eb E
T8 Db C Ab F Eb Bb E A B D Gb G
T10 Eb D Bb G F C Gb B Db E Ab A
T3 Ab G Eb C Bb F B E Gb A Db D
T9 D Db A Gb E B F Bb C Eb G Ab
T4 A Ab E Db B Gb C F G Bb D Eb
T2 G Gb D B A E Bb Eb F Ab C Db
T11 E Eb B Ab Gb Db G C D F A Bb
T7 C B G E D A Eb Ab Bb Db F Gb
T6 B Bb Gb Eb Db Ab D G A C R F

Table 2.2: Different transformations that can be applied to the tone row showed in Figure 2.7.

In the 20th century, Iannis Xenakis deeply explored the use of statistical methods

to compose stochastic music [145] – music in which some elements of the composition are

defined randomly. For example, in Pithoprakta (1956), he used Gaussian distributions to define

the “temperatures” of massed glissandi12. In Achorripsis (1957), he used Poisson’s distribution

of rare events to organize “clouds” of sound [2]. John Cage is another important composer of

12Continuous transition between two notes of different pitches.
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the 20th century who worked with stochastic music. Cage’s Music of Changes is a piece for solo

piano which was composed using the I Ching, a Chinese classic text that is commonly used as

a divination system. The I Ching was applied to randomly generate charts of pitches, durations,

dynamics, tempo, and densities.

2.2 Computational Methods

The ILLIAC Suite: String Quarter No 4 [57], a composition for string quartet, is con-

sidered to be the first music piece to be entirely generated by a digital computer. This piece was

generated in 1956 by an ILLIAC computer programmed by Lejaren Hiller and Leonard Isaacson

at the University of Illinois. The ILLIAC Suite has four movements with melodies that increase

in complexity across the movements. The first movement used counterpoint rules from the Re-

naissance to generate simple polyphonic melodies. The second movement used a random chro-

matic method that explored aesthetic differences between seventeenth and twentieth-century

musical styles. For the third and fourth movements, Hiller and Isaacson manually designed a

Markov chain to generate melodies with the style of Arnold Schoenberg’s twelve-tone music.

Xenakis and Cage were also pioneers in the use of computer algorithms to compose

music. In 1962, Xenakis wrote the Stochastic Music Program in the FORTRAN programming

language, which employed probability functions to determine the global structure (e.g., length

of sections and density) and the note parameters (e.g., pitch and duration) of his compositions

[89]. Morsima-Amorsima is an example of piece composed by Xenakis with the support of

this program. From 1967 to 1969, John Cage partnered with Lejaren Hiller to compose a mul-
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timedia piece called HPSCHD, which used a dice game approach with precomposed snippets

from pieces by Mozart, Beethoven, Chopin, and others. There are several other early examples

of computational approaches to AMC, such as the Push Button Bertha [2], a piece generated

in 1956 by a DATATRON computer programmed by Martin Klein and Douglas Bolitho at the

company Burroughs, Inc. Another important early example is the PROJECT1 (1964), a com-

puter program written by Gottfried Michael Koenig that used serial composition and Markov

chains to compose pieces such as the Project 1, Version 1 for 14 instruments.

Most of these early computational examples of AMC were developed by artists in

an ad hoc way. More recently, computer scientists and engineers started to explore AMC more

systematically and a wide range of methods have been proposed: expert systems [46], generative

grammars [22], cellular automata [95], evolutionary algorithms [62], Markov chains [56], neural

networks [135], and others. The remainder of this chapter briefly introduces these methods,

except neural networks, which are discussed in greater detail in the next chapter.

2.2.1 Expert Systems

AMC expert systems use rules that manipulate symbolic music to mimic the reason-

ing of music composers. For example, Gill [46] presented the first application of hierarchical

search with backtracking to guide a set of compositional rules from Schoenberg’s twelve-tone

technique. Many different works formulated AMC expert systems as a constraint satisfaction

problem (CSP) [4]. For example, Ebcioğlu [32] designed a system called CHORAL for harmo-

nizing four-part chorales in the style of J.S. Bach. The system contains over 270 rules (related

to melody, harmony, etc.), expressed in the form of first-order predicate calculus. CHORAL
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harmonizes the chorales using an informed search method where the heuristics guide the search

towards Bachian cadences13. AMC expert systems can also be formalized with case-based rea-

soning. For example, Pereira et al. [110] proposed a system with a case database from just three

Baroque music pieces, which were analyzed into hierarchical structures. The system composes

just the soprano melodic line of the piece by searching for similar cases in its case database.

2.2.2 Generative Grammars

Generative grammars are a set of expansion rules that give instructions for how to

expand symbols from a vocabulary. Starting with an initial sequence of symbols, one can com-

pose music with generative grammars by recursively applying expansion rules until a terminal

symbol has been reached or a desired length of music has been generated [61]. The expansion

rules can be manually defined or inferred from analyzing a corpus of pre-existing music compo-

sitions. Lidov and Gadura [87] presented an early example of a generative grammar manually

designed for the generation of melodies with different rhythmic patterns. A more recent exam-

ple is the work of Keller and Morrison [73], who designed a probabilistic generative grammar

for the automatic generation of convincing jazz melodies. In this case, the expansion rules have

probabilities associated with them.

One of the most famous examples of generative grammars in AMC is Cope’s Ex-

periments in Musical Intelligence (EMI) [22], which automatically derives a special type of

grammar called an augmented transition network from a corpus of compositions in a specific

style. EMI extracts this augmented transition network by finding short musical patterns that

13A cadence is a chord progression that occurs at the end of a phrase. A phrase is a series of notes that sound
complete even when played apart from the main song.
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are characteristic of the style being analyzed. EMI also determines how and when to use these

patterns in compositions with that style. The inferred transition network can be used to generate

new music pieces with the style of the analyzed corpus.

2.2.3 Cellular Automata

Cellular Automata (CA) is a dynamic system composed of simple units (called cells)

usually arranged in an n-dimensional grid. A cell can be in one state at a time. At each time

step, the CA updates each cell according to transition rules, which consider the state of the cell

and/or the state of the neighbor cells [143]. In his 1986 work Horos, Xenakis designed a CA

to produce harmonic progressions and new instrument combinations [130]. CAMUS [95] is a

system that combined two bi-dimensional CAs to compose polyphonic music: Conway’s Game

of Life [45] and Griffeaths Crystalline Growths [26]. Each activated cell in the Game of Life

was mapped to a triad14, whose instrument was selected according to the corresponding cell in

the Crystalline Growths CA. WolframTones [7] is a commercial system that composes music

with one-dimensional CAs that resemble a selected musical style. The system allows users to

select a pre-defined music style (e.g., classical, ambient, and jazz) and set different parameters

of the algorithm (e.g., rule number, rule type, and seed). Moreover, users can define how to map

the CA patterns to different musical features (e.g., pitch, tempo, and timber).

14A tuple of three notes.
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2.2.4 Evolutionary Algorithms

Evolutionary Algorithms (EAs) are optimization algorithms that keep a population of

candidate solutions (called individuals) to maximize (or minimize) a given objective function

(called fitness function) with an iterative process: (a) evaluation of the current population with

the given fitness function, (b) selection of the best solutions and (c) generation of new solutions

from the selected solutions. Horner and Goldberg [62] presented one of the first examples of

EA for music composition. Their algorithm was inspired by a composition technique called

thematic bridging, where the beginning and end of a piece are given, and a fixed number of

transformations (e.g., transposition, inversion, and retrograde) are applied to map the begin-

ning into the ending. Each candidate solution was encoded as a fixed set of transformations.

The fitness function measured the distance between the ending generated by the candidate and

the given ending. New solutions are generated with regular mutation and 1-point crossover.

Other examples of EAs include the works of McIntyre [92] for four-part baroque harmoniza-

tion, Polito et al. [111] for counterpoint composition, and Papadopoulos et al. [108] for the

generation of melodies for given jazz chord progressions.

Formulating good fitness functions is one of the major challenges of applying evo-

lutionary algorithms for AMC. To deal with this problem, a wide range of works use human

evaluators to listen and judge the fitness of the candidate solutions. These approaches are called

interactive genetic algorithms (IGAs). For example, GenJam [13] is a IGA for generating jazz

solos with two hierarchically structured populations: one for bar units and the other for jazz

phrases (constructed as sequences of measures). A human evaluator defines the fitness of the
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candidate solutions with a binary score (good or bad). GenJam accumulates these scores to

select phrases during the evolutionary process and generate the solos for a given chord progres-

sion. Other examples of IGAs are presented in the works of Jacob [66], Schmidl [122], and

Tokui et al. [136].

2.2.5 Markov Chains

Markov chains were a very popular method in the early days of AMC [3]. A Markov

chain is a system with a sequence of states, using conditional probabilities to model the transi-

tions between successive states [47]. In a first-order Markov chain, the probability of the next

state depends only on the current state, but in an nth-order Markov chain, the probability is con-

ditioned on the previous n-1 states [47]. Markov Chains can be represented as a directed graph

where nodes represent states, edges represent transitions between states, and edge weights rep-

resent the probability transition between states. This graph can be mapped to a probability table

T where rows i and columns j represent nodes, and elements Ti, j represent the probability of

transitioning between nodes i and j. Figure 2.8 shows an example of a simple abstract Markov

Chain.

A

B C

A B C

A 0.0 0.1 0.9
B 0.1 0.0 0.9
C 0.5 0.5 0.0

Figure 2.8: Example of Markov Chain represented as a directed graph with its respective prob-
ability table.
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Markov chains can be derived manually with the support of music theory or learned

from a corpus of music pieces. In both cases, one has to define how to encode music symbols

into a sequence of states [3]. To learn a Markov chain from a corpus, one can count, for each

state s1 in the corpus, the number of times s1 appears after each other state s2. The transition

probability table can then be constructed by normalizing these counts with the total number of

transitions in the corpus. The third and fourth movements of the ILLIAC Suite are the earliest

examples of manually-designed Markov chains, while Brooks et al. [18] presented one of the

first examples inferred from a corpus of music. Brooks et al. [18] experimented with different

orders of Markov chains where each state represents a pitch class. The probability tables of these

chains were learned from 37 common meter ( 4
4 ) hymn tunes (monophonic). While Markov

chains designed manually by composers worked well for specific compositional tasks [134,

70, 81], those learned from a corpus, in practice, can capture only short-term dependencies in

music [99]. Moreover, low order chains typically generate unmusical compositions that wander

aimlessly, while high order ones tend to repeat segments from the corpus and are very expensive

to train [99].

Markov chains can also be used to evaluate music generated by other methods. Given

a sequence of states representing a piece of music, one can evaluate this piece with the joint

probability of the sequence as given by the Markov chain. Thus, the higher the probability, the

better the music. This approach was used by Lo and Lucas [88]. They trained a Markov chain

with classical music pieces and used it to calculate the fitness of candidate solutions of an EA.

Each solution in the EA represents a melody encoded as a sequence of pitch numbers as defined

by the MIDI format.
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Most methods presented in this section require manually designed musical models

(or rules) to manipulate or evaluate music. Although music theory formalizes several aspects of

music analysis and composition, designing computational music models for AMC is still very

challenging, given that music composition is a task that involves human creativity. Some of the

presented methods, such as generative grammars and Markov models, can infer composition

rules from a music corpus. However, in practice, they have limited performance in terms of

music quality. Deep learning is a modern approach to AI, where neural networks are trained

to perform various tasks. Recently, the AI research community has drawn substantial attention

to this approach due to the impressive results that it has been achieving in different problems

(e.g., image classification, speech recognition, and machine translation) [84]. These results also

motivated AMC researchers to explore deep learning algorithms for music composition [16].

The next chapter presents a detailed discussion on how (deep) neural networks can learn music

models from a symbolic music corpus.
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Chapter 3

Deep Learning for Algorithmic Music

Composition

Deep Learning is a class of Machine Learning (ML) algorithms based on Neural Net-

works (NNs) with multiple layers that progressively extract higher-level features from raw data

(e.g., text, images, audio, and video) [49]. As ML algorithms, deep neural networks are used

to learn different tasks from examples without being explicitly programmed to do so, including

supervised learning, unsupervised learning, and reinforcement learning tasks. In a supervised

learning task, pairs (X ,Y ) of inputs X and target classes (also called labels) Y are provided by

a dataset as training examples. The NN then is trained to learn a function that maps the input

examples into the target classes. The learned function is typically used to perform predictions

(e.g., classification) on examples that the NN has not seen during training. Supervised learning

is typically divided into binary and multiclass problems. In binary problems, a given input x can

have one of two possible values y ∈ [0,1]. In multiclass problems, the label y ∈ [0,1, · · · ,L] can
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take one of L > 2 values. Classic examples of binary and multiclass problems are email spam

detection (spam or not) and handwritten digits classification [83], respectively. In unsupervised

learning tasks, only the inputs X are given in the dataset, and the NN is trained to learn internal

patterns in the data. These learned patterns can be used for different purposes such as clustering,

transfer learning, and generative modeling [10]. In reinforcement learning, the NN is trained to

learn an agent that can take optimal actions in an environment according to a reward function.

Modern neural AMC systems are typically designed in an unsupervised learning set-

ting, where a NN has to learn relationships between different music structures (e.g., notes,

chords, and melodies) represented in symbolic format. Formally, these NNs are generative

models, i.e. a model that captures a probability distribution P(X) from a given dataset X . In-

spired by the great results that deep learning has achieved in NLP, generative models for AMC

are typically designed as neural language models (LM). In NLP, a LM is a conditional proba-

bility L = P(xt |x1,x2, · · · ,xt−1) of the next token xt given a prefix with the t−1 previous tokens

{x1,x2, · · · ,xt−1} of a sentence. One can train a NN to learn L by processing input sequences of

tokens {x1,x2, · · · ,xt−1} to predict the next token xt+1 from the current token xt . A NN trained

this way can generate new sentences by sampling tokens from L or searching for sequences over

the space defined by L.

Considering that music is a sequence of musical tokens (e.g., notes, chords, and sec-

tions), one can train a neural LM L to compose music by (a) creating a dataset of symbolic

music, (b) designing a NN to learn L, and (c) sampling or searching tokens with L. The remain-

der of this chapter discusses different approaches for these three steps.
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3.1 Symbolic Music Representation

Symbolic music representation refers to using high-level symbols such as tokens,

events, or matrices as a representation for music modeling. The advantage of symbolic mu-

sic representation over audio music representation is that the former incorporates higher-level

features (e.g., structure, harmony, and rhythm) directly within the representation itself, without

the need for further preprocessing. There are many formats to represent symbolic music in

computers, but the most common ones are MIDI and piano roll.

3.1.1 MIDI

MIDI is a standard protocol for interoperability between various electronic instru-

ments, devices, and software [16]. A MIDI file represents a music piece as a series of messages

that specify real-time note performance data and control data. The two most important MIDI

messages for music LMs are the following:

• NOTE ON: this message is sent when a note starts, and it has three parameters:

– Channel number: indicates the instrument track with an integer 0≤ i≤ 15

– Note number: indicates the note pitch with an integer 0≤ p≤ 127

– Note velocity: indicates how loud the note is played with an integer 0≤ v≤ 127

• NOTE OFF: this message is sent when a note ends, and it has the same three parameters

as the NOTE ON message. In this case, the velocity parameter indicates how fast the

note is released.
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Note events are organized into a stream format called track chunk, which specifies the

timing information of each note event with a delta time value. A delta time value represents

the time of the note event either in relative metrical time (number of ticks from the beginning)

or absolute time. In the relative metrical format, a reference called division is defined in the

file header to set the number of ticks per quarter note. Table 3.1 shows an example of a MIDI

track chunk encoded in a readable format, where the time division has been set to 384 ticks per

quarter note.

Delta time Event Type Channel Pitch Velocity
96 NOTE ON 0 60 90
192 NOTE OFF 0 60 0
192 NOTE ON 0 62 90
288 NOTE OFF 0 62 0
288 NOTE ON 0 64 90
384 NOTE OFF 0 64 0

Table 3.1: Example of MIDI file encoded in a readable format [16].

3.1.2 Piano Roll

Piano roll is another common format of symbolic music. It is inspired by classic au-

tomated pianos that play pieces without a human performer by reading music from a continuous

roll of paper with perforations punched into it. Each perforation automatically triggers a note,

where the perforation location defines the note pitch, and the perforation length defines the note

duration. In a modern piano roll, music is divided into discrete time steps forming a grid where

the x axis represents time and the y axis represents pitch. The values 0 ≤ v ≤ 127 in the grid

represent the velocity of the notes. Figure 3.1 shows an example of a modern piano roll.
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Figure 3.1: Example of music represented in the piano roll format.

The MIDI representation can be mapped to a piano roll by sampling time steps with

a given frequency (e.g., every 16th note) from the MIDI events. Because of this property, most

datasets of symbolic music organize pieces in a collection of MIDI files. For example, the

MAESTRO dataset [53] is composed of about 200 hours of virtuosic piano performances of

classical music pieces captured from the International Piano-e-Competition [1] in MIDI format

aligned with audio waveforms. The Lakh [116] dataset is a collection of 176,581 unique MIDI

files from various music genres (mostly pop music) scraped from publicly available sources

on the internet, where 45,129 of them have been matched and aligned to entries in the Million

Song Dataset [12]. Piano midi.de is a dataset of classical piano pieces from a wide variety of

composers recorded in MIDI with a digital piano. JSB Chorales [14] contains the entire corpus

of 382 four-part harmonized chorales by J. S. Bach.
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MIDI and piano roll are the most common formats used to represent symbolic music.

However, other formats have also been used in the AMC literature. For example, the ABC

notation [139] is a text-based music notation system popular for transcribing, publishing, and

sharing folk music. MusicXML [48] is a markup language that has been designed to facilitate

the sharing, exchange, and storage of scores by musical software systems.

To use any of these symbolic music representations with LMs, one has to define a

vocabulary that encodes music data into a sequence of music symbols. For example, in a MIDI

representation, one has to map the note events into tokens and use the delta-time information

from the track chunks to define the order of the tokens. In a piano roll representation, one has

to map the vertical axis (pitch) into tokens and process the piano roll grid either horizontally

or vertically to define the order of the tokens. To be processed by NNs, each token in the

vocabulary has to be mapped into a vector. Traditionally, these tokens are mapped using one-hot

encoding, where each token is given an index i and is represented by a vector v = [v1,v2, · · · ,vn],

where only vi = 1 and all the other dimensions v j 6=i = 0. In the one-hot encoding, n is the

number of tokens in the vocabulary. For example, considering a vocabulary V = {a,b,c,d,e},

the one-hot encoding of the token c is c = [0,0,1,0,0].

3.2 Neural Networks

Artificial Neural Networks, or simply Neural Networks (NNs), interconnect a num-

ber of simple processing units called neurons to learn a function from training examples. These

neurons are typically organized into layers. Neurons might be connected to several other neu-
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rons in the layer before it, from which it receives data, and several neurons in the layer after

it, to which it sends data. NNs can be defined with different architectures, i.e. with a different

number of layers (depth) and different layouts of neuron connections. The first layer of the

network is called the input layer, and the last one is called the output layer. All the intermediate

layers are called hidden layers. Each neuron in the hidden or output layers takes as input a

vector x of incoming connections from the previous layer and assigns a weight vector w to these

connections. In its most basic form, the neuron first applies a linear transformation z=wẋ+b to

the inputs x, where b is an extra weight called bias that is not tied to any neuron of the previous

layer. The neuron then uses a nonlinear function called activation function f to map the linearly

transformed inputs z into an output y. Figure 3.2 shows a three-layer1 NN called feedforward

network or multilayer perceptron (MLP).

Figure 3.2: Diagram of a feedforward neural network [84]. The computations performed by the
neurons j (hidden layer L2), k (hidden layer L3), and l (output layer L4) are highlighted beside
them [84].

1Typically, the input layer is not considered when counting the depth of the NN.
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The number of neurons per layer (i.e., the layer size) and the layers’ activation func-

tions depend on the task being learned by the NN. In traditional supervised problems, the input

layer size is defined by how the input examples are represented and the output layer size by

the number of classes in the problem. For example, consider a handwritten digits classification

problem in which each handwritten digit is stored in a 28x28 grayscale image. The goal is to

classify the images into one of the ten digits (0 to 9). In this example, the input layer size is

784 neurons, one for each pixel in the image. The output layer size is 10 neurons, one for each

class. The sizes of the hidden layers are defined arbitrarily and should be controlled to optimize

the performance (e.g., classification accuracy) of the network.

In multiclass problems, such as the handwritten digit classification, the softmax acti-

vation function is used in the output layer to create a probability distribution over the classes.

Thus, the NN predicts the class with maximum probability. In binary problems, the logistic

activation function is typically used to map the output layer into the probability that the label

is one P(y = 1). Thus, the NN predicts 1 if P(y = 1) > 0.5 and 0 otherwise. The activation

functions in the hidden layers are decided arbitrarily, and they also affect the performance of

the NNs. Three of the most common activation functions used in the hidden layers are: logistic,

tanh, and ReLu. Table 3.2 defines each of these functions as well as the softmax function.

Name Function
Logistic (sigmoid) σ(x) = 1

1+e−x

Hyperbolic tangent (tanh) tanh(x) = ex−e−x

ex+e−x
Rectified linear unit (ReLu) relu(x) = max(0,x)
Softmax so f tmax(x) = exi

∑
J
j=1 ex j

Table 3.2: A list of common activation functions used in neural networks.
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NNs are typically trained with some variation of the gradient descent (GD) algorithm,

which optimizes all weights W and b of a network N to minimize a given loss function J(W,b).

The loss function depends on the task being modeled by N. However, in supervised learning,

one of the most common losses is the cross-entropy, which measures the difference between

the training data distribution and the distribution modeled by N. Equation 3.1 formally defines

the cross-entropy loss for a single example, where yc is the target label for the class c, ŷc is the

output predicted by NW,b for class c, and C is the number of classes in the prediction task.

J(W,b) =−
C

∑
c=1

yclog(ŷc) (3.1)

As shown in Algorithm 1, GD works by iteratively taking steps in the opposite direc-

tion of the gradient of the loss function J(W,b) with respect to all weights. For a given number

of iterations called epochs, GD (line 2) computes the gradient of J(W,b) for the entire training

dataset and (line 3) updates all weights W and b in the opposite direction of the gradient. The

learning rate α is a parameter that controls the size of the training step. Computing the gradient

(line 2) requires calculating the partial derivatives of the loss function with respect to all weights

in N. This calculation is typically performed by an algorithm called backpropagation, which

uses the chain rule to compute the gradient one layer at a time, iterating backwards from the

output layer to avoid redundant calculations of intermediate terms in the chain rule.

Calculating the gradients for the whole dataset to perform just one update can be very

slow or intractable for datasets that do not fit in memory. Stochastic Gradient Descent (SGD)

is a variation of GD that solves this problem by splitting the training data into sets, called

batches, and performing a training step for each batch. Although SGD supports training with
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Algorithm 1 Gradient Descent
Require: Dataset (X ,Y ), a loss function J(W,b), a NN NW,b with parameters W and b, the

number of epochs e and the learning rate α.

Ensure: Updated parameters W and b that minimize the loss function J(W,b).

1: for i← 1 to e do

2: ∂W ← ∂J
∂W , ∂b← ∂J

∂b

3: W ←W −α∂W , b← b−α∂b

4: end for

very large datasets, it introduces convergence issues due to the variance in the frequent updates

that cause the value of the loss function to fluctuate. Adaptive Moment Estimation (Adam) is

a recent variation of SGD that mitigates this problem by having a learning rate per weight and

separately adapting them during training [77]. In practice, most practitioners use the Adam

optimizer, given that successful NNs typically require large datasets that do not fit in memory2.

3.2.1 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are an important architecture for AMC because

they were specially designed to model sequential data. RNNs process sequences {x1,x2, · · · ,xt}

step-by-step by keeping an internal state ht that is updated every step. Each element xi is a

token (e.g., words in English or pitch classes in western music) traditionally encoded as a one-

hot vector. Figure 3.3 shows an abstract diagram of a RNN. On the left-hand side, the RNN is

shown with an input layer that passes a token xt to a hidden layer A that updates ht . A loop in

2The term big data is typically used to refer to these very large datasets.
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the hidden layer allows information to be passed from one step of the network to the next. The

right-hand side shows an unrolled version of the same RNN. The output layer of the network

is omitted from the diagram because RNNs can produce one output per time step or one single

output at the very last time step. This configuration depends on the learning task. However, the

output layer typically maps the hidden state ht to an output vector yt .

Figure 3.3: Diagram of a RNN [103].

Two of the most simple RNNs are the Elman network [36] and the Jordan network

[71]. They are composed of an input layer, a single hidden layer, and an output layer. As shown

in Equation 3.2, these RNNs produce an output yt for each time step t. The matrices Wxh and

Whh represent the weights of the hidden layer, and the matrix Why represents the weights of the

output layer. The functions fh and fy are the activation functions of the hidden and output layers,

respectively. The only difference between these two networks is that, in the Elman network, the

weights Whh are fed from the hidden layer and, in the Jordan network, from the output layer.

Elman network

ht = fh(Wxhxt +Whhht−1)

yt = fy(Whyht)

Jordan network

ht = fh(Wxhxt +Whhyt−1)

yt = fy(Whyht)

(3.2)
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Todd [135] presented one of the first applications of RNNs for AMC: a Jordan net-

work designed to generate melodies. The input of this network is a melody encoded as a se-

quence of pitch classes (e.g., CDEGFEDF), and the output is a single pitch. This network was

trained to reconstruct given example melodies. Each melody contributed to t training steps,

where t is the size (number of pitches) of the melody. At every training step t, the current

example melody is given as input, and the network error is calculated by comparing the net-

work output yt with the respective pitch xt of the input melody. After training, one can give

new melodies as input to the network, which outputs new pitches by interpolating between the

melodies seen during training. Duff [31] presented another early example of Jordan network

for melody generation. However, instead of encoding melodies as a sequence of pitch classes,

Duff [31] encoded them as a sequence of note intervals3.

One of the major problems of RNNs consists of modeling long-term dependencies

between symbols in a sequence. Modeling long-term dependency consists of creating a RNN

capable of considering previous symbols that are distant from the one that is being predicted.

In practice, simple RNNs are unable to connect the information between symbols that are very

far from each other [8]. In music, modeling long-term dependencies is critical to generate long

complete pieces with coherent form.

3.2.2 Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) networks [58] are a special type of RNN ex-

plicitly designed to solve the long-term dependency problem. LSTMs also process sequences

3The distance in pitch between two notes.
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x = {x1,x2, · · · ,xt} step-by-step by keeping an internal state ht that is updated every step. How-

ever, as shown in Figure 3.4, the hidden layers A have a different structure allowing LSTMs

to capture longer dependencies in the input sequences. A single LSTM module t is composed

of an extra state Ct called cell state, which is responsible for carrying information through the

entire LSTM network.

Figure 3.4: Diagram of an LSTM [103].

The flow of information in the cell state is controlled by three gates: an input gate

it , an output gate ot and a forget gate ft . These gates facilitate the cell to remember or forget

information for an arbitrary amount of time. Equation 3.3 formally defines the computation

performed in each LSTM module, where Wf , Wi, Wc, and Wo are weight matrices, [ht−1,xt ] is

the the hidden state vector ht−1 concatenated with the input vector xt , and C̃t is the candidate

vector to be added to the cell state. Each gate it , ot , and ft have the exact same equation, just

with different weight matrices (Wi, Wo and Wf , respectively). The cell state Ct combines the

input and forget gates to control the amount of information that will be included from the input

versus the amount of information that will be forgotten from the current cell state, respectively.
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The output gate controls the parts of the cell state that will be included in the final hidden state

ht . Modern RNNs (including LSTMs) typically have an extra layer, called embedding layer,

that is added before any other hidden layer to transform the one-hot input vectors xt into a dense

vector representation called embeddings. In NLP, a word embedding is a learned representation

for text where words that have the same meaning have a similar representation.

ft = σ(Wf [ht−1,xt ])

it = σ(Wi[ht−1,xt ])

C̃t = tanh(Wc[ht−1,xt ])

Ct = ft ∗Ct−1 + it ∗C̃t

ot = σ(Wo[ht−1,xt ])

ht = ot ∗ tanh(Ct)

(3.3)

Modern LSTM-based AMC systems typically train an LSTM as a LM, i.e. to predict

the next token xt given prefix tokens x = {x1,x2, · · · ,xn}. Thus, the input token xt at each time

step t is mapped, with a softmax activation function, to a probability distribution ŷt over the

symbols defined in the music vocabulary. The LSTM is then trained with the cross-entropy loss

function, which compares the predicted probability distribution ŷt with the true next token xt .

For example, BachBot [86] uses an LSTM to generate polyphonic music in the style of Bach’s

chorales. BachBot was trained with the JSB Chorales dataset [14], where each chorale was

encoded with a sequence of sixteenth-note frames. Each frame consists of four tuples (soprano,

alto, tenor, and bass) in the form (pitch, tie), where pitch represents a MIDI pitch number, and

tie is a boolean value that distinguishes whether a note is tied with another note at the same
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pitch from the previous frame or is articulated at the current time step. DeepBach [52] is similar

system that use LSTMs to geneate Bach chorales. The main difference between DeepBach and

BachBot is that, in DeepBach, LSTMs consider both past and future contexts to predict the next

token, while BachBot considers only the past.

Mao et al. [91] built upon a biaxial LSTM [69] to create a system called DeepJ, which

can compose music conditioned on a specific mixture of composer styles. DeepJ uses a piano

roll representation augmented with dynamics information, where the style of the music piece

is encoded as a one-hot representation over all artists in the training data. Oore et al. [105]

proposed another LSTM that can generate music with dynamics. They trained an LSTM on the

piano pieces from the International e-Piano Competition [1] with a new encoding method that

extracts tempo and velocity information from MIDI messages.

3.2.3 Transformers

Transformers [137] are modern architectures for sequence modeling based on atten-

tion mechanisms. In neural NLP models, an attention mechanism is a part of a NN that dynami-

cally highlights relevant tokens of the input sequence [6]. Instead of keeping an internal hidden

state that is updated at each time step like RNNs, transformers process entire sequences at once,

associating an attention score to each input token, which determines how much that token con-

tributes to the output. Because transformers process tokens in parallel, they can take advantage

of the parallel computing offered by GPUs, and hence transformers can be trained considerably

faster than LSTMs [137]. One drawback of transformers is that they can only process sentences

with a fixed size instead of LSTMs that can process sentences of any size.
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Transformers were originally designed in the context of machine translation, an NLP

task that consists of translating a sequence from one language (e.g., English) to another (e.g.,

French). Machine translation is a sequence-to-sequence problem, where a sequence input x has

to mapped into an output sequence y. NNs designed for machine translation normally have a

encoder-decoder structure. The first part of the network, called the encoder, takes a sequence

as input x and outputs a vector representation e (called encodings) of the input x. The second

part, called decoder, takes the encodings e as input and outputs a sequence y.

As shown in Figure 3.5, the transformer has an encoder-decoder structure (the en-

coder is showed on the left side and the decoder on the right side). The transformer takes as

input a sentence typically encoded with one-hot vectors and transforms it into two sequences:

a sequence of input embeddings and a sequence of positional encodings. The former is a dense

vector representation of words learned from the sparse one-hot input. The latter is a dense vec-

tor representation of the words’ positions learned from the indices of the words in the sentence.

The transformer adds the input embeddings and positional encodings together and passes the

result through the encoder.

The encoder converts the (input + position) embeddings b into encodings e using a

stack of n identical layers called transformer blocks. Each transformer block has two layers:

a multi-head attention layer and a fully connected feedforward layer. A residual connection

[54] is applied around each of the two layers, followed by a layer normalization [5]. A residual

connection is a connection between non-contiguous layers. Layer normalization normalizes

the activations of the previous layer, i.e. it applies a transformation that maintains the mean

activation within each example close to 0 and the activation standard deviation close to 1.
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Figure 3.5: Diagram of a transformer [137].

The key component of the transformer is the multi-head attention layer, which com-

putes a score matrix Z from the embeddings b or encodings e. The scores in Z represent the

relationship between different words in the input sentence. For example, consider the sentence

“The animal didn’t cross the street because it was too tired.”. In this sentence, the word “it” is

related to “animal”, and so when the transformer is processing the word “it”, self-attention al-

lows it to associate “animal” with “it”. Figure 3.3 shows the encoder self-attention distribution

for the word “it” in this example.
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Table 3.3: The encoder self-attention distribution for the word “it” in the sentence “The animal
didn’t cross the street because it was too tired.” [137].

The score matrix Z is computed similarly to a dictionary lookup: it takes a query

matrix Q, a key matrix K, and a value matrix V , and outputs a weighted sum of the values that

correspond to the keys that are most similar to the query. One of the most common self-attention

mechanisms in a transformer is the scaled dot-product attention, which is shown in Equation

3.4. The matrices Q, K, and V are created by packing the embeddings b (or encodings e) of all

the words in the input sentence into a matrix E, and multiplying it by the weight matrices Wq,

Wk and Wv that are learned during training. The size dk of the attention keys is a hyperparameter

chosen according to the problem at hand.
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Z = Attention(Q,K,V ) = so f tmax(
QKT
√

dk
)V

Q = E ∗Wq

K = E ∗Wk

V = E ∗Wv

(3.4)

The transformer decoder is similar to the encoder, but it has an extra masked multi-

head attention layer prepended to the transformer block to perform attention over the target

output sentence y. This extra layer uses a mask to ensure that the predictions for position

i depend only on the known outputs at positions less than i. The output of the decoder is

computed with a linear layer followed by a softmax activation.

One can use the transformer decoder (without the encoder) to train a LM capable

of generating sequences (e.g., text or music) similarly to an LSTM LM (see Section 3.2.2).

Equation 3.5 formally defines a decoder-based transformer LM, where x = {x1,x2, · · · ,xt−1} is

the input sequence, n is the number of transformer blocks (hidden layers), Wi is input embedding

weight matrix, Wp is the positional encoding weight matrix, and ŷ is the predicted probability

distribution of the next token xt given the input {x1,x2, · · · ,xt−1}.

h0 =Wix+Wp

hl = trans f ormer block(hl−1)∀i ∈ [1,n]

ŷ = so f tmax(hnW T
e )

(3.5)

Transformers are currently the state-of-the-art of both natural and music language

modeling. For example, Radford et al. [114, 115] proposed a series of models called GPT
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(General Pre-trained Transformer), GPT-2, and GPT-3 that used the transformer decoder to cre-

ate a model of natural language. Besides generating long coherent sequences of text, pre-trained

GPT models can be fine-tuned to perform specific NLP tasks (e.g., commonsense reasoning,

question answering, and summarization) with state-of-the-art performance [115]. Pre-training

consists of training the GPT model as a (unsupervised) LM with a huge general dataset (e.g.,

Wikipedia). Fine-tuning is performed by stacking extra layers onto the pre-trained model and

training these layers with a smaller (supervised) labeled dataset explicitly created for the task.

Music Transformer [63] is one of the first transformer-based LMs designed for AMC.

It uses a new relative attention mechanism that improves memory consumption of the original

decoder, allowing it to process longer sequences. Music Transformer achieved state-of-the-art

performance on the MAESTRO dataset [53]. Donahue et al. [29] showed that a transformer can

also compose multi-instrument scores by training it with the NES MDB [28] dataset. Donahue

et al. [28] used a transfer learning procedure similar to Radford et al. [114], where they first

pre-trained the transformer with the Lakh dataset (multiple instruments) and then fine-tuned it

with the NES-MDB (4 instruments). They manually defined a mapping between the instruments

from the two datasets. Pop Music Transformer [65] is a transformer model with a specialized

music representation to compose pop piano music. It was shown to generate a better rhythmic

structure than previous transformer models.

3.2.4 Variational Autoencoders

Variational autoencoders (VAEs) [78] are another modern architecture that can be

used to generate music. VAEs are different from RNNs and Transformers because they were
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not specifically designed to model sequences. Instead, they are generative models that can po-

tentially learn to represent data in any domain. VAEs have an architecture similar to a traditional

autoencoder, which is an encoder-decoder NN used to learn efficient encodings of unlabeled

data (unsupervised learning). Figure 3.6 shows a diagram of an autoencoder.

Figure 3.6: Diagram of an autoencoder [120].

An autoencoder builds a latent space of a dataset X with an encoder network e by

learning to compress each example x into a vector z and then reproducing x from z with a de-

coder network d. A key component of an autoencoder is the bottleneck introduced by making

the vector z have fewer dimensions than the input x, which forces the model to learn a com-

pression scheme. During training, the autoencoder ideally distills the qualities that are common

throughout the dataset. As shown in Figure 3.7, one can use an autoencoder as a generative

model by sampling random vectors from the latent space learned by the encoder and using the

trained decoder to build the output from the sampled vector.

One limitation of the autoencoder is that it often learns a latent space that is not con-
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Figure 3.7: Sampling from the latent space built by an autoencoder [120].

tinuous4 nor complete5 [119]. This means that if one decodes a random vector sampled from

the learned latent space, it might not result in a realistic output. VAEs solve this problem by

encoding the dataset X as a probability distribution over the latent space instead of a single vec-

tor z. Typically, this distribution is assumed to be a multivariate normal distribution N(µx,σx).

Figure 3.8 shows a diagram of a VAE. The difference between an autoencoder and a VAE is that

the VAE encoder outputs two vectors µx and σx, instead of a single vector z. These two vectors

represent the mean and standard deviation of a normal distribution N, respectively. The decoder

d samples a vector z∼ N(µx,σx) from the distribution N and reconstructs the input x from z.

MusicVAE [118] is one of the first examples of VAE applied to AMC. It splits the

input sequence x into U non-overlapping subsequences yu, such that x = {y1,y2, · · · ,yU}. The

4Two close points in the latent space should yield similar outputs when decoded.
5Any point sampled from the latent space should yield a “meaningful” output when decoded
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Figure 3.8: Diagram of a variational autoencoder [120].

encoder processes the segmented input x with a bidirectional LSTM, whose hidden states are

used to produce the latent distribution parameters µx and σx. The decoder is a novel hierarchi-

cal LSTM that takes the latent vector z ∼ N(µx,σx) as input and first produces U embedding

vectors e = {e1,e2, · · · ,eU} (one for each subsequence yu) with an LSTM called conductor.

Each embedding vector is then passed through a fully connected layer to produce the initial

states for a final decoder LSTM. The final LSTM then autoregressively produces a sequence of

distributions over output tokens for each subsequence yu via a softmax activation.

MIDI-VAE [19] uses a VAE to perform style transfer in polyphonic symbolic music.

It works by separating a portion zs of the latent vector z for style classification and another

portion zt to encode music structure (pitch, timber, and velocity). During generation, one can

change the style si of a given piece x to another style s j by passing x through the encoder to

get z and swapping the values zi
s and z j

s . The modified latent vector is then passed through the

decoder to get x with the target style s j. Style labels can be music genres such as Jazz, Pop,

and Classic; or composer names such as Bach or Mozart. VirtuosoNet [68] is a VAE designed

to generate piano performances with expressive control of tempo, dynamics, and articulations.
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The encoder is a hierarchical LSTM that encodes music on different levels: note, beat, and

measure. The decoder renders musical expressions by first predicting the tempo and dynamics

in measure level and then refining the result in note level.

3.2.5 Generative Adversarial Networks

Generative adversarial networks (GANs) [51] are another recent class of generative

models that, in theory, can generate synthetic data in different domains. GANs are composed

of two independent NNs: a generator and a discriminator. In its most basic form, the generator

takes random noise as input and transforms it into a fake example. The discriminator is a binary

classifier that discriminates examples as fake (0) or real (1). The generator and discriminator

architectures depend on the generative task that one wants to perform with the GAN. For ex-

ample, Figure 3.9 illustrates a GAN for handwritten digit generation. The random noise is a

matrix M representing a grayscale image, which can be generated by sampling values between

0 (black) and 1 (white) from a uniform distribution. Typically, the generator uses convolutional

layers to transform M into a fake handwritten digit. The discriminator then combines real and

fake images to learn how to separate images between fake and real.

Training a GAN consists of training the generator and the discriminator together iter-

atively in alternating periods:

1. The discriminator trains for one or more epochs.

The discriminator is trained with a loss function that penalizes it for misclassifying a real

instance as fake or a fake instance as real. The discriminator updates its weights through

backpropagation from the discriminator loss through the discriminator network.
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Figure 3.9: Diagram of a generative adversarial network [124].

2. The generator trains for one or more epochs.

The generator is trained with a loss function that penalizes it for producing a sample that

the discriminator classifies as fake. In other words, the generator loss is computed via the

discriminator. Thus, the generator updates its weights through backpropagation from the

discriminator to the generator.

The original GAN uses a single loss function called minimax loss to train both the

generator and the discriminator [51]. Minimax loss is derived from the cross-entropy between

the real and generated distributions. The generator tries to minimize this loss while the discrim-

inator tries to maximize it. During training, G learns to generate fake data that resembles the

original data, and D learns to distinguish the generator’s fake data from real data. The train-

ing process aims to have a generator G that produces output that can fool the discriminator D.

After training, one can generate new data points by sampling from different distribution points

learned by G.
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GANs work well to generate continuous data such as images [17], but it has limi-

tations in generating categorical data, especially in a sequential form such as text or music.

Images can be represented by a continuous matrix M and so applying transformations (e.g.,

M′ = M+0.05) to M still results in defined images M′ that can be classified as real or fake. In

sequential domains such as text and music, tokens are encoded using embedding vectors. Ap-

plying transformation to an embedding vector does not necessarily generate a valid token. For

example, assume that the word “university” is represented by the vector v = [0.44,0.37,−0.28].

If one applies the transformation v′ = v+ 0.05 to the original v, the new vector v′ not neces-

sarily represent some word in the vocabulary. Therefore, updating the weights of G with the

gradients of the minimax loss might lead G to generate invalid data. Another problem is that

the discriminator can only provide feedback on entire sequences.

Different approaches have been proposed to solve these problems in the domain of

symbolic music generation. For example, C-RNN-GAN [97] encodes MIDI files as a sequence

of continuous note events. Each note is a tuple (l, p, i,dt), where l is the note length, p is the

pitch frequency, i is note intensity, and dt is the time elapsed since the last note. With this

encoding scheme, C-RNN-GAN used RNNs for both the generator and the discriminator. Seq-

GAN [150] combined adversarial training and reinforcement learning to generate monophonic

music with a RNN generator and a convolutional discriminator. MidiNet [147] encodes MIDI

files as a sequence of fixed-size piano rolls M ∈ {0,1}128∗w, where w is the number of time

steps in each piano roll. Since each piano roll can be seen as a grayscale image, SeqGAN

uses convolutional layers in the generator and the discriminator. MuseGAN [30] also uses a

piano roll encoding with a convolutional generator and discriminator to generate polyphonic
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music. Muhamed et al. [100] proposed a GAN where both the generator and the discriminator

are transformers. The music pieces are encoded with the Music Transformer encoding scheme

[63], and the Gumbel-Softmax trick [67] is used to address the gradient problem of categorical

generators.

3.3 Decoding

As discussed in the previous section, most neural generative models for AMC are

based on RNNs, LSTMs, or Transformers6. These sequential models use a softmax activation

function in the output layer to create a LM L=P(xt |x1, · · · ,xt−2,xt−1), where {x1, · · · ,xt−2,xt−1}

is an input sequence and xt is the next token in that sequence. Typically, an autoregressive strat-

egy is used to generate music with L, i.e. to decode the softmax output into a sequence of music

tokens. One starts with a prior sequence of tokens x = {x1,x2, · · · ,xt1}, which is fed into L

to generate L(x) = xt . Next, xt is concatenated with x and the process repeats until a special

end-of-piece token is found or a given number of tokens is generated. As defined in Equation

3.6, autoregressive generation assumes that the probability distribution of a sequence of tokens

can be decomposed into the product of conditional next token distributions.

P(xt |x1, · · · ,xt−2,xt−1) =
T

∏
t=1

P(xt |x1:t−1) (3.6)

Currently, most prominent autoregressive strategies for music (and text) decoding are

based either on sampling or searching. While sampling is well suited for creative tasks such

6Including VAEs and GANs, which typically use RNNs, LSTMs, or Transformers as building blocks.
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as music composition, searching better fits generative problems where specific solutions are

expected, such as machine translation.

3.3.1 Top-k Sampling

In its most basic form, sampling consists of randomly picking the next token accord-

ing to the conditional probability distribution given by the LM: xt ∼ P(xt |x1:t−1). Figure 3.12

shows and example of text generation with the prior sequence x = {The}. In the first step, the

word ant is sampled from the condition probability distribution P(x2|The) and, in the second

step, the word sleeps is sampled from P(x3|The,ant).

Figure 3.10: Example of sampling with prior sequence x = {The} [138].

A simple trick called temperature can be applied to control the confidence of the

LM. It consists of dividing the LM output before the softmax activation by a parameter t > 0.

Lower temperatures t < 1 make the model increasingly confident in its top choices, while t > 1

decreases confidence. Figure 3.11 shows the previous example with temperature t = 0.7. The
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conditional probability P(x2|The) of the first step becomes more confident, leaving almost no

chance for the word ant to be selected. Thus, the word big is sampled first, followed by the

word dog.

Figure 3.11: Example of sampling with prior sequence x = {The} and temperature t = 0.7
[138].

Top-k sampling [39] is another way to control the probability distribution of the LM.

It consists of using only the k most likely tokens in the distribution, redistributing the probability

mass among only those top-k tokens. With this approach, the LM is filtered at each generation

step and the token is picked randomly according to the resuling probability distribution. Figure

3.12 illustrates the previous example with top-k sampling (k = 6).

In the first step, the top-k sampling keeps the six words {big,small,cat,dog,boy,man}

in the sampling pool, which encompass only two thirds of the probability mass. The words

{people, tall,house,ant} are eliminated, even though they seem like reasonable candidates. In

the second step, the top six words represent almost all of the probability mass. Three of the se-
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Figure 3.12: Example of top-k sampling with k = 6.

lected words {stops,down,a} are arguably bad candidates. Nevertheless, the eliminated words

{not, the,small, told} are rather bad candidates and hence successfully eliminated. This exam-

ple highlights that top-k sampling can jeopardize the LM, making it produce wrong sentences

for sharp distributions and limiting the model’s creativity for flat distributions.

3.3.2 Top-p (Nucleus) Sampling

Holtzman et. al. [60] proposed top-p (nucleus) sampling to address the degeneration

problems faced by top-k sampling (and other decoding strategies). Instead of limiting the sam-

ple pool to a fixed size k, top-p samples from a dynamic nucleus, i.e. the smallest set of tokens

whose cumulative probability exceeds a given probability p. Thus, the size of the sample pool

is dynamically adjusted for each step depending on the LM distribution. Figure 3.13 shows the

previous example with top-p sampling (p = 0.92).

The nucleus for p = 92% includes the nine most likely words in the first step and

only three words in the second step. This example highlights that top-p sampling keeps a wide
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Figure 3.13: Example of top-p sampling with p = 0.92 [138].

range of tokens in less predictable situations (e.g., in the first step) and a few tokens in more

predictable situations (e.g., in the second step). Although top-p is theoretically more interesting

than top-k, both methods work well in practice. Top-p can also be combined with top-k to avoid

very low ranked tokens while allowing for some dynamic selection.

3.3.3 Greedy Search

Greedy search selects the token with the highest probability at each generation step

t: xt = argmaxP(xt |x1:t−1). Figure 3.14 shows a text generation example with greedy decoding

and prior sequence x = {The}. In the first step, greedy search selects the word nice, which

has the highest probability among the three options {dog,nice,car}. In the second step, the

options are {woman,house,guy} and hence the greedy search selects the word woman. The

final generated sentence is The nice woman with a joint probability of 0.5∗0.4 = 0.2.

The problem with greedy search is that it misses high probability tokens “hidden

behind” low probability ones. In this example, the global optimal solution is the sentence The
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Figure 3.14: Example of greedy search with prior sequence x = {The} [138].

dog has (with joint probability 0.36), but the word nice has higher probability than dog in the

first step. Thus, greedy search selects nice and completely disregards the branch with the word

dog in the second step.

3.3.4 Beam Search

Beam search reduces the risk of missing hidden high probability tokens by keeping

the most likely b solutions (called beams) at each time step, where b is a parameter called beam

width. At the final generation step, the solution (or beam) with the highest joint probability

is selected. Figure 3.15 shows how beam search is capable of finding the best solution of the

previous example with beam size b = 2.

In the first step, the two most likely sub-sequences are {The,dog} and {The,nice}. In
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Figure 3.15: Example of beam search with prior sequence x= {The} and beam size b= 2 [138].

the second step, beam search expands the beam from the previous step with the two most likely

sub-sequences {The,dog,has} and {The,nice,woman}. At the end of the second step, beam

search returns the beam with highest probability, which is The dog has with joint probability

0.36. The solutions generated with beam search are always as good as or better (more likely

according to the LM) than the sequences generated with greedy search. However, beam search

is not guaranteed to find the optimal solution.

A common problem with beam search (and other search-based approaches) is that the

decoded sequences tend to become repetitive in a few generation steps [60]. This problem can

be alleviated by combining beam search with sampling (including top-k and top-p) to create a

stochastic beam search [112]. In this case, the sub-sequences are sampled at each time step

according to their joint probability, instead of selected greedly.
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Different decoding strategies (e.g., top-k sampling and beam search) can be used to

generate music with different NN architectures (e.g., LSTM, Transformer, VAEs, and GANs)

trained with different symbolic music datasets (e.g. MAESTRO, Lakh, and JSB Chorales). This

chapter presented an overview of these fundamental ideas of deep learning for music genera-

tion. This dissertation builds upon these ideas for controlling the emotion of music composed

with neural LMs. The next chapter reviews previous works that are related to this dissertation,

including methods to control neural LMs and other AMC systems that generate music with a

target emotion.
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Chapter 4

Controllable Algorithmic Music Composition

Deep generative models are currently the leading method for AMC [148]. However,

a major problem with this method is controlling the generation process towards a given com-

positional goal. For example, controlling a model trained on classical piano pieces to compose

a tense piece for a horror movie scene. Controlling emotions in AMC has been actively inves-

tigated in the field of affective algorithmic composition [141]. Therefore, this chapter presents

a literature review of this field, including models to represent emotion and methods to control

emotion in symbolic AMC systems. Given the similarity between text and music generation

tasks, this chapter also covers NLP methods to control neural natural language models.

4.1 Affective Algorithmic Composition

Affective algorithmic composition (AAC) is a research field concerned about control-

ling AMC methods to compose music that makes listeners perceive or feel a given target emo-

tion [141]. AAC is essential to a variety of applications, ranging from soundtrack generation
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[140] to sonification [21] and music therapy [94]. The AAC community has explored vari-

ous methods to compose music with a target emotion algorithmically: expert systems [140],

evolutionary algorithms [75], Markov chains [98], deep learning [90], among others. These

methods have used different models of emotion, but most of them are concerned with control-

ling perceived emotions instead of felt emotions. Therefore, they are normally evaluated with

a listening test (i.e., a user study) or a qualitative analysis of generated samples. This section

introduces the most common models of emotion used in the AAC literature and the different

approaches to control emotion in AMC. It also highlights the different methodologies used in

the AAC literature to conduct the qualitative analysis and the listening tests.

4.1.1 Models of Emotion

The study of affective phenomena has a very dense literature with multiple alternative

theories [34]. This section does not aim to discuss all of them but to provide a definition of

emotion that is useful for designing neural LMs for AAC. According to Williams et al. [141],

the literature concerning the affective response to musical stimuli defines emotion as a short-

lived episode, usually evoked by an identifiable stimulus event that can further influence or

direct perception and action. Williams et al. [141] also differentiate emotion from affect and

mood, which are longer experiences commonly caused by emotions.

There are two main types of models used to represent emotions: categorical and

dimensional [33]. Categorical models use discrete labels to classify emotions. For example,

Ekman’s model [35] divides human emotions into six basic categories: anger, disgust, fear,

happiness, sadness, and surprise. This model builds on the assumption that an independent neu-
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ral system subserves every discrete basic emotion [33]. Therefore, any other secondary emotion

(e.g. rage, frustration, and grief) can be derived from the basic ones. Parrott [109] proposed a

similar model, but deriving a hierarchical structure with the following six basic emotions: love,

joy, surprise, anger, sadness, and fear. These basic emotions are expanded into secondary emo-

tions (e.g. passion, pleasure, and envy), which in turn derive ternary emotions (e.g. compassion,

frustration, and guilt). Some emotions are more present in the music domain and are evoked

more easily than others. For example, it is more common for a person to feel happiness instead

of disgust while listening to music. The Geneva Emotion Music Scale (GEMS) [151] is a cat-

egorical model specifically created to capture the emotions that are evoked by music. GEMS

divides the space of musical emotions into nine categories: wonder, transcendence, tenderness,

nostalgia, peacefulness, energy, joyful activation, tension, and sadness. These nine emotions

group a total of 45 specific labels.

Dimensional models represent emotions as a set of coordinates in a low-dimensional

space. For example, Russell [121] proposed a general-purpose dimensional model called cir-

cumplex, which describes emotions using two orthogonal dimensions: valence and arousal. In-

stead of an independent neural system for every basic emotion, the circumplex model assumes

that all emotions arise from two independent neurophysiological systems dedicated to the pro-

cessing of valence (positive–negative) and arousal (mild–intense). Figure 4.1 shows a graphi-

cal representation of the circumplex model. The vector model [15] is another two-dimensional

model based on valence and arousal. It represents emotions as vectors, where valence is a binary

dimension (positive or negative) that defines the vector’s direction and arousal is a continuous

dimension that defines the vector’s magnitude.
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Figure 4.1: The circumplex model of emotion. The horizontal and vertical axes represent va-
lence and arousal, respectively [121].

Both categorical and dimensional models have been widely used in AAC systems

[141]. The choice of model is especially important for data-driven methods (e.g., neural net-

works) since they rely on datasets of music annotated by listeners according to the selected

model. Given that listeners typically use words to describe the emotions they perceive in mu-

sic, categorical models might be easier than dimensional models for this annotation task. On

the other hand, dimensional models allow a more precise description of the perceived emotion.

Such precision is particularly helpful to describe emotions in ambiguous pieces, where listeners

can select intermediate values between the different basic emotions (e.g., happy and calm) per-

ceived in the piece. Moreover, dimensional models can be easily mapped to categorical models.

The VGMIDI dataset, created as part of this dissertation, used the circumplex model (dimen-

sional) to exploit this flexibility of the dimensional methods, making the dataset more general

and thus reusable for other future AAC systems.
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Independent of the model, emotions can also be classified as perceived or felt [44].

A person perceives an emotion when they objectively recognize that emotion from their sur-

roundings. For example, one can usually recognize someone else’s emotion using expressed

cues, including facial expression, tone of voice, and gestures. The same can happen when one

listens to music, in that they recognize the music as happy or sad using cues such as key, tempo,

or volume. A person feels an emotion when they actually experience that emotion themselves.

For example, one typically experiences fear in response to someone else’s anger. This example

shows that a given perceived emotion can trigger a different felt emotion.

This dissertation focuses on generating symbolic music that listeners perceive to have

a target emotion. Ideally, the listeners should also experience this emotion in response to their

perception. However, emotions are less frequently felt in response to music than perceived

as expressive properties of the music [151]. Moreover, symbolic music (e.g., MIDI) has lim-

ited expressivity compared to traditional recorded human performances (audio representation),

making it harder for symbolic music to make listeners experience the target emotions. Focusing

on perceived emotions facilitates evaluating the different methods proposed in this dissertation

and still allows one to apply these methods to a wide range of problems.

4.1.2 Expert systems

Expert systems are one of the most common methods of AAC [141]. They encode

knowledge from music composers to map musical features into a given (categorical or dimen-

sional) emotion. For example, Williams et al. [140] proposed a system to generate sound-
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tracks for video games from a scene graph 1 annotated according to twelve categorical emo-

tions derived from the circumplex model. First, a second-order Markov chain learns to generate

melodies from a symbolic music dataset. Then, an expert system transforms the melodies gen-

erated via the Markov chain to match the annotated emotions in the graph. The transformations

are performed by mapping each of the twelve emotions to a different configuration of five mu-

sic parameters: rhythmic density, tempo, modality (major or minor), articulation, mean pitch

range, and mean spectral range. For example, a melody generated for a happy scene would be

transformed to have high density, medium tempo, major mode, staccato articulation, medium

mean pitch range, and high spectral range (clear timbre). Williams et al. [140] evaluated their

system by qualitatively examining a few examples of generated pieces.

TransProse [24] is an expert system that composes piano melodies for novels. It splits

a given novel into sections and uses a lexicon-based approach to assign an emotion label to each

section. TransProse composes a melody for each section by controlling the scale, tempo, octave,

and notes of the melodies with pre-defined rules based on music theory. For example, the scale

of a melody is determined by the sentiment of the section: positive sections are assigned a

major scale, and negative sections are assigned a minor scale. TransProse was evaluated with a

qualitative analysis of nine music pieces generated by the system for nine respective novels.

Scirea et al. [123] presented a framework called MetaCompose designed to create

background music for games in real-time. MetaCompose generates music by (i) randomly cre-

ating a chord sequence from a pre-defined chord progression graph, (ii) evolving a melody for

this chord sequence with a genetic algorithm and (iii) producing an accompaniment, adding

1A graph defining all the possible branching of scenes in the game.
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rhythm and arpeggio, for the melody/harmony combination. Finally, MetaCompose uses an

expert system called Real-Time Affective Music Composer to transform the final composition to

match a given emotion in the circumplex model. This expert system controls four musical at-

tributes: volume, timbre, rhythm, dissonance. For example, low arousal pieces were controlled

to have lower volume. Scirea et al. [123] evaluated each component of the MetaCompose

with a pairwise listening test. The components of the system were systematically (one-by-one)

switched off and replaced with random generation, generating different “broken” versions of

the framework. These broken versions were paired with the complete framework and evaluated

by human subjects according to four criteria: pleasantness, randomness, harmoniousness, and

interestingness. For each criteria, the participants were asked to prefer one of two pieces, also

having the options of neither and both equally.

Expert systems are a great approach for evaluating mappings between a small set of

music features and emotions. However, given the multidimensional (melody, harmony, rhythm,

orchestration, dynamics, etc.) nature of music, it is hard to create a large set of rules that

consider all the dimensions. The challenge is not only in the number of rules one needs to make,

but these rules might also contradict each other when combined together. The neural language

models explored in this dissertation don’t have these problems because neural networks learn

can learn these rules from music data.

4.1.3 Evolutionary Algorithms

To control emotions in music generated with EAs, one has to define a fitness function

that guides individuals encoding symbolic music towards a given emotion. It is very challeng-
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ing to design a function that formally evaluates subjective aspects of music emotion. Thus, most

EAs for AAC use interactive evaluation functions, where human subjects judge whether or not

the generated pieces match a target emotion. For example, Kim and André [75] proposed an

IGA to compose polyrhythms2 for four percussion instruments. It starts with a random popula-

tion of polyrhythms and evolves them towards relaxing or disquieting emotions. A polyrhythm

is encoded with four 16-bit strings, one for each instrument. A single bit in the string represents

a beat division where 1 means that a (unpitched) note is played in that division and 0 means

silence. The fitness of a polyrhythm is given by a human subject who judges it as relaxing,

neutral, or disquieting. The selection strategy keeps the four most relaxing and four most dis-

quieting individuals for reproduction with one-point crossover and mutation. Results showed

that the genetic algorithm generated relaxing polyrhythms after 20 generations while it took

only 10 for it to generate disquieting ones.

Zhu et al. [153] presented an IGA based on the KTH rule system [43] to create affec-

tive performances of pre-composed music pieces. The KTH rules model performance principles

within the realm of Western classical, jazz and popular music. These rules control different mu-

sic performance parameters (e.g. phrasing, articulation, and tonal tension) with weights called

k values that represent the magnitude of each rule. Zhu et al. [153] encoded the individuals

as a set of k values used to create MIDI performances of pre-composed pieces according to

the KTH rules. The genetic algorithm evolves a population to find optimal k values that yield

performances that are either happy or sad. The fitness of the performances are given by human

subjects with a seven-point Likert scale.

2A polyrhythm is the concurrent playing of two or more different rhythms.
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Nomura and Fukumoto [102] designed a distributed IGA to generate four-bar piano

melodies with controllable “brightness”. Multiple human evaluators evolve independent popu-

lations of melodies in parallel. In some generations, the genetic algorithm exchanges individuals

between the independent populations. With the exchange, evaluators are affected by each other

and the solutions are expected to agree with everyone’s evaluations. Each individual in a pop-

ulation represents a melody with a sequence of sixteen pitch numbers (as defined by the MIDI

protocol). Each element in the sequence is mapped into a quarter note with the pitch defined

by the element. Evaluators give the fitness of an individual based on a seven-point Likert scale,

where 1 means “extremely dark”, 4 means “neither”, and 7 means “extremely bright”. An ex-

periment with ten parallel evaluators showed that after seventeen generations, the independent

populations converged to similar melodies.

The benefit of interactive EAs is that when the population converges towards a target

emotion, no further evaluation is needed to check if the generated pieces indeed match that

emotion. These approaches are well suited for applications that require the human to be in the

loop of the generative process (e.g., assisted composition tools). On the other hand, interactive

EAs are model-free approaches, i.e., they only provide a set of solutions at the end of the

evolutionary process. Every time one wants to generate a new set of pieces, the slow interactive

evolutionary process must be restarted. The NNs explored in this dissertation don’t have this

problem because they are trained as language models which can generate as many music pieces

as needed. Neural networks are well suited for real-time applications where the generated music

is constantly changing (e.g., generative soundtracks).
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4.1.4 Markov Chains

AAC systems based on Markov chains are typically hybrid systems where Markov

chains compose an underlying piece of music that is transformed by an expert system. The

work of Williams et al. [140] described earlier in this chapter is an example of such a system.

Ramanto and Maulidevi [117] proposed a similar system in which the Markov chain is designed

manually instead of derived from a corpus. There is very little research on training Markov

chains directly from datasets of symbolic music labeled according to a model of emotion.

One of the few examples is the work of Monteith et al. [98, 20], which uses different

Markov models to generate polyphonic music from a MIDI corpus labeled according to the

Parrott model of emotion [109]. The corpus is composed by 45 movie soundtracks labeled by 6

researchers using the 6 basic Parrott emotions: love, joy, surprise, anger, sadness, and fear. The

system is divided into four main components: a rhythm generator, a pitch generator, a chord

generator, and an instrumentation planner. First, the rhythm generator randomly selects and

transforms a rhythmic pattern from the subset of pieces with the target emotion. Second, the

pitch generator assigns pitch values to the notes in the rhythm by sampling from a Markov chain

trained with the pieces from the target emotion. Third, the chord generator generates an under-

lying harmony for the provided melody with a hidden Markov model. Finally, the instrumenta-

tion planner probabilistically selects the instruments for melodic and harmonic accompaniment

based on the frequency of various melody and harmony instruments in the corpus.

The system uses single-layer feedforward networks, trained with the same MIDI cor-

pus, to classify the outputs of the rhythm and melody generators as having the target emotion or
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not. The system only accepts rhythms and melodies classified by the neural networks as having

the target emotion. Monteith et al. [98] evaluated their system with a listening test in which 13

human subjects selected the emotion that they perceived in the pieces. Moreover, the subjects

used two 10-point Likert scales to evaluate how human-like and unique the pieces are.

Markov chains are similar to the neural language models used in this dissertation as

they both learn mappings from music features to emotions. However, as discussed in Chapter

2, low order Markov chains typically generate unmusical compositions that wander aimlessly,

while high order ones tend to repeat segments from the corpus and are very expensive to train.

On the other hand, the neural language models explored in this dissertation are currently the

leading methods for algorithmic music composition [148].

4.1.5 Deep Learning

To train deep neural networks that can generate music with a target emotion, one

needs a relatively large dataset of symbolic music labeled according to a model of emotion.

Such datasets started to be created only recently, and this dissertation is part of the first wave of

research in this area. The remainder of this section presents prominent deep learning approaches

proposed to date. All of them use different datasets and have been developed concurrently with

this dissertation. For example, SentiMozart [90] is a framework that generates piano pieces

that match the emotion of a given facial expression. It uses a convolutional NN to classify the

emotion of a facial expression and an LSTM to generate a music piece corresponding to the

identified emotion. The convolutional NN was trained with the FER-2013 [50] dataset, which

has 35,887 images of facial expressions labeled with the following emotions: angry, disgust,
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fear, happy, sad, surprise, and neutral. To train the LSTM, Madhok et al. [90] created a dataset

with 200 MIDI piano pieces, each labeled by 15 annotators according to the classes happy,

sad, and neutral. Three LSTM were trained independently, one for each emotion. To unify the

models of emotion between the two datasets, Madhok et al. [90] merged the categories sad,

fear, angry, and disgust from the FER-2013 dataset into the sad emotion. The categories happy

and surprise were mapped into the happy emotion. Thus, the output e ∈ {happy,sad,neutral}

of the convolutional NN selects the respective LSTM that, in turn, composes a piece conveying

the emotion e. SentiMozart was evaluated with a listening test where 30 human subjects judged

30 randomly chosen images (10 of each class) and their corresponding generated pieces. The

participants used a 11-point Likert scale in which 0 means sad, 5 means neutral, and 10 means

happy.

Tan and Antony [133] proposed a deep NN for a similar problem: generating music

that matches an emotion expressed by visual artworks (e.g. paintings, illustrations, and col-

lages). They paired images of paintings with MIDI piano pieces labeled with the same emotion

and used an encoder-decoder network as a generative model. The encoder is a pre-trained con-

volutional NN called ResNet [54]. Tan and Antony [133] compared two decoders: an LSTM

and a (decoder) transformer. The music pieces were encoded as sequences of tokens with the

MIDI-based method proposed by Oore et al. [105]. Tan and Antony [133] trained their model

by pairing emotion-labeled images from You et al. [149] (17,349 images) with emotion-labeled

music pieces from Panda et al. [107] (196 MIDI files). Since these two datasets use different

categorical models of emotion, Tan and Antony [133] mapped the emotion labels of the music

dataset to the labels of the image dataset. The trained model was evaluated with a listening
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test and a machine classification test. In the listening test, six human subjects were asked to

evaluate the sentiment of the music pieces and the images with a 10-point Likert scale without

knowing which music piece was related to which image. The machine evaluation test consisted

of training an emotional correspondence classifier to predict if a given pair of images and pieces

express the same sentiment.

Zhao et al. [152] presented a conditional Biaxial LSTM [69] to generate piano pieces

with controllable emotion. They labeled the Piano midi.de dataset according to a categorical

model of emotion: happy, sad, peaceful, and tense. They used a piano roll representation for

the input music pieces, which are processed by the LSTM together with an emotion signal

associated with each time step of the input. This signal is encoded by an extra embedding layer

and then added to the embedding of the input. Zhao et al. [152] evaluated the quality of the

generated pieces according to four metrics of music structure: polyphony, scale consistency,

3-tone repetitions, and tone span. Moreover, they performed a listening test with 30 human

subjects to evaluate if the subjects agree with the emotions intended by the model.

Music FaderNets [132] is a framework based on a gaussian mixture variational au-

toencoder (GM-VAE) that can learn high-level music feature representations (such as emotion)

by modeling corresponding low-level structural music features. Based on Yang et al. [148],

Music FaderNets learns the low-level features of rhythm zr, note density zd , and key zk with

separated RNN encoders er, ed , and ek, respectively. The high-level features are then inferred

from the low-level representations (zr, zd , and zk) via semisupervised clustering. Music Fader-

nets was trained to reconstruct pieces encoded as a sequence of tokens [105] extracted from
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the Yamaha Piano-e-Competition dataset [1] and the VGMIDI dataset3 [42]. Results showed

that Music Fadernets successfully learns the intrinsic relationship between arousal (high-level

feature) and its corresponding low-level attributes of rhythm and note density.

The main benefit of the neural LMs investigated in this dissertation over other AAC

methods is that such LMs can learn the subjective mappings between music features and emo-

tions from data. This makes them flexible and, in turn, applicable to different AAC problems.

One just needs to create a dataset for the problem at hand. Neural LMs can also be used to

generate a wide range of music pieces with the same trained model. Moreover, deep genera-

tive models are currently the leading method for AMC [148], which ensures that neural AAC

systems can produce high-quality (i.e., similar to human composed pieces) music.

4.2 Controllable Neural Language Models

This dissertation is also related to methods that control natural LMs to generate text

with given characteristics (e.g. topic, style, and sentiment). For example, Radford et al. [113]

showed that fine-tuning a neural LM with an extra classification head to perform sentiment

analysis exposes the neurons in the LM that carry sentiment signal. Particularly, when pre-

training a character-level LSTM LM on Amazon product reviews [55] and fine-tuning it with

L1 regularization on the Stanford sentiment treebank [128], most of the sentiment signal in the

classification head comes from a single neuron in the LSTM. Therefore, this neuron can be

manually adjusted to control the LM to generate new product reviews with a target sentiment.

CTRL [74] is a transformer LM trained to generate text conditioned on special tokens,

3The VGMIDI dataset is a contribution of this dissertation described in Chaper 5.
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called control codes, that inform the LM about the characteristics (e.g. style) of the text to be

generated. These control codes are derived automatically from the text source (e.g. Wikipedia),

which means no manual annotation is needed. During training, every example sentence x is

processed together with a set of control codes. At generation time, CTRL can produce text with

a particular style s, for example, by conditioning the prior input x with a signal representing s.

Holtzman et al. [59] proposed a decoding strategy that uses a set of discriminators

(NNs) to steer the probability distribution of a LM at generation time. At each decoding step,

the probabilities of the next words given by the LM are multiplied by weighted scores of four

different discriminators: repetition, entailment, relevance, and lexical diversity. The discrimina-

tors are trained independently with a dataset of pairs (x,y), where x is a prior context sentence,

and y is the completion of that sentence. For each discriminator, the loss function measures the

difference between the scores assigned to the truth continuation y and the scores assigned to the

continuation generated by the LM. Once all the discriminators are trained, Holtzman et al. [59]

optimize the weights used to combine the score of each discriminator.

The Plug and Play LM [23] combines a pre-trained LM with an attribute (e.g. sen-

timent) classifier C to guide text generation by fine-tuning the LM hidden layers at decoding

time. At each generative time step, the LM hidden layers are shifted in the direction of the sum

of two gradients: one towards the higher log-likelihood of the target attribute (as given by C)

and the other towards higher log-likelihood of the unmodified LM. The shifting process occurs

in three steps: (1) a forward pass using C to compute the likelihood of the target attribute, (2) a

backward pass to update the LM hidden states with gradients from the attribute classifier C, and

(3) another forward pass to update the distribution over the vocabulary from the updated LM
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hidden layers. With this approach, multiple attribute classifiers can be combined at generation

time with customized weights.

Given a music dataset labeled according to a model of emotion, one can apply the

methods discussed in this section to control music LMs to generate pieces with a target emotion.

The next chapter presents a method based on Radford et al. [113] to control the sentiment of

piano pieces generated by an LSTM. The chapter after that discusses a variation of beam-search

inspired by Holtzman et al. [59] to control a transformer to generate piano pieces with a target

emotion.
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Chapter 5

Learning to Generate Music with Sentiment

5.1 Introduction

As discussed in the previous chapter, Radford et al. [113] showed that fine-tuning a

pre-trained LSTM LM with an extra classification head to perform sentiment analysis exposes

the neurons in the LM that carry sentiment signal. For particular datasets, most of the sentiment

signal in the classification head comes from a single neuron in the LSTM. Thus, this neuron can

be manually adjusted to control the LSTM LM to generate text with a target sentiment. This

chapter introduces a method inspired by Radford et al. [113] to generate symbolic music with a

target sentiment (positive or negative). First, the VGMIDI dataset is introduced, a new dataset

of symbolic piano pieces labeled according to the circumplex model of emotion. Second, an

LSTM is trained as a LM with the unlabeled pieces of the VGMIDI dataset. Finally, this LSTM

LM is fine-tuned with an extra linear layer and L1 regularization on the labeled pieces of the

VGMIDI dataset. Different than the findings of Radford et al. [113], this fine-tuning step did
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not expose a single sentiment neuron but many neurons that contribute to sentiment in a more

balanced way. Thus, a genetic algorithm is applied to optimize the weights of these sentiment

neurons, controlling the LSTM LM to generate either positive or negative music. This approach

is evaluated with two experiments. First, a cross-validation on the VGMIDI dataset shows

that the model obtains good prediction accuracy. Second, a listening test shows that human

subjects agree that the generated music has the intended sentiment; however, negative pieces

can be ambiguous. This work was published in the Proceedings of the 20th Conference of the

International Society for Music Information Retrieval (ISMIR19) [42].

5.2 The VGMIDI dataset

A new dataset called VGMIDI has been created to apply the sentiment neuron [113]

method to the symbolic music domain. This dataset contains piano arrangements of video

game soundtracks in MIDI format. The VGMIDI dataset has had three major versions during

this dissertation. The work reported in this chapter used the initial version, which had 823

pieces, varying in length from 26 seconds to 3 minutes. Among these pieces, 95 are annotated

according to the circumplex (valence-arousal) model of emotion. VGMIDI uses the circumplex

model because it allows continuous annotation of music, and because of its flexibility–one can

directly map a valence-arousal (v-a) pair to a multiclass (e.g., happy, sad, tense, and peaceful) or

a binary (positive/negative) model. Thus, the same set of labeled data permits the investigation

of AAC as both a classification (multiclass/binary) or a regression problem. The circumplex

model is also one of the most common models used to label emotion in music [129]. A few
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similar datasets have been created concurrently with the VGMIDI [90, 133, 152], but none are

labeled according to sentiment.

Annotating a piece according to the circumplex model consists of continuously lis-

tening to the piece and deciding what v-a pair best represents the emotion of that piece in each

moment, producing a time series of v-a pairs. This task is subjective, and hence there is no

single “correct” time series for a given piece. Thus, VGMIDI was labeled by asking several hu-

man subjects to listen to the pieces and then considering the average time series as the ground

truth. This process was conducted online via Amazon Mechanical Turk, where each piece was

annotated by 30 subjects using a web-based tool designed specifically for this task. Each subject

annotated 2 pieces out of 95, and got rewarded USD $0.50 for performing this task.

5.2.1 Annotation Tool and Data Collection

The tool designed to annotate the VGMIDI dataset is composed of five steps, each

one being a single web page. These steps are based on the methodology proposed by Soleymani

et al. [129] for annotating music pieces represented as audio waveforms. First, participants are

introduced to the annotation task with a short description explaining the goal of the task and how

long it should take on average. Second, they are presented with the definitions of valence and

arousal. On the same page, they are asked to play two short pieces and indicate whether arousal

and valence are increasing or decreasing. Moreover, annotators are asked to write two to three

sentences describing these short pieces. This page is intended to measure their understanding

of the circumplex model and willingness to perform the task. Third, a video tutorial was made

available to the annotators explaining how to use the annotation tool. Fourth, annotators are
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exposed to the main annotation page.

The main page has two phases: calibration and annotation. In the calibration phase,

annotators listen to the first 15 seconds of the piece to get used to it and define the starting point

of the annotation circle. In the annotation phase, they listen to the piece from beginning to end

and label it using the annotation circle, which starts at the point defined during the calibration

phase. Figure 5.1 shows the annotation interface for valence and arousal, where annotators click

and hold the circle (with the play icon) inside the circumplex model (outer circle), indicating

the current emotion of the piece. In order to maximize annotators’ engagement in the task, the

piece is only played while they maintain a click on the play circle. In addition, basic instructions

on how to use the tool are shown to the participants along with the definitions of valence and

arousal. A progression bar is also shown to the annotators to know how far they are from

completing each phase. This last step (calibration and annotation) is repeated for a second

piece. All pieces the annotators listened to are MIDI files synthesized with the Yamaha C5

Grand Piano soundfont1. Finally, participants provide demographic information, including

gender, age, location (country), musicianship experience, and whether they previously knew

the pieces they annotated.

5.2.2 Data Analysis

The annotation task was performed by 1425 annotators, where 55% are female and

42% are male. The other 3% considered themselves as transgender female, transgender male,

genderqueer, or choose not to disclose their gender. All annotators are from the United States

1http://freepats.zenvoid.org/Piano/acoustic-grand-piano.html
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Figure 5.1: Screenshot of the annotation tool.

and have an average age of approximately 31 years. Musicianship experience was assessed

using a 5-point Likert scale where 1 means “I’ve never studied music theory or practice” and

5 means “I have an undergraduate degree in music”. The average musicianship experience is

2.28. The participants spent on average 12 minutes and 6 seconds to annotate the two pieces.

The data collection process provides a time series of v-a values for each piece. How-

ever, only the valence dimension is needed to create a music sentiment dataset. Thus, each

piece has 30 time series of valence values. The annotation of each piece was summarized into

one time series and split into “phrases” of the same sentiment. Figure 5.2 illustrates how the 30

annotations of an example piece are summarized into a single time series.

The top chart shows a high inter-rater disagreement, which can be explained by peo-

ple’s different perceptions of emotion in music. However, alternate explanations might be that
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Figure 5.2: Data analysis process used to define the final label of the phrases of a piece.

raters had an incomplete understanding of how to apply the circumplex model of emotion, or

that they encountered difficulty using the rating tool for this task. The summarization of the an-

notations proceeded on the assumption that inter-rater disagreement is explained by the different

perceptions of emotion in music, so the other hypotheses were not explored. In any event, gath-

ering 30 samples of rating data per song was sufficient to have coherent rating clusters appear

in the rating data.

Assuming that the inter-rater disagreement comes from the different perceptions of

emotion in music, one can’t summarize the annotations by directly taking their mean since that

does not capture the various trends of annotation. This problem has been solved by clustering
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the annotations into 3 groups: positive, negative, and ambiguous. The positive cluster is created

to identify the annotators that perceive the piece to be majorly positive. The negative cluster

is intended to group the annotators that perceive the piece as mainly negative. The ambiguous

cluster is created to group the annotators that perceive the piece to have a balanced mix of posi-

tive and negative parts. This cluster should also contain noisy annotations from participants who

annotated the piece randomly to get the reward as quickly as possible. The middle charts show

that clustering the annotations into 3 groups allows one to identify the annotation trends better.

In this example, Cluster 1 is the positive group, Cluster 2 is the negative group, and Cluster 3

is the ambiguous group. With these 3 clusters, the annotations are summarized by taking the

mean of the cluster with the highest number of annotations. This summarizing strategy assumes

that the democratic trend (defined by the majority of the annotators) defines the ground truth

sentiment of the piece.

The final mean is split at all the points where the valence changes from positive to

negative or vice-versa. This process creates several segments with valence values of the same

sign, where segments with negative valence are considered negative phrases and segments with

positive valence are positive phrases. All the phrases that had no notes (i.e., silence phrases)

were removed. This process created a total of 966 phrases: 599 positive and 367 negative.

5.3 Language Model and Sentiment Classifier

Radford et al. [113] used a single-layer multiplicative LSTM (mLSTM) network [80]

with 4096 neurons to learn a character-based language model from a sequence of UTF-8 en-
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coded characters. The trained mLSTM was fine-tuned with an extra linear layer to classify

sentiment in text. During fine-tuning, the pre-trained weights of the mLSTM were kept frozen,

and only the weights of the extra classification layer were trained. Moreover, L1 regularization

was used during fine-tuning to enforce a sparse set of weights in the classification layer. This

work uses the same models and training procedures to compose music with a target sentiment.

Instead of characters, this work represents music pieces as sequences of tokens from

a vocabulary representing events retrieved from MIDI files. Sentiment is perceived in music

due to several features such as melody, harmony, and tempo [76]. The proposed representation

attempts to encode as many music features2 as possible while keeping the vocabulary small:

• n [pitch]: play a note with a given pitch number (any integer from 0 to 127).

• d [duration] [dots]: change the duration of the following notes to a given duration with

a given amount of dots. Duration types are breve, whole, half, quarter, eighth, 16th and

32nd. Dots can be any integer from 0 to 3.

• v [velocity]: change the velocity of the following notes to a given velocity (loudness)

number. Velocity is discretized in bins of size 4, so it can be any integer in the set

V = 4,8,12, . . . ,128.

• t [tempo]: change the tempo of the piece to a given tempo in bpm. Tempo is also dis-

cretized in bins of size 4, so it can be any integer in the set T = 24,28,32, . . . ,160.

• · (dot): end of time step. Each time step is one sixteenth note long.

2Constrained by the features one can extract from MIDI data.
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• \n: end of piece.

For example, Figure 5.3 shows the encoding of the first two time steps of the first

measure of the Prelude of Light from the Legend of Zelda - Ocarina of Time . The first time

step sets the tempo to 120bpm, the velocity of the following notes to 76, and plays the D Major

Triad for the duration of a whole note. The second time step sets the velocity to 84 and plays

a dotted quarter A5 note. The total size of this vocabulary is 225, and it represents both the

composition and performance elements of a piece (timing and dynamics).

t_120 v_76 d_whole_0 n_50 n_54 n_57 v_92 d_eighth n_86 . . v_84
d_quarter_1 n_81 . .

Figure 5.3: A short example piece encoded using the proposed representation. The encoding
represents the first two time steps of the shown measure.
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5.4 Empirical Evaluation

5.4.1 Sentiment Classifier

The fine-tuning approach proposed in this work is initially evaluated in the sentiment

classification task. First, an mLSTM L is pre-trained as a LM with the unlabeled pieces of the

VGMIDI dataset. Then, the pre-trained weights of L are frozen, and an additional linear layer

E f is stacked on top of L. The resulting model L+E f is trained as a sentiment classifier with the

labeled pieces of the VGMIDI dataset. The final model L+E f is compared against a baseline

mLSTM Es trained directly on the supervised sentiment classification task. In other words, Es is

trained as a sentiment classifier only with the labeled MIDI phrases (no pre-training involved).

The unlabeled pieces used to train L are augmented in order to create additional train-

ing examples, following the methodology of Oore et al. [105]. The augmentation consists of

time stretching (making each piece up to 5% faster or slower) and transposition (raising or low-

ering the pitch of each piece by up to a major third). All these pieces and transformations are

encoded according to the proposed word-based representation (see Section 5.3). Finally, the

encoded pieces are shuffled, and 90% of them are used for training and 10% for testing. The

training set is divided into three shards of similar size (approximately 18,500 pieces each –

325MB), and the testing set is combined into one shard (approximately 5800 pieces – 95MB).

Six different sizes (number of neurons in the hidden layer) are compared for L: 128,

256, 512, 1024, 2048, and 4096. For each size, L is trained for 4 epochs using the 3 training

shards. Weights are updated with the Adam optimizer after processing sequences of 256 words

on mini-batches of size 32. The hidden and cell states of L are initialized to zero at the beginning
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of each shard. They are also persisted across updates to simulate full-backpropagation and allow

for the forward propagation of information outside of a given sequence [113]. Each sequence

is processed by an embedding layer (which is trained together with the mLSTM layer) with 64

neurons before passing through the mLSTM layer. The learning rate is initialized to 5∗106 and

decayed linearly (after each epoch) to zero over the course of training.

Each L variation is evaluated with a forward pass on the test shard using mini-batches

of size 32. Table 5.1 shows the average3 cross entropy loss for each variation of L. The average

cross entropy loss decreases as the size of L increases, reaching the best result (loss 1.11) when

the size is equal to 4096. Thus, the variation with 4096 neurons is used to proceed with the

sentiment classification experiments.

mLSTM Size Average Cross Entropy Loss
128 1.80
256 1.61
512 1.41
1024 1.25
2048 1.15
4096 1.11

Table 5.1: Average cross entropy loss of the mLSTM LM (L) with different size (number of
neurons in the hidden layer).

After training L, an extra linear sentiment classification layer E f is stacked on top

of L and trained on the 966 labeled phrases of the VGMIDI dataset. Here, stacking means

passing the final cell state of L as input to E f . During this fine-tuning step, the base layers of L

are frozen, which means only the weights of E f are updated. Moreover, E f is trained with L1

regularization to shrink the least important of the 4096 feature weights to zero. This ends up

3Each mini-batch reports one loss.
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highlighting the neurons in L that contain most of the sentiment signal.

The fine-tuning approach L+E f was compared against the baseline supervised mL-

STM Es, which has exactly the same architecture and size as L + E f but trained in a fully

supervised way (no pre-trained LM involved). The training parameters for both E f and Es were

set to be the same used to train L. Both methods were evaluated using a 10-fold cross-validation

approach, where the test folds have no phrases that appear in the training folds. Table 5.2 shows

the sentiment classification accuracy of both approaches.

Method Test Accuracy
Fine-tuned mLSTM-4096 (L+E f ) 89.83 ± 3.14
Baseline mLSTM-4096 (Es) 60.35 ± 3.52

Table 5.2: Average (10-fold cross validation) sentiment classification accuracy of both fine
Fine-tuned mLSTM-4096 (L+E f ) and Baseline mLSTM-4096 (Es).

The fine-tuned mLSTM (L+E f ) achieved an accuracy of 89.83%, outperforming the

baseline mLSTM (Es) by 29.48%. The lower accuracy (60.35%) of Es suggests that the amount

of labeled data (966 phrases) was not enough to learn a good mapping between phrases and

sentiment. The higher accuracy (89.83%) of L+E f shows that L is capable of learning, in an

unsupervised way, a good representation of sentiment in symbolic music. This is an important

result for two reasons. First, since the higher accuracy of L+E f is derived from unlabeled

data, it will be easier to improve this over time using additional (less expensive) unlabeled data

instead of Es, which requires additional (expensive) labeled data. Second, because L was trained

to predict the next word in a sequence, it can be used as a music generator. Since L is combined

with a sentiment predictor, it opens up the possibility of generating music consistent with a

desired sentiment. This idea is explored in the following section.
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5.4.2 Controlling Sentiment

To control the sentiment of the music generated by the fine-tuned mLSTM (L+E f ),

one has to find the subset of neurons in L that contain the sentiment signal by exploring the

weights of the linear sentiment classification layer E f . As shown in Figure 5.4, E f trained with

L1 regularization uses 161 neurons out of 4096. Unlike the results of Radford et al. [113], the

fine-tuning step did not store the sentimental in a single neuron. Instead, the sentiment signal

was stored across many neurons in a more balanced way. Therefore, one cannot simply change

the values of one neuron to control the sentiment of the output music.

Figure 5.4: Weights of 161 L1 neurons. Note multiple prominent positive and negative neurons.
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A genetic algorithm (GA) was used to optimize the 161 L1 weights to lead L to

generate only positive or negative pieces. Each individual in the population of this GA has 161

real-valued genes representing a small noise to be added to the 161 L1 weights of L. The fitness

of an individual is computed by (i) adding the genes of the individual to the 161 L1 weights

(vector addition) of L, (ii) generating P pieces with the updated L, (iii) using E f to predict these

P generated pieces, and (iv) calculating the mean squared error of the P predictions given a

target sentiment s ∈ S = {0,1}. The GA starts with a random population of size 100 where

each gene of each individual is a uniformly sampled random number −2 ≤ r ≤ 2. For each

generation, the GA (i) evaluates the current population, (ii) selects 100 parents via a roulette

wheel with elitism, (iii) recombines the parents (crossover) taking the average of their genes,

and (iv) mutates each new recombined individual (new offspring) by randomly setting each

gene to a uniformly sampled random number −2≤ r ≤ 2.

This GA was executed twice: once to optimize L for generating positive pieces and

once for negative pieces. Each execution optimized the individuals during 100 epochs with a

crossover rate of 95% and a mutation rate of 10%. To calculate each individual’s fitness, P=30

pieces were generated with 256 words each, starting with the symbol “.” (end of time step).

The optimization for positive and negative generation resulted in best individuals with fitness

0.16 and 0.33, respectively. This means that if one adds the best individual’s genes of the final

population to the 161 L1 weights of L, one generates positive pieces with 84% accuracy and

negative pieces with 67% accuracy.

After these two optimization processes, the genes of the best final individual of the

positive optimization were added to the 161 L1 weights of L. A set of 30 pieces was then
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generated with 1000 words starting with the symbol “.” (end of time step) and 3 of them were

randomly selected. The same process was repeated using the genes of the best final individual

of the negative execution. Annotators were asked to label these 6 generated pieces via Amazon

MTurk, using the same methodology described in Section 5.2.1. Figure 5.5 shows the average

valence per measure of each of the generated pieces.

Figure 5.5: Average valence of the 6 generated pieces, as determined by human annotators.
with least variance.

These results showed that human annotators agreed that the three positive generated

pieces are indeed positive. The generated negative pieces are more ambiguous, having both

negative and positive measures. However, as a whole, the negative pieces have lower valence

than the positive ones. This suggests that the best negative individual (with fitness 0.33) en-

countered by the GA was not good enough to control the LM to generate completely negative

pieces. Moreover, the challenge to optimize the L1 weights suggests that there are more positive

pieces than negative ones in the 3 unlabelled shards used to train the LM.
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5.5 Conclusions

This chapter presented a method inspired by Radford et al. [113] to control a mL-

STM LM to generate symbolic music with a given sentiment. The mLSTM is controlled with

a genetic algorithm that optimizes the weights of specific neurons that are responsible for the

sentiment signal. Such neurons are found by fine-tuning the mLSTM with an extra linear layer

to classify the sentiment of symbolic music. This method of fine-tuning followed by a genetic

algorithm was evaluated both as a generator and as a sentiment classifier. Results showed that

the fine-tuned mLSTM obtained good classification accuracy, outperforming an equivalent mL-

STM trained in a fully supervised way. Moreover, a user study showed that humans agree that

the fine-tuned LM can generate positive and negative music, with the caveat that the negative

pieces are more ambiguous than the positive ones.
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Chapter 6

Computer-Generated Music for Tabletop

Role-Playing Games

6.1 Introduction

This chapter presents Stochastic Bi-Objective Beam Search (SBBS), a new decoding

strategy inspired by Holtzman et al. [59], to generate musical pieces conveying a target emo-

tion. SBBS works by steering at generation time the probability distribution of a LM with the

probabilities given by a music emotion classifier. Unlike the method presented in the previous

chapter, SBBS does not update the weights of the LM to control it towards a target emotion.

SBBS is proposed as part of a system called Bardo Composer, or Composer for short, to gen-

erate background piano music for tabletop role-playing games (TRPG). Composer is applied to

score sessions of Dungeons and Dragons (D&D), a TRPG in which the players interpret char-

acters, known as player characters (PCs), in a story told by the dungeon master (DM), a special
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player who also interprets all nonplayer characters (NPCs) in the story. Composers’ goal is to

augment the players’ experience with soundtracks that match the story being told in the game.

For example, if the players are fighting a dragon, Composer should generate a piece matching

such a tense moment of the story. TRPG players often manually choose songs to play as back-

ground music to enhance their experience [11]. Therefore, the system should allow players to

concentrate on the role-playing part of the game and not on the disruptive task of selecting the

next music piece to be played.

Bardo Composer builds upon a previous system called Bardo [106], which selects

pre-authored background music for TRPGs. Bardo uses a naive bayes approach to classify cap-

tions (sentences) produced by a speech recognition system into one of the four emotions: happy,

calm, agitated, and suspenseful. Bardo then selects a music piece from a library corresponding

to the classified emotion. The selected piece is then played as background music whenever the

naive bayes classifier detects an emotion transition in the story. As shown in Figure 6.1, Com-

poser has a similar structure as the previous system, with the major difference that Composer

generates completely new pieces as opposed to select pre-authored ones. Composer also uses

a speech recognition system to translate players’ speeches into captions. However, unlike the

previous system, Composer classifies the captions with a transformer according to a discrete

circumplex model of emotion. A second transformer is trained to classify the emotion of sym-

bolic piano pieces according to the same discrete circumplex model. Composer then uses SBBS

to control a LM with the music emotion classifier to generate music pieces conveying the target

emotion given by the story emotion classifier.

Two new datasets have been created to support both Bardo and Composer [106, 41]:
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Figure 6.1: Diagrams with the architecture of Bardo (left) and Composer (right).

Call of the Wild (CotW) and ADL Piano Midi. CotW is a dataset of transcribed captions from

YouTube videos of a D&D campaign. ADL Piano Midi is a large and diverse MIDI dataset with

piano pieces extracted from the Lakh MIDI dataset [116]. Moreover, in this work, the VGMIDI

dataset has been extended from 95 to 200 labeled pieces using the same annotation method as

the original dataset (see Chapter 5). All the 200 pieces are piano arrangements of video game

soundtracks labeled according to the circumplex model of emotion. The discrete circumplex

model of emotion used by Composer is defined to integrate emotions of the CotW stories with

the VGMIDI pieces.

A listening test with 116 participants was performed to evaluate whether human sub-

jects are able to correctly identify the emotion conveyed in pieces generated by Composer. Re-

sults showed that human subjects could correctly identify the emotion of the generated pieces as

accurately as they were able to identify the emotion of pieces written by humans. The original
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Bardo was published in the Proceedings of the 13th AAAI Conference on Artificial Intelligence

and Interactive Digital Entertainment (AIIDE17) [106] and Bardo Composer in the Proceedings

of AIIDE20 [41].

6.2 Datasets

6.2.1 Call of the Wild

A new dataset called Call of the Wild (CotW) was created to train the story emotion

classifier of the original Bardo. This dataset includes 9 episodes of the CotW D&D campaign

available on YouTube, which sum a total of 4 hours, 39 minutes, and 24 seconds of gameplay.

Each episode is an independent YouTube video with approximately 30 minutes played by the

same 4 players (1 DM and 3 PCs). All videos were processed by the YouTube speech recogni-

tion system that generated the English captions from the speeches of the 4 players. This process

yielded 5,892 sentences (45,247 words), which 3 different annotators labeled according to a

categorical model with four emotions: happy, calm, agitated, and suspenseful. The annotation

process assumed the PCs perspective in the story, as there could be moments that PCs and NPCs

could experience different emotions. Should two annotators agree on the label of a sentence s,

then s is labeled according to the two annotators. One of the annotators watched the videos

again to break the ties (sentences that each annotator attributed a distinct label for).

Composer’s story emotion classifier is also trained with the CotW dataset. However,

in order to have an integrated model of emotion between the CotW stories and the VGMIDI

music pieces, Composer uses a discretized circumplex model of emotion [121] that generalizes
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the four emotion model used in Bardo [106]. In Composer’s emotion model, the dimensions

of valence and arousal assume binary values v ∈ [−1,1] and a ∈ [−1,1], respectively. Valence

measures sentiment and thus v = −1 means a negative emotion and v = 1 means a positive

emotion. Arousal measures the energy of the emotion, and thus a =−1 means that the emotion

has low energy, whereas a = 1 means that the emotion has high energy. With this discretized

circumplex model, Bardo’s four emotion model is mapped to the following emotions:

1. Suspenseful is mapped to low valence and arousal (v =−1,a =−1).

2. Agitated is mapped to low valence and high arousal (v =−1,a = 1).

3. Calm is mapped to high valence and low arousal (v = 1,a =−1).

4. Happy is mapped to high valence and arousal (v = 1,a = 1).

This mapping is based on the circumplex model used to annotate the VGMIDI dataset.

When human subjects annotated that dataset, they used a continuous circumplex model with

labels defining a fixed set of discrete basic emotions (see Figure 5.1). This mapping allows one

to use the circumplex model with the labeled CotW dataset. For example, in the context of

D&D, the sentence “Roll initiative” is normally said at the beginning of battles and it can be

considered (v = −1,a = 1), once a battle is a negative (dangerous) moment with high energy.

“Roll initiative” is normally classified as agitated in the CotW dataset [106].

6.2.2 ADL Piano MIDI

Composer trains its LM with a new dataset called ADL (Augmented Design Lab)

Piano MIDI. This new dataset is based on the Lakh MIDI dataset [116], which is one of the
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largest MIDI collections publicly available. The Lakh MIDI dataset contains 45,129 unique

MIDI files in which different versions of the same piece may occur. Only one version of each

piece was kept. Given that Composer focuses on piano pieces, only the tracks with instruments

from the piano family (MIDI program numbers 1-8 in the dataset) were considered from the

Lakh MIDI dataset. This process yielded a total of 9,021 unique piano MIDI files. These files

are mainly Rock and Classical pieces, so to increase genre diversity in the dataset (e.g., Jazz,

Blues, and Latin), an additional 2,065 files were included from public sources on the Internet1.

All files in the final collection were de-duped according to their MD5 checksum. The final

dataset has 11,086 unlabeled MIDI piano pieces. The motivation to create this new dataset

instead of using the unlabelled VGMIDI pieces is to have a considerably larger and varied

symbolic music dataset to support better pre-trained LMs.

6.3 Bardo Composer

The general structure of Composer is formalized in Algorithm 2. It receives as input

a speech recognition system S, a story emotion classifier Es, a music emotion classifier Em, a

LM for symbolic music generation L, a speech signal p with the last sentences spoken by the

players, and a sequence x of musical symbols composed in previous calls to Composer. The

algorithm also receives parameters b and k, which are used in SBBS described in Algorithm 3.

Composer returns a symbolic piece that tries to match the emotion in the players’ speeches.

Composer starts by transcribing the speech signal p into a caption s with S (line 1). In addition

to a caption, S returns the duration l of the signal p in seconds. Then, Composer classifies the

1https://bushgrafts.com/midi/ and http://midkar.com/jazz/
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emotion of s in terms of valence v and arousal a and it invokes SBBS to generate a sequence of

symbols y that matches the desired length l and emotion with arousal a and valence v. SBBS

receives as input the models L and Em, the current sequence x, the desired emotion values v and

a, SBBS’s parameter values b and k, and the desired length l of the piece to be generated.

Algorithm 2 Bardo Composer
Require: Speech recognition system S, Text emotion classifier Es, Music emotion classifier Em,

LM L, speech signal p, previously composed symbols x, beam size b, number of symbols k

Ensure: Music piece x

1: s, l← S(p)

2: v,a← Es(s)

3: y← SBBS(L,Em,x,v,a,b,k, l) # see Algorithm 3

4: return x∪ y

In the first call to Composer, the sequence x is initialized with the symbols of the first

4 timesteps of a random human-composed piece with the emotion v,a, as returned by Es. Every

time there is a transition from one emotion to another, the sequence x is reinitialized using the

same process. This is used to bias the generative process and to emphasize emotion transitions.

To be used in real-time, Composer is invoked with the most recently captured speech signal p

and returns a composed piece of music. While the most recent piece is being played at the game

table, Composer receives another signal p and composes the next excerpt. One also needs to

define the length of the signal p. Similar to Bardo [106], Composer uses YouTube’s subtitle

system as the speech recognition system S. Therefore, signals p are long enough to form a

sentence in the form of a caption.
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6.3.1 Story Emotion Classifier

Composer’s story emotion classifier Es is trained with a transfer learning approach,

in which a pre-trained BERTBASE LM [25] is fine-tuned with the CotW dataset. This transfer

learning approach is used because the pre-trained BERTBASE LM has been shown to boost

models’ performance on a wide range of NLP tasks [25]. BERTBASE uses transformer encoder

blocks with 12 layers, 768 units per layer, and 12 attention heads. It was pre-trained with

both the BooksCorpus dataset (800M words) [154] and the English Wikipedia (2,500M words).

Although in Algorithm 2 the story emotion classifier is depicted as a single model Es, in practice,

Composer treats valence and arousal independently. Thus, BERTBASE is independently fine-

tuned on the CotW dataset [106] for each dimension of the circumplex model. Fine-tuning

consists of adding a linear classification head on top of the pre-trained BERTBASE and training

all layers (including the pre-trained ones) of the resulting model end-to-end.

6.3.2 Language Model

At the time Composer was proposed, there was no publicly available high-capacity

LM pre-trained with large MIDI datasets for symbolic music modeling. Therefore, a high-

capacity GPT-2 LM was pre-trained on the ADL Piano MIDI dataset. The GPT-2 LM has 4

layers (transformer blocks), a context size of 1024 tokens, 512 embedding units, 1024 hidden

units, and 8 attention heads. Composer uses GPT-2 instead of BERT because GPT-2 is better

suited for sequence generation than BERT.

To process MIDI files as sequences with the GPT-2 LM, Composer encodes a MIDI

file by parsing all notes from the NOTE ON and NOTE OFF events in the MIDI. A note is defined
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as a set z = (zp,zs,zd ,zv), where {zp ∈ Z|0 ≤ zp < 128} is the pitch number, {zs ∈ Z|zs ≥ 0}

is the note starting time in timesteps, {zd ∈ Z|0 ≤ zd ≤ 56} is note duration in timesteps and

{zv ∈ Z|0 ≤ zv < 128} is the note velocity. Given a MIDI NOTE ON event, a note z is parsed

by retrieving the starting time zs (in seconds), the pitch number zp and the velocity zv from

that event. To calculate the note duration zd , the end time ze (in seconds) of the corresponding

NOTE OFF event is retrieved. Thus, the note duration zd = bt · zec− bt · zsc is computed from

the discretized durations zs and ze, where t is a parameter defining the sampling frequency of

the timesteps. Composer derives a sequence x = {z1
v ,z

1
d ,z

1
p, · · · ,zn

v ,z
n
d ,z

n
p} of tokens for a given

MIDI file by (a) parsing all notes zi from the file, (b) sorting them by starting time z j
s , and (c)

concatenating their velocity z j
v, duration z j

d , and pitch z j
p. Composer adds two special tokens TS

and END in the sequence x, to mark the end of a timestep and the end of a piece, respectively.

This encoding yields a vocabulary V of size |V |= 314, which is slightly greater than

the size of the vocabulary used in Chapter 5 (225 tokens). This increase comes from the extra

number of note durations that can be represented in this new scheme. The main difference

between these two schemes is that the new one does not encode tempo directly. The tempo of

the pieces is implicitly encoded in the duration of the notes. Faster pieces have shorter notes,

whereas slower pieces have longer notes. Moreover, the duration of the notes is not encoded

as a duration type, as in Chapter 5. In this new scheme, the duration is represented as the

number of time steps that note lasts. The main motivation for this new scheme is to provide a

more accurate representation of note durations without considerably increasing the size of the

vocabulary.
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6.3.3 Music Emotion Classifier

As was the case with Es, the emotion music classifier Em is also trained with a transfer

learning approach. Em fine-tunes the GPT-2 LM pre-trained on the ADL Piano MIDI dataset.

Similar to Es, Em also treats valence and arousal independently. Thus, the pre-trained GPT-2

is fine-tuned on the extended VGMIDI dataset for each dimension of the circumplex model.

Following the approach of Radford et al. [114], these models were fine-tuned by adding and

extra layer to the pre-trained LM and training the entire model (including the pre-trained layers)

with the VGMIDI dataset [42].

6.3.4 Stochastic Bi-Objective Beam Search

Composer uses a new search-based decoding algorithm called Stochastic Bi-Objective

Beam Search (SBBS), which combines a LM and a music emotion classifier to bias the process

of music generation to match a target emotion (line 3 of Algorithm 2). Given a LM L and

the music emotion classifiers Em,v and Em,a, for valence and arousal, respectively, the goal of

SBBS is to allow for the generation of pieces that sound “good” (i.e., have high probability value

according to the trained LM), but that also match the current emotion of the story being told

by the players. SBBS is stochastic because it samples from a distribution instead of greedily

selecting the best sequences of symbols, as a regular beam search does. The regular beam

search is deterministic and so it always generate the same piece for a given input sequence x

and emotion (v,a). The stochasticity of SBBS allows it to generate different music pieces given

the same input parameters x and (v,a). SBBS is “bi-objective” because it optimizes for realism

and emotion. Algorithm 3 shows SBBS’s pseudocode. The letters x,y, and m denote sequences
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of musical symbols. Function pL(y) = ∏yt∈y P(yt |y1, · · · ,yt−1) is the probability of sequence y

according to the LM L; a high value of pL(y) means that y is recognized as a piece of “good

quality” by L. Function l(y) denotes the duration in seconds of piece y. Finally, x[i : j] denotes

the subsequence of x starting at index i and finishing at index j.

Algorithm 3 Stochastic Bi-Objective Beam Search
Require: Music emotion classifier Em, LM L, previously composed symbols x, valence and

arousal values v and a, number k of symbols to consider, beam size b, length l in seconds

of the generated piece.

Ensure: Sequence of symbols of l seconds.

1: B← [x], j← 0

2: while l(y[t : t + j])< l, ∀y ∈ B do

3: C←{}

4: for all m ∈ B do

5: Cm←{m∪ s|s ∈V}

6: Ck← k elements y from Cm with largest pL(y)

7: C←C∪Ck

8: end for

9: B← b sequences y sampled from C proportionally to pL(y)(1−|v−Em,v(y)|)(1−|a−

Em,a(y)|)

10: j← j+1

11: end while

12: return m ∈ B such that pL(m) = maxy∈B pL(y) and l(y[t : t + j])≥ l
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SBBS initializes the beam structure B with the sequence x passed as input (line 1).

SBBS also initializes variable j for counting the number of symbols added by the search. SBBS

keeps in memory at most b sequences and, while all sequences are shorter than the desired

duration l (line 2), it adds a symbol to each sequence (lines 3–10). In line 3, SBBS initializes

a set C to store the candidate solutions of the next beam structure B. SBBS then generates all

sequences by adding one symbol from vocabulary V to each sequence m from B (line 5). These

extended sequences, known as the children of m, are stored in Cm. The operations performed in

lines 6 and 9 attempt to ensure the generation of good pieces that convey the desired emotion.

In line 6, SBBS selects the k sequences with the largest pL-values among the children of m. This

is because some of the children with low pL-value could be attractive from the perspective of

the desired emotion and, although the resulting piece could convey the desired emotion, the

piece would be of low quality according to the LM. The best k children of each sequence in the

beam are added to set C (line 7). Then, in line 9, SBBS samples the sequences that will form

the beam of the next iteration. Sampling occurs proportionally to the values of pL(y)(1−|v−

Em,v(y)|)(1− |a−Em,a(y)|), for sequences y in C. A sequence y has higher chance of being

selected if L attributes a high probability value to y and if the music emotion model classifies

the values of valence and arousal of y to be similar to the desired emotion. When at least one of

the sequences is longer than the desired duration of the piece, SBBS returns the sequence with

largest pL-value that satisfies the duration constraint (line 12).
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6.4 Empirical Evaluation

SBBS is empirically evaluated with two experiments. The first one evaluates the ac-

curacy of the models for story and music emotion classification. The fine-tuned BERTBASE

model for story emotion classification is compared against the simpler Naı̈ve Bayes approach

used in the original Bardo [106]. The fine-tuned GPT-2 model for music emotion classification

is compared against the simpler fine-tuned mLSTM presented in Chapter 5. The second exper-

iment evaluates, with a listening test, whether human subjects can recognize different emotions

in pieces generated by Composer for the CotW campaign.

6.4.1 Emotion Classifiers

6.4.1.1 Story Emotion

The story emotion classifier is a pair of BERTBASE models, one for valence and one

for arousal. Both these models were fine-tuned for 10 epochs with the Adam optimizer [77].

Each training step was performed over a mini-batch of size 32. The learning rate was set to 3e-5

and the dropout rate to 0.5. The CotW dataset is divided into 9 episodes. Thus, the accuracy

of each BERTBASE classifier is evaluated with a leave-one-out strategy. Given a set of episodes

E, for each episode e ∈ E, the E− e episodes are used for training, and the episode e is used

for testing. For example, when testing on episode 1, episodes 2-8 are used for training. Every

sentence is encoded using a WordPiece embedding [144] with a 30,000 token vocabulary.

The fine-tuned BERTBASE classifiers are compared with Bardo’s Naive Bayes (NB)

approach, which encodes sequences using bag-of-words with tfidf. Table 6.1 shows the accu-
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racy of the valence classification of both these methods per episode. The BERTBASE classifier

outperforms NB in all the episodes, having an average accuracy 7% higher. For valence clas-

sification, the hardest episode for both the models is episode 7, where BERTBASE had the best

performance improvement when compared to NB. Episode 7 is different from all other episodes.

While the other episodes are full of battles and ability checks, episode 7 is mostly PCs talking

with NPCs. Therefore, what is learned in the other episodes does not generalize well to episode

7. The improvement in accuracy of BERTBASE in that episode is likely due to the model’s

pre-training. Episodes 5 and 9 were equally easy for both methods because these episodes are

similar to one another. What is learned in one of these episodes generalizes well to the other.

Alg. Episodes Avg.
1 2 3 4 5 6 7 8 9

NB 73 88 91 85 94 81 41 74 94 80
BERTBASE 89 92 96 88 97 81 66 83 96 87

Table 6.1: Valence accuracy in percentage of Naive Bayes (NB) and BERTBASE for story emo-
tion classification.

Table 6.2 shows the accuracy of arousal classification of both NB and BERTBASE .

Again BERTBASE outperforms NB in all the episodes, having an average accuracy 5% higher.

In contrast with the valence results, here there is no episode in which BERTBASE substantially

outperforms NB.

6.4.1.2 Music Emotion

The music emotion classifier is a pair of GPT-2 models, one for valence and one for

arousal. First, a GPT-2 LM is pre-trained with the new ADL Piano MIDI dataset. Each piece
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Alg. Episodes Avg.
1 2 3 4 5 6 7 8 9

NB 82 88 75 79 82 76 98 86 84 83
BERT 86 90 77 86 89 88 99 90 88 88

Table 6.2: Arousal accuracy in percentage of Naive Bayes (NB) and BERTBASE for story emo-
tion classification.

p of this dataset is augmented by (a) transposing p to every key, (b) increasing and decreasing

p’s tempo by 10%, and (c) increasing and decreasing the velocity of all notes in p by 10%

[105]. Thus, each piece generated 12 · 3 · 3 = 108 different examples. The pre-trained GPT-2

LM is then fine-tuned twice on the VGMIDI dataset, once for valence and once for arousal. It is

important to highlight that the pieces used to pre-train the LM can be safely augmented because

they are unlabelled. The labeled pieces are not augmented because that could affect the valence

or arousal of the pieces.

Similar to the story emotion classifiers, the GPT-2 classifiers are fine-tuned for 10

epochs using an Adam optimizer with a learning rate of 3e-5. Unlike the story emotion classi-

fiers, each training step is performed over mini-batches of size 16 (due to GPU memory con-

straints) and dropout of 0.25. The VGMIDI dataset is defined with training and testing splits of

160 and 40 pieces, respectively. Each piece p of this dataset was augmented by slicing p into

2, 4, 8, and 16 parts of equal length and emotion. Thus, each part of each slicing generated one

extra example. This augmentation is intended to help the classifiers generalize for pieces with

different lengths.

The fine-tuned GPT-2 classifiers are compared with mLSTM models that are also pre-

trained with the ADL Piano Midi dataset and fine-tuned with the VGMIDI dataset. These base-
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lines were chosen because they are currently the state-of-the-art models in the VGMIDI dataset

[42]. The mLSTMs have the same size as the GPT-2 models (4 hidden layers, 512 embedding

units, 1024 hidden units) and are pre-trained and fine-tuned with the same hyper-parameters.

Table 6.3 shows the accuracy of both models for valence and arousal. The performance of these

models without pre-training (i.e., trained only on the VGMIDI dataset) is also reported. These

are the baseline versions of the models.

Algorithm Valence Arousal

Baseline mLSTM 69 67
Fine-tuned mLSTM 74 79

Baseline GPT-2 70 76
Fine-tuned GPT-2 80 82

Table 6.3: Accuracy in percentage of both the GPT-2 and mLSTM models for music emotion
classification.

Results show that using transfer learning can substantially boost the performance of

both the GPT-2 and the mLSTM. The fine-tuned GPT-2 is 10% more accurate than its respective

baseline in terms of valence and 8% in terms of arousal. The fine-tuned mLSTM is 5% more

accurate than its respective baseline in terms of valence and 12% in terms of arousal. Finally,

the fine-tuned GPT-2 outperformed the fine-tuned LSTM by 6% and 3% in terms of valence and

arousal, respectively.

6.4.2 Listening Test

Composer’s performance in generating music that matches the emotions of a story is

assessed with a listening test. Composer is applied to generate a piece for a snippet composed

of 8 contiguous sentences of each of the first 5 episodes of the CotW dataset. Each snippet has
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one emotion transition that happens in between sentences. The sentences are 5.18 seconds long

on average. To test Composer’s ability to generate music pieces with emotion changes, human

subjects were asked to listen to the 5 generated pieces and evaluate the transitions of emotion in

each generated piece. The listening test was performed via Amazon Mechanical Turk and had

an expected completion time of approximately 10 minutes. A reward of USD $1 was given to

each participant who completed the study.

In the first section of the study, the participants were presented with an illustrated

description of the circumplex model of emotion and listened to 4 examples of labeled pieces

from the VGMIDI dataset. Each piece had a different emotion: low valence and arousal, low

valence and high arousal, high valence and low arousal, high valence and arousal. In the second

section of the study, participants were asked to listen to the 5 generated pieces (one per episode).

After listening to each piece, participants had to answer 2 questions: (a) “What emotion do you

perceive in the 1st part of the piece?” and (b) “What emotion do you perceive in the 2nd part

of the piece?” To answer these two questions, participants selected one of the four emotions:

low valence and arousal, low valence and high arousal, high valence and low arousal, high

valence and arousal. Subjects were allowed to play the pieces as many times as they wanted

before answering the questions. The final section of the study was a demographics questionnaire

including ethnicity, first language, age, gender, and experience as a musician. To answer the

experience as a musician, the participants used a 5-point Likert scale where 1 means “I’ve never

studied music theory or practice” and 5 means “I have an undergraduate degree in music”.

Composer is compared with a baseline method that selects a random piece from the

VGMIDI dataset whenever there is a transition of emotion. The selected piece has the same
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emotion of the sentence (as given by the story emotion classifier). A between-subject strategy

was used to compare these two methods, where Group A of 58 participants evaluated the 5

pieces generated by Composer and Group B of 58 participants evaluated the 5 pieces from the

baseline. This strategy was used to avoid possible learning effects where subjects could learn

emotion transitions from one method and apply the same evaluation directly to the other method.

The average age of groups A and B are 34.96 and 36.98 years, respectively. In Group A, 69.5%

of the participants are male and 30.5% are female. In Group B, 67.2% are male and 32.8% are

female. The average musicianship of the groups A and B are 2.77 and 2.46, respectively.

Table 6.4 shows the results of the listening test. The two parts (p1 and p2 in the table)

of each episode are considered independent pieces. The table presents the percentage of partici-

pants that correctly identified the pieces’ valence and arousal (v and a in the table, respectively),

as intended by the methods. This percentage is refeered to as the approach’s accuracy. For ex-

ample, 87% of the participants correctly identified the arousal value that Composer intended the

generated piece for part p1 of episode 4 (e4-p1) to have. The approaches’ average accuracy is

also presented across all pieces (Average in the table) in terms of valence, arousal, and jointly

for valence and arousal (va in the table). The va-value of 34 for Composer means that 34% of

the participants correctly identified the system’s intended values for valence and arousal across

all pieces generated.

At first, one might expect the baseline method to get close to 100% accuracy, espe-

cially in the first parts of the episodes, since the baseline selects human-composed pieces from

the VGMIDI dataset. However, the results showed the best accuracy value for baseline is 79%

on e2-p2. These low accuracy values of baseline suggest that the evaluation methodology used
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Method
Episodes

Averagee1-p1 e1-p2 e2-p1 e2-p2 e3-p1 e3-p2 e4-p1 e4-p2 e5-p1 e5-p2
v a v a v a v a v a v a v a v a v a v a v a va

Baseline 56 65 39 56 39 62 39 79 48 60 67 53 58 70 63 75 25 36 72 58 51 32 34
Composer 62 60 44 65 82 68 53 68 24 55 46 43 25 87 37 55 81 86 51 67 51 30 34

Table 6.4: The percentage of participants that correctly identified the valence and arousal (v and
a, respectively) intended by the methods for the pieces parts (p1 and p2).

in this study is significantly different from the annotation process used to annotate the VG-

MIDI dataset. Typically, people use words to describe perceived emotions in music, but the

circumplex model requires them to use pairs of valence-arousal values. The annotation task of

the VGMIDI dataset is slightly easier because the annotators can guide their decision with the

basic emotions (e.g., happy, sad, etc.) labeled on the model. In this new experiment, the par-

ticipants didn’t have this visual help. This difference between the annotation tasks can explain

the disagreement of the participants of this new experiment with the annotators of the VGMIDI

dataset.

Comparing the accuracies of the two methods, Composer outperformed the Baseline

in e1-p2, e2-p1, and e5-p1. Baseline outperformed Composer in e3-p1, e3-p2 and e4-p2. In the

other four parts, one method performed better for valence, whereas the other performed better

for arousal. Surprisingly, Composer (generative approach) outperformed the Baseline (human-

composed pieces) in 3 parts (e1-p2, e2-p1, and e5-p1). These results can be explained by the

fact that Composer starts a piece with the first 4 timesteps (4 seconds) of a VGMIDI piece

selected randomly from the subset of pieces with the target emotion. Thus, the introduction of

a Composer part, which arguably is the most important aspect to define the perception of an

emotion transition, is also coming from a human-composed piece. However, each episode part
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in this experiment has an average length of 20.72 seconds. The surprisingly positive results

of Composer suggest that SBBS can develop the human-composed introduction into pieces

that also represent the target emotion, which can be attributed to high-accuracies for valence

and arousal of the music emotion classifier. An even more surprising result is the accuracy of

Composer in e5-p1, which is much higher than the Baseline. Since the introduction of e5-p1

is not the same between the two systems, this result suggests that the introduction randomly

selected for Composer represents better the emotion of e5-p1 than the introduction in the piece

chosen for the Baseline.

Overall, the average results show that both systems performed very similarly. Both

of them had an average accuracy on the combined dimensions equal to 34%. The difference

between these two methods and a system that selects pieces at random (expected accuracy

of 25%) is significant according to a Binomial test (p = 0.02). These results show that the

participants were able to identify the emotions in the generated pieces as accurately as they

were able to identify the emotions in human-composed pieces. This is an important result

towards the development of a fully automated system for music composition for story-based

tabletop games.

6.5 Conclusions

This chapter presented SBBS, a new search-based decoding algorithm to compose

music with a target emotion. SBBS is presented as part of Bardo Composer, a system that au-

tomatically composes music for tabletop role-playing games. The system processes sequences
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from speech and generates pieces one sentence after the other. The emotion of the sentence is

classified using a fine-tuned BERT model. This emotion is given as input to SBBS, which gen-

erates a piece that matches the emotion with the guidance of a fine-tuned GPT-2 music emotion

classifier.

Bardo Composer was evaluated with a listening test, in which human subjects were

asked to evaluate the transitions of emotion in pieces generated for different episodes of a D&D

game. Bardo Composer was compared against a baseline method that randomly selects pieces

from the VGMIDI dataset whenever there is a transition of emotion in the game’s story. Results

showed that human subjects correctly identified the emotion of the generated music pieces as

accurately as they could identify the emotion of pieces composed by humans. This surprisingly

positive result can be explained by the good performance of the GPT-2 music emotion classifier,

which allows SBBS to keep the intended emotion when generating pieces conditioned by the

beginning of pieces from the VGMIDI dataset.
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Chapter 7

Controlling Emotions in Symbolic Music

Generation with MCTS

7.1 Introduction

This chapter presents a new decoding strategy based on Monte Carlo Tree Search

(MCTS) to generate musical pieces conveying a target emotion. Similar to SBBS, MCTS uses

a music emotion classifier E to steer the probability distribution of a neural LM L towards a

target emotion e at generation time. Unlike SBBS, MCTS performs multiple search iterations

for each decoded token. Each iteration uses the Predictor Upper Confidence for Trees (PUCT)

to update the distribution of node visits N, where E determines the expected reward (Q value)

of each node and L the prior probability of selecting each node (P value). After all the search

iterations to decode the next token, N ends up steering L towards e. Therefore, the next token is

decided by sampling from N.
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The search is performed over the space of sequences learned by a music transformer

LM [63] with the unlabelled pieces of the VGMIDI dataset. The number of unlabelled pieces

of the VGMIDI dataset has been extended as part of this work from 728 to 3,640. Similar to

the approaches presented in Chapter 5 [42] and Chapter 6 [41], the music emotion classifier is

trained by fine-tuning a pre-trained LM with a classification head on the 200 labeled pieces of

the VGMIDI dataset. Unlike these two previous approaches, emotion classification is treated as

a multiclass problem instead of a binary one. In this new framing, each of the four quadrants of

the circumplex model is mapped to a label.

MCTS is evaluated with two listening tests, one to measure the quality of the gener-

ated pieces and one to measure MCTS’s accuracy in generating pieces with a target emotion.

In the first test, human subjects are asked to prefer between MCTS, the validation data (human

compositions), TopK sampling, and SBBS [41]. In the second test, human subjects are asked to

annotate the emotions they perceive in pieces generated by MCTS, TopK sampling, and SBBS.

Results show that MCTS outperforms SBBS in terms of music quality while slightly improv-

ing the accuracy of conveying target emotions. MCTS and TopK performed similarly in terms

of music quality. An expressivity analysis [127] is performed to evaluate how MCTS conveys

each target emotion. The frequencies of pitch classes and note durations suggest that MCTS

can reproduce some common composition practices used by human composers.
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7.2 Language Model

Music transformer [63] is currently one of the state-of-the-art NN architectures for

symbolic music generation, and hence it is used to train a base LM for MCTS. This LM is

trained on the unlabelled pieces of the VGMIDI dataset. Originally, the VGMIDI dataset had

728 unlabelled pieces, but it has been expanded to 3,640 pieces in this work. The new pieces

are piano arrangements of video game music created by the NinSheetMusic community1. The

VGMIDI dataset has been used, instead of other large datasets of symbolic music (e.g., the

MAESTRO dataset [53]), to be able to train both the LM and the music emotion classifier on

similar datasets.

The VGMIDI pieces are encoded using a different vocabulary than the original one

proposed with music transformer [63]. Aiming at reducing the length of the music sequences,

the MIDI files are mapped to sequences using a large expressive vocabulary instead of a compact

one. To create a sequence from a MIDI file, the starting times of all the notes are discretized

into a sequence of time steps. Then, each time step is processed in order, generating a token

np,d,v for each note in the time step. The three parameters of a note token np,d,v are pitch p,

duration d and velocity v, respectively. In order to constrain the possible combinations of note

tokens, the pitch values are limited to 30 ≤ p ≤ 96. Duration d is limited by the types: breve,

whole, half, quarter, eighth, 16th and 32nd. The dotted versions of these types (maximum of

3 dots) are also considered. Velocities are limited to the values v ∈ [32,36,40, · · · ,128]. After

processing each time step, a token rd is generated representing a rest with a given duration d.

The token “.” (period) is included at the end of all time steps to represent the end of the piece.

1https://www.ninsheetmusic.org/
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This encoding scheme yields a vocabulary with 44,346 tokens, which is orders of

magnitude larger than the vocabularies described in Chapters 5 (225 tokens) and 6 (314 tokens).

The benefit of this large vocabulary over the small ones described previously is that it allows

the MIDI files to be mapped to considerably smaller sequences. Music transformer networks

can only process sequences with a fixed size. Thus, reducing the size of the encoded pieces

allows the music transformer to model pieces entirely and hence capture long-term dependen-

cies in music. Moreover, according to Holtzman et al. [59], LMs with larger vocabularies tend

to generate less repetitive sequences. On the other hand, by having more tokens, MCTS has

more options to choose from at any given point of the generative process, which increases the

search complexity. MCTS mitigates the effects of having more options to choose from by only

considering the top k tokens according to the LM at any decision point of the generative process.

7.3 Music Emotion Classifier

In chapters 5 and 6, it has been shown that fine-tuning a LM with an extra classifica-

tion head yields a better model than training a classifier from scratch with the same architecture

of the LM. This work follows a similar approach. The Music Transformer LM described in

the previous section is fine-tuned as a music emotion classifier with the labeled pieces of the

VGMIDI dataset. In chapters 5 and 6, symbolic music emotion classification is approached as

two independent binary problems, one for valence and one for arousal. This work defines it as a

multiclass problem. Four emotions are considered: high valence and arousal (E0), low valence

and high arousal (E1), low valence and arousal (E2), and high valence and low arousal (E4).
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Figure 7.1: Mapping the circumplex model to a categorical model of emotion with four classes:
E0, E1, E2, and E3.

Each labeled piece in the VGMIDI dataset has a valence label v ∈ [−1,1] and an arousal label

a ∈ [−1,1]. A pair of values is mapped to a categorical label (E0, E1, E2, or E3) by getting the

quadrant of (v,a). As shown in Figure 7.1, a piece with values (1,1) is mapped to E0, (−1,1)

to E1, (−1,−1) to E2, and (1,−1) to E3.

This mapping yields 76 pieces with label E0, 38 with label E1, 27 with label E2,

and 59 with E3. This multiclass approach is used to simplify the search task of controlling

the emotion of the generated pieces: only a single model defines the emotion scores instead

of a combination of two models. Since MCTS evaluates the emotion of sequences with differ-

ent lengths (see Section 7.4), the music emotion classifier is trained with prefixes of different

lengths extracted from the labeled pieces. Thus, during training, the classifier learns a mapping

of a sequence to an emotion considering different lengths. This is especially helpful to guide the

search at the beginning of the generation process, where the number of generated tokens is short,
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and so the emotion classifier does not have much context to be confident about a prediction.

7.4 MCTS for Music Generation

Monte-Carlo Tree Search (MCTS) is a heuristic search algorithm traditionally used

to play board games with large search spaces. Before taking an action at the current game state,

MCTS iteratively explores the branches of the search tree, looking ahead to determine how

different game moves could lead to stronger or weaker states of the game. MCTS variations use

a variety of algorithms for deciding which branches of the tree to explore next. For example,

UCT [79] uses the UCB1 formula for deciding which branches to expand in each iteration of

the algorithm, while AlphaZero uses the PUCT formula [125]. This section describes how this

work employs PUCT to generate music with a specific target emotion.

PUCT receives a sequence x = {x1,x2, · · · ,xt−1} of musical tokens as input, which

will bias the generative process; a music emotion classifier E; a language model L; a parameter

k defining the number of top tokens (according to L) to consider when deciding the next token;

a parameter d defining the number of search iterations PUCT can perform before deciding the

next token; and a target emotion e. PUCT returns a sequence x′ with prefix x for which E(x′,e)

and L(x′) are maximized. PUCT grows a search tree where each node n represents a sequence

of tokens from the vocabulary. The root of the tree represents the prefix x provided as input.

Each edge (n,m) from node n to node m represents the addition of a token to the sequence n (m

is one token larger than n). In this formulation, m is called a child of n, and since each node n

represents a sequence x, n and x are used interchangeably. Initially, PUCT’s tree is of size one as

118



it only contains the root of the tree. In each iteration, PUCT performs the following steps to add

a new node to the tree: (1) selection, (2) expansion, (3) simulation, and (4) backpropagation.

1. Selection

Starting from the current node n, PUCT recursively selects the token l that maximizes

Equation 7.1 until l leads to a node m that is not in the PUCT tree. In Equation 7.1,

Q(n, l) is the expected emotion “reward” of the sequence (n, l) as given by E, c is an

exploration constant, P(n, l) is the prior probability of l being the next token from n as

given by L, N(n) is the number of times node n has been visited in the selection step, and

N(n, l) is the number of times token l has been chosen from node n in a selection step.

argmax
l

Q(n, l)+ c×P(n, l)×
√

N(n)
1+N(n, l)

(7.1)

In practice, only the k tokens with the largest probability according to L are considered in

the selection step. This allows PUCT to focus on the sequences that are more promising

according to the LM.

2. Expansion

The node m returned in the selection step is then added to the PUCT tree and its statistics

are initialized: N(m) = 1, N(m, l) = 0, and Q(m, l) = 0 for all top k tokens l according to

the probability L(m, l).

3. Simulation
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The recently added node m is evaluated according to the target emotion e. The Q(n, l)-

value (recall that adding l to n generated the node m) is given by E(m,e). The value of

N(n, l) is set to 1 as this is the first time l is selected from node n.

4. Backpropagation

The value of Q(n, l) is used to update the Q-values of all the other node-token pairs

recursively selected in the selection step. This is achieved by following the path in the

tree from n to m in reverse order and updating the statistics of each node n in the path

according to Equation 7.2.

Q(n, l) =
Q(n, l)×N(n, l)+E(m,e)

N(n, l)+1

N(n, l) = N(n, l)+1

N(n) = N(n)+1

(7.2)

The Q(n, l)-values are the average E-values of the sequences with prefix given by n. In

other words, the value of Q(n, l) is the average emotion “reward” of the sequences with

the prefix given by n. The backpropagation step completes an iteration of PUCT.

In the next iteration, PUCT will perform the four steps described above, but with

updated values of N and Q for the node-token pairs selected in the previous iteration. Equation

7.1 guarantees that the sequences n that maximize the value of E(n,e) are visited more often as

they will have larger values of Q. The PUCT formula also accounts for the probability given

by the language model, giving preference to sequences with higher probability according to L.

Finally, the term
√

N(n)
1+N(n,l) certifies that all nodes have a chance of being explored by the search.
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PUCT performs d iterations before deciding which token will be added to the se-

quence represented at the root of the tree. That is, the search budget of d iterations is to decide

the next token of the sequence. Let n be the root of the tree. The token l that will be added

to the sequence n is sampled from the distribution given by the values N(n)
∑l N(n,l) . The node m

resulting from the addition of l to n becomes the new root of the tree and another PUCT search

is performed with budget d to choose the next token to be added to m. This process is repeated

until a desired number of tokens are generated. The PUCT search can be seen as an operator

that changes the probability distribution over tokens given by the language model such that it

accounts for the target emotion. This is because the distribution given by N(n)
∑l N(n,l) will favor

tokens that lead to pieces matching the target emotion as nodes representing such pieces are

visited more often during search.

7.5 Empirical Evaluation

MCTS is evaluated with two listening tests, one for measuring the quality of the

generated pieces and one for measuring the accuracy of MCTS in conveying a target emotion.

All experiments are performed via Amazon Mechanical Turk (MTurk). For both experiments,

MCTS is compared against SBBS, TopK sampling, and human-composed pieces. Although

TopK sampling does not consider emotion, it is a good baseline for music quality. MCTS is not

compared against the approach from Chapter 5 because that approach is limited to sentiment.

To generate the pieces to be evaluated, 10 prime sequences are selected from the VGMIDI

dataset for each of the 4 emotions. Each prime sequence is then used to generate a piece with
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each of the 4 models, yielding 10×4×4 = 160 pieces. Each piece has 512 tokens. Each prime

sequence is 32 tokens long and is selected at random from the VGMIDI test set with the target

emotion e. For the human method, pieces are “generated” by simply extracting the first 512

tokens of the piece with the given prime.

To generate the 160 pieces, a Music Transformer LM is first trained with 4 layers

(transformer blocks), a maximum sequence length of 2048 tokens, 8 attention heads, and an

embedding layer with 384 units. The size of the Feed-Forward layers in each transformer block

is set to 1024. This music transformer LM is trained with the 3,640 unlabelled pieces of the

extended VGMIDI dataset, where 3,094 (85%) of the pieces are used for training and 546 (15%)

for testing. All unlabelled pieces are augmented by (a) transposing to every key, (b) increasing

and decreasing the tempo by 10%, and (c) increasing and decreasing the velocity of all notes by

10% [105]. The emotion classifier is then trained by fine-tuning the music transformer LM with

an extra linear classification layer on top. The emotion classifier is trained with the 200 labeled

pieces of the VGMIDI dataset, where 140 (70%) pieces are used for training and 30 (30%) for

testing. After training, the losses of the music transformer LM are 0.54 on the training set and

0.73 on the test set. The accuracy of the emotion classifier on the test set is 61%. At generation

time, the LM distribution is filtered with k = 128 in MCTS, SBBS, and TopK. The beam size

for SBBS is set to b = 4. For MCTS, the number of simulation steps is set to d = 30 and the

exploration constant to c = 16.
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7.5.1 Quality Listening Test

The quality listening test consists of a pairwise comparison that follows the method-

ology proposed by Huang et al. [63]. Human subjects were presented with two generated pieces

from two different models that were given the same priming sequence. The two pieces were

presented side-by-side, and the participants were asked to select which one is more musical

using a 5-point Likert scale. In this scale, 1 means ”Left piece is much more musical”, 2 means

”Left piece is slightly more musical”, 3 means ”Tie”, 4 means ”Right piece is slightly more

musical” and 5 means ”Right piece is much more musical”. The order of the two pieces was

randomized to avoid ordering bias. Each of the 240 pairs of generated pieces were evaluated

by 3 MTurk workers. In order to reduce noise in the results (mainly caused by random choices

in Amazon MTurk), a test evaluation is included for each human subject. This test is another

pair of pieces to be evaluated with the same Likert scale, but one piece is a human-composed

piece and the other one is sampled from the LM without TopK filtering and temperature equal

to 1.5 (forcing the sample to have poor quality). The subjects are also asked to briefly justify

their choice with 1-3 short sentences. Participants who failed the test evaluation (choosing the

sampled piece as more musical) or didn’t write explanations longer than 5 words were filtered

out. In total, this experiment yielded 389 comparisons. Each pair was evaluated at least once.

Table 7.1 shows the results of the quality test. The top part of the table shows the

number of wins, ties, and losses of one model against another. MCTS performed exactly like

TopK sampling and outperformed SBBS by ten wins. Surprisingly, MCTS won against human-

composed pieces 12 times and tied 9 times. SBBS performed worse than TopK sampling,

123



winning 26 times and losing 31. As expected, all models performed worse than human com-

positions. The bottom part of the table shows the percentage of wins, ties, and losses for one

model against all other models. Percentages are reported because, due to the filtering of the

participants, the amount of comparisons for each model is not the same. The aggregated re-

sults also show that MCTS performs better than SBBS and the same as TopK sampling. A

Kruskal-Wallis H test of the subject choices (values from 1 to 5) shows a statistically significant

difference between the models with p = 1.5e−4 < 0.01.

One-Vs-One Wins Ties Losses

MCTS TopK 25 13 25
MCTS SBBS 34 8 24
MCTS Human 12 9 41
TopK SBBS 31 6 26
TopK Human 15 7 45
SBBS Human 15 8 45

One-Vs-Rest Wins % Ties % Losses %

MCTS 38 15 47
SBBS 33 12 55
TopK 37 13 50

Human 66 12 22

Table 7.1: Results of the quality listening test. The top part of the table reports the number of
wins, ties, and losses for a model against each other model. The results are stated with respect
to the left model. For example, MCTS won against SBBS 34 times and lost to SBBS 24 times.
The bottom part of the table shows the percentage of wins, ties, and losses for a model against
all the others.

7.5.2 Emotion Listening Test

In the emotion listening test, human subjects were asked to annotate the generated

pieces according to the circumplex model of emotion using the same tool designed to annotate
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the VGMIDI dataset (see Section 5.2.1). An annotation result is a time series of valence-arousal

pairs where each element corresponds to a chunk (a bar if the piece has 4/4 time signature) of

the piece. For this experiment, 3 MTurk workers were assigned for each piece generated by the

MCTS, SBBS, and TopK methods (total of 360 annotations). Human pieces are not reannotated

because they are the ground truth data used to train the music emotion classifier that is base for

both MCTS and SBBS. No annotations were filtered out in this experiment.

The accuracy of a method in conveying a target emotion is measured with the per-

centage of chunks in the annotations that match the target emotion. Each valence-arousal pair

is mapped to an emotion label by getting the quadrant of that valence-arousal pair (see Section

7.3 for details). Table 7.2 reports the accuracy of each model for each emotion. Overall, MCTS

outperformed TopK (no emotion control) by an average of 15%. MCTS performed similarly to

SBBS, with slightly better average accuracy. It is important to highlight that MCTS was able

to considerably improve the accuracy in conveying the two least represented emotions (E1 and

E2) in the VGMIDI dataset. This is a great result since labelling symbolic music according to

emotion is an expensive task.

Model E0 E1 E2 E3 Avg.

MCTS 72 52 37 57 54
SBBS 67 41 30 70 52
TopK 61 18 26 53 39

Table 7.2: Accuracy of each model in conveying the target emotions E0, E1, E2 and E3.

TopK performed reasonably well on average (39%), but this was primarily due to its

ability to convey the two most represented emotions in the training data (E0 and E3). These
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two emotions are very likely more represented in the unlabelled data as well, which was used to

train the LM. Even though TopK sampling does not control emotion, the prime sequences they

used to generate the pieces had the target emotions. Therefore, TopK (like all other models)

is conditioned with this prime sequence towards the desired emotion. However, because TopK

does not consider emotion when generating pieces, eventually it starts sampling tokens that

deviate from the target emotion.

The three models performed poorly on conveying E2, which encompasses basic emo-

tions such as sad, depressed, and tired. These poor performances can be explained by the fact

that class E2 has the least number of examples in the VGMIDI dataset. Moreover, as showed

in Chapter 5, negative pieces can be considered ambiguous by human annotators. One could

mitigate this problem by increasing the number of pieces of class E2 in the VGMIDI dataset.

Although MCTS performed similarly to SBBS in terms of emotion, MCTS outper-

formed SBBS considerably with respect to music quality. SBBS tends to generate repetitive

pieces more often than MCTS once repetition maximizes both the probabilities of the LM and

the music emotion classifier. Since SBBS does not do backtracking, when it generates a good

pattern that is likely according to the LM and that conveys the target emotion, it tends to repeat

that pattern. Figure 7.2 illustrates this problem with examples of pieces generated by MCTS

and SBBS. These two pieces were given the same prime sequence 2 x with the target emotion

E2 (low valence and arousal). MCTS developed x by creating 4 parts: an introduction from

t = 0 to t = 15, a Part A from t = 15 to t = 30, a Part B from t = 30 to t = 43, and a Part C from

t = 43 until the end. Parts A, B, and C are similar to each other but present different variations

2Note that the first 8 seconds of the two pieces are the same.
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of the bass line presented in the last 3 seconds of the introduction. SBBS, on the other hand,

simply repeated the bass line and the chord presented in x until the end of the piece. This is

a case where SBBS repeated a given pattern that maximized the LM and the music emotion

classifier probabilities. This example also shows how backtracking allows MCTS to look for

different patterns in the search space.

Figure 7.2: Examples of MCTS (top) and SBBS (bottom) pieces controlled to have emotion E2.

7.6 Expressivity Range

An expressivity analysis is performed to better understand how MCTS conveys dif-

ferent target emotions. Expressivity analysis is an evaluation method commonly used in the AI

and Games research community to compare different level generators [127]. It consists of gen-

erating a large set of levels and measuring the biases of the generators according to pre-defined

relevant metrics. In the music generation domain, this approach is used to explore the biases of

the MCTS generator when conveying each emotion with respect to human compositions.
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The expressivity analysis is performed on the 40 pieces generated by MCTS for the

previous experiments, considering the frequencies of pitch classes and note durations as the

metrics to measure bias. Figure 7.3 illustrates the distribution of pitch classes and note dura-

tions for both MCTS and human-composed pieces. Overall, the MCTS and human distributions

of note durations look similar. For label E0 (high valence and arousal), human pieces predom-

inantly have 16th notes, but a few 8th notes are also present. Quarter notes and 32nd notes are

rarely used. MCTS also explored mainly 16th notes for label E0, however it used consider-

ably more 8th and 32nd notes than the human compositions. Label E0 encapsulates emotions

such as happy, delighted, and excited. These results show that both VGMIDI pieces and MCTS

generated pieces with these emotions have rhythm patterns with shorter notes.

For label E1 (low valence and high arousal), human compositions have a more even

distribution between 16th and 8th notes. Quarter notes are present but with a relatively low

frequency, and 32nd notes are rarely used. MCTS also used a combination of 16th and 8th

notes, but it used fewer quarter notes and a little more 32nd notes than the human compositions.

Label E1 represents emotions such as tense, angry, and frustrated. Combining these results with

the expressivity range of label E0, one concludes that the VGMIDI and MCTS pieces with high

valence have rhythm patterns with notes shorter than a quarter note.

For label E2 (low valence and arousal), human pieces are mainly composed of quarter

notes, with a few 8th and 16th notes. Different than E0 and E1, E2 has a few long notes such

as half, whole, and breve notes. MCTS also focused on quarter notes for label E2. However,

MCTS used more short notes and fewer long notes than human compositions. Label E2 encap-

sulates emotions such as sad, depressed, and tired. According to these results, both human and
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Figure 7.3: MCTS expressivity range. The x axis represents note duration in seconds and the y
axis represents pitch classes.

MCTS pieces with these emotions tend to have rhythm patterns with long notes.

For label E3 (high valence and low arousal), both human and MCTS pieces have

mainly 8th notes with a few 16h, quarter, and whole notes. These pieces represent emotions

such as calm, relaxed, and content. With these expressivity results, one concludes that pieces

with low arousal have rhythm patterns with long notes.
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7.7 Conclusions

This chapter presented a decoding algorithm based on MCTS to generate symbolic

music with controllable emotion. MCTS used PUCT to explore the search tree, where the prob-

ability of the nodes comes from a LM, and their scores are given by a music emotion classifier.

MCTS was evaluated with two listening tests, one to measure the quality of the generated pieces

and one to measure the accuracy of MCTS in conveying target emotions. In the first experi-

ment, a pairwise comparison is performed between pieces generated by MCTS, SBBS, TopK

sampling, and human composers. Human subjects were asked to rate which pieces they found

more musical. In the second experiment, human subjects annotated the emotions they perceived

in the generated pieces. Results showed that MCTS outperforms SBBS in terms of quality and

has slightly better accuracy when controlling emotions. With an expressivity analysis, it was

shown that MCTS generates pieces with music features similar to human compositions.

This is the first work to apply MCTS to decode neural LMs to generate symbolic

music with controllable emotion. Given that MCTS is agnostic to the classifier used to steer

the distribution of the LM, it can be used to control different features as long as a classifier can

discriminate those features. Since MCTS generates music by searching over a large vocabulary

with approximately 45K tokens, its generative task is similar to other NLP generative tasks.

Therefore, MCTS can also be generalized to decode and control LMs in text generation tasks.
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Chapter 8

Future Work

As discussed throughout this dissertation, the problem of composing music with a

target emotion has been explored with different approaches, but only recently, with the rise of

deep learning, NNs started to draw the attention of the AAC community. Indeed, this disser-

tation is one of the first works to approach AAC as a deep learning problem. Together with a

few other recent works [90, 133, 152, 132], the contributions of this dissertation have opened

up different possibilities of research that can be explored in the future. The remainder of this

chapter describes different possibilities of future work that the AAC community can explore

from this dissertation.

8.1 Datasets

Successful supervised deep learning systems typically are trained on hundreds of mil-

lions of labeled examples [84]. The available datasets for AAC, including the VGMIDI dataset,

have only hundreds of labeled examples. One of the major contributions one could bring to
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support deep NNs for AAC would be to extend the VGMIDI dataset or create a new dataset

with a considerably larger number of labeled examples. Labeling symbolic music according to

emotion is a subjective task because people can perceive emotions differently in music (as evi-

denced by the VGMIDI annotation process described in Chapter 5). This subjectivity makes the

labeling task expensive once many annotators have to be assigned to the same piece in order to

compute a meaningful (and democratic) final label. Therefore, another future work is to design

a service or a game [82] where users would have an external incentive (other than money) to

collaborate in the task of labeling music with a target emotion.

Most of the AAC datasets, including the VGMIDI, are limited to piano music. An im-

portant future work is to create datasets of multi-instrumental polyphonic music labeled accord-

ing to emotion. These datasets would allow NNs to model the relationship between different

timbres and perceived emotions. A significant challenge in creating such datasets is to collect

a large collection of pieces that use the same set of instruments. Typically, the symbolic music

datasets are created by gathering MIDI files publicly available on the Internet. Since these MIDI

files come from different sources on the Internet, it is hard to guarantee consistency among the

files. Once again, this problem could be addressed with an online service (or game), but instead

of asking users to label pre-authored pieces, the system should support music composition with

a given set of instruments and target emotions.

A specific problem with the VGMIDI dataset is that human subjects consider some of

its negative pieces ambiguous. Thus, another future work consists of creating a dataset of less

ambiguous pieces. This problem can be addressed by creating a dataset of movie soundtracks

and asking annotators to label the pieces together with their respective scenes. The problem with
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building soundtrack datasets is that most of these pieces are not publicly available in symbolic

format. One way to solve this problem is to ask professional composers to create scores for a

set of video clips that evoke different emotions.

8.2 Music Representation

Most datasets of symbolic music are organized as MIDI files. To learn models from

these datasets, one has to create a vocabulary of music tokens extracted from the MIDI events

or from the piano roll representation of the MIDI files. This dissertation explored vocabularies

of different sizes. However, it is still unclear how different vocabularies affect the quality and

controllability of the models. This analysis is a future work that should be performed with

different decoding strategies (e.g., TopK, SBBS, and MCTS) and different data regimes (low

data vs. big data). For example, one can investigate the impact of different vocabulary sizes

on the level of repetition in pieces generated by different decoding algorithms. Another future

work is to use a vector quantized variational autoencoder (VQ-VAE) to learn a vocabulary

from MIDI files. Learning a vocabulary instead of manually defining one can yield better music

representations that increase the overall quality and controllability of the models.

Although MIDI files provide easy access to high level music information (e.g., melody,

harmony, and rhythm), they cannot capture human voices or many of the more subtle timbres,

dynamics, and expressivity that the audio format can. The problem with modeling digital audio

is that audio sequences are very long. For example, a typical four-minute song at CD quality

(44 kHz, 16-bit) has over 10 million timesteps. The deep learning community has actively ex-
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plored this problem [104, 93, 146], but the state-of-the-art methods still generate music that is

significantly far from human composed music [27]. Designing NNs capable of modeling music

from audio signals is an important future work that can potentially increase the expressivity of

neural AAC systems.

8.3 Modeling

This dissertation explored three different approaches to control emotion in music gen-

erated by LMs. The first one is a genetic algorithm that optimizes the LM weights, and the other

two are decoding strategies that steer the LM’s distribution at generation time. These three

approaches rely on pre-trained neural LMs with architectures especially designed to process

sequences (e.g., RNNs and transformers). As future work, one can investigate how to control

GANs and VAEs to compose music with a target emotion. GANs have shown great potential

in music generation [100]. Moreover, conditional GANs have shown a great level of control-

lability in image generation [96]. One can train a conditional GAN to generate music where

the conditions are input signals representing emotions in a categorical or dimensional model of

emotion. The problem with using GANs for AAC is that training GANs with relatively small

datasets typically leads to discriminator overfitting, causing training to diverge [72]. Regarding

VAEs, one can extend Music FaderNets [132] to learn a representation between low-level music

features and different emotions.

Another interesting direction of future work consists of fine-tuning generative mod-

els (e.g., transformers) with reinforcement learning. This can be done by pre-training a high-
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capacity LM on a large unlabelled dataset of symbolic music and then using reinforcement

learning to steer this LM towards different emotions. Ideally, the reinforcement learning fine-

tuning should yield different policies for different emotions. Thus, after fine-tuning, the same

LM could be used to compose music with different target emotions.

8.4 Decoding

SBBS and MCTS have shown strong potential to control emotion in music gener-

ated by LMs. As future work, one can apply these methods to generate sequences in different

domains. For example, one can use MCTS to generate text, sketches, or video game levels.

Moreover, one can investigate how to improve the quality of the music generated by both these

methods – for example, exploring how to reduce repetition in the music pieces generated by

SBBS. This can be done by training a repetition discriminator to model a common level of

repetition in human composed music [59]. This discriminator should be combined with the

emotion discriminator at decoding time. One can also apply trainable weights to each of these

discriminators to linearly adjust their contributions to the final generated piece.

Section 4.2 showed different strategies to decode neural LMs in the natural language

domain. Exploring these strategies to control emotion in generated music is another important

direction of future work. For example, one can explore how to use the Plug and Play LM [23]

to compose music with controllable emotion.
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8.5 Applications

Bardo Composer is an important contribution towards generating affective music in

real time for tabletop role-playing games. However, Bardo Composer was evaluated on the task

of scoring videos of a D&D campaign. Thus, a future work consists of building a system to score

D&D campaigns in real time and evaluating how the system affects the players’ experiences.

Another problem with Bardo Composer is that it uses two independent datasets of story and

music, where each dataset has a different model of emotion [106]. Mapping emotions from

one model to the other yields a hybrid model that is not as meaningful as the original ones.

This problem can be handled in a future work where one creates an integrated dataset of music

and stories. This dataset should use music pieces that are typically used with tabletop games.

Moreover, it should be annotated according to a model of emotion that is meaningful for music

and D&D stories.

One can also build upon Bardo Composer to generate soundtracks for other me-

dia. For example, one can directly apply the approach described in Chapter 6 to score au-

diobooks. One can also extract sentiment signals from video games scenes using game events

(e.g., powerup pickup) and apply Bardo Composer to generate video game soundtracks or sound

effects. Similarly, one could extract emotion signals from movies using raw pixels and apply

Bardo Composer to generate movie soundtracks. Another exciting application of Bardo Com-

poser is to include it as part of virtual assistants (e.g., Google Assistant or Siri) to allow users

to have personalized soundtracks based on the emotional tone of their conversations.
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Chapter 9

Conclusion

This dissertation presented three search-based approaches to control music language

models to generate symbolic music with a target emotion. The first approach, described in

Chapter 5, consists of a genetic algorithm to optimize an LSTM language model towards gen-

erating negative or positive pieces [42]. According to human evaluators, this approach showed

to be successful in generating positive pieces, but negative pieces were considered slightly am-

biguous. The second approach is called SBBS and is described in Chapter 6. It consists of

controlling a stochastic beam search algorithm with emotion discriminators that steer the distri-

bution of a language model towards a given emotion [41]. A listening test showed that human

subjects could correctly identify the emotion of the pieces generated by SBBS as accurately

as they were able to identify the emotion of pieces written by humans. The third approach,

presented in Chapter 7, is a MCTS algorithm that uses PUCT with an emotion discriminator

to search for music pieces with a target emotion. According to a listening test, MCTS outper-

formed SBBS in terms of quality and has slightly better accuracy when controlling emotions.
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A dataset of symbolic music called VGMIDI has been created to support these three

approaches. VGMIDI has 200 pieces labeled according to the circumplex model of emotion

[121], and an additional 3,640 unlabelled pieces. All of them are piano arrangements of video

game soundtracks. The labeling process was performed by 30 annotators with a custom web tool

designed as part of this dissertation. Moreover, this dissertation also presented Bardo Composer,

a system to generate music for tabletop role-playing games. Bardo Composer uses a speech

recognition system to translate player speeches into captions, which Bardo Composer classifies

according to a model of emotion. Bardo Composer then uses SBBS with a neural music emotion

classifier to generate pieces conveying the emotion detected in the captions.

The contributions of this dissertation showed that searching over the space defined

by music language models with the guidance of music emotion classifiers has strong potential

in generating music with controllable emotion. As discussed in Chapter 8, there are several

possibilities for future work, from increasing the VGMIDI dataset to developing new generative

models and applying Bardo Composer to other media (e.g., video games and films). Hopefully,

the contributions of this dissertation will inspire others to explore some of this future work and

other ideas that will enable generative models to compose music with human level quality.
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Appendix A

Reproducibility

List of references to reproduce the work in this dissertation:

Learning to Generate Music with Sentiment
VGMIDI Dataset: https://github.com/lucasnfe/vgmidi
VGMIDI Music Annotation: https://github.com/lucasnfe/adl-music-annotation
Source Code: https://github.com/rafaelpadovani/music-sentneuron

Computer Generated Music for Tabletop Role-Playing Games
VGMIDI Dataset: https://github.com/lucasnfe/vgmidi
ADL Piano MIDI Dataset: https://github.com/lucasnfe/adl-piano-midi
Call of the Wild Dataset: https://github.com/lucasnfe/bardo
Source Code: https://github.com/lucasnfe/bardo-composer

Controlling Emotions in Symbolic Music Generation with MCTS
VGMIDI Dataset: https://github.com/lucasnfe/vgmidi
Source Code: https://github.com/lucasnfe/mucts
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