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Abstract: High-grade serous ovarian cancers (HGSOCs) likely consist of poorly differentiated stem-
like cells (PDSLCs) and differentiated tumor cells. Conventional therapeutics are incapable of
completely eradicating PDSLCs, contributing to disease progression and tumor relapse. Primary
NK cells are known to effectively lyse PDSLCs, but they exhibit low or minimal cytotoxic potential
against well-differentiated tumors. We have introduced and discussed the characteristics of super-
charged NK (sNK) cells in this review. sNK cells, in comparison to primary NK cells, exhibit a
significantly higher capability for the direct killing of both PDSLCs and well-differentiated tumors. In
addition, sNK cells secrete significantly higher levels of cytokines, especially those known to induce
the differentiation of tumors. In addition, we propose that a combination of sNK and chemotherapy
could be one of the most effective strategies to eliminate the heterogeneous population of ovarian
tumors; sNK cells can lyse both PDSLCs and well-differentiated tumors, induce the differentiation of
PDSLCs, and could be used in combination with chemotherapy to target both well-differentiated and
NK-induced differentiated tumors.

Keywords: ovarian cancer; high-grade serous ovarian cancers; immunotherapies; cytotoxicity;
cytokines; IFN-γ; natural killer cells; super-charged NK cells

1. Introduction and Background: Ovarian Cancer

Ovarian carcinomas are the second most common cause of gynecological malignancies-
related death and are composed of a diverse group of tumors based on histological, molec-
ular, and genetic factors [1]. In total, 70% are high-grade serous ovarian cancers (HGSOCs),
10% are endometrioid, 10% is clear cells, 3% mucinous, and approximately 5% low-grade
serous carcinoma [1–5]. HGSOCs arise from the epithelium of the distal fallopian tube, are
typically diagnosed at an advanced stage, and are responsible for the majority of ovarian
cancer-related deaths [2,3,6,7]. The standard approach of treating HGSOCs is surgical inter-
vention combined with platinum-based chemotherapy [8], which initially yields positive
responses in many patients [9]. Despite advances in treatment, the prognosis of HGSOC
remains poor, and the majority of treated cases relapse within a few years of diagnosis
resulting in a 5-year survival rate lower than 40% [7]. Thus, the high recurrence rate and
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chemoresistance development highlight the urgent need for novel treatment strategies to
improve patient prognosis [10]. Recently, the FDA approved mirvetuximab soravtansine
as a novel therapeutic alternative for a subset of platinum-resistant patients with high
levels of folate receptor alpha expression within the tumor [11,12]. While this therapy pro-
vides an alternative treatment for this subpopulation, the observed median post-treatment
progression-free survival in cancer patients was 4–5.6 months [11,13], underscoring the
urgent need to develop innovative treatment approaches.

Immunotherapy has emerged as a promising approach for cancer treatment, par-
ticularly for HGSOC. Natural killer (NK) cells, a type of cytotoxic lymphocyte, play a
crucial role in the innate immune system and have demonstrated potential in targeting
cancer cells [14–16]. This review explores the potential of NK cell-based immunotherapy
in targeting HGSOC, focusing on the characteristics and advantages of supercharged NK
(sNK) cells.

2. Heterogeneity and Mechanism of Chemoresistance in HGSOC

The complexity of treating HGSOCs is exacerbated by the tumor’s heterogeneity [17]
and the absence of clearly targetable driver mutations [18]. Studies have demonstrated that
most of the mutations in primary tumors persist post chemotherapy suggesting that most
clones are chemoresistant [18,19]. It was found that pre-treatment subclones of the tumor
population could undergo expansion during chemotherapy or platinum-based therapy
resulting in tumor relapse [20,21]. Several studies were performed to investigate the mech-
anism of chemoresistance in HGSOC. Notably, platinum-based therapies, while effective
in eradicating most tumor cells, likely leave behind a population of poorly differentiated
stem-like cells implicated in disease progression and tumor relapse [22–25]. The identifi-
cation and targeting of these tumor stem-like cells have been explored in various studies
and found increased expression levels of cell surface markers like CD24, CD44, CD133,
CD117, elevated ALDH activity, and increased levels of pluripotency-related transcrip-
tion factors such as Nanog, Oct3/4, and Sox2 [26–31]. Indeed, the increased expression
of pluripotency-related transcription factors is seen in recurrent HGSOC tumor samples
compared to chemo-naive ones [32].

It is now well-known that the tumor tissues consist of diverse cellular components
including cancer cells and stromal cells [5]. IL-6 was found to induce chemoresistance in
ovarian cancer, and mesenchymal stromal cells, particularly cancer-associated fibroblasts
(CAFs), were found to be the main source of IL-6 secretion in ovarian cancer [33]. It was
found that CCL2 and CCL5 secreted by CAFs could stimulate IL-6 secretion in ovarian
cancer cells ultimately resulting in chemoresistance in tumors [34]. Several downstream
mechanisms including PYK2, Ras/MEK/ERK, PI3K/Akt, and JAK/STAT3 signaling play
a role in IL-6-mediated chemoresistance in ovarian cancers [33–35]. Leung et al. demon-
strated that a crosstalk signal of CAFs and endothelial cells could lead to chemoresistance
in ovarian cancer via regulation of the lipoma preferred partner (LPP) gene in endothelial
cells [36]. Stromal cell-derived midkine was found to associated with chemoresistance
in ovarian cancer due to increased expression levels of IncRNA ANRIL [37]. Gonza-
lez et al. performed in-depth single-cell phenotypic characterization of HGSOC using
multiparametric mass cytometry (cyTOF) and found that HGSOC expressing higher levels
of vimentin, cMyc, and HE4 in the presence of a low expression level of E-cadherin was
carboplatin resistant [38]. It was found that an increased protein expression level of SUSD2
(Notch3-regulating gene) in HGSOC promotes epithelial–mesenchymal transition (EMT),
the metastatic capacity of malignant cells, and chemoresistance [39]. Higher expression of
oncogene KDM5A was found in ovarian cancer tissues and is associated with cancer cell
proliferation, EMT, metastasis, and chemoresistance [40]. Expression of CD44V8-10 (CD44
variant containing exons v8-10) was found associated with chemoresistance and a poor
prognosis in ovarian cancer [41].

While there may not be consensus on the exact expression profile of the HGSOC stem-
like cells, most in this field believe they exist and may be responsible for tumor relapse and
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chemoresistance. Henceforth, we will refer to these cells as poorly differentiated stem-like
cells (PD-SLCs) (Figure 1). In addition to chemotherapy resistance, the challenge of immune
evasion by PD-SLCs within HGSOC tumors has proven to be a large hurdle to overcome as
these cells employ mechanisms that reduce immunogenicity such as the altered expression
of surface antigens to escape T-cell recognition [42]. However, some of these cells remain
susceptible to natural killer (NK) cell-mediated cytotoxicity due to their low MHC-class I
expression, allowing NK cells to kill these cells through various mechanisms like the release
of cytotoxic molecules, cytokines, or chemokines [43]. This phenomenon has opened a
further investigation into using NK cell-based therapies to target PD-SLCs in HGSOC, a
malignancy that can harbor tumor cells with the down-modulation of MHC-class I [44].
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and differentiated tumor cells. Conventional therapeutics are incapable of completely eradicating
PDSLCs contributing to disease progression and tumor relapse.

3. Immunosuppression in Ovarian Cancer Patients: Rationale for Increased Metastasis
3.1. Immunosuppressive Nature of Ovarian Tumors

To understand the mechanisms of tumor progression, we focused on the role of the
tumor cells to mediate immunosuppressive effects within the tumor microenvironment. A
prospective cohort study conducted on ovarian cancer patients has shown that increased
ascites are associated with a poor prognosis and increased immunosuppression [45]. In-
tratumoral T cells (T cells with tumor-cell islets) were found to positively contribute to a
better prognosis in advanced ovarian carcinoma [46]. Decreased intratumoral T cells were
found to be associated with the up-regulation of vascular endothelial growth factor [46].
Ovarian carcinoma ascites-derived tumor-associated T and NK cells were found to exhibit
the defective expression and function of signaling proteins including decreased expres-
sion levels of TcR-zeta chains and p56 (lck), and reduced gene expression levels of IFN-γ,
IL-2, and IL-4 [47]. Although ovarian cancer patients exhibit higher concentrations of NK
cells in ascites fluid as compared to peripheral blood, these NK cells lack function [48,49].
Ascites-derived NK cells were found to express low surface expression of CD16, NKp30,
and NKG2D, and were less capable of expanding, mediating cytotoxicity, and secreting
cytokines in comparison to peripheral blood-derived NK cells [50–52]. Lower levels of NK
cell numbers were seen in the peripheral blood of ovarian cancer patients [49,53]. The study
conducted on the lymphocytes collected from the peritoneal cavity of ovarian cancer pa-
tients exhibited dysfunctional lymphocyte-mediated direct and ADCC cytotoxic functions
contributing to the spread and proliferation of tumor cells in the peritoneal cavity [48,54].
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3.2. Markers Associated with Better Prognosis

It was found that the overexpression of the endothelin B receptor (ETBR) is associated
with a lack of tumor-infiltrating lymphocytes (TILs) and a shortened life span in ovarian
cancer patients [55]. Although CD103+ TILs comprising CD8+ T cells and CD56+ NK
cells were found in most ovarian cancer types, they were found to be the most abundant
in HGSOCs and were associated with patient survival [56]. CD103 was found to serve
as a useful marker to enrich the most beneficial subsets for immunotherapy [56]. Higher
percentages, function, and IL-15-mediated activation of ascites-derived NK cells were
found to be associated with a better prognosis in ovarian cancer patients [57]. The IL-15
super-agonist complex was found to up-regulate NK cell-mediated cytotoxicity against
ovarian cancer cell lines in both in vitro and in vivo studies [58].

3.3. Immune Cells Associated with Better Prognosis

A study conducted on the interaction between dendritic cells and T cells has shown
that tumor-associated plasmacytoid dendritic cells were found to contribute to tumor
immunosuppressive networks in ovarian cancer patients [59]. Tumor-associated T-reg
cells were found to be positive for the expression of NKG2D ligand surface expression
and were found to be killed by T cells expressing chimeric NKG2D (chNKG2D) receptors
due to receptor–ligand interaction in a perforin-dependent manner [60]. Studies have
shown that ovarian tumor cells and tumor microenvironmental macrophages produce the
chemokine CCL22, responsible for the preferential recruitment and accumulation of T-regs
in tumors and in ascites [61]. Blocking the function or migration of T-reg to the tumor
microenvironment could fight the battle against ovarian cancer [61]. A higher number of
intraepithelial CD8+ TILs and an increased ratio of CD8+ vs. T-reg cells were found to be
associated with a better prognosis of epithelial ovarian cancer [62].

3.4. Limitations and Challenge in HGSOC Treatments

While NK cell-based immunotherapy holds significant promise for HGSOC treatment,
it is essential to acknowledge its potential limitations and challenges. One major challenge
is the immunosuppressive tumor microenvironment, which can hinder NK cell function
and efficacy. Additionally, the heterogeneity of HGSOC tumors, with varying expression of
NK cell-activating ligands and MHC-class I molecules, poses a challenge for targeting all
tumor cell populations by primary activated NK cells.

3.5. Future Strategies to Overcome the Challenges of HGSOC Treatments

Future research should focus on developing strategies to overcome these challenges.
This includes investigating methods to enhance NK cell infiltration and function within
the tumor microenvironment, as well as exploring combination therapies with other im-
munomodulatory agents or targeted therapies. Additionally, further research is needed
to identify and target specific tumor cell populations that may be resistant to primary
activated NK cell-mediated cytotoxicity. We have designed and implemented a strategy
to use supercharged NK cells as an effective strategy to target the heterogenous nature of
ovarian tumors which primary activated NK cells are not capable of targeting.

4. Immunotherapies of Ovarian Cancer

Cancer immunotherapies have gained popularity due to their increased effective-
ness as a cancer therapy. Humanized monoclonal antibody bevacizumab (anti-vascular
endothelial growth factor) adjuvant therapy combined with chemotherapy has been ap-
proved for advanced primary and recurrent tumors resulting in a moderate improve-
ment in progression-free survival [63–65]. The anti-tumor responses of antibodies against
PD1/PDL1 were investigated in ovarian cancer. Monotherapies with nivolumab [66] or
pembrolizumab [67] were found to be effective only in a small fraction of ovarian cancer
patients. While the combination of nivolumab and ipilimumab therapy was found superior
to nivolumab alone, its efficacy remains limited [68]. T cells expressing chimeric NKG2D
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(chNKG2D) receptors were found to contribute to long-term tumor-free survival in ovarian
cancer mouse models [60]. The p53 synthetic long peptide (p53-SLP) was found to be a safe
vaccine to induce T-cell responses in ovarian cancer patients [69,70]. Mesothelin-induced
CAR-T prolonged survival in an ovarian cancer mouse model [71].

Ovarian tumors have been shown to be targeted by NK cell-mediated killing in several
in vitro and in vivo assays [58,72–76], including against 3D ovarian tumor spheroids [75].
It was observed that IP injection of iPSC-derived NK cells and/or peripheral blood-derived
NK cells led to high levels of circulating NK cells and the eradication of intraperitoneal
ovarian cancer in xenograft mice model [72,73]. Ovarian patient peripheral blood and
ascites-derived ex vivo expanded NK cells were found to be cytotoxic against autologous
primary ovarian tumor cell lines [76]. Also, allogeneic ex vivo expanded NK cell treatment
resulted in a reduced tumor burden and tumor metastasis in mouse models implanted with
patient-derived ovarian tumors [77,78]. Adoptive transfer of haploidentical NK cells in
combination with chemotherapy was found to be effective in treating ovarian cancer due to
the in vivo increased survival and expansion of NK cells; however, strategies to augment
in vivo NK cell persistence and expansion need to be explored further [79].

5. The Role of MHC-Class I and II Expression on Ovarian Tumors and Their
Susceptibility to NK Cell-Mediated Effects

The mechanisms that govern NK activation are still under investigation. However,
increased NK cell function has been seen upon the deletion or decrease in many cellular
genes in tumors [80]. Most important, the down-modulation of NF-κB and CD44 in tumors
induced a significant increase in both cytotoxic activity and the secretion levels of IFN-γ
in NK cells in vitro, and induced inflammation and auto-immunity in vivo [14,80–83]. In
our gene knock-down studies, the down-modulation of MHC-class I expression in both
transformed and non-transformed healthy cells was found to be one of the underlying
mechanisms to induce activation in NK cells [14,80,82,83]. Recent discoveries suggest that
NK cell activation is much more complex than we have previously envisioned; it involves
many genes/pathways. For example, it was found in mouse studies that DAP10/DAP12
knock-outs resulted in hyper-responsiveness in NK cells [84]. Thus, increased responsive-
ness of NK cells when key cellular genes were knocked out or knocked down in interacting
cells/tumors may point to the fundamental function of NK cells in targeting cells that lose
the ability to differentiate optimally, and that the degree of differentiation of the cells is
likely the key in regulating NK cell expansion and function.

Using several cancer cell lines, we have previously demonstrated that PDSLCs exhibit
lower MHC-class I expression, whereas well-differentiated tumors exhibit much higher
expression of surface MHC-class I [14,85,86]. To understand the role of MHC-class I in
susceptibility to NK cell-mediated cytotoxicity against ovarian tumors, we have previously
used seven ovarian tumor cell lines: OVCAR3 [87–90], OVCAR4 [91–93], OVCAR8 [94–96],
SKOV3 [77,97,98], Kuramochi [94,99], CaOV3 [77,100–102], and OAW28 [86,103,104]. There
was a great correlation between the levels of MHC-class I expression and targeting by NK
cells. Both OVCAR8 and CAOV3 had minimal expression of MHC-class I and were highly
killed by NK cells when compared to the other tumor lines [44]. The down-modulation or
loss of MHC-class I and class II has been reported in ovarian carcinoma [105–109] and is
one of the factors contributing to escape by the immune system [110]. Increased expression
levels of MHC-class I and class II in ovarian cancer correlate with increased numbers
of tumor-infiltrating lymphocytes, an increased response to PD1/PDL1 therapy, better
prognosis, and the prolonged life of cancer patients [108,109,111,112].

Considering that there is significant down-modulation of surface receptors when
cellular genes are decreased or deleted, it is likely that NK cells sense the concentration of
receptors on the surface of the cells and react accordingly. The higher the loss of receptors,
the more activation of NK cells is expected. In contrast, the rise in surface receptors shuts
down the primary NK function mostly known to be due to the down-modulation of MHC-
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class I. Other receptors are also clearly important in the process. This aspect of NK cell
activation requires future investigations.

6. Supercharged NK Cells as an Effective Strategy to Eliminate Aggressive
Ovarian Tumors

NK cells target tumors via direct cytotoxicity and antibody-dependent cellular cyto-
toxicity (ADCC) or can indirectly regulate the functions of other immune effectors through
their secreted inflammatory cytokines and chemokines [113–115]. Increased NK cell activity
in peripheral blood and/or NK cell infiltration of tumor tissue are associated with a better
prognosis in cancer patients [116–119]. NK cell-based cancer immunotherapies are found
to be effective against several solid tumors [79,120–124]. Studies have shown an increased
sensitivity of HGSOC tumor cells to NK cell-mediated cytotoxicity [72,73,79,125] and the
ubiquitous expression of NK ligands on primary HGSOC tumors [32]. Our data also reveal
higher NK-mediated cytotoxicity against HGSOC cell lines expressing lower MHC-class
I levels [44]. Despite the potential of NK cells in targeting HGSOC, their effectiveness is
limited by several factors: (i) a restricted number of NK cells in the tumor, (ii) dysfunctional
endogenous NK cells among ovarian cancer patients, (iii) the short lifespan of NK cells
in vivo, (iv) difficulties in NK cell infiltration to the tumor site, particularly in solid tumors,
and (v) functional impairments in the tumor microenvironment [43,126,127].

To overcome the challenges mentioned above regarding NK-cell therapies, our labora-
tory has developed the technology to up-regulate the proliferative, effector, and cytotoxic
function of NK cells. This technique involves the activation of peripheral blood-derived
NK cells with a combination of IL-2 and anti-CD16 mAbs, and co-culturing of activated
NK cells with osteoclasts (OCs) as feeder cells in the presence of probiotics sAJ2, this
process leads to expansion and highly functional activation of NK cells [103,128,129]. Due
to their superior anti-cancer activity, these cells were named supercharged NK (sNK)
cells [15,16,86,103,128–136] (Table 1 and Figure 2). sNK cells were found to be highly effec-
tive against tumors in preclinical models [15,16,86,103,128–136]. The rationale for using
OCs for this methodology was the secretion of a wide range of cytokines and chemokines in-
cluding IL-12, IL-15, IFN-a, and IL-18 by OCs, which are known to increase NK function. In
addition, OCs express the important NK-activating ligands MICA/B and ULBPs [137,138].
The probiotic sAJ2 is a combination of Gram-positive probiotic bacteria strains: Streptococcus
thermophiles, Bifidobacterium longum, Bifidobacterium breve, Bifidobacterium infantis, Lactobacil-
lus acidophilus, Lactobacillus plantarum, Lactobacillus casei, and Lactobacillus bulgaricus. The
rationale for using probiotic sAJ2 treatments was to increase the cytokines secreted by
NK cells including IFN-γ which could facilitate the signals required for NK cell expan-
sion [85,86,128,135,139]. Therefore, combining both probiotics and OCs led to the induction
of signals participating in the expansion, survival, and functional activation of NK cells
(Table 1 and Figure 2).

We have previously demonstrated that sNK cells exhibit a significantly higher ca-
pability for cytokine secretion and cytotoxic function against several cancers (including
ovarian cancers) in comparison to activated primary NK cells [128,130,140]. Both the
cytokine secretion and cytotoxic activity of sNK cells were maintained for over 30 days
(donor dependent: average 27–36 days), as opposed to the 5–7-day duration observed in
primary activated NK cells [128,130,140]. Thus far, it is very well established that primary
IL-2-activated NK cells typically target PDSLCs and exhibit a slight/low killing potential
against well-differentiated tumors. This pattern did not apply to the sNK-induced killing
of tumors because sNK cells were found to target both PDSLCs and well-differentiated
tumors. We observed that sNK cells induced a significantly greater killing of differentiated
tumors when compared to primary activated NK cells [44,128,129,132,135,140]. In addi-
tion, IFN-γ secreted by sNK cells induced significantly higher differentiation of PDSLCs
when compared to primary activated NK cells [128,130] (Table 1). Although differentiated
tumors become resistant to primary activated NK cell-mediated cytotoxicity, they remain
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susceptible to sNK cell-mediated cytotoxicity and chemotherapeutic drugs [14,130,132],
and such an effect was also seen in ovarian cancer cell lines [44].

Table 1. Characteristic differences of primary vs. super-charged NK cells.

Primary IL-2-Activated NK Cells Supercharged NK Cells References

Lysis of PDSLCs ++ +++++ (****) [86,128,130]

Effector function associated
gene-expression: IRF1, JUN, STAT1, H1F1A ++ +++ (***) [130]

ADCC against tumors ++ +++ (**) [132]

Cell survival 6–9 days 27–36 days [130]

Cell survival associated gene-expression:
STAT2, IRF9 + +++ (***) [130]

Cell expansion +/− ++++ (****) [130]

Protein expression of cytotoxic granules + ++ (**) [130]

Activating receptors surface expression ++ ++++ (****) [130]

Inhibitory receptors surface
expression levels +++ (***) + [130]

Stage of cell cycle
% of cells: G1 > S > G2M % of cells: G2M > S > G1

[130]
Majority of cells in sNK are highly proliferative

NK supernatant mediated
tumor differentiation ++ ++++ (****) [86,128,130]

Selection and expansion of CD8+ T cells
(in vivo and in vitro) + +++ (***) [129,135]

In vivo tumor growth and
metastasis inhibition + ++++ (****) [86,135]

PDSLCs: poorly-differentiated-cancer-stem-like-cells; ADCC: antibody-dependent cell cytotoxicity; Cytotoxic
granules: granzyme B, cathepsin C, and perforin-1; + (1–2 fold), ++ (2–4 fold), +++ (3–4 fold), ++++ (4–6 fold),
+++++ (>6 fold). **** (p value < 0.0001), *** (p value < 0.001), ** (p value 0.001–0.01).
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Figure 2. Schematic presentation of generation and characteristics of supercharging NK cells. NK
cells (NK cells (0.5 × 106 cells/2 mL)) are purified from the peripheral blood of human donors and are
treated with a combination of IL-2 (1000 U/mL) and anti-CD16mAb (3 µg/mL) overnight. Activated
NK cells are then co-cultured with osteoclasts and probiotic bacteria (1:2:4: osteoclasts: NK: PB).
Media were refreshed every three days for an average of 27–36 days. Supercharged NK cells exhibit
significantly increased functional activity in comparison to primary NK cells.
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In our recent study, we found that sNK cells were the only NK cells that effectively
lysed both well-differentiated and poorly differentiated oral and ovarian tumors, as evi-
denced in both the normalized cell index and at the level of cytolysis, whereas primary
activated NK cells could only lyse poorly differentiated tumors. In all cases, sNK cells
greatly lysed the tumor cells and no visible tumor could be visualized. Therefore, sNK cells
behave not only as NK cells but also as T cells, since they are capable of lysing MHC-class
I-bearing well-differentiated tumors.

We are now in the process of investigating the efficacy of sNK cells in ovarian tumor-
bearing humanized-BLT mice. In our previous studies, we performed one intravenous
injection of sNK cells in oral [130,135], pancreatic [86,130], and melanoma [manuscript in
prep] tumors implanted humanized-BLT mice, and mice were monitored for 4–5 weeks.
Mice received sNK cells therapy had an increased lifespan and decreased tumor mass in
comparison to mice receiving no treatment [86,130,135]. Tumors dissected from the sNK
cell-treated group expressed higher expression levels of human CD45, MHC-class I, CD54,
and B7H1 [86,130,135]. These results suggest that sNK cells increased tumor immune cell
infiltration and induced in vivo tumor differentiation. In addition, the restored cytotoxic
function and cytokine secretion of immune cells isolated from the spleen, peripheral blood,
gingiva, pancreas, and bone marrow of sNK cell-treated tumor-bearing hu-BLT mice were
observed [86,130,135].

7. Clinical Trials of NK Cell-Based Ovarian Cancer Therapeutics

Several immunotherapeutic clinical trials have demonstrated the efficacy of immunother-
apy as a treatment modality for cancers [141–145]. NK cell-based immunotherapies have
demonstrated benefits in clinical trials to treat several cancers including ovarian can-
cer [123,146–150]. Allogeneic NK cell transfer is safe and feasible because NK cells do not
require HLA matching [151]. Geller et al. (ClinicalTrials.gov. identifier: NCT01105650) en-
rolled 14 ovarian cancer patients, which were infused with haploidentical IL-2 activated NK
cells followed by SC IL-2 infusion three times per week for fourteen days, after which NK
cell expansion was detected in the peripheral blood of patients [79]. Xie et al. documented a
case report of ovarian cancer patient receiving ex vivo expanded NK cells every two weeks
for a total of six infusions; this approach resulted in a significant reduction in tumor mass
and prolonged patient survival in the presence of minimal adverse effects [78]. A summary
of NK cell-based clinical trials for ovarian cancer is listed in Table 2. In total, 6 out of
14 patients enrolled in the clinical trial NCT01105650 were found to have progression-free
survival at one year. For other listed trials, evaluations such as safety, progression-free
survival, or overall survival are still under investigation.

Table 2. Clinical trial of NK cell-based ovarian cancer immunotherapy.

Treatment Approach Clinical Trial Stage ClinicalTrials.gov Identifier

Allogeneic IV NK + IL-2 (IV) Completed NCT01105650

Haploidentical NK + IL-2 + indoleamine-2,3-dioygenas (IDO) (IP) Completed NCT02118285

Allogeneic NK + IL-2 (IP) Completed NCT03213964

Cryosurgery + NK Completed NCT02849353

TROP2-CAR IL-15 Transduced CB-NK (IP) In progress NCT05922930

Anti-mesothelin CAR-NK In progress NCT03692637

Autologous activated NK (IV) In progress NCT03634501

Ex vivo generated UCB-derived allogeneic NK + IL-2 (IP) In progress NCT03539406

Cytokine-induced NK cells + radiofrequency ablation In progress NCT02487693

UCB: umbilical cord blood-derived; IV: intravenous; IP: intraperitoneal; CB: cord blood.
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In addition, we have recently initiated clinical trials using sNK cells. The results from
our first two patients exhibited an unparalleled safety profile and initial positive results.
We will be continuously monitoring these patients to obtain data for their efficacy.

8. Conclusions

Both primary activated NK cells and sNK cells play a crucial role in the direct killing
and differentiation of ovarian tumors. However, sNK cells are more potent, ultimately
preventing tumor establishment by the specific recognition, selection, and differentiation
of tumors. Preclinical investigations and clinical trials (ongoing and completed) have
demonstrated the promising anti-cancer effects of primary activated NK cell-based im-
munotherapy. Because sNK cells induce significant direct killing and/or differentiation of
PDSLCs, and chemotherapy selectively targets differentiated tumors, a combination of both
sNK and chemotherapy could be the most effective strategy to eliminate the heterogeneous
population of ovarian tumors (Figure 3). Current work in progress will provide further
information needed to establish efficacy based on the tumor site, stage of cancer, and
patient-related factors, and add more information regarding the optimal dosage of NK
cell infusion in combination with other therapeutics. The work presented in this review
suggests NK cell-based therapy will be an important part of the armamentarium of ovarian
cancer therapeutics.
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cells induce killing against both PDSLCs and well-differentiated tumors and induce the differentiation
of PDSLCs. A combination of sNK and chemotherapy could be the most effective strategy to eliminate
the heterogeneous population of ovarian tumors: sNK therapies could help to kill both PDSLCs
and well-differentiated tumors and induce the differentiation of PDSLCs, which could then allow
chemotherapy to clean well-differentiated and NK-induced differentiated tumors.
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