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It is challenging to build meaningful models of biological systems that are cali-
brated to experimental data. For microbial colonies, chromogenic assays are key tools
for distinguishing phenotypic variants in growing colonies over time and provide addi-
tional useful information for colony quantification. In microbial colonies, the presence
of multiple phenotypes indicate a functional change that is dependent on the colony
species. One example in Saccharomyces cerevisiae is that the presence of multiple
phenotypes indicates a loss of infectious agents within the cells. Another example in
Candida albicans is that the presence of multiple phenotypes tells us about cell mat-
ing strategies. At present, we lack both a model that explains the formation of these
sectored phenotypes and a method for validating such a model from experiments.
In addition, we lack a framework which couple both approaches to make meaningful
insights related to the driving of multiple phenotypes in microbial colonies. In this
dissertation, I seek to address this gap with a data-driven approach that integrates
experimental data of sectored yeast colonies with the construction of an agent-based
model of growing budding yeast colonies. I first discuss my previously published work
developing an agent based model of budding yeast and apply mathematical techniques
to analyze colony structure. Next, I explain my ongoing work to use image analysis
techniques to create a high-throughput pipeline allowing us to extract information
about the size and structure of colonies found in image data. Finally, I present ongo-
ing work with using this framework for larger and more diverse datasets and discuss
limitations on their use in automated colony quantification. Together these projects
create a framework allowing us to adapt our agent based modeling framework to
the conditions observed in experiments so that the model both captures sectoring
behavior and allows us to predict the mechanisms driving sectoring behavior.

xx



Chapter 1

Introduction and Background

1.1 Overview

In this dissertation we primarily focus on the study and analysis of biological yeast
colonies such as Saccharomyces cerevisiae and Candida albicans which exhibit het-
erogeneous structures due to inherent features present within the cells that comprise
colonies. This dissertation covers three central objectives towards the simulation and
analysis of complex microbial colonies.

• First, we develop a framework for the study of microbial colonies where simulation-
based models and experimental data can be used to make inferences about the
underlying dynamics driving heterogeneous colony phenotypes.

• Second, we develop novel data augmentation methods and couple them with
deep-learning frameworks for the annotation and classification of single and
multi-phenotype yeast colonies: Chapter 3: [PSI+]/[psi−] colonies in Saccha-
romyces cerevisiae and Chapter 4: white/opaque colonies in Candida albicans.

• Third, we develop computational pipelines to count the number of circular
colonies and apply them to accelerate the discovery process over traditional
approaches of counting by hand.

Throughout, yeast is used as a model system. In the first objective, we consider the
forward problem where colony growth is simulated. The second and third objectives
consider the analysis of colony level experimental data. While the spread of prion
proteins serves as a major motivator for this work, particularly Chapters 2 and 3, the
methods developed are general and applicable towards the study of the emergence
of microbial level phenotypes more broadly. Their generalizability will be tested and
discussed in Chapter 5.

1



2

1.2 Richness of Microbial Colonies

In the context of cell biology, a cell is the smallest “live” unit of any living or-
ganism. The use of single celled organisms to study biology is a common approach
to studying big questions in the field ranging from the onset of disease to genomic
sequencing. Through continuous research, tools are developed to aid in efficiently pro-
viding the information necessary to answer new and more complex questions [178].

An alternative to single-cell approaches for answering complex questions is through
experiments on biological colonies. A colony consists of populations of cells such
that all cells are descendants of a single parent or “founder” cell. In both scales,
researchers can examine physical characteristics of interest of cells and colonies which
indicate their phenotype. In general, we can define a phenotype as a set of observable
characteristics that can include its interaction with the local environment [176]. A
couple features indicative of a cell’s phenotype are its shape or morphology, such as
whether a cell is spherical or ellipsoidal, and whether a cell is currently undergoing
division (see Figure 1.1). Similarly, a colony of cells has its own phenotype, such as
its shape with respect to its own environment and the presense of structures within a
subset of the colony which exhibit distinct features from other parts of the colony. At
the colony scale, different morphologies within a colony of the same species are signs of
phenotypic variants. A phenotypic variant as defined by Frobose et al [56] are colonies
of the same species which exhibit different morphologies [138]. Specific examples
include pseudohyphael growth at the colony periphery [14] or different pigmentations
in subsets of colonies in controlled experiments [83]. Chromogenic assays also allow
experimentalists to view phenotypic variants at the colony level by tracking changes
in color throughout colony growth. Studying phenotype variants at the colony level
is capable of providing additional insight into a particular experiment.

Through the analysis of phenotypic variants at a colony level, we are interested in
studying the heterogeneity of a colony and treatments that give rise to heterogeneity.
For this dissertation, we primarily detail methods that both analyze and leverage
colony heterogeneity in Saccharomyces cerevisiae and Candida albicans. These are
two species of yeast to which experimental manipulations have revealed unique mor-
phologies which we attempt to model and quantify throughout this dissertation. We
aim to leverage this to answer complex biological questions related to changes in
colony morphology and behavior during proliferation over time. We break this down
further based on whether a phenotype is reversible or irreversible.

1.3 Irreversible Phenotypes: Prion Proteins in the

Yeast Saccharomyces cerevisiae

Protein folding is a vital process for regulating development [180] of a living or-
ganism. Failure of the protein folding process is associated with neurodegenerative
diseases [180]. One class of fatal neurodegernative diseases arises due to the presence
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Figure 1.1: Phenotypic Variants in S. cerevisiae and C. albicans. Examples
of phenotypes in S. cerevisiae (top) and C. albicans (bottom). Cell-level phenotypes
(left) include color and local environmental interactions as a collection of physical
characteristics. Within S. cerevisiae cells the presence of misfolded proteins defines
another phenotype indicating whether the cells is in the prion state or is prion free.
Cell morphology serves as another characteristic to define a phenotype in C. albicans,
where white cells are more round than opaque cells which appear elongated. In
colonies, the collective body of cells can constitute a colony-level phenotypes (middle),
where experimental manipulations help establish colony-level phenotpyes observable
in experiments (right). Image of C. albicans cells comes from Bettauer et al [11].
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of infectious misfolded proteins capable of inducing further misfolding called “prions”,
a term originally coined by Prusiner [126, 127] to describe these as proteinacious in-
fectious particles (PrP) in humans. Prion diseases have not been formalized until the
1960s, when Prusiner discovered that misfolded proteins serve as the infectious agents
behind the spread of all prion diseases, a key component in the proposition of the
prion hypothesis [165]. To this day however, the study of biological processes behind
prion disease and the search for appropriate solutions to eradicate them remains an
active area of research.

Prions are not exclusive to mammals though. Proteins that share the templating
and aggregation properties are also present in yeast such as Saccharomyces cerevisiae
and have been studied extensively. At least eight naturally occurring yeast prion
proteins [26, 93, 175] have been studied in this species alone and have helped set the
stage for screening potential candidates for anti-prion drugs [76]. One of the first
and most widely studied prion protein in yeast is Sup35, an essential release factor
in the translation-termination process [99, 164]. Aggregates of misfolded Sup35 pro-
tein have the ability to self-propagate within yeast populations [120]. At the colony
scale, experimental manipulations that rely on chromogenic assays allow for visualiza-
tion of colony regions containing aggregates. These regions of aggregated Sup35 are
indicative of a particular phenotype, namely [PSI+], whereas regions absent such ag-
gregates are indicative of the [psi−] phenotype. In colonies the [PSI+] phenotype can
be lost through multiple generations of cell division, resulting in sector-like regions,
each with their own phenotype.

Currently, models used for the purpose of studying the spread of prions proteins
in yeast are limited due the complexity of the system. The dynamics of Sup35 protein
interaction is an intracellular process, while the process of cell reproduction and
colony expansion is largely intercellular. Therefore, an understanding of the dynamics
of misfolded proteins across an entire colony involves an interplay of dynamics in
multiple spatial scales (Figure 1.2). To overcome this limitation, we attempt to
get a better understanding of how collective cellular behavior in a growing colony
contributes to the formation of well-defined phenotype structures. The case of how
a growing budding yeast colony affects the formation of these structures is detailed
in Chapter 2. The inverse problem of using experimental [PSI+] and [psi−] colonies
to gain insight into prion protein dynamics and phenotype formation is discussed in
Chapter 3.

1.4 Reversible Phenotypes: White-Opaque Switch

in the Yeast Candida albicans

Candida albicans is a yeast specifically found with the human gut microbiota [118]
and often forms close community groups known as biofilms. These biofilms consist
of two cell types of interest, namely cells that are round (white) and those that have
elongated (opaque) or budding morphologies [118]. These two cell types were physi-
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Figure 1.2: Yeast prion phenotypes are the result of multiscale processes.
A: At the molecular scale, alternatively folded proteins (twisted) act as templates
that convert normally folded proteins (straight) into the alternatively folded form
and assemble into aggregates. The aggregates then split into smaller segments (frag-
mentation) which increases the number of aggregates. B: At the cellular scale, the
presence of prion aggregates inside individual cells (represented as circles) are respon-
sible for their white color, while the absence of prions allows pigment generation and
gives them their red color. The prion phenotype could be lost sporadically, result-
ing in cured cells, while in rare instances–1 in 106–(indicated by a thinner arrow)
the prion phenotype appears spontaneously. C: Phenotype expression in yeast in-
volves multiscale processes. The dynamics inherent in protein misfolding are found
at the molecular level (A). At the subcellular level, since prions are also found in
yeast which undergo their own process of reproduction, allowing transmission of pri-
ons between attached cells. At the cellular level, the presence of prions within a cell
in turn determines their phenotype (B). At the colony level, the collection of inter-
cellular interactions that occur on the scale of a cell results in structured regions of
one phenotype within the colony. Molecular scale was visually estimated from image
data in [81]. Subcellular and cellular scales were estimated using data from [179]. A
rough estimate for the colony scale was obtained using the minimum and maximum
averaged surface area measurements of a mother cell in [179], multiplied by the ap-
proximate number of cells in colonies from data in [80].
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cally observed as shiny and round to dull and flat respectively while also experiencing
several other differing phenotypes such as metabolic and mating preferences [67]. In
both in vivo and in vitro studies, both of these cell types exhibits multiple distinct
physical characteristics.

In colonies that have grown over a longer period of time, differences in sizes of
colonies of white and opaque cells are increasingly noticeable. Specifically, colonies
consisting of mostly white cells tend to be much smaller than colonies of opaque
cells. Using CHROM media for in vitro study of C. albicans colony growth allows for
visual distinction between the two colonies by pigmenting opaque colonies as dark.
However, a major difference is that the phenotype of a C. albicans cell is reversible;
it can freely switch between the white and opaque state. Moreover, just like with
[PSI+] and [psi−] phenotypes in S cerevisae, colonies of C. albicans exhibit both
phenotypes simultaneously, either as the presence of sectors or through imperfect
circular growths.

Quantification of white-opaque switching is often done in small colonies where cells
are individually imaged. Quantification of larger colonies on the other hand are less
common in current studies. Due to the stochastic nature of living organisms including
cells, many replicates are often needed to control for stochasticity. This in turn means
many colonies have to be grown with the same treatment in order for inferences to be
reliable. However, quantification of colonies is an expensive process, and is even more
so when attempting to quantify phenotypes within colonies. Chapter 4 will detail
a computational framework to more efficiently quantify many C. albicans colonies
undergoing a white-opaque phenotypic switch.

1.5 Computational Approaches to Studying Yeast

Colonies

1.5.1 Colony Growth Simulations

The formation of colony level phenotypes arises from the collective interaction
of multiple cells. Complex phenotype organization at the colony level arising from
a founder cell or from a small cluster of cells provides rich information that will
help uncover relationships between molecular processes, individual cell behaviors, and
phenotype transitions. Most biological studies do not provide a rigorous quantification
of shape, size and structure between different sectoring phenotypes. However, the
interplay between cellular spatial organization due to collective cell behavior has
been emphasized in previous studies [57, 101]. For example, patterns of polarized
growth and division have been shown to impact overall cellular organization, and
cell-cell adhesion forces have been shown to impact how the population expands
outward and how cells divide [33]. The effects of nutrient limited growth on growing
microbial colonies have been studied to analyze the effect of low nutrient availability
on filamentous growth [15], declining growth activity [72], the influence of diffusing
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nutrients on colony morphology [163], and loss of diversity in colony regions with
higher nutrient concentrations [109]. Given the body of evidence suggesting nutrient
availability has a significant influence on colony-scale growth patterns, it is unclear
why few experimental models of growing microbial communities attempt to accurately
implement this feature in order to replicate experimentally observed colonies. A
modeling framework for simulating phenotype heterogeneity in a growing colony that
accounts for both collective cell interactions and nutrient availability is needed to
further our understanding of how different colony phenotypes emerge and expand
over time.

Agent based modeling is one approach for researchers to study colony growth and
heterogeneous structures. A few models accounting for collective cell interaction have
been proposed to provide insight into colony-level organization. The most notable
of these studies comes from Wang et al [169] which considers the effect of cell aging
on reproduction and colony structure. Smith et al [151] which relates the shape of
growing E coli cells to the formation of close-knit structures of cells with the same
phenotype. Nadell et al [112] generalizes this idea by investigating the impact of
physical and biological parameters on spatial distributions of genetic lineages within
a growing colony and how these structures are maintained over time.

One pitfall with modeling large colonies is that the computational cost significantly
increases at a rate proportional to the number of cells in the colony. However, some
colony behaviors are either unnoticeable or very minimal in small colonies compared
to larger colonies. For example, in dense colonies, nutrient limitation becomes a
significant factor in the formation of quiescent and necrotic zones where cells stop
dividing or die respectively [41]. Moreover, pseudohyphal growth in bacterial colonies
becomes noticeable after a few days of colony growth as a result of limited nutrients
[14]. Modeling studies aimed at accounting for unusual behaviors present in large
colonies should be feasible enough to simulate large numbers of cells with this colony
behavior present.

An important feature not emphasized in these studies is the effect of budding
on colony structure. Models for colony growth have largely considered fission as the
reproductive process for individual cells. However, the biophysical role of budding,
especially for S. cerevisiae, has not been explicitly featured in yeast modeling sim-
ulations where budding is the primary reproductive mechanism, nor have previous
studies investigated the effect that budding has on colony-level organization. The
model proposed in Chapter 2 of this dissertation is one of the first large scale colony
models to explicitly incorporate budding as a biological component of colony growth
to study the formation of colony-level phenotypes.

1.5.2 Image Analysis and Deep Learning Applications

With the availability of greater processing power today, methods and software
for microbial colony quantification are able to handle greater quantities of data and
analyze them more efficiently. Such methods include software and image-based meth-
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ods to automate microbial colony counting [29, 87, 162], edge detection [24] and for
circular objects, the circle Hough transform [6, 73]. In addition, machine learning
methods are a popular new direction for studying microbial cells and colonies. Deep
learning is a useful inverse problem to study phenotype formation because it allows
the resulting experimental data to be used as input and a means of training a model
to learn features of interest present in the data.

Deep learning is an approach more commonly used in computer vision for analysis
of image data. These methods when applied to image data typically have one or two
objectives. One class of methods, namely image classification, takes in an image as
input and maps that image to a set of predefined labels as output. These methods are
useful for labeling images with specific user-defined features [107,147,156]. The second
class of methods, image segmentation, is a generalization of the first, where the output
of such methods include pixel-wise label assignment [65, 136] or a transformation of
the original image into a new image. Unlike image classification, image segmentation
opens a wider window to the problem of counting objects by including spatial context
such as location. Both methods are applicable in series such as the model proposed by
Carl et al [25] which uses segmentation to remove background noise before performing
classification on the regions of interest. Combining both methods effectively allows
for robust feature extraction of complex data from images that traditional methods
fail to capture.

A major problem in any machine learning application is that the quantity of
data must be sufficient enough for a machine learning model to reliably segment or
classify real data. When the quantity of data is insufficient, data generation may
be employed to address the shortage of available data. In the case where data is in
the form of images, either traditional methods or other deep learning methods such
as generative adversarial networks can create realistic images that are similar to the
actual image data. This is a simpler transfer learning approach, where models trained
on synthetic data can be applied to real data. Combining synthetic data with real
data has been used previously in training image classification models [123] and has
shown improvement over models traditionally trained with only the real data.

Deep learning has been applied to images of cells to efficiently distinguish between
various cell types. For C. albicans this involves locating white and opaque cells [11].
However, little published work exists for eye-level colony quantification with deep
learning approaches; the data available is highly specialized for cell-level or small-
scale colony-level analyses.

This dissertation will cover two computational frameworks aimed at performing
efficient analyses on large-scale colony-level image data to uncover mechanisms driving
colony level-phenotypes in experiments. The deep learning framework discussed in
Chapter 3 of this dissertation proposes a way to quantify sectoring patterns in images
of [PSI+] and [psi−] colonies in order to gain insight into the formation of colony
phenotypes due to the presence of Sup35 aggregates in individual yeast cells. The
deep learning framework discussed in Chapter 4 will present a different and simpler
approach which is directly aimed at quantifying phenotypic switching in images of C.
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albicans colonies.

1.6 Dissertation Structure

This dissertation investigates work on using agent based modeling of a growing
yeast colony to study the growth of sector-like structures and related these growths
to experimental colony phenotypes. I will also describe the deep learning frameworks
used to study rich image datasets of colony phenotypes in different microbial colonies
and address issues with colony quantification from the image data available.

In Chapter 2 I discuss the construction of a novel two-dimensional cell-based
model for studying the growth, movement, structure, and spatial organization of a
growing colony of yeast cells. Here, we also emphasize that the role of the budding
process has a significant effect on colony structure and growth and provide reasons for
why budding should be included in models exhibiting yeast colony growth. We also
show that a nutrient limited environment for controlling cell reproduction also has a
significant impact on the organization of colony substructures and can help explain
the formation of sectors which can be observed at the colony level. We then show how
these insights help provide new interpretations about observed sectored phenotypes
in yeast.

In Chapter 3 I discuss the construction of a computational pipeline for analysis of
colony-level yeast data. I present a computational pipeline called the [PSI] Colony
Image Classifier ([PSI]-CIC) for segmenting and quantifying individual colonies of S.
cerevisiae found in image data using both deep learning and conventional detection
tools. I show that utilizing deep learning as a preprocessing step aids in overcoming a
challenge of isolating colonies using traditional edge detection methods when multiple
phenotypes are present. I then show we can accurately quantify sectoring in images
where prion curing is induced by heat shock. To conclude the chapter, we discuss the
potential impacts of [PSI]-CIC on the use of image segmentation in the context of
studying prion dynamics in yeast.

In Chapter 4 I begin discussing how the tools developed up to this point can
be applied to images of Candida albicans. I present a similar pipeline for more ef-
ficient quantification of colonies that undergo a white-to-opaque phenotype switch.
Unlike the classification structure of [PSI]-CIC from Chapter 3, this pipeline aims
at using traditional detection methods for isolating colonies, then using a different
deep learning approach for colony classification. Two deep learning models have been
constructed to allow for an image and metadata to be added as input and tested
on a series of images across different experimental setups. I show that each of these
methods achieves a high classification accuracy overall on Candida albicans colony
images, then conclude with a discussion on generalizing the model to larger datasets.

In Chapter 5 I continue the work discussed in Chapter 4 by putting the gener-
alizability of this model to the test on a more diverse dataset. Furthermore, I will
discuss progress on addressing challenges in colony counting with traditional detection
methods. This chapter explores the use of multiple yeast colony images to address
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what elements of images make it challenging for detection methods to successfully
locate colonies. In particular, we show that a colony’s position, including in a clus-
ter of other colonies, lighting aberrations, and size play roles in hiding features that
algorithms use to isolate a colony from an image. We then show how the inclusion
of deep learning can help address some of these issues while also pointing out their
shortcomings.

I then conclude my dissertation in Chapter 6 with a summary of the key findings
presented in each chapter and a discussion of open questions that arise as a result of
what is uncovered in these studies. To facilitate further research, I will also provide
suggested future directions for these projects.



Chapter 2

Quantifying the Biophysical
Impact of Budding Cell Division
on the Spatial Organization of
Growing Yeast Colonies

This chapter is the text of the paper I co-authored with Dr. Mikahl Banwarth-Kuhn
and Dr. Suzanne Sindi which was published in the Journal of the Dynamic Models in
Biology and Medicine Volume 2 [8]. I provide more details about the contributions of
this chapter below.

Both Dr. Mikahl Banwarth-Kuhn and I contributed equally to writing the final
versions of the Introduction (Section 2.1), Discussion (Section 2.4), and Conclusion
(Section 2.5) respectively at the time of submission.

I led the development of the colony metrics (Section 2.2.2) used to analyze the
colony structure and organization over time. I also formally defined the notion of a
subcolony and applied the method of partitioning cells into their respective subcolonies
in the biophysical model.

My co-author Dr. Mikahl Banwarth-Kuhn wrote, tested, and executed the scripts
that simulated the biophysical model of a growing yeast colony (Section 2.2.1). This
includes the formalization of the intercellular forces, cell cycle, and nutrient limitation
governing the spatial cellular mechanisms over time. Dr. Mikahl Banwarth-Kuhn also
created the majority of the final versions of the text, plots, figures, and tables shown
in the Results section of this chapter (Section 2.3).

2.1 Introduction

The morphological characteristics exhibited by growing microbial communities
arise from complex interactions between genetic, epigenetic, environmental and cel-
lular determinants [2, 3, 9, 42, 55, 57, 63, 64, 78, 83, 94, 109, 131, 144] (Figure 2.1). For
example, the emergence of large regions of a single genotype in bacterial colonies is

11
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most often associated with the chance loss of certain genes as individuals die or do
not reproduce due to nutrient limitation [63,64,109]. In this scenario, the survival or
extinction of an individual depends on relative fitness or physical interactions with
neighboring cells [57]. In yeast colonies, sectoring patterns appear when cells tran-
sition between different phenotypic states [55, 83, 84, 90, 97, 106, 119, 132, 177]. One
example in Saccharomyces cerevisiae is the appearance of sectoring in yeast prion
phenotypes. In the non-prion state ([psi−]), cells establish red colonies; however,
when prion aggregates are present ([PSI+]), S. cerevisiae colonies exhibit different
colors ranging from white (strong) to shades of pink (weak). Under certain experi-
mental conditions, changes in protein aggregation dynamics between neighboring cells
result in sectors corresponding to lost of the prion phenotype (Figure 2.1 D). Other
examples of sectoring in yeast colonies include spontaneous mitotic crossover [84,90]
and the white-opaque switch in Candida albicans [55, 97, 106,132,177]. In each case,
the complex phenotypic organization that arises from an initially small group of cells,
provides a rich data set that can be used to uncover relationships between molecu-
lar processes, individual cell behaviors and phenotypic transitions at the colony level
(Figure 2.1). At this point, most biological studies do not provide rigorous quantifi-
cation of shape, size and structure between different sectoring phenotypes. As such,
characterizing the role of individual cell behaviors in directing spatial organization of
cells, as well quantifying their impact on overall heterogeneity and disease progression
within microbial communities is an underexplored opportunity for discovery. In this
study, we propose a novel mathematical and computational framework that depicts
realistic biophysical division processes and the effect of nutrient limitation and use
our model to study how these processes impact colony organization.

In yeast, and other microbial colonies, cells grow closely together, and the cumu-
lative effect of mechanical interactions at the microscopic scale impacts the overall
shape and organization of growing colonies [57, 101]. For example, patterns of po-
larized growth and division have been shown to impact cellular organization, and
cell-cell adhesion forces have been shown to impact how the population expands
outward and how cells divide [33]. An interesting feature of S. cerevisiae is that
cells undergo an asymmetric division process called budding (Figure 2.1 and Figure
2.4) [21, 27, 48, 85, 117]. During budding division, new daughter cells form as protru-
sions on the surface of the mother cell and stay attached until they reach a mature
size and physically separate. After separation the resulting mother and daughter cells
are unequal in size and the daughter cell does not inherit the replicative age of the
mother. The creation of a large mother-daughter cell pair during budding division
results in distinct biophysical properties from fission (i.e. non-budding division), a
process by which cells split symmetrically into two daughters. Moreover, this dif-
ference leads to small perturbations in the physical interaction between neighboring
cells and could act as a mechanism driving emergent patterns of organization. Thus,
in the case of S. cerevisiae, understanding the impact of budding division and other
individual cell behaviors on spatial relationships between cells may be paramount to
understanding the evolution of phenotypic organization such as prion sectors.
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Figure 2.1: Spatial Phenotypes are the Consequence of Processes at Differ-
ent Scales. (A) Cells transition between different phenotypic states due to genetic
mutations or epigenetic determinants. For example, alternative conformations of the
prion protein in S. cerevisiae can function as epigenetic determinants of transmissi-
ble phenotypes. (B) Daughter cells inherit their phenotype from their mother. In
some cases, inefficient transmission of different intracellular constituents (i.e. prion
aggregates) can lead to loss of phenotype. (C) Individual cell behaviors impact the
propagation, loss and spatial arrangement of phenotypes within the colony. In this
chapter we investigate the impact of budding division in S. cerevisiae on overall shape,
size and spatial organization of cells. During budding division, the new daughter cell
forms as a bud on the mother cell and remains attached until it reaches a mature
size and they physically separate. (D) The outcome of processes at the molecular,
subcellular and cellular scales lead to different morphological traits such as sector-like
regions in S. cerevisiae colonies where all cells have lost the prion phenotype.
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In addition to biophysical properties of cells, an environmental factor that im-
pacts cell behaviors is nutrient limitation [59, 64, 109, 112, 158, 161]. Namely, the
availability of required nutrients limits cell growth progression consequently slowing
or stopping reproduction [64]. Regulatory pathways governing growth and quiescence
in yeast cells are well-studied [18, 104]. Combined experimental and computational
studies suggest that nutrient limitation is a key mechanism driving the emergence
of organizational structures in growing microbial communities [109, 112]. For exam-
ple, Mitri et al. [109] observed that Pseudomonas aeruginosa colonies with abundant
resources expand more quickly and maintain large unstructured regions while their
low nutrient counterparts have more spatio-genetic structuring. In addition, Nadell
et al. [112] used an agent-based model (ABM) to investigate the impact of physical
and biological parameters, including nutrient availability, on the spatial distribution
of genetic lineages within microbial colonies. Recent studies provide further evidence
that biophysical properties of cells can influence cell-cell interactions and change or-
ganizational dynamics within the colony [57, 82, 125, 151]. For example, Giometto et
al. [57] showed that physical interactions of cells prolong the survival of less-fit strains
at the growing frontier of S. cerevisiae colonies. While these studies provide com-
pelling evidence that mechanical properties of cells and nutrient limitation serves as
a combined mechanism driving spatial organization in microbial colonies, quantifying
their individual impact in experiments is very difficult.

Mathematical and computational models have served as successful tools for in-
vestigating the role of individual cell behaviors and mechanical properties of cells on
emergent patterns in multicellular tissues and growing microbial colonies. For exam-
ple, cell-based models have been successfully used to capture passive biomechanical
properties of cells during tissue development (for reviews see [58, 167]) as well as
microbial biofilm formation [60]. However, computational models that focus on the
impact of individual cell behaviors in directing spatial organization of yeast colonies
is somewhat limited. Jönsson et al. [79] proposed an ABM to study the effect of cell
division patterns and growth inhibition by neighboring cells on variations in the size
and shape of growing S. cerevisiae colonies. In addition, Wang et al. [169] devel-
oped an ABM with several important biological processes including budding division,
mating, mating type switch, consumption of nutrients, and cell death. They used
their model to study the impact of different budding patterns and nutrient limitation
on mating probabilities, colony development and colony expansion. In each of these
previous studies, results focused on the colony as a whole – size, shape and expansion
– and not how the colony itself was organized. An additional set of studies used
agent based models (ABMs) to investigate the impact of individual cell growth and
reproduction times on colony expanse as well as study the relationship between cell
generation and birth location in the colony [1,4,5,103,130]. However, likely for com-
putational simplicity, these prior studies focused primarily on populations of a few
hundred or few thousand cells. To our knowledge, this represents the first biophysical
model designed to study budding colonies that considers populations of more than
10,000 cells and emphasizes the impact of biophysical properties of cells on colony
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organization.
In this Chapter, we study the impact of budding cell division on overall shape, size

and spatial organization of growing yeast colonies. To do this, we develop a 2D ABM
that explicitly includes the mechanical interactions that arise when the daughter cell is
growing and physically connected to its mother. Spatial rearrangement of cells in our
synthetic colonies depends on cell-cell interaction and our model incorporates several
other important biological processes including, asymmetric cell cycle lengths between
the mother and daughter cell and the impact of nutrient limitation. In addition, we
develop specific metrics to quantify the spatial organization of cells that emerges due
to different biophysical properties in budding and non-budding colonies. We then
adapt our model to simulate colony growth in a nutrient-rich and nutrient-limited
environment and discuss how nutrient limitation impacts global colony organization
as it relates to sector-like regions formed by individual subcolonies. In Section 2.3.1
we analyze the impact of budding alone by considering colonies grown in an environ-
ment with an inexhaustible supply of nutrients. In Section 2.3.2 we study how a more
realistic nutrient limited environment acts in concert with biophysical forces created
by budding division to further impact colony organization. We find that (1) bud-
ding does not impact large-scale properties of the colony such as shape and size; (2)
budding does impact local spatial organization of cells with respect to spatial layout
of mother-daughter cell pairs and connectivity of subcolonies; (3) nutrient limitation
further promotes local spatial organization of cells; (4) nutrient limitation changes
global colony organization by driving variation in subcolony sizes. In Section 2.4 we
discuss the implications of our work in understanding the appearance of sectoring
patterns in growing yeast colonies and more broadly outline extensions of our model
to further study prion sectors in S. cerevisiae. In Section 2.2, a detailed description
of our model and the metrics we developed to quantify spatial organization of cells
are given in the methods section. Finally, Section 2.5 offers our concluding remarks.

2.2 Materials and Methods

In this section, we develop the 2D, off-lattice, center-based model we use to simu-
late the growth of S. cerevisiae colonies (Figure 2.2) as well as describe the metrics we
use to analyze simulation output. In the model, each cell is represented by an elastic
sphere that moves, grows, buds and divides according to biophysical and cell-kinetic
model parameters estimated from experiments (Table 2.1). We simulate artificial
yeast colonies under two different division formulations (budding and non-budding)
and growth conditions (nutrient rich and nutrient limited).

2.2.1 Computational Model

Below we develop our computational ABM for studying yeast colony growth and
structure. In simulations of budding colonies we explicitly model the mechanical
interactions during budding cell division by modeling the daughter cell as a growing
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Figure 2.2: Biophysical Model of Cell-Cell Interactions. We simulate budding
(A) and non-budding (B) colonies using a 2D center-based modeling approach where
cells interact through different potentials. (A) For budding colonies, the mechanical
interactions of all cell pairs (ECC) are governed by a combination of repulsive and
attractive interactions using a modified Hertz-model described in Equation (2.1). We
use a linear spring to model the additional adhesive force between mother cells and
new daughter cells during the budding phase (EMB) as in Equation (2.4). (B) For non-
budding colonies, the mechanical interactions are similar to that of cells in budding
colonies except that the adhesive force between mother cells and new daughter cells
during the budding phase (EMB) is neglected (see Section 2.2.1 for details).

circle attached to the mother cell with a stiff spring (Figures 2.2 A and 2.4). In
contrast, in simulations of non-budding colonies we treat mechanical interactions of
mother-bud pairs as identical to other cell-cell pairings (Figure 2.2 B).

Cell-Cell Interaction and Spatial Arrangement of Cells

We assume the resting shape of individual yeast cells is circular, and track the
size and location of cell i at time t by its radius Ri(t) and center x⃗i(t) = (xi(t), yi(t))
(Figure 2.2). We track the total number of cells at time t, N(t), and index cells by
their birth order i ∈ {1, 2, . . . , N(t)}. Since all cells are of the same type, the mass of
each cell, mi(t), is proportional to the area of each cell with the same constant. Yeast
cells interact through different potentials that we use to represent biologically-relevant
processes seen in experiments (Figure 2.2). For example, yeast cells in physical con-
tact form adhesive bonds that result in an attractive force [5, 19, 43, 79, 169]. How-
ever, due to the incompressibility of their cell wall, yeast cells also resist compression
from neighboring cells with a repulsive force [5, 79, 149, 155, 169]. We represent the
combination of repulsive and attractive interactions between cells using a modified
Hertz-model, as has been previously done [22, 45, 47, 71], where the potential ECC

ij (t)



17

between two cells i and j is given by:

ECC
ij (t) =

(Ri(t) + Rj(t) − dij(t))
5/2

5Ẽij

√
Ri(t)Rj(t)

Ri(t) + Rj(t)
+ Eadh

ij (t). (2.1)

The first term of Equation (2.1) depicts the repulsive interaction between two cells
and dij(t) = ∥x⃗i(t) − x⃗j(t)∥. In this equation Ẽij(t) is defined by:

Ẽij =
3

2

(
1 − σ2

E

)
(2.2)

where E and σ are the Young’s moduli and Poisson ratios of cells, respectively. The
second term of Equation (2.1) models the adhesive interaction between cells and is
given by:

Eadh
ij (t) = ϕWsAij(t) (2.3)

where ϕ is the density of surface adhesion molecules in the contact area, Ws is the
single bond bind energy and Aij(t) = (Ri(t)+Rj(t))×0.5 is the contact area between
cells i and j.

In simulations of non-budding colonies, the mechanical interactions of all cell
pairs are given by Equation (2.1). However, in simulations of budding colonies, we
explicitly model an additional force between mother cells and new daughter cells
during the budding phase (Section 2.2.1, Figure 2.2 A and Figure 2.4). To do this,
we represent the adhesive interaction caused by attachment of the new daughter cell
to its mother using a linear spring potential given by:

EMB
mb (t) = Kbud (dmb(t) − (Rm(t) + Rb(t)))

2 (2.4)

where dmb(t) = ∥x⃗m(t)− x⃗b(t)∥, Rm(t) is the radius of the mother cell at time t, Rb(t)
is the radius of daughter cell at time t and Kbud is a spring constant chosen large
enough to ensure that the new daughter cell b remains attached to its mother for
the duration of the budding phase and is not pushed away due to forces from other
neighboring cells.

In addition, we assume that cells are in an overdamped regime so that inertial
forces acting on the cells are neglected [51,86,114]. This leads to the following equation
of motion describing the movement of an individual yeast cell i in a budding colony:

(η(1 + Ri(t)/2)) ẋi(t) =


−
(∑

i ̸=j ∇ECC
ij (t) + ∇EMB

ij (t)
)

i is a bud

−
(∑

i ̸=j ∇ECC
ij (t) + ∇EMB

ij (t)
)

i is a mother with bud

−
(∑

i ̸=j ∇ECC
ij (t)

)
else

(2.5)
where j indexes the other cells in the colony at time t and η is the damping coefficient
that represents viscosity of the growth media and is scaled by (1 + Ri(t)/2). The
equation of motion describing the movement of all cells in a non-budding colony
simplifies to only the third case in Equation (2.5).
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The equation of motion of a cell is discretized in time using the forward Euler
method, and the position x⃗i(t) of cell i at time t is given by:

x⃗i(t + ∆t) = x⃗i(t) −

(∑
i ̸=j

∇ECC
ij (t) + ∇EMB

ij (t)

)
∆t

η(1 + Ri(t)/2)
(2.6)

where ∆t is the time step size. The same discretization technique is used for all cells
in each simulation.

Budding Cell Division

S. cerevisiae cells undergo budding cell division [21,117]. During this process, one
large mother-daughter cell pair is formed by the appearance of a bud on the mother.
The bud (or new daughter) remains attached while it gradually grows into a larger
cell (Figure 2.4). At the time of division, the mother cell and new daughter become
physically separated resulting in two unevenly sized cells. After division, a bud scar is
left on the surface of mother cell at the location where the new daughter was formed,
and no subsequent buds can be formed at that site (Figure 2.3). Similarly, a birth
scar is left on the surface of the new daughter cell.

The location of the bud on the surface of the mother cell can be chosen according to
two distinct patterns, axial or bipolar [48,79,85,117,169]. In our model we follow [169]
and model budding cell division with the the following pattern: mother cells are
equally likely to choose a new bud location adjacent to or opposite from the previous
bud location, and daughter cells always bud opposite to their birth scar (Figure 2.3).
To ensure no bud/birth scars are used twice, we keep track of all previous bud/birth
sites for every cell. If the next choice for a bud site falls on a previously used location
we adjust the location of the new bud site by increments of 10◦ in either the clockwise
(probability = .5) or counterclockwise (probability = .5) direction until we arrive at a
location with no previous bud/birth scar (Figure 2.3 (Left)). The budding location of
the founder cell’s first daughter is chosen randomly and uniformly along its boundary.

Cell Growth and Cell Cycle Length

We follow the standard model of eukaryotic cell division and consider the cell cycle
to have two distinct growth phases: G1 and G2. At the time of separation, mother
and new daughter cells are unequal in size. Thus, new daughter cells undergo an
extended G1 phase in order to grow to a mature adult size before producing their
own bud [17] (Figure 2.4). In our model, the average cell cycle length for mother cells
is ≈ 90 minutes (∼ 15 minutes in G1 and ∼ 75 minutes in G2) and the average cell
cycle length for new daughters cells is ≈ 120 minutes (∼ 75 minutes for the “Budding”
phase while attached to their mother and ∼ 45 minutes growing on their own). To
depict more realistic cell cycle dynamics, we introduce an element of stochasticity to
the cell division times.



19

Figure 2.3: Selecting a Bud Site. The choice of the next bud location for a cell
depends on whether it is a mother cell (left) or a new daughter cell (right). (Left) For
mother cells, the next bud location will be chosen either adjacent to the previous bud
scar with probability 0.5 (A) or opposite to the previous bud scar with probability
0.5 (B). In the case when the location of the new bud site overlaps with a previous
bud site (A), we adjust the location of the new bud site by increments of 10◦ in either
the clockwise (probability 0.5) or counterclockwise (probability 0.5) direction until
we arrive at a location with no previous bud scar. (Right) For new daughter cells
the next bud location (red) is chosen opposite to the previous birth scar (black) with
probability 1. New daughter cells that have successfully completed a full cell cycle
are considered mother cells for the remainder of the simulation. (See Section 2.2.1.)
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The variable Cell Progress (CP ∈ [0, 1]) is used to track the progress of individ-
ual cells through the G1 and G2 phases. In our model, the progress of cell i at time
t is given by:

CPi(t) = CPi(t− ∆t) + CIi × ∆t (2.7)

where CIi = (G1i + G2i)
−1. The length of G2i is computed once for all cells:

G2i = (1 + U[−0.1, 0.1])G2avg.

(In the previous expression U[−0.1, 0.1] is a uniformly distributed random variable
on the interval [−0.1, 0.1].) To represent the longer G1 phase of daughter cells, the
length of G1i is assigned once upon creation of a new bud

G1inew daughter
= (1 + U[−0.1, 0.1])G1avgdaughter

and then updated once the new daughter cell completes its first G1 phase and forms
a bud of its own

G1imother
= (1 + U[−0.1, 0.1])G1avgmother

.

In the G1 phase, mother cells have already reached their adult size, so the G1 phase
is simply a waiting time until entering the G2 phase where they form a bud (or new
daughter). Every new bud is initiated with a radius of size 0µm and grows for ≈ 75
minutes while attached to its mother. (This 75 minutes of attachment accounts for
the entire G2 phase of the mother and make up the first part of the G1 phase for the
daughter.) After this phase, the mother and bud are physically separated resulting
in a new daughter cell. At separation, the mother cell enters the G1 phase, and the
new daughter cell stays in its G1 phase and continues to grow for ≈ 45 minutes until
it reaches its adult radius size (Figure 2.4). At this time, the daughter cell transitions
into a mother cell and begins to produce its first bud.

The adult size, corresponding to a maximum radius Rmax, is assigned to each cell
upon creation and set to

Ri,max = (1 + U[−0.1, 0.1])Ravg.

The radius of cell i at time t is given by:

Ri(t) =

{
Ri(t− ∆t) +

Ri,max

G1i
× ∆t Ri(t) ≤ Ri,max

Ri,max else.
(2.8)

Nutrient Limited Growth

Until now, we assumed that the environment cells were in contained an inex-
haustible nutrient supply and cell maturation and division occurs at the same rate
rate no matter how many cells were present. We now revisit this assumption by
modeling the growth of individual yeast cells as dependent on a local nutrient sup-
ply. That is, a depletion in nutrient concentration slows down individual cell growth
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Figure 2.4: Cell Cycle Length. (Left): The G1 phase for mother cells is approxi-
mately 15 min. Since mother cells have already reached their adult size, the G1 phase
serves as a waiting period before the mother cell enters G2 and forms a bud. When
the mother cell enters G2, the new daughter cell forms as a bud and stays attached
for ∼ 75 min as it grows. After ∼ 75 min, the mother and new daughter physically
separate resulting in two unevenly sized cells. At this time, the mother cell enters G1
and begins a new cell cycle. (Right:) The new daughter cell continues to grow until
it reaches its adult size (∼ 45 min) and forms its own bud. Under nutrient limited
conditions, the length of the G1 and G2 phases are increased for both mother and
daughter cells (see Section 2.2.1 for details).

by prolonging the cell cycle length. Previous studies have incorporated the effect of
enzyme and/or nutrient concentration on individual cell behaviors in ABM models of
microbial colony growth [44–47, 72, 109, 112, 169, 170]. The majority of these studies
use reaction-diffusion equations that include the uptake of growth substrate by each
cell to compute spatial gradients of enzyme or nutrient concentration. For simplicity,
we consider each region of our simulation domain to have a maximal possible biomass
(i.e. carrying capacity). We divide the simulation domain into smaller subdomains
and adjust the cell cycle progression CP (t) for cells in each subdomain j at time t as
follows.

First, for each cell i we track the subdomain the cell is in denoted Di(t) and
compute the total mass of cells in each subdomain j where mi(t) = πRi(t)

2:

Mj(t) =

{∑N(t)
i=1 mi(t)Ij(Di(t))

Mj,max
, if

∑N(t)
i=1 mi(t)Ij (Di(t)) ≤ Mj,max

1 else
(2.9)

where Ij is an indicator variable that equals 1 if Di(t) = j and 0 otherwise. Note

that in practice Mj,max is chosen large enough that
Mj(t)

Mj,max
is always less than 1.

Next, we define a growth-rate adjustment factor for each subdomain that is ini-
tialized to 1 at the beginning of simulations and decreases in time according to the
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following equation:

GRadjust(t) =

{
GRadjust(t− ∆t, j) − rMj(t)∆t, if

GRadjust(t−∆t,j)

∆t
≥ −rMj(t)

0 else

(2.10)
where Mj,max is the carrying capacity for the j-th subdomain and r is the per capita
rate of decrease of GRadjust. We then re-scale the cell cycle increment:

C̃Ii(t) = CIi(t) ×GRadjust(t,Di(t)) (2.11)

and thus the cell progression in nutrient limited growth becomes

CPi(t) = CPi(t− ∆t) + C̃Ii(t) × ∆t. (2.12)

As the colony grows, cells move, new cells are born and cells are displaced into new
subdomains. To account for this we calculate the growth rate adjustment factor for
each subdomain at each timestep, and use it to update C̃Ii(t) for each cell according
to the unique subdomain it occupies at time t.

Simulation Run Time

In our simulations, the number of cells in synthetic yeast colonies reaches ≈15,000.
Since our model requires computing the force between all cell pairs, the number of
computational operations is proportional to the square of the number of cells. In order
to decrease the computational cost of our simulations, we use a search algorithm that
makes the number of computational operations asymptotically linear to the number
of simulated cells. To do this, the total area occupied by cells is divided into S
square subdomains. (Note these are the subdomains used for the nutrient model as
described in Section 2.2.1). The size of the subdomains in simulations is determined
based on the longest distance at which two cells can interact with each other. Since
cell-cell adhesion and repulsion interactions are short range, the search algorithm for
computing cell-cell interaction forces is limited to only neighboring subdomains.

Since there are eight neighboring subdomains for each unique subdomain Si, this
algorithm reduces the total number of operations. In addition, the code for this work
was implemented in C++ using OpenMP for parallelization. As a result, the total
run-time of one simulation is ≈ 4 hours on a 20-core node.

2.2.2 Colony Metrics

In this Section, we define the metrics used in Section 2.3 to analyze yeast colony
morphology and organization. We first use two previously defined metrics to describe
overall colony size and shape [5,79,169] and later introduce new metrics to characterize
spatial organization of cells within the colony.
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Table 2.1: Parameter Values Used in ABM. Descriptions of the biophysical and
biological processes corresponding to these variables are detailed in Section 2.2.

Parameter Symbol Value Units Meaning Ref
Poisson ratio σ .3 Incompressibility

of yeast cells
[46, 149,

167]
Young’s Modu-
lus

E 1000 kPa Mechanical
property of
yeast cell walls

[46, 149,
167]

Receptor Sur-
face Density

ϕ 1015 m−2 Density of sur-
face adhesion
molecules in the
contact area

[46,167]

Single Bond
Binding Energy

Ws 25kBT [46, 167]

EMB Linear
Spring Con-
stant

Kbud 25 nN/µm Attachment of
bud on mother
cell

calibrated

Damping Coeffi-
cient

η 2.5 Ns/µm2 Viscosity of the
growth media

[46,167]

Average Length
of G2 phase

G2avg 75 min [39,166]

Average Length
of G1 phase
(new daughters)

G1avgdaughter 120 min [39,166]

Average Length
of G1 phase
(mothers)

G1avgmother
15 min [39,166]

Average Mature
Radius Size

Ravg 2.58 µm [105]

Carrying Ca-
pacity

Mj,max 18πR2
avg µm2 Maximal possi-

ble biomass for
each subdomain

calibrated

Subdomain Size Di(t) 25 µm2 Area of each
subdomain

calibrated

Rate of Maxi-
mum Cell Cycle
Adjustment

r .003 Controls the
amount cell
cycle is adjusted
at each timestep

calibrated

Timestep ∆t 0.00144 min calibrated
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Colony Shape Metrics

The first two metrics are used to quantify the shape of the colony as it grows
in time. The colony expanse quantifies how large the colony is, while the colony
sparsity quantifies how circular the colony is. Both depend on the center of mass of
the colony (Figure 2.5). Let N(t) be the number of cells in the colony at time t, each
of which has position x⃗i(t) = (xi(t), yi(t)) and radius Ri(t). Since we assume all cells
are of the same type, the mass of each cell, mi(t), is proportional to the area of each
cell with the same constant. As such, the center of mass of the colony at time t is
given by the 2D point, C⃗(t), defined by:

Center of Mass: C⃗(t) =

∑N(t)
i=1 mi(t)x⃗i(t)∑N(t)

i=1 mi(t)
=

∑N(t)
i=1 πR2

i (t)x⃗i(t)∑N(t)
i=1 πR2

i (t)
. (2.13)

The colony expanse is defined as the largest distance between any cell boundary and
the center of mass of the colony. That is:

Colony Expanse: E(t) = max
1≤i≤N(t)

{
∥x⃗i(t) − C⃗(t)∥ + Ri(t)

}
. (2.14)

The colony sparsity compares the area of the colony to the area of the circle with
radius equal to the colony expanse. Notice that this circle need not be the smallest
enclosing circle, as the smallest enclosing circle need not have its center at the colony
center of mass, which is a modification of the colony sparsity used by Jönsson [79]
and colony radius used by Aji [1]. In our simulations, cells do not overlap, so we
define the area of the colony as follows:

Area of Colony: Acolony(t) =

N(t)∑
i=1

πR2
i (t). (2.15)

Thus, the colony sparsity is defined as:

Colony Sparsity: S(t) =
πE(t)2

Acolony(t)
. (2.16)

Colony Organization Metrics

Next we introduce new metrics related to the organization of cells within the
colony. We define a graph G(V,E) as a set of nodes V and edges E. In each graph,
all cells are represented as nodes. To analyze the colony organization, we consider two
undirected graphs which evolve dynamically along with the colony (Figure 2.6). The
first graph, GS, is based on the Delaunay triangulation [53, 89] and encodes spatial
relationships between cells (Figure 2.6 A). The second graph, the lineage graph which
we denote as GL, encodes mother-daughter relationships between cells (Figure 2.6 B)
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Figure 2.5: Colony Sparsity and Expanse. We first compute the colony center
of mass (represented as a green square) using Equation (2.13). Then we determine
the radius (length of the blue line) of the smallest circle which surrounds the entire
colony centered at the center of mass (shown in red) using Equation (2.14). The colony
sparsity is then computed using Equation (2.16) with the result of Equation (2.14),
the area of the circle, and the total area of the cells using Equation (2.15). (Left):
The space within the circle is more dense, thus covering more area within the circle
with radius equal to the colony expanse, resulting in a small colony sparsity. (Right):
The space that cells occupy within the circle is less dense, resulting in a higher colony
sparsity.
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Both graphs are constructed from the same vertex set, namely, all cells in the colony
at time t:

V = {c1, c2, . . . cN(t)}.

The edge set ES is constructed based on the Delaunay triangulation. The De-
launay triangulation is the dual graph of the Voronoi diagram for cell centers which
consists of all points in the plane that are equidistant to their two nearest sites [172].
In our case, the edge set ES is defined as:

ES = {(ci, cj) | cell i and j share an edge in the Delaunay triangulation.}. (2.17)

The edge set EL consists of only edges between immediate mother-daughter cell pairs.
Each cell, ci, has a unique mother, m(ci). Thus, the edge set EL consists of the
following edges:

EL = {(ci,m(ci))} for i ∈ {2, . . . , N(t)}. (2.18)

(Note that m(c1) is not defined because c1 is the founder cell.)
Together GS = {V,ES} and GL = {V,EL} can be used to quantify how closely

the spatial organization of the colony relates to mother-daughter cell pair interactions
within the colony. To do this, we first define the intersection graph, GI (Figure 2.6 C).
GI is constructed from the same vertex set containing all cells in the colony, but the
edge set, EI , only includes edges belonging to both ES and EL, namely:

EI = ES ∩ EL. (2.19)

Our first colony organization metric, colony connectivity, is the fraction of
mother-daughter edges that are also in the intersection graph:

Colony Connectivity :=
|EI |
|EL|

. (2.20)

Our second organization requires us to establish a few concepts related to colony
structure. First, we define a subcolony to be the subset of all cells whose common
ancestor is an immediate daughter of the founder (Figure 2.7). We index the daughters
of the founder cell by d1, d2, . . . dF where dk denotes the k-th daughter of the founder
cell. Note, every cell in the colony belongs to one of the subcolonies founded by an
immediate daughter of the founder cell. Thus, for each ci ∈ V \{c1}, we define Sub(ci)
to be the subcolony that cell i belongs to. Moreover, each daughter of the founder is
considered to be the founder of its own colony (i.e. a subcolony of the original colony)
denoted Sub(dk) and the total number of subcolonies is equal to F , the total number
of immediate daughters of the founder cell.

We next define a graph associated with each subcolony. Let Vsub,dk be the set of
all cells that are in Sub(dk). That is,

Vsub,dk = {ci ∈ V \ {c1} | Sub(ci) = Sub(dk)}
for i ∈ {2, 3, . . . , N(t)} and k ∈ {1, 2, . . . , F}.

(2.21)
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Figure 2.6: Colony Spatial Graphs. The vertex set for all three colony graphs
is the same (all cell centers). The founder cell is designated in black. The edge set
differs depending on the relationships between cells. (A): The edge set for the spatial
graph GS (blue edges) are those induced by the the Delaunay triangulation applied
to the cell centers (Equation (2.17)). (B): The edges for the lineage graph GL (red
edges) correspond to mother-daughter pairs (Equation (2.18)). (C): The edge set for
the intersection graph GI (purple edges) include those edges that belong to the two
previous edge sets (Equation (2.19)).

Let Esub,dk be the the set of all edges in ES that join two cells in Sub(dk). Namely,

Esub,dk = {(ci, cj) ∈ ES | Sub(ci) = Sub(cj) = Sub(dk)}
for i, j ∈ {2, 3, . . . , N(t)} and i ̸= j.

(2.22)

We define Gsub,dk to be the subgraph of GS whose vertex set is Vsub,dk and whose edge
set is Esub,dk (see Figure 2.7 (B) and (C)). Note that Esub,dk for each k partitions the
larger edge Esub defined as:

Esub =
F⋃

k=1

Esub,dk . (2.23)

Similarly, Vsub,dk for each k partitions the larger vertex set Vsub defined to be:

Vsub =
F⋃

k=1

Vsub,dk . (2.24)

We then define the subcolony graph Gsub(Vsub, Esub), where

Gsub =
F⋃

k=1

Gsub,dk . (2.25)

We define our second colony organization metric to be the number of connected
components of Gsub,dk for each subcolony. A connected component is defined to
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Figure 2.7: Constructing Subcolony Graphs. Subcolony graphs are constructed
from partitions of the spatial graph GS according to the following procedure. (A): We
generate the the same spatial graph (GS) using the Delaunay triangulation ( Equa-
tion (2.17)). (The founder cell is indicated in black.) (B): We define a subcolony as a
subset of cells in the lineage graph consisting of a daughter of the founder cell along
with all of its descendants ( Equation (2.21)). Edges are colored based one which
subcolony each cell belongs to ( Equation (2.22)). We then remove edges from the
spatial connecting cells from different subcolonies (dotted black edges). (C): Remov-
ing these edges results in the subcolony graph Gsub, a set of subgraphs of GS that
we index by daughter cells: Gsub,dk . These graphs preserve the spatial relationship
between cells within the same subcolony ( Equation (2.25)).

be any maximal subgraph Gconnect ⊆ Gsub,dk such that any two vertices in Gconnect

are connected by a path and not connected to any other vertices in Gsub. The total
number of connected components for the kth subcolony is the total number of maximal
subgraphs that partition the kth subcolony graph Gsub,dk .

2.2.3 Statistical Analysis

To analyze the impact of budding and nutrient limited growth on size, shape,
and emergent patterns of spatial organization of cells, we generated 50 simulations of
each colony type (budding/non-budding, nutrient rich/nutrient limited). To compare
expanse, sparsity, connectivity and the number of connected components for each of
the first five subcolonies between budding and non-budding colonies we used indepen-
dent t-tests implemented using the statannot package in python [173]. In addition,
we performed Kaplan-Meier survival analysis and generated Kaplan-Meier survival
curves using the lifelines library in python [34]. The survival function defines the
probability that a death event (i.e. loss of a mother-daughter edge in GS or a given
subcolony splitting into more than 15 connected components) has not occurred yet
at time t, or equivalently, the probability of surviving past time t [49]. We then used
the log-rank test available in the lifelines library to compare the survival curves be-
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tween budding and non-budding colonies in all cases (Figure 2.11 D, Figure 2.12 D,
Figure 2.15 D and Figure 2.16 D). Finally, we computed the Kolmogorov-Smirnov
statistic using the SciPy library in python [168] to compare the probability distribu-
tions of birth location between nutrient rich and nutrient limited colonies.

2.3 Results

To study the impact of budding division on the spatial organization of S. cere-
visiae colonies, we developed a 2D computational model to compare morphological
characteristics and spatial arrangement of cells between budding and non-budding
colonies in both nutrient-rich and nutrient-limited conditions (see Section 2.2 for a
detailed discussion of our computational model and the metrics we use to evaluate
our colonies). Note, by non-budding colonies we mean colonies where mother-bud
pairs are not physically attached while the new daughter grows to a mature size. In
the model, we represent each cell by an elastic sphere that moves, grows, buds and
divides according to biophysical and cell-kinetic model parameters chosen to match
experimentally derived values ( Section 2.2.1, Table 2.1, Figure 2.2, Figure 2.3 and
Figure 2.4). Each simulation begins with a single newly born founder cell. We al-
low the colony to grow for ≈24 hours until there are ≈15,000 cells. We compared
our synthetic yeast colonies grown under different conditions (budding/non-budding,
nutrient-rich/nutrient-limited) with metrics designed to capture the overall colony
growth, shape, and spatial organization of cells (see Section 2.2.2). Results below
are based on 50 simulations for each of these four conditions. Typical output from
budding and non-budding colonies in nutrient-rich conditions is shown in Figure 2.8
(middle and bottom rows) and typical output from budding and non-budding colonies
in nutrient-limited conditions is shown in Figure 2.17 A, B.

As we next discuss in greater detail, we find that metrics corresponding to the
overall growth and shape of colonies are not impacted by budding division. However,
we observe significant differences in metrics characterizing the local spatial organiza-
tion and connectivity of budding versus non-budding colonies. Finally, we find that
in addition to further impacting local spatial organization and colony connectivity,
nutrient limitation changes the global organization of growing yeast colonies.

2.3.1 Nutrient-Rich Growth: Budding Division Impacts Lo-
cal Colony Organization in Simulated Yeast Colonies

First, we consider colonies growing in “nutrient-rich” conditions. As described in
Section 2.2.1, for budding colonies, we explicitly model the mechanical interactions
that arise due to the formation of a new daughter cell from budding (Figure 2.2 A).
When simulating non-budding colonies, we treat mechanical interactions of mother-
bud pairs and all other cell-cell pairs identically ( Section 2.2.1 and Figure 2.2 B).
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Figure 2.8: Simulated Yeast Colonies in Nutrient-Rich Conditions and Cor-
responding Lineage Relationships. We compared overall growth, shape and
spatial organization between budding (Middle) and non-budding (Bottom) colonies.
Colonies are depicted at three time points (A) 12 h (∼100 cells), (B) 18 h (∼1,300
cells) and (C) 24 h (∼15,000 cells). In addition to the physical layout of cells, we
analyzed two different networks associated with our colonies, the lineage graph (GL,
Top) and the spatial graph (GS, see Section 2.2.2). (Top row) The lineage graph (GL)
represents mother-daughter relationships and does not consider cell position in space.
As such, the lineage graph is the same for the two different colonies depicted below
(budding and non-budding). Cells in colonies and edges in the lineage graph are col-
ored according to the unique subcolony each cell belongs to, where a subcolony is
the subset of all cells whose common ancestor is the same immediate daughter of the
founder cell: Founder (red), Subcolony 1 (maroon), Subcolony 2 (blue), Subcolony 3
(dark green), Subcolony 4 (light green), Subcolony 5 (lavender), Subcolony 6 (purple),
Subcolony 7 (dark orange), Subcolony 8 (gold), Subcolony 9 (yellow), Subcolony 10
(rust), Subcolony 11 (magenta), Subcolony 12 (light pink) and Subcolony 13 (grey).
Lineage graphs display the first five subcolonies only. (See Section 2.2.2 for details.)
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Figure 2.9: Population Growth, Expanse and Sparsity of Simulated Yeast
Colonies in Nutrient-Rich Conditions. (A) Colony growth is exponential with
doubling time ∼105 min (inset). Bar plots represent average number of cells in each
colony across all 50 simulations for both budding and non-budding colonies under
nutrient-rich conditions calculated at 4.5 h intervals. (B) Colony expanse increases
over time for both budding and non-budding colonies. (C) Colony sparsity decreases
to 1 (implying that the colony is becoming more circular) as the size of the colony
increases over time for both budding and non-budding colonies. (See Section 2.3.1 for
details.)

Budding Does Not Impact Large-Scale Colony Growth or Structure (Ex-
panse or Sparsity)

In the absence of nutrient limitation, colony growth is exponential with a doubling
time of ∼105 minutes. More specifically, colony growth is exponential with a doubling
time of ∼90 minutes for mother cells and ∼120 minutes for new daughter cells (Fig-
ure 2.9 A and Figure 2.4). We assume no difference in growth rate or cell cycle length
between budding and non-budding colonies. Thus, as expected, we see no difference
in total population between budding and non-budding colonies (Figure 2.9 A).

Next, we compared the size and shape of budding and non-budding colonies un-
der nutrient-rich conditions by calculating the expanse and sparsity of each colony
(Figure 2.9 B, C). The expanse quantifies how large the colony is with respect to
the average distance of each cell to the colony center of mass, while colony sparsity
is a measure that quantifies the roundness of each colony ( Section 2.2.2). As the
colony grows, the colony expanse increases and the colony sparsity decreases towards
1, implying that the colony is becoming more circular as the number of cells in the
colony increases. We observe no difference between colony expanse or colony sparsity
between budding and non-budding colonies (Figure 2.9 B, C). Thus, budding does
not impact the appearance of the colony when viewed as a whole.
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Budding Does Not Change Global Age and Spatial Structure but Impacts
Local Connectivity

Next we analyzed the relationship between cell age and spatial location within the
colony after 24 hours of growth. First we computed the empirical probability density
function for the ages of cells in the colony (Figure 2.10 A). We find that over 93% of
cells are less than 8 hours old, and thus we focus on this subpopulation. (Note, because
cell cycle timing is unchanged between budding and non-budding colonies, as expected
we find no difference in the distribution of cell ages between these two conditions).
Next, we quantified the birth location of cells within the colony (Figure 2.10 B). To
do this, we analyzed the empirical probability density function for the normalized
distance from the colony center of mass to the birth location of cells born in the last
hour of colony growth. We observe that in both conditions, cells are more likely to be
born closer to the perimeter of the colony. We note that this empirical distribution has
a nearly linear increase, consistent with a uniform probability per area of the colony,
with the exception of the decreased probability at the moving front of the colony.
Similarly, we find no difference in birth location of cells between budding and non-
budding colonies demonstrating that the budding mechanism has no impact on birth
locations within the colony. Finally, to ensure that this distribution itself is not age
structured, we examined the distance from the colony center of mass (Figure 2.10 C)
and note that both budding and non-budding cells display uniform probabilities with
respect to distance from the colony center of mass for all ages.

While there are no differences in the large-scale age structure between budding
and non-budding colonies, we note that there are significant differences within the
local neighborhood of a cell. More specifically, we observed a small, but statistically
significant (non-overlapping 95% confidence intervals) difference in the distance a cell
less than 8 hours old was from its mother (Figure 2.10 D). Although this difference
is quite small (less than the average radius of a cell), because most cells in the colony
fall into this age group, this suggests significant differences in the local spatial ar-
rangement and organization of budding versus non-budding colonies. Note, for both
average distance from the colony center of mass (Figure 2.10 C) and average distance
from cells to their mother (Figure 2.10 D), average values were determined for dif-
ferent age groups using a sliding window with a fixed window size of 20 minutes. In
addition, 95% confidence intervals are shown for each window.

Budding Division Maintains Closeness between Mothers and Daughters
after Physical Separation

To better quantify the differences in local spatial arrangement and organization
between budding and non-budding colonies, we analyzed the spatial graph (GS) and
lineage graph (GL) for each colony. The spatial graph has an edge between cells that
are adjacent according to the Delaunay triangulation of their centers (Figure 2.6 A).
The lineage graph has an edge between mother and daughter cell pairs regardless of
their spatial position (Figure 2.8 (top row) and Figure 2.6 B). We construct both
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Figure 2.10: Age and Spatial Organization of Cells in Nutrient-Rich
Colonies. (A) Empirical probability density function for cell ages in synthetic
colonies after 24 h of colony growth. We observe that the probability that a given cell
is ≤ 8 h old is .9388. (B) Empirical probability density function for the normalized
distance from the colony center of mass to the birth location of cells born in the last
hour of colony growth (Dnorm). We observe that the probability that Dnorm is ≥ .5 is
.6844. (C) Cell age (h) versus cell distance from the colony center of mass for budding
(red) and non-budding (blue) colonies at the 24 h time point. In both (C) and (D),
average values were determined for different age groups using a sliding window with
a fixed window size of 20 min. We conclude that cell distance from the colony center
of mass is not impacted by cell age or budding division since 95% confidence inter-
vals overlap. (D) Cell age (h) versus cell distance from its mother for budding (red)
and non-budding (blue) colonies. The difference between budding and non-budding
colonies is given for age groups 2,4,6,8. We conclude that this difference is significant
since 95% confidence interval do not overlap. (See Section 2.3.1 for details).
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graphs from our simulation output following the procedures defined in Section 2.2.2.
Together, these graphs provide a framework to quantify how spatial relationships
between mother-daughter cell pairs dynamically evolve during colony growth.

Colony connectivity is a measure of how many mother-daughter cell pairs are ad-
jacent in the colony. We determine this by looking at the fraction of mother-daughter
edges in GS (See Section 2.2.2 for more details.) First, we compared colony con-
nectivity between budding and non-budding colonies after 12, 18 and 24 hours of
growth (Figure 2.11 A). While colony connectivity decreases over time for both bud-
ding and non-budding colonies, it is significantly higher in budding colonies starting
after 18 hours of growth. We hypothesized that since cells in budding colonies remain
physically attached to their mother until separation, high connectivity of the cells
still attached to their mother could explain the observed difference. To investigate
this hypothesis, we compared the connectivity between mother-daughter cell pairs in
two distinct phases: when they are attached during budding cell division (“budded
cells”, Figure 2.11 B) and after separation (“un-budded cells”, Figure 2.11 C). We
observe that the connectivity of budding colonies is significantly higher in each phase
(Figure 2.11 B, C). Namely, in the case of budded cells, connectivity stays close to
1 during the entire 24 hour time period for budding colonies whereas it decreases
between 12-18 hours and then again between 18-24 hours for non-budding colonies
(Figure 2.11 B). Surprisingly, in the case of un-budded cells, the difference in connec-
tivity is significantly different between budding and non-budding colonies starting at
18 hours (Figure 2.11 C). In fact, the absolute difference in mean connectivity be-
tween budding and non-budding colonies remains unchanged from the overall colony
connectivity computed for all cells.

To further address the mechanism driving our observed differences in colony con-
nectivity between budding and non-budding colonies, we hypothesized that mother-
daughter cell pairs remain physically close for a longer period of time after separa-
tion in budding colonies. To investigate this hypothesis, we generated Kaplan-Meier
survival curves for the lifetime of mother-daughter edges in GS (lifetime being the
length of time after separation). We observe that the probability that a given mother-
daughter edge will remain in GS for longer than t hours after separation is higher for
budding colonies (Figure 2.11 D). In addition, the restricted mean survival time for
a given mother-daughter edge in GS is 80 minutes compared to 66 minutes for non-
budding colonies. Furthermore, we observe distinctly different behavior between the
two survival curves from 0-50 minutes after separation, whereas after 50 minutes, the
two curves display more similar behavior. This change in behavior is marked by a
“sharp” decrease in survival probability for both types of colonies. The timing of this
sharp decrease is consistent with the appearance of a second bud from the mother
cell and we conjecture that the new bud “pushes away” the previous daughter.

Budding Division Promotes Subcolony Connectivity

Next, we considered the impact of budding division on subcolony structure and
organization. We define a subcolony to be the subset of all cells whose common
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Figure 2.11: Colony Connectivity in Nutrient-Rich Colonies. Comparison of
colony connectivity between budding (red) and non-budding (blue) colonies at 12,
18 and 24 h. We compared connectivity for all cells in (A), as well as cells in two
distinct phases: during the time when cells are attached for budding colonies in (B)
and after separation in (C). (See Section 2.2.2 for how we define connectivity.) (A)
We observe a statistically significant difference in colony connectivity at 18 h (p =
1.423e-27) and 24 h (p = 2.008e-99). (B) We observe a rapid decrease in connectivity
between both 12-18 and 18-24 h in non-budding colonies. This decrease leads to a
statistically significant difference between budding and non-budding colonies at 12 h
(p = 3.387e-02), 18 h (p = 6.521e-34) and 24 h (p = 2.867e-103). (C) We observe a
statistically significant difference in connectivity at 18 h (p = 3.684e-19) and 24 h (p =
7.615e-89). (p-values for connectivity were computed using independent t-tests.) (D)
Kaplan-Meier survival curves for the edge connecting mother-daughter cell pairs in
GS for budding (red) and non-budding (blue) colonies. The y-axis is the probability
that a given mother-daughter edge will remain in GS for longer than t hours after
separation, where time is on the x-axis. We observe that the survival curves are
different between the two groups (p = 7.217e-25), indicating that the probability that
a mother-daughter edge remains in GS for longer than t hours is greater for budding
colonies. (The p-value comparing survival curves was calculated using a log-rank test
as described in Section 2.2.3.) (See Section 2.3.1 for details.)
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ancestor is the same immediate daughter of the founder cell (Section 2.2.2 and Fig-
ure 2.7). Note that a colony has as many subcolonies as immediate daughters of the
founding cell. We then analyze how well each of these subcolonies is connected in
terms of the spatial layout of the colony. To do this, we considered colonies at the
final time point (24 hours) and compared the number of connected components of
the first five subcolonies between budding and non-budding division conditions. We
found that the average number of connected components was significantly lower for
budding colonies (Figure 2.12 A). This demonstrates that budding division acts as a
mechanism to increase spatial adjacency within subcolonies as well as impact overall
subcolony connectivity.

Because every subcolony begins with a single cell, which is necessarily a single
connected component, we studied at what time a given subcolony would break apart.
To do this, we computed the average time elapsed from creation of a given subcolony
until it splits into more than 15 connected components. We observe that the average
time was significantly lower in non-budding colonies for subcolonies 1, 2 and 3 (Fig-
ure 2.12 B). These results suggest budding division impacts subcolony connectivity by
ensuring cells in the same subcolony remain physically closer together for a longer pe-
riod of time. Moreover, we hypothesized that the absence of budding division makes
it easier for individual cells to become separated from the rest of their subcolony.
To test this hypothesis, we computed the average number of cells in small connected
components (i.e. less than 10 cells) for budding and non-budding colonies. We find
that the average number of cells in a small connected component was significantly
higher in non-budding colonies (Figure 2.12 C).

In addition, we generated Kaplan-Meier survival curves for the time elapsed from
creation of a subcolony to when it splits into more than 15 components. We considered
this a separate event for each of the first 5 subcolonies and each of our 50 simulations.
We found that the survival curves are different between the two groups (Figure 2.12 D)
indicating that the probability that a given subcolony remains connected (i.e. less
than 15 connected components) for longer than t hours is greater for budding colonies.

2.3.2 Nutrient-Limited Growth: Differential Growth Rates
Impact Global Organization of Yeast Colonies

Prior studies have shown that nutrient limitation impacts patterns of growth and
spatial organization in microbial colonies [57,109,112,169]. To investigate the role of
nutrient limitation and budding division together on patterns of growth and organiza-
tion in our simulated yeast colonies, we revised our ABM to include nutrient-limited
growth ( Section 2.2.1) and used the same set of metrics as before to compare overall
shape, size and spatial organization of cells. Rather than directly model the concen-
tration of a nutrient in time as has been done previously [44–47,72,109,112,169,170],
we consider regions of the growth media to have a maximal possible biomass (i.e.
carrying capacity) and decrease the cell growth progression of cells in each region
accordingly. In particular, we provide a simplified model of nutrient dynamics that
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A) B)

C) D)

Figure 2.12: Subcolony Structure and Organization in Nutrient-Rich
Colonies. (A) Comparison of the number of connected components for the first
five subcolonies between budding (red) and non-budding (blue) colonies at the 24 h
time point. We observe a statistically significant difference in the number of connected
components for subcolony 1 (p = 2.885e-10), subcolony 2 (p = 1.139e-10), subcolony
3 (p = 3.075e-04), subcolony 4 (p = 1.539e-06) and subcolony 5 (p = 1.959e-03). (B)
Comparison of time from creation until each of the first five subcolonies splits into
15 connected components. We observe a statistically significant difference between
budding (red) and non-budding (blue) colonies for subcolony 1 (p = 1.140e-04), sub-
colony 2 (p = 4.727e-04), and subcolony 3 (p = 1.581e-02). (C) Comparison of the
number of cells in a connected component with less than 10 cells. Note that overall
very few cells are in small connected components; however, we observe a statistically
significant difference between budding (red) and non-budding (blue) colonies at 12 h
(p = 7.408e-40), 18 h (p = 7.896e−19) and 24 h (p = 1.233e-59). (p-values in (A), (B)
and (C) were computed using independent t-tests). (D) Kaplan-Meier survival curves
for the length of time a subcolony is made up of less than 15 connected components
for budding (red) and non-budding (blue) colonies. The y-axis is the probability that
a subcolony consists of less than 15 connected components for longer than t hours,
where time is on the x-axis. We observe that the survival curves are different between
the budding and non-budding colonies (p = 1.165e-06), indicating that budding pro-
motes subcolony connectivity. (The p-value comparing survival curves was calculated
using a log-rank test as described in Section 2.2.3. In addition, 95% confidence inter-
vals for the survival function are shown. See Section 2.3.1 for details.)



38

Figure 2.13: Population Growth, Expanse and Sparsity of Simulated Yeast
Colonies in Nutrient-Limited Conditions. (A) Colony growth is exponential
with doubling time ∼ 123 min (inset). Bar plots represent average number of cells
in each colony across all 50 simulations for both budding and non-budding colonies
under nutrient-limited conditions calculated at 4.5 h intervals. (B) Colony expanse
increases over time for both budding and non-budding colonies. (C) Colony sparsity
decreases to 1 as the size of the colony increases over time for both budding and
non-budding colonies. (See Section 2.3.2 for details.)

only considers the indirect effect of nutrients on cell cycle length and does not directly
model nutrient concentration or a particular type of nutrient.

Nutrient Limitation Slows Colony Growth but Does Not Change Large-
Scale Colony Structure

As in our nutrient rich condition, large-scale behavior (doubling time, sparsity and
expanse) between budding and non-budding colonies is the same. (Figure 2.13 A,
B and C). However, when nutrients are limited, our synthetic yeast colonies grow
slower. Since colony connectivity and structure of subcolonies significantly changes
between 1,000 and 10,000 cells, we computed each of our metrics for nutrient-limited
colonies at an additional time point (28 hours) where the number of cells in the
colonies is over 10,000 and more similar to the nutrient-rich case (∼ 12,500 cells
after 28 hours of growth in nutrient-limited conditions compared to ∼ 15,000 cells
after 24 hours of growth in nutrient-rich conditions). The average doubling time
of a colony increases from ∼ 105 minutes under nutrient-rich conditions to ∼ 123 in
nutrient-limited conditions (Figure 2.13 A). The colony expanse at 24 hours decreases
from 300 µm in nutrient-rich conditions to 150 µm in nutrient-limited conditions
(Figure 2.13 B). Similarly to nutrient-rich growth, colony sparsity decreases toward
1, indicating the colony becomes more circular as it grows (Figure 2.13 C). Finally,
as we assumed no difference in growth rate or cell cycle length between budding
and non-budding division, these gross colony level metrics remain unchanged when
comparing between division conditions.
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Nutrient Limitation Creates Age-Structured Colonies by Promoting Birth
at the Colony Boundary

First, as in the nutrient-rich condition, the asymmetric cell cycle means that
the age distributions are shifted toward younger cells in nutrient-limited colonies.
Because we grow nutrient-limited colonies for a longer period (28 hours vs. 24 hours
for nutrient-rich colonies), we consider “young cells” as those less than 12 hours old
(over 94% of cells in the colony). Similarly to the nutrient-rich condition, we found
no difference in cell ages between budding and non-budding colonies (Figure 2.14 A).
Next, and in contrast to nutrient-rich conditions, when the cell cycle is tied to locally
available nutrients the age structure of the colony changes substantially. As shown
in Figure 2.14 B, cells are far more likely to be born closer to the edge of the colony
than in nutrient rich colonies. When we observe the age structure in greater detail,
we observe that the distance from the colony center of mass at 28 hours is strongly
correlated with age (Figure 2.14 C). However, this relationship between age-structure
and distance is unaffected by budding division. As such, we conclude that within a
given growth condition, budding division does not modify the age-structure within a
colony.

Similarly to nutrient-rich growth, we observe that budding division influences the
local neighborhood of a cell. More specifically, we observe a small, but statistically
significant (non-overlapping 95% confidence intervals) difference, in the distance a
cell less than 12 hours old is from its mother (Figure 2.14 D). While this difference
remains small, it is interesting that the absolute difference between budding and
non-budding mother-daughter cell pairs is larger for nutrient-limited colonies and
may even be increasing with the age of the daughter cell. Because colonies grown
in nutrient limited conditions are smaller than nutrient-rich colonies, this difference
becomes even larger when it is considered relative to the size of the colony.

Nutrient-Limited Growth Promotes Colony Connectivity

As for nutrient-rich growth conditions, the colony connectivity decreases in time
and is significantly higher in budding colonies (compare Figure 2.11 A with Fig-
ure 2.15 A). However, we observe that nutrient-limited growth promotes colony con-
nectivity as both budding and non-budding colonies have higher connectivity in this
growth condition at the 24 hour time point. In addition, the difference in colony
connectivity is observable much earlier on in the life of the colony (12 hours versus
18 hours).

As above, we analyzed connectivity between mother and daughter pairs in two
distinct phases: when they are attached for budding cell division (budded cells, Fig-
ure 2.15 B) and after separation (un-budded cells, Figure 2.15 C). We observe that, as
in nutrient-rich growth, the connectivity between mother and daughter cells in both
phases was higher for budding cell division, and that this difference in connectivity
between division types increases in time. However, we note that the connectivity for
un-budded cells was slightly higher at the 24 hour time point in the nutrient rich
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Figure 2.14: Age and Spatial Organization of Cells in Nutrient-Limited
Colonies. (A) Empirical probability density function for cell ages in synthetic
colonies after 28 h of colony growth. We observe that the probability that a given cell
is ≤ 12 h old is .9454. (B) Empirical probability density function for the normalized
distance from the colony center of mass to the birth location of cells born in the last
hour of colony growth (Dnorm). We observe that the probability that Dnorm is ≥ .5 is
.889. (C) Cell age (h) versus cell distance from the colony center of mass for budding
(red) and non-budding (blue) colonies at the 28 h time point. In both (C) and (D)
average values were determined for different age groups using a sliding window with
a fixed window size of 20 min. We conclude that distance from the colony center of
mass at 28 h is strongly correlated with age. However, we see that cell distance from
the colony center of mass is not impacted by budding division since 95% confidence
intervals overlap. (D) Cell age (h) versus cell distance from its mother for budding
(red) and non-budding (blue) colonies. The difference between budding and non-
budding colonies is given for ages 2,4,6,8,10 and 12. We conclude that this difference
is significant since 95% confidence interval do not overlap. Moreover, since nutrient-
limited colonies are smaller than nutrient-rich colonies, this difference becomes even
larger when it is considered relative to the size of the colony. (See Section 2.3.2 for
details.)
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growth condition (compare Figure 2.11 C with Figure 2.15 C).
We believe the explanation for both the overall higher colony connectivity in

nutrient-limited growth (panel A) and the decreased connectivity for un-budded cells
(panel C) is due to the impact of nutrient availability on the cell cycle and position
of newly born cells. More specifically, the extended cell cycle induced by nutrient
limitation (i.e cells stay in the budding phase longer) creates an overall higher colony
connectivity because daughter cells stay attached longer. In addition, the age struc-
ture of the colony, where newly born cells are more likely to be at the colony perimeter,
means that these newly born cells have more space to move away from their mother
when they detach.

To better understand the impact of nutrient limitation and budding on the dura-
tion of the mother-daughter edges in GS, we generated Kaplan-Meier survival curves
(Figure 2.15 D). We observed that the probability the mother-daughter edge stays in
GS for longer than t hours after separation is higher in budding colonies. In addition,
the restricted mean survival time for mother-daughter edges in budding colonies was
67 minutes compared to 52 minutes for non-budding colonies. However, as expected
by our explanation for Figure 2.15 B and C, we observe the median duration of a
mother-daughter edge in GS is shorter when compared to the nutrient-rich condition.

Nutrient Limitation Further Promotes Subcolony Connectivity

Next we investigated the impact of nutrient limitation together with budding
division on subcolony organization and connectivity. To do this, we first analyzed
the number of connected components between budding and non-budding colonies
in nutrient-limited conditions. We find that nutrient limited growth results in a
significant decrease in the number of connected components for both budding and
non-budding colonies compared to nutrient rich growth. (Compare Figure 2.12 A to
Figure 2.16 A.) However, we also observe that the number of connected components
for each of the first five subcolonies is significantly lower in budding colonies (Fig-
ure 2.16 A). In addition, we see that the average time elapsed from creation of a
given subcolony until it splits into more than 5 connected components is significantly
lower in non-budding colonies (Figure 2.16 B). These results not only reveal that nu-
trient limitation has a large impact on subcolony structure and connectivity, but also
confirm that budding division maintains its role in promoting subcolony connectivity
under nutrient limitation.

To further investigate the impact of nutrient limitation and budding division to-
gether on subcolony structure and connectivity we considered the number of cells
contained in small connected components (i.e. less than 10 cells). We find that nu-
trient limitation results in a large decrease in the total number of cells belonging to a
small connected component (i.e. less than 10 cells) for both budding and non-budding
colonies at the 24 hour time point (compare Figure 2.12 C with Figure 2.16 C). This
further highlights the strong impact of nutrient limitation on subcolony structure. In
addition, we observe a significant difference in the number of cells in a small con-
nected component between budding and non-budding colonies at the 18, 24, and 28
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Figure 2.15: Colony Connectivity in Nutrient-Limited Colonies. Comparison
of colony connectivity between budding and non-budding colonies in nutrient-limited
conditions at 12 h, 18 h, 24 h and 28 h. We compared connectivity for all cells in
(A), as well as cells in two distinct phases: during the time when cells are attached
for budding colonies in (B) and after separation in (C). (See Section 2.2.2 for how
we define connectivity.) (A) We observe a statistically significant difference in colony
connectivity at 12 h (p = 3.602e-04), 18 h (p = 8.921e-29), 24 h (p = 1.094e-79)
and 28 h (p = 3.389e-110). (B) We observe a rapid decrease in connectivity for
non-budding colonies between 12-18, 18-24, and 24-28 h. This decrease leads to a
statistically significant difference between budding and non-budding colonies at 12 h
(p = 6.834e-05), 18 h (p = 4.670e-40), 24 h (p = 1.050e-92) and 28 h (p = 2.658e-
122). (C) We observe a statistically significant difference in connectivity at 18 h (p =
1.144e-15), 24 h (p = 1.888e-58) and 28 h (p = 2.140e-83). (p-values for connectivity
were computed using independent t-tests.) (D) Kaplan-Meier survival curves for the
edge connecting mother-daughter cell pairs in GS for budding (red) and non-budding
(blue) colonies. The y-axis is the probability that a given mother-daughter edge will
remain in GS for longer than t hours after separation, where time is on the x-axis. We
observe that the survival curves are different between the two groups (p = 1.314e-75)
indicating that the probability that a mother-daughter edge remains in the spatial
graph for longer than t hours is greater for budding colonies. (The p-value comparing
survival curves was calculated using a log-rank test as described in Section 2.2.3. See
Section 2.3.2 for details.)
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hour time points. Moreover, we find that the survival curves for the time elapsed
from creation of a subcolony to when it splits into more than 5 components are dif-
ferent between budding and non-budding colonies (Figure 2.12 D), indicating that
the probability that a given subcolony remains connected (i.e. less than 5 connected
components) for longer than t hours is greater for budding colonies. Similarly as
before, we considered this a separate event for each of the first 5 subcolonies and each
of our 50 simulations. These results further support our observation that budding
division acts as a mechanism increasing spatial adjacency within subcolonies in both
nutrient-rich and nutrient-limited conditions.

Nutrient Limitation Changes Global Colony Organization by Driving Vari-
ation in Subcolony Sizes

Results from our previous metrics provide compelling evidence that nutrient limi-
tation has a large impact on spatial organization of growing yeast colonies. However,
the strongest demonstration of the impact of nutrient-limited growth on morphologi-
cal properties of growing yeast colonies is its effect on emergent patterns of subcolony
structure and organization for which we do not yet have an explicit quantitative met-
ric. Specifically, simulations of nutrient-limited colonies results in the appearance
of subcolonies that grow in a “sector-like” formation (compare Figure 2.17 (top and
middle) with Figure 2.8 (middle and bottom)). Namely, subcolony boundaries in
nutrient-limited simulations are more linear. This is especially visible in the last time
point at 28 hours.

In addition, unlike colonies grown in nutrient-rich conditions, colonies grown in
nutrient-limited conditions have highly variable numbers of cells as a percentage of
the colony. For example, consider the different sizes of the first subcolony (dark green)
in both the top and middle row of Figure 2.17. At 28 hours, the first subcolony in
the top row appears to consist of close to half of the total population. At the same
time point, the first subcolony in the middle row makes up only a third of the total
population. Moreover, in the top row, the first (dark green) and second (dark blue)
subcolonies are noticeably different sizes, while in the middle row they are almost
exactly the same size. Finally, we note that the colony in the top row (budding)
has 13 subcolonies whereas the colony in the middle row (non-budding) has only
7. This is due to variation in the number of daughters produced by the founder
cell. Interestingly, we found the variation observed in subcolony sizes did not differ
between budding and non-budding conditions but was a property purely driven by
nutrient limitation.

To investigate the variation in subcolony sizes between nutrient-rich and nutrient-
limited growth, we computed the final percentage of the entire colony contained in
each subcolony for nutrient-rich (24 hours) and nutrient-limited (28 hours) growth.
As shown in Figure 2.17 C, the nutrient limited colonies have significantly higher
variation. We conjecture that this difference in subcolony final composition is due to
biases induced by global changes in age and birth structure. To test this conjecture
we compared the empirical probability density functions for normalized birth loca-
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A)

C)

B)

D)

Figure 2.16: Subcolony Structure and Organization in Nutrient-Limited
Colonies. (A) Comparison of the number of connected components for the first
five subcolonies between budding (red) and non-budding (blue) colonies at the 28 h
time point. We observe a statistically significant difference in the number of connected
components for subcolony 1 (p = 3.39e-10), subcolony 2 (p = 4.454e-17), subcolony
3 (p = 8.537e-11), subcolony 4 (p = 2.884e-11) and subcolony 5 (p = 3.783e-06).
(B) Comparison of time until each of the first five subcolonies splits into 5 connected
components. We observe a statistically significant difference between budding (red)
and non-budding (blue) colonies for subcolony 1 (p = 8.967e-05), subcolony 2 (p =
6.246e-08), subcolony 3 (p = 8.636e-05), and subcolony 4 (p = 9.154e-06). (C) Com-
parison of the number of cells in a connected component with less than 10 cells. Note
that nutrient-limited growth results in a large decrease in the total number of cells
in small components at the 24 h time point compared to nutrient-rich growth. How-
ever, we still observe a statistically significant difference between budding (red) and
non-budding (blue) colonies at 18 h (p = 3.537e-02), 24 h (p = 9.040e-07), and 28 h
(p = 5.410e-18). (D) Kaplan-Meier survival curves for the length of time a subcolony
is made up of less than 5 connected components for budding (red) and non-budding
(blue) colonies. The y-axis is the probability that a subcolony consists of less than
5 connected components for longer than t hours, where time is on the x-axis. We
observed that the survival curves are different between the budding and non-budding
colonies (p = 2.428e-23) indicating that the probability that a given subcolony re-
mains connected (i.e. less than 5 connected components) for longer than t hours is
greater for budding colonies. (The p-value comparing survival curves was calculated
using a log-rank test as described in Section 2.2.3. In addition, 95% confidence inter-
vals for the survival function are shown. See Section 2.3.2 for details.)
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tion of cells born in the last hour of growth between nutrient-rich and nutrient-limited
colonies (Figure 2.17 D). We found that the two empirical distributions are signifi-
cantly different, indicating that cells in nutrient-limited colonies are more likely to be
born at the edge of the colony. These results support our observation that budding
division impacts local organization of growing yeast colonies while nutrient-limited
growth changes global patterns of colony organization. To our knowledge, this dif-
ference in final subcolony variation in nutrient-limited growth has not been explicitly
explored for budding division or yeast. Moreover, we note that since this difference
is due to nutrient limited conditions, this variation would not hold for yeast colonies
grown in liquid culture.

2.4 Discussion

As described in the introduction, morphological patterns in microbial colonies
arise due to processes at different scales (Figure 2.1). In this Chapter, we developed
a 2D ABM and used it to quantify the biophysical impact of budding cell division on
the overall shape, size and spatial organization of growing yeast colonies. The novelty
of our approach is that we explicitly model the mechanical interactions that arise due
to budding cell division. An additional novelty lies in the metrics we developed to
quantify spatial organization of cells within the colony. Moreover, results from these
metrics reveal the impact of budding division and nutrient limitation on patterns of
displacement and spatial rearrangement of cells leading to emergent local and global
morphological properties of growing yeast colonies.

In Section 2.3.1, our findings reveal that budding division does not impact global,
large-scale structures of growing yeast colonies (Figure 2.9 B, C), or the birth location
of cells within the colony (Figure 2.10 C, D). However, we find that budding division
substantially impacts local organization of cells including enforcing a smaller physical
distance between mother and daughter cells even after separation. We believe this
physical closeness is the consequence of two forces. First, the budding division process
means mother and daughter cells are forced to be connected for a longer period of time
than in non-budding colonies. Second, this prolonged connection means that when
the mother and daughter cells do separate, the local environment is more likely to be
“crowded” and thus mother-daughter cell pairs are more likely to remain close. This
overall closeness between mother and daughter cells results in greater connectivity in
the colony in terms of a larger proportion of mother-daughter edges in GS (i.e., the
colony connectivity metric, Figure 2.11) as well as subcolonies that consist of smaller
numbers of connected components.

In Section 2.3.2, our findings reveal that nutrient limitation plays a significant
role in directing global, large-scale colony organization. Our simple model of nutrient
limitation produced colonies that grew more slowly (average doubling time of ∼123
minutes compared to ∼105 minutes for nutrient-rich colonies). (Figure 2.17 D) In
addition, cells in nutrient-limited colonies were much more likely to be born near the
edge of the colony, where nutrients are more readily available, than near the middle,
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Figure 2.17: Nutrient Limitation Drives Spatial Organization of Cells. We
compared growth and overall spatial organization between four different types of
colonies (budding/non-budding, nutrient rich/nutrient limited). Cells in colonies are
colored according to the unique subcolony each cell belongs to: Subcolony 1 (dark
green), Subcolony 2 (blue), Subcolony 3 (cyan), Subcolony 4 (teal), Subcolony 5
(light green), Subcolony 6 (yellow-green), Subcolony 7 (yellow), Subcolony 8 (gold),
Subcolony 9 (orange), Subcolony 10 (red), Subcolony 11 (magenta), Subcolony 12
(purple) and Subcolony 13 (pink). Typical simulation output from budding (A)
and non-budding (B) colonies grown in nutrient limited conditions. (C) Nutrient
limitation results in more variation in the percentage of the population contained in
each subcolony (Subcolony 1 (p = 2.779e-20), Subcolony 2 (p = 6.143e-25), Subcolony
3 (p =4.636e-23), Subcolony 4 (p = 6.574e-32), and Subcolony 5 (p = 2.985e-09)). (p-
values were calculated using the Levene test for equal variances.) (D) Birth Location
of cells born within the last hour of colony growth changes significantly between
nutrient rich (red) and nutrient poor (cyan) conditions (p < 1.0e-32). (p-value was
calculated using the Kolmogorov-Smirnov statistic in python. See Section 2.3.2 for
details.)
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where nutrient are highly depleted (Figure 2.17 D). Moreover, since lack of nutrients
slows down cell division, most actively dividing cells are near the boundary of the
colony. As such, our model captures emergent patterns of colony organization due to
changes in local cell-cell interaction dynamics caused by rapid expansion and spatial
rearrangement of newly born cells at the colony boundary. An interesting extension of
our model would be to compare simulation results with our simple model of nutrient
limitation to simulation results representing a nutrient field that changes in time due
to diffusion and consumption by live cells.

Our results also reveal that together, budding and nutrient-limited growth facili-
tate subcolony connectivity. We observe that nutrient-limited growth in our simula-
tions results in better defined and more contiguous subcolonies than in the nutrient-
rich case (Figure 2.17 A, B). This is likely due to the effects of nutrient limitation
on the cell cycle for densely packed regions of the colony. Furthermore, the nutri-
ent limitation condition creates high variance in the final number of cells that will
be in each subcolony at a particular time (Figure 2.17 C). We believe this varia-
tion is caused by different patterns of movement of the founder cell. Namely, if the
founder cell is moved to areas of high nutrient availability due to interactions with
neighboring cells, it can produce more offspring. Otherwise, if cell-cell interactions
cause it to remain stationary in low-nutrient regions, its cell cycle progression will
be slowed resulting in fewer total offspring. These observations further support the
idea that nutrient-limited growth together with budding division result in colonies
with the most well-defined subcolony shapes. We hypothesize that these contigu-
ous subcolonies are precisely the discernible sectors observed in experimental yeast
colonies. As such, our mathematical framework will prove valuable insight for gener-
ating hypotheses on sectoring behavior that can be compared to experimental studies.
This variation in subcolony size from nutrient limitation will have a different impact
for cells grown on a plate (i.e., physical media) compared to those in liquid culture
(where cells are in a well-mixed liquid environment) and our work identifies population
structure as a novel and unappreciated difference in these two common experimental
conditions. As such, changes in population structure are a new lens through which
experiments in these conditions can be compared. In addition to its impact on local
spatial organization and subcolony structure, resource-driven structuring in microbial
groups has been linked to colony fitness and survival [109, 112]. Our results suggest
that nutrient-rich colonies have less structure and therefore allow a greater number of
lineages to be maintained as the colony expands. This is in contrast to our simulations
of nutrient-limited colonies where the number and sizes of subcolonies undergoes a lot
more variation. An interesting avenue of further study would be to run simulations
for a longer amount of time and assess how nutrient limitation impacts overall colony
fitness and survival other than the overall slower growth we describe in our results.

We note that there are many cellular processes that our model did not explicitly
consider. First, we did not include cell rotational forces in our model. Based on
results in this chapter, biophysical properties of attached mother-daughter cell pairs
play a role in local organizational properties of colonies. Thus, we believe extend-
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ing our model to include rotational forces and capture more detailed geometry of
attached mother-daughter cell pairs may further impact local organization dynamics.
In addition, in nutrient-limited conditions, cells may enter a state of quiescence where
they choose not to enter the G1 phase of the cell cycle [36]. Although we did not
directly include quiescence as a state in our model, cells in our simulations do attain
an effective “quiescence” state as they stop growing and creating new buds due to
limits on their cell cycle progression. Third, our model does not include cell death.
Although cell death is definitely a contributor to colony structure, specifically the 3D
structure of colonies where the middle section is nutrient-starved, because the average
lifetime of yeast cells exceeds the time-scale of our simulations [68, 108], the impact
of cell death on the organization phenomena we observe is negligible.

Finally, we have included only one type of budding behavior. Yeast are capable
of multiple budding strategies. For example, we do not consider multiple cell mating
types and only consider diploid cells. While diploid yeast cells primarily divide in a
bipolar budding pattern [145], haploid cells can bud in an axial pattern [27] and have
been shown to divide faster than diploid cells [100]. If we only considered diploid cells
with no variance in the location of the new birth scar, all cells would appear co-linear
to each other. However this extreme case is unlikely to occur within large diploid
colonies [27]. We model new budding sites in a manner similar to the implementation
by Wang et al. [169], but we consider only daughter cells to be limited to bipolar
cell division. In addition, we assume that a mother cell has at most one daughter
cell attached, but this is not guaranteed for all strains [143]. Furthermore, we also
neglect environmental factors in influencing budding strategies. While cells in larger
yeast colonies have been shown to exhibit pseudohyphal growth through switches
in budding strategies under nutrient-limited conditions [14, 15, 161], it was reported
by Binder et al. [15] that colony expansion appears to evolve non-uniformly after
approximately 100 hours. Because this far exceeds the time scales of the colonies
we produced, we believe this effect to be negligible. However, we conjecture that
for large colonies, pseudohyphal growth under nutrient-limited conditions will induce
rapid changes in colony organization near the colony periphery.

Indeed several agent-based modeling frameworks have been developed to study the
factors impacting yeast colony growth. Jönsson et al. developed a similar center-based
model to study the impact of biophysical factors and growth inhibition by neighbor-
ing cells on colony expanse and sparsity [79]. Their results show that cell-growth
inhibition by neighboring cells and bipolar division patterns are the most significant
factors impacting colony sparsity where they used colony sparsity as a measure of
exploratory behavior of the colony. However, their results focused on global shape
and size of colonies instead of spatial organization of cells, and they did not consider
colonies larger than several hundred cells. Wang et al. developed a center-based
model to study the impact of budding patterns, mating type switches, cell death
and nutrient limitation on yeast colony growth [169]. Consistent with Jönsson et al,
they found that bipolar budding patterns improve colony development under nutri-
ent limitation. In addition, they found that axial budding patterns enhance mating
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probability during early stages of colony growth and suggest that the frequency of
mating type switch might control the trade-off between diploidization and inbreeding.
Interestingly, they showed that colony expansion does not depend on the overall age
of the colony. They hypothesize this is due to the fact that young cells contribute
most to colony expansion which is consistent with our results. One important differ-
ence between our model and the model presented by Wang et al., is that our model
explicitly includes the process of a bud growing on the mother cell. The model by
Wang et al. skips the growing process and introduces new daughter cells after they
have detached from the mother cell and are a more substantial size. In addition, their
study focused on characterizing heterogeneity of cell types in the colony and overall
shape and size of the colony and they did not analyze the impact of spatial organi-
zation of cells. Since their model does incorporate many of the important factors we
discussed above as possibly having an impact on spatial organization and structure
of the colony, we believe an interesting avenue for future work would be to extend our
model to include the same factors they considered and investigate how the addition
of the budding process changes the resulting outcomes discussed in their paper.

Many questions remain in investigating the structure of growing yeast colonies,
and our model may be easily generalized to include them. In particular, we plan
to extend our model by including intracellular protein dynamics to more directly
study prion sectors in yeast. Despite many years of biomedical research and our
detailed understanding of protein aggregation dynamics on the molecular scale, our
ability to mechanistically link protein aggregation processes to their disease pheno-
types at the colony level is severely lacking, especially during transitions between
prion states [50, 62, 137, 174]. For example, recent studies have demonstrated that a
single colony can exhibit multiple phenotypes resulting from a change in aggregation
dynamics between neighboring cells [83]. Our results in Section 2.3.2 demonstrate
that nutrient limitation and budding together have a large impact on emergent pat-
terns of sector-like regions in growing yeast colonies. Moreover, an important insight
of our work is the large variation in subcolony sizes that arises due to nutrient limited
growth. As a consequence of this result, we can better understand that the size of
a subcolony sector is not directly correlated to its birth order. Thus, quantitative
information connecting spatial information of sectoring patterns with molecular level
dynamics is required. What is missing is a detailed and mechanistic computational
model of sectoring phenomena which can then be coupled with an informatics look
at the sectors in experiments. Methods and tools for counting different colonies have
been developed which may aid in detecting phenotype sectors through finding con-
nected groups of cells [12, 20, 52]. While there are resources that quantify sectoring
in microbial colonies [57,109], to our knowledge no other studies specifically quantify
the causes of phenotype sectoring in yeast colonies. Our modeling framework can
be readily extended to a multi-scale system to address phenotype sectoring in yeast
through the incorporation of prion dynamics as a subcellular process (Figure 2.1).
This offers the opportunity to make more meaningful comparisons between data and
models and to infer, predict, and eliminate hypotheses on the characteristics of the
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sectoring patterns.
In this study we proposed a 2D model of yeast colony growth, where directional

forces along the z-axis are neglected. In reality, yeast colonies are three-dimensional
(3D). Thus, there may be some important factors our model does not consider. For
example, in 3D, high agar concentrations have been shown to influence formation
of complex structures such as the vertical growth of stalk-like structures in yeast
colonies [142]. In this scenario, complete contact with the substrate is not possi-
ble for all cells further impacting nutrient availability. Experimental evidence also
shows that microbial colonies do not grow outward in a strictly radial direction due
to varying agar concentrations [116] and de-activation of the FLO11 gene which re-
duces adhesion of the cells to the plate surface [134]. Thus, while cell dependency on
nutrients is more complicated to model in 3D, these results suggest it will remain an
important factor driving variances in colony morphology. Moreover, we hypothesize
that 3D configuration may further promote local spatial organization, sectoring pat-
terns and ordered structure of the colony. In our model, we study the formation of
sector-like regions in the context of subcolonies. Under nutrient limitation, our model
shows that subcolony sectors become more well-defined and begin near the location
of the founder cell. However in 3D, different technologies used to capture and analyze
sectoring phenomena may be limited to the colony surface. The capability of in silico
experiments creates the advantage of allowing for more detailed analyses of sectoring
phenomena where existing scientific tools and technologies may not provide sufficient
information.

2.5 Conclusions

In this study, we introduced a novel two-dimensional, cell-based model describing
the growth and movement, structure, and spatial organization of a colony of yeast
cells to emphasize the importance of capturing budding behavior in these models. Our
findings show that budding greatly impacts the local connectivity of a cell and that,
together with nutrient limitation, acts to promote connected sectors with respect to
the subcolony structure and produce highly variable subcolony sizes. Together, these
findings offer novel interpretations and insights to observed sectoring phenotypes in
yeast. We aim to investigate the multi-scale nature of these phenomena in future
studies by extending our approach to include intracellular dynamics.



Chapter 3

[PSI]-CIC: A Deep-Learning
Pipeline for the Annotation of
Sectored Saccharomyces cerevisiae
Colonies

This chapter is the paper I submitted in February 2024 which was co-authored
by Dr. Wesley Naeimi, Dr. Tricia R Serio, and Dr. Suzanne Sindi. I led the
development of formalizing and testing the methodology as well as writing each of the
sections in this chapter. Dr. Wesley Naeimi curated the image data that was used to
test the methodology in this work (see Appendix A for details).

3.1 Introduction

Prion diseases are a class of fatal and incurable neurodegenerative diseases in
mammals that include Creutzfeldt-Jacob disease, fatal familial insomnia, Gerstmann-
Straussler-Scheinker syndrome, and Kuru [127]. Early research by Prusiner [126,127]
suggested that a protein–not a virus–coined as a proteinacious infectious particle–or
prion–was the key infectious agent in all types of prion diseases regardless of the mam-
malian host, thus establishing what we know today as the prion hypothesis [120,171].
These alternatively folded proteins act as templates capable of inducing normally
folded proteins of the same type to misfold [74, 75, 128, 154] (see Figure 3.1 A). Fur-
thermore, these alternatively folded proteins are capable of undergoing templated
conversion to form aggregates [120] which are capable of growing in size or fragment-
ing into smaller aggregates that induce further alternative folding, thus leading to
a self-replicating aggregation process [31, 74]. Since the formalization of the prion
protein [128], the study of biological processes behind prion disease and the search
for appropriate solutions to eradicate them remains an active area of research.
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3.1.1 Yeast as a Model System

Prion proteins are not exclusive to mammals. The yeast Saccharomyces cere-
visiae has served as a model system to understand the mechanisms underlying the
appearance and progression of human diseases, including “prion-like” diseases such
as Alzheimer’s [7, 13, 150]. There are at least eight naturally occurring yeast prion
proteins [26,93,175] setting the stage for yeast-based platforms to help screen poten-
tial anti-prion drug candidates [76]. One of the most widely studied prion protein in
yeast is Sup35 which is an essential release factor in translation-termination [99,164].
Sup35 aggregates have the ability to self-propagate within yeast populations [120].
When grown on solid media single yeast cells grow into circular colonies containing
approximately 1×106 cells and exhibit a white unpigmented [PSI+] phenotype when
the prion is present. In contrast, colonies that only contain the non-prion form of
Sup35 exhibit the red pigmented [psi−] phenotype [83]. Spontaneous appearance of
the [PSI+] phenotype is rare, occurring in approximately one in every 106 cell divi-
sions [62, 88]. Remarkably, unlike their human counterparts, the [PSI+] phenotype
in yeast is reversible [62, 83, 92, 141]. Heat shock destabilizes the prion phenotype in
yeast which in time gives rise to colonies exhibiting both red and white phenotypes
described as sectors [32, 83]. Figure 3.1 B and C summarizes the possible events de-
termining the phenotype of newly born cells, and how the collective prion state of
cells in a colony give rise to sectored phenotypes at the colony level. This type of data
provides information on the prion state of a cell population and insight into changes
to the prion phenotype in response to experimental treatments.

To understand how sectoring occurs in yeast, we need to consider the underly-
ing dynamics (conversion, aggregation, and fragmentation) at the intracellular scale
(Figure 3.1 C). Mathematical models have been proposed that explore these dynam-
ics [35, 102, 148] with one recently proposed to explore how multiple prion strains
interact [91]. However, such dynamics take place inside individual yeast cells that
have their own biological properties (such as division which allows for transmission of
proteins between attached mother-daughter cell pairs). The second phenotype occurs
when a cell loses prions due to a transmission defect or destruction of existing prions
within a cell [115]. As cells continue to divide over time and form a colony of thou-
sands to millions of individual cells, phenotypic sectoring becomes observable [83] (see
Figure 3.1 C) indicating where subsequent daughter cells did not inherit the [PSI+]
prion.

Thorough understanding of these multiscale processes may require large samples
of yeast colonies under different experimental settings. This however leads to two
potential problems. First, experimental settings do not always result in determinis-
tic observable experimental output. Second, analyzing each individual colony is an
extremely tedious process; colonies are often scored as sectored or pure, but there
is additional information based on the size and number of sectors to help better our
understanding of prion curing. For these reasons, large-scale screening involving de-
tailed colony phenotypic analysis is infeasible without the use of suitable instruments
and algorithms capable of utilizing this information.
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Figure 3.1: Yeast prion phenotypes are the result of multiscale processes.
A: At the molecular scale, alternatively folded proteins (twisted) act as templates
that convert normally folded proteins (straight) into the alternatively folded form
and assemble into aggregates. The aggregates then split into smaller segments (frag-
mentation) which increases the number of aggregates.
B: At the cellular scale, the presence of prion aggregates inside individual cells (rep-
resented as circles) are responsible for their white color, while the absence of prions
allows pigment generation and gives them their red color. The prion phenotype could
be lost sporadically, resulting in cured cells, while in rare instances–1 in 106–(indicated
by a thinner arrow) the prion phenotype appears spontaneously.
C: Phenotype expression in yeast involves multiscale processes. The dynamics in-
herent in protein misfolding are found at the molecular level (A). At the subcellular
level, since prions are also found in yeast which undergo their own process of repro-
duction, allowing transmission of prions between attached cells. At the cellular level,
the presence of prions within a cell in turn determines their phenotype (B). At the
colony level, the collection of intercellular interactions that occur on the scale of a
cell results in structured regions of one phenotype within the colony. Molecular scale
was visually estimated from image data in [81]. Subcellular and cellular scales were
estimated using data from [179]. A rough estimate for the colony scale was obtained
using the minimum and maximum averaged surface area measurements of a mother
cell in [179], multiplied by the approximate number of cells in colonies from data
in [80].
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3.1.2 The Role of Image Analysis

Technological advances have made it possible to use computational approaches to
handle variation in experimental data and efficiently quantify large, complex biological
datasets with the added benefit of reducing manual laboratory labor while producing
outcomes comparable to manual labor. Such methods include software and image-
based methods to automate microbial colony counting [29,87,162], edge detection [24]
and for circular objects, the circle Hough transform [6, 73]. With the availability of
greater processing power, deep neural networks or more specifically, convolutional
neural networks (CNNs) have made it possible to quickly identify objects of interest in
general datasets when conventional methods are inadequate. Deep learning methods
applied to images typically have one or two objectives. One class of methods seek
to classify entire images by associating them with a set of user-defined classes; a
couple examples of well-known models include ResNet [156] and VGG [107, 147].
Another class of methods use semantic segmentation to assign user-defined classes
to each pixel in an image, rather than assigning classes to the image as a whole;
such models include U-Net [136] and Mask R-CNN [65]. Methods in both cases
are usually either trained from scratch or build off of a pre-trained model–such as
ImageNet [37]–then re-trained on a new dataset to be applicable to specific settings.
It is also possible to construct computational pipelines using both classes of deep
learning methods to obtain ensemble data from colony-level images of yeast. For
example, the model proposed by Carl et al. [25] segments and classifies individual
yeast colonies from images of plates using both semantic segmentation and image
classification and demonstrates performance superior to the tool CellProfiler [87] for
their scenario.

The majority of image-based models applicable to yeast however are designed
for micro-colony data where individual cells are clearly visible using cell microscopy
techniques, while efficient and similar models for large-scale colonies visible at eye
level are lacking. While deep learning methods for semantic segmentation have been
developed for microscopy images of yeast such as YeastSpotter [98], YeaZ [40], and
YeastNet [139], each method is primarily optimized for cellular-level images of yeast.
Carl et al. [25] has a method grouping colonies into broad classes, but the manual
annotations in the images used in this method are limited to are used for classifying
colonies into these broad classes and do not account for size and frequency of individ-
ual sectors. Furthermore, we do not yet have a related analysis performed on sectored
S. cerevisiae colonies, nor do we have a dedicated toolset geared for quantifying indi-
vidual sectored colonies from colony-level image data with human-comparable output.
The work described in this Chapter aims to use a blend of computational tools to
analyze and quantify colony level image data to aid in the analysis of S. cerevisiae
prion experiments.

The goal of this Chapter is to create a toolset for learning more about the mech-
anisms behind prion protein dynamics that drive observable changes at the colony
level. To that end, we introduce [PSI]-CIC ([PSI] Colony Image Classifier) a com-
putational pipeline to segment and quantify individual colonies of S. cerevisiae found
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in image data using both deep learning and conventional tools. In Section 3.2 we de-
tail the [PSI]-CIC algorithm from segmentation of plates to classification of colonies.
Section 3.3 shows results of [PSI]-CIC’s performance on a set of images where prion
curing is induced by heat shock. Section 3.4 details a discussion of the [PSI]-CIC
and how this work has an impact on the use of image segmentation in the context of
prion dynamics in yeast.

3.2 Methods

In Section 3.2.1, we describe the components of [PSI]-CIC for analyzing sectored
yeast colony phenotypes (see Figure 3.2). In the first component, we construct a
neural network to perform image segmentation on plates containing hundreds of yeast
colonies, then use the output of the network to locate and extract individual colonies.
In the second component, we take each colony extracted previously and use image
processing tools to classify colonies as [PSI+], [psi−], or sectored and estimate the
frequency and shape of sectors present in each colony. Section 3.2.2 discusses how we
train the network used in this component to recognize colonies. For this process, we
detail how to incorporate synthetic training data of yeast colonies (see Appendix A.2)
into the training process to both address the issue of limited annotated data available
and to show its effectiveness in aiding segmentation of real colonies. Section 3.2.3
details how we evaluate the performance of the [PSI]-CIC algorithm on the annotated
experimental images.

3.2.1 [PSI]-CIC Algorithm

We follow the approach by Carl et al. [25] and use the U-Net architecture for
performing semantic segmentation on images of plates to assign a label to every pixel
in the images (see Figure 3.2). U-Net is a type of supervised CNN originally designed
for biomedical image segmentation [25, 122, 136], but is widely generalized to other
segmentation tasks. For the implementation of U-Net in this Chapter, we modify the
original architecture [136] in the following way: First, we use images of size 1024×1024
as input instead of size 572×572. Next, we apply padding to the image before each
convolutional layer to preserve the spatial resolution, which we believe is reasonable
since each image almost exclusively contains background pixels on their borders.
Finally, we modify the output layer such that the final segmentation is of the same
spatial resolution as the input image and has three feature channels corresponding to
one of three classes: background, white colony, or red colony. A softmax activation
function is applied to the output of the last layer to obtain the probability of each
class per pixel, then the label assigned to each pixel is the maximum probability
across the three classes.

After U-Net is sufficiently trained and segmentations of the images are obtained,
we use the resulting segmentation as input for an object detection method. Since
colonies in each image appear circular by eye, we use the circle Hough transform
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Figure 3.2: Illustration of [PSI]-CIC. Our proposed pipeline consists of a
segmentation-classification framework, where we semantically segment images of
plates containing hundreds of yeast colonies (see Section A.1) for the purpose of
locating and classifying individual colonies. We create synthetic training images with
corresponding ground-truth masks (details in Appendix A.2) used to fine-tune a mod-
ified U-Net architecture (purple arrows) (see Section 3.2.1) for performing segmen-
tation on images of full plates. We then apply the sufficiently trained U-Net (green
arrows) to segment the test images where colonies are detected (see Appendix A.3)
and cropped for classification. The classification step leverages the spatial informa-
tion in the segmentation to propose an annotation of the regions in the colony which
is used to classify a colony as [PSI+], [psi−], or sectored.
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as our method to detect colonies captured within the segmentation. Each colony
detected with this method is recorded and cropped out of both the image and its
segmentation for use in the classification step of [PSI]-CIC (See Figure 3.2). Details
for the implementation of the circle Hough transform is explained in Appendix A.3.

Once individual colonies and their segmentations are extracted from the full-size
images, the goal is to classify each colony as [PSI+], [psi−] or sectored. Figure 3.3 A
shows the annotation procedure for counting and quantifying sectors in each detected
colony. The procedure here uses the colony segmentation as input, constructs and
analyzes a proposed annotation or “idealized” sectoring using the colors of the colony
regions, then uses the properties of the annotation to classify the colony.

We make a few assumptions about the colony segmentations in order to classify
colonies in our experimental images. Since colonies appear circular, we first assume
that the colony segmentations are sufficiently circular and that the center of the
colony is also the center of the image. Since the red and white regions of colonies in
the experimental images appear sector-like by visual inspection, we also assume that
each red and white region of the colony originate from the center and expand outward
with linear edges, forming the edges of a geometric sector. Finally, we assume that
the colony boundary forms the arc of each sector-like region, which closes and bounds
each region.

The following process uses these assumptions to propose idealized regions (see
Figure 3.3 A) for each colony. Given a colony segmentation, we first decompose
it into its interior and boundary components. A pixel in the colony segmentation is
considered a boundary pixel if it is a colony pixel that is also adjacent to a background
pixel. Otherwise, that pixel is considered to be an interior pixel. For simplicity, we
skeletonize the boundary of the colony so that it has pixel width 1. Next, we further
decompose both the interior and boundary components of the colony respectively into
their red and white regions, and then find the connected components of red and white
pixels separately on the boundary. For each component, we construct an “idealized”
sector (see Figure 3.3 B) whose boundaries are represented using the component itself
as the arc and two lines connecting the endpoints of the arc to the colony center.

To approximate where to draw the lines representing the other two boundaries of
an idealized sector, we proceed to find the endpoints on the arc using two methods.
This relies on there being no more than 2 endpoints for each skeletonized boundary.
We first use the hit-miss algorithm within the SciPy package [168] to find the end-
points of the skeletonized boundary. For the second case, we scan each pixel on the
skeletonized boundary and label a pixel as an endpoint if there is exactly one other
boundary pixel adjacent to it. Note that this brute force method is capable of finding
endpoints on a corner of a skeleton, while the hit-miss algorithm is capable of finding
endpoints near a corner. We then take the union of endpoints located from both
methods, because initial observations suggest they correct each other’s shortcomings.

The remaining two boundaries of the idealized sector are then drawn using Bre-
senham’s line algorithm [16] to connect the endpoints with the colony center via lines
in pixel space, resulting in a closed shape representing the entirety of the idealized
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Figure 3.3: Novel annotation and sector counting procedure. (A): Flowchart of
our proposed scheme to estimate and quantify red and white regions. We decompose
the classes from the output segmentation into the interior and boundary components,
decompose the boundaries by color, then count their connected components. We
then propose an annotation for the region each sector occupies and check whether
its interior also contains a significant number of pixels of the same color, defined
as purity, p (see Section 3.2.1). Should a majority of pixels in the interior of the
region contain pixels of a different color, the color of the boundary component will
be switched. The process repeats until all boundary components are consistent with
their corresponding interior regions. The number of consistent red regions remaining
is used as the prediction for the number of sectors present in the image. (B): Assuming
that the colony segmentation is split into red and white pixels (left top), we take the
boundary of the colony and find the connected components of the red and white
colony pixels respectively. We locate the endpoints of each component corresponding
to the interfaces between red and white components, and for each point construct
a line segment from that point to the center of the colony (left bottom). The line
segments partition the entire colony into idealized regions whose color is defined by
the boundary in each region (i.e. R1 for red and W1 for white) (right). (C): To
ensure regions are consistent with their color, we use the purity metric as defined in
Section 3.2.1 to find the proportion of pixels inside each region that have the same
color as the pixels on the boundary (left). Any regions whose purity metric is less than
0.5 will have the outer boundary change color (right top). After the change, adjacent
components that have the same color will be merged (right bottom). (D): Example
of B and C applied to a segmentation of an experimental colony. An annotation of
the red and white regions is proposed from the colony segmentation and its regions
corrected in order to satisfy the purity constraint (see Section 3.2.1).
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sector boundary, while the collection of pixels within represents the interior of the
sector. This process is repeated for all red and white regions in the colony, resulting
in the full initial annotation representing the regional breakdown of the colony.

Purity Metric

Since we assume each region in a colony appears sector-like, we attempt to quantify
how well colony segmentations meet this assumption, then perform an additional step
for regions which are inconsistent with this assumption. To quantify a region of a
colony, we need to analyze the physical structure of the region itself and use simple
methods to address inconsistent structure present in the segmentation. To that end,
we define a metric we call “purity” to denote the proportion of pixels in each red/white
region that are of the same class to measure how well each proposed region and the
aggregation of the regions in a colony resemble well-defined sectors.

We first define purity in terms of a single region of a colony. After creating the
regions as described in Section 3.2.1, the color of the region (red or white) is assigned
to be the same color as the pixels in the region along the boundary of the colony. If
we have a sectored colony with a red regions and b white regions (see Figure 3.3 B),
we denote the red regions as R1, · · · , Ra and the white regions as W1, · · · ,Wb. Next,
we denote the function N to be the number of pixels in a region that have a given
color. For instance, we define N(Ri, red) as the number of red pixels in region Ri,
and N(Ri, white) as the number of white pixels in region Ri. Since these are the only
two colors for colony pixels in our segmentations, the total number of colony pixels
in the region is therefore the sum: N(Ri, red) + N(Ri, white). We then define the
purity, p of region Ri with respect to the red pixels as

p(Ri, red) =
N(Ri, red)

N(Ri, red) + N(Ri, white)
. (3.1)

Similarly, we define the purity of region Wj with respect to the white pixels as

p(Wj, white) =
N(Wj, white)

N(Wj, red) + N(Wj, white)
. (3.2)

Equations (3.1) and (3.2) are also described as the proportion of colony pixels within
the region that are red or white respectively, and thus give values between 0 and 1,
where values closer to 1 indicate the estimated region in the colony is more sector-like
with respect to the color of the region, and values far away from 1 indicate the region
is far from an idealized sector based on our assumptions.

To define purity for an entire colony, we apply weights to each region to account
for size differences between the regions. We first define NR and NW to be the number
of pixels across all red regions and all white regions respectively, i.e.
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NR =
a∑

i=1

[N(Ri, red) + N(Ri, white)] ,

NW =
b∑

j=1

[N(Wj, red) + N(Wj, white)] .

(3.3)

Without loss of generality, for each region Ri and Wj, we assign weights, µ(Ri) and
µ(Wj), where

µ(Ri) =
N(Ri, red) + N(Ri, white)

NR + NW

,

µ(Wj) =
N(Wj, red) + N(Wj, white)

NR + NW

.

(3.4)

We then define colony purity, pw, as the weighted average over all regional purities,
i.e.

pw =
a∑

i=1

p(Ri, red)µ(Ri) +
b∑

j=1

p(Wj, white)µ(Wj) (3.5)

or equivalently,

pw =

∑a
i=1 N(Ri, red) +

∑b
j=1 N(Wj, white)

NR + NW

. (3.6)

Just like in Equations (3.1) and (3.2), Equation (3.6) above takes a value between
0 and 1, where values closer to 1 indicate the estimated regions in the colony are
collectively more sector-like with respect to the output segmentation. On the contrary,
if pw is a number strictly between 0 and 1, this indicates that the estimated regions
do not completely capture idealized sectors. Values of pw closer to 0 indicate greater
disagreement between the proposed region and the corresponding region in the output
segmentation of the colony.

Purity Correction

Depending on the shape of the colony segmentation, regions may not sufficiently
resemble idealized sectors. Here, we include a procedure to identify inadequate regions
by using the value of the purity metric to perform a “correction” of those region with
respect to the colony segmentation. This results in a proposed regional annotation
capturing standout regions in the colony segmentation (see Figure 3.3 C).

We assume that the red and white regions have been estimated and the purity for
each has been obtained using Equations (3.1) and (3.2). We then impose a constraint
on the purity of each region such that we require at least 50% of a region’s pixels to
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be of the same color as the region itself to satisfy our assumption that the region is
adequately sector-like. If this constraint is not met for a region, then we swap the
labels of the pixels on the region’s boundary which in turn changes the color assigned
to the region. Mathematically, without loss of generality, if region Ri has a purity of
less than 0.5 (i.e. p(Ri, red) < 0.5), then region Ri has more white pixels than red
pixels. For such regions, we change the labels of the pixels along the arc of region Ri

corresponding to the colony boundary from red to white. As a consequence, modifying
the color of the boundary leads to changing the assigned color of the region from red to
white. This process is repeated for all red and white regions independently. Following
this procedure, regions are merged if their corresponding boundary pixels are of the
same color (see Figure 3.3 C). By using the mediant inequality, it could be shown
that if the purity of each of these regions is at least 0.5, then the resulting merged
region will also have purity greater than 0.5. For example, if there are n red regions
adjacent to each other following the correction, then

0.5 ≤ min
1≤i≤n

p(Ri, red) = min
1≤i≤n

N(Ri, red)

N(Ri, red) + N(Ri, white)

≤
∑n

i=1 N(Ri, red)∑n
i=1 [N(Ri, red) + N(Ri, white)]

≤ max
1≤i≤n

N(Ri, red)

N(Ri, red) + N(Ri, white)

≤ max
1≤i≤n

p(Ri, red). (3.7)

If there were any changes made to regions that did not satisfy our constraint,
we then repeat the procedure as described in Section 3.2.1 to propose a regional
annotation of the colony accounting for the swapped boundary pixels, and recompute
the purity for all regions in the colony segmentation. This procedure is repeated until
we obtain a proposed regional annotation of the colony where all regions satisfy our
constraint.

At the conclusion of purity correction, the color of the pixels on the outer boundary
for each independent region will be the same color as the majority of pixels in those
regions. We then use Equation (3.6) as described in Section 3.2.1 to score how
well the proposed regional annotation collectively captures sectoring behavior in the
colony.

Class Assignment

Upon obtaining annotations of colonies whose regions all meet the condition de-
scribed in Section 3.2.1, the number of red and white regions remaining are used to
assign a qualitative class on each colony. Colonies with no red regions and at least
1 white region are labeled as [PSI+]. Colonies with at least 1 red region but have
no white regions are labeled as [psi−]. Colonies that have at least 1 red and white
region are labeled as sectored. In addition, sectored colonies are given a secondary
label indicating frequency of sectors. A sectored colony is labeled as S1 if it has one
sector, S2 if it has two sectors, and so on.
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3.2.2 Training (Image Segmentation)

Due to the lack of hand annotated colony images, we turn to training a neural
network with synthetic images where it is possible to efficiently create ground-truth
masks labeling each pixel. An example of a synthetic image generated with its corre-
sponding ground-truth mask is shown in Figure A.2. The objective of this approach
is to generate sets of synthetic images of yeast colonies which exhibit key features of
the yeast colonies found in the experimental images.

The key features in the images we consider for this work apply to the colonies
and the background information. For the colonies, these features consist of circular
colony shapes where each colony exhibits sectored red and white regions with slight
color variations. We use two representative colors (1 red and 1 white) to fill each
circle representing the colony, where the circle is filled with the white color and the
red sectors are overlayed. For the background, these features include the colors of the
plate, the table on which the plate rests and the border of the plate where aberrations
are present, each of which exhibit slight color variations. We choose a representative
color independently for each of these three features. All of these features are subject to
Poisson noise to introduce slight color variations that are observed in the experimental
images (see Section A.1).

Two corresponding ground-truth masks are generated alongside each synthetic
image representing a pixel-by-pixel segmentation of the synthetic image and frequency
of sectors per colony respectively. The first mask is created by thresholding the
synthetic image, with each pixel in the mask depicting the true label of every pixel
(red, white, background). The second mask is generated by placing a small non-zero
region at the center of colony, whose intensity is greater when more sectors are present.
For simplicity, all the synthetic training images used here have exactly one sector in
each colony. More details pertaining to the process for generating the synthetic images
with corresponding ground-truth masks is described in Appendix A.2.

After the masks are created, the synthetic image is subject to Poisson noise to
introduce slight color variations that are observed in the experimental images (see
Section A.1). Both the synthetic images and the masks are each saved with size
1024×1024. A total of 200 images with their two corresponding masks were gener-
ated for this study using the process described in this Section. Out of these images,
150 were used directly for training U-net, while the remaining 50 were set aside for
validation. We use Google Colaboratory to train our U-Net architecture on the 150
images using the configuration described in Appendix A.4. Once U-Net is sufficiently
trained, we use the experimental images as input to U-Net to obtain an output seg-
mentation for the classification step of the [PSI]-CIC algorithm. Since our image set
does not include pixel-by-pixel annotations of the experimental images, the quality
of the segmentations were judged by eye before a usable set of parameters for U-Net
was used for the final version of our [PSI]-CIC algorithm.
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3.2.3 Evaluation

Labels are assigned to each colony at the end of the [PSI]-CIC algorithm (Sec-
tion 3.2.1)) such that the conditions described in Section 3.2.1 were met. [PSI]-CIC
predicts colonies with only one colored region as either [PSI+] if they were purely
white or [psi−] if they were purely red. Colonies that have at least one red and one
white region are first labeled as sectored, then are assigned a secondary label indi-
cating the frequency of sectors. In the experimental images, sectored colonies have
at most five sectors, so the possible classes assigned to sectored colonies are S1, S2,
S3, S4, and S5, denoting both a sectored colony with its frequency of sectors. We
evaluate the performance of [PSI]-CIC by comparing the proportion of extracted
quantifiable colonies whose true labels match those predicted by [PSI]-CIC, both
with and without the secondary label for sectored colonies.

3.3 Results

Here we present results on the performance of [PSI]-CIC on segmenting and clas-
sifying colonies from the images used in this work. Section 3.3.1 provides results on
the segmentation and classification of colonies found within the training images. Sec-
tion 3.3.2 presents results on the segmentation and extraction of quantifiable colonies,
indicating how much of the annotated colony data [PSI]-CIC was able to isolate. This
section also provides results on the classification performance of [PSI]-CIC. We show
that our method is sufficiently accurate at classifying colonies as [PSI+], [psi−] or
sectored.

3.3.1 Training Images

Figure 3.4 A shows an example of one synthetic image and its corresponding
segmentation with distinguishable colonies. From the 150 images used to train U-Net,
we obtained a cross-entropy loss of 0.0022 and achieved a segmentation accuracy of
99.96% for the training and validation images after 24 epochs. Approximately 12,786
colonies from the synthetic images were extracted for classification. The remaining
7,214 colonies were excluded since their centers were predicted to be within 150 pixels
from the border of the image.

When only the number of connected components of red and white boundary re-
gions were considered, approximately 98.2% of those colonies (12,250 colonies) were
correctly classified as having exactly one sector, while the other 236 colonies were
incorrectly classified as either [PSI+] or [psi−]. When our purity correction scheme
is applied, the prediction accuracy drops to 95.8%, with 547 colonies incorrectly clas-
sified as either [PSI+] or [psi−]. Upon closer inspection of the incorrectly classified
colonies, we found that colonies predicted as [PSI+] had no more than 4% of their
composition as red and colonies predicted as [psi−] had no more than 4% of their
composition as white, regardless of whether purity correction was applied. This sug-
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gests that the classification accuracy of our proposed model requires a size threshold
on each sector in order to be detectable.

A

B

Figure 3.4: Plate level segmentations. (A): Example of a synthetic image (top left)
and its corresponding output segmentation (top right) from the trained U-Net, with
two isolated colonies shown up close. The U-Net segmentations have the following
color code: Background pixels are black, red colony pixels are gray, and white colony
pixels are white. (B): Output for U-Net using one of the experimental images as input.
In the middle are the original representations and corresponding output segmentations
from U-Net for two colonies from the image.

3.3.2 Testing Images

Using image set 1 (plates 1-5 as described in Appendix A.1), we obtained segmen-
tations suitable enough for colony detection without pre-processing. An example of
the output segmentation on one of the images in this set is shown in Figure 3.4 B.
Following the execution of the circle Hough transform on these images, we obtained
a total of 1,266 objects with corresponding segmentations which were extracted for
classification. We note that almost all of the colonies near the edge of each plate were
ignored as they were difficult to discern structurally.

Using image set 2 (plates 6-11 as described in Appendix A.1) and the color transfer
methods as pre-processing (see Appendix A.1), the quality of the output segmenta-
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Table 3.1: Isolating Quantifiable Colonies. Breakdown of the number of colonies
found on each plate from the images used in this study. For each image, “True” is the
total number of colonies in the image that a biologist performing manual counting
would be considered quantifiable, or colonies that could be analyzed with simplic-
ity. “Detections” is the number of objects considered for classification, regardless
of whether or not they were of quantifiable colonies. Following image segmentation,
“TP” (True Positives) is the number of quantifiable colonies extracted, “FN” (False
Negatives) is the number of quantifiable colonies that were not detected, and “FP”
(False Positives) is the number of non-quantifiable colonies detected. Precision is
defined as TP/(TP+FP), which is the proportion of all detections consisting of quan-
tifiable colonies. Recall is defined as TP/(TP+FN), which is the proportion of all
quantifiable colonies detected.

Plate True Detections TP FN FP Precision Recall
1 355 322 243 112 79 0.755 0.685
2 190 156 122 68 34 0.782 0.642
3 269 318 186 83 32 0.853 0.691
4 236 283 192 44 91 0.678 0.814
5 177 187 151 26 36 0.807 0.853
6 127 139 121 6 17 0.877 0.953
7 106 122 106 0 16 0.869 1
8 92 98 81 11 17 0.827 0.88
9 127 101 91 36 10 0.901 0.717
10 112 119 105 7 14 0.882 0.938
11 131 136 120 11 16 0.75 0.779
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tions has significantly improved to the point where clearly distinguishable colonies
are extractible. We obtained a total of 715 objects with corresponding segmentations
which were extracted for classification. Similarly, nearly all colonies near the edge of
each plate were ignored.

Across both image sets, we detected approximately 1,981 circular objects (see
Table 3.1). From these objects, 1,585 were inspected to be of quantifiable colonies.
Approximately 38 circular objects (which included 30 quantifiable colonies) had ill-
defined estimated regions and thus were excluded from further analysis. After this,
we had 1,555 quantifiable colonies which we classified and compared against manual
annotations.

From the quantifiable colonies, 415 colonies were predicted to be sectored, with
the number of sectors predicted ranging from 1 to 3. Approximately 89.5% of the
quantifiable colonies across all image sets used in this work were classified the same as
those manually annotated (Figure 3.5 A). For colonies labeled as homogeneous, 691
were labeled as [PSI+] and 374 as [psi−] (Figure 3.5 B). In contrast, if we only count
the number of connected components on the boundary without performing purity
correction, we obtain only a 50.4% accuracy in predicting colony states, demonstrating
that our purity correction scheme in [PSI]-CIC performs better for estimating regions
in the colony segmentations.

Table 3.2: Classification performance. Table of Precision, recall, and F1 score
for each class on quantifiable colonies predicted with [PSI]-CIC. For each class, the
following definitions apply independently: True positives (TP) are colonies whose
predicted class and ground-truth class match. False positives (FP) are the set of
colonies with one predicted class, but whose manually annotated class is different.
False negatives (FN) are colonies not predicted to be of a given class, but were manu-
ally annotated with that class. Precision is defined is TP/(TP+FP), representing the
number of colonies correctly predicted to be of the given class, divided by the number
of colonies assigned this class. Recall is TP/(TP+FN), representing the number of
colonies correctly predicted to be of the given class, divided by the number of colonies
manually annotated with the given class. The F1 score is the harmonic mean of both
precision and recall. The bottom three rows present the same measures but addi-
tionally include frequency of sectors predicted for colonies as a condition for being
counted as TP.

Class Precision Recall F1 Score
[PSI+] 0.969 1 0.984
[psi−] 0.908 0.979 0.942
Sectored 0.981 0.876 0.925
S1 0.788 0.810 0.799
S2 0.694 0.621 0.655
S3+ 0.5 0.5 0.5

We use confusion matrices to see how both sector counting schemes place colonies
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Figure 3.5: Accuracy of colony-level predictions on quantifiable colony data.
(A): Total number of colonies of each class correctly classified. Blue and red bars in-
dicate the number of colonies correctly classified without and with purity correction
respectively. The height of the bars represent the number of colonies correctly clas-
sified, with the maximum number of colonies possible for each class indicated by the
green bars. (B): Confusion matrices showing the frequency of correct and incorrect
predictions with our pipeline without (left) and with (right) purity correction applied.
The color of each cell indicates the percentage of colonies with the same ground-truth
class that were assigned a predicted class through our pipeline. (C): Some examples of
colony segmentations and annotations for [PSI+], [psi−] and sectored colonies along
with the frequency of sectors (S1, S2, S3). (D): Some examples of segmentations and
annotations for detected objects whose predictions were incorrect or which have no
ground-truth class (either not quantifiable or not a colony).



68

into the correct groups in more detail across both image sets (Figure 3.5 B). We
clearly see that including our purity correction scheme places more colonies on the
main diagonal of the matrix. Surprisingly, all quantifiable colonies detected which
were manually annotated as [PSI+] were correctly predicted to be [PSI+]. This
was not the case when purity correction was excluded. All but nine of the colonies
manually annotated as [psi−] were correctly classified, with the incorrectly classified
ones labeled as S1 or S2. When purity correction is not applied, this method sig-
nificantly overestimates the number of sectored colonies whose manually annotated
class is [psi−]. For sectored colonies, our purity correction scheme shows improved
accuracy in classifying colonies with one or two sectors, but slightly less accuracy in
classifying colonies with three or more sectors. Fifteen colonies from those extracted
were manually annotated as 4-sectored (S4) or 5-sectored (S5), but were not predicted
with these classes.

Sectored colonies whose predicted class differs between those predicted without
and with purity correction have their predicted frequency of sectors reduced as part
of the correction scheme. This suggests our purity correction scheme is sufficiently
preventing overcounting of the number of regions per colony in our dataset. Fig-
ure 3.5 C shows the segmentations and regional annotations of a few colonies which
were correctly classified. Examples of colonies which were either non-quantifiable or
incorrectly classified are shown in Figure 3.5 D.

The accuracy of colony classifications within each class is shown in Table 3.2. From
the images we used in this study, we found that all quantifiable colonies extracted
which were manually annotated as [PSI+] were correctly predicted as [PSI+], hence
recall for this class was 1. The source of precision being less than 1 is due to a
small number of 1-sector colonies being classified as [PSI+]. Similarly, recall for
[psi−] colonies was close to 1 due to some being incorrectly classified as sectored, and
precision being less than 1 due to a subset of manually annotated sectored colonies
being incorrectly classified as [psi−]. Interestingly, while the accuracy in correctly
predicting sectored quantifiable colonies is not as impressive, this category has the
highest precision, indicating that the highest proportion of colonies predicted to be
sectored were also manually annotated as sectored. However, when considering the
frequency of sectors in these colonies, performance degrades with higher frequency of
sectors as shown in the bottom half of Table 3.2. One possibility for lower prediction
accuracy of multi-sector colonies may be due to both the smaller sizes of sectors as
well as the inclusion of spacing between sectors (equivalently, the smaller sizes of white
regions between sectors) negatively affecting the quality of the output segmentation
of the colony, thus leading to unfavorable regions proposed in the classification step
that do not accurately capture the true regions of the colony.

Examples of regional colony annotations before and after purity correction are
shown in Figure 3.6 A. Many colony segmentations which had relatively small red
or white regions did not meet the threshold for the purity metric and were thus not
counted as separate regions. While the use of our purity correction scheme does alter
the classifications of approximately half of colonies classified, our results show ap-
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proximately 42% of all previously misclassified colonies became correct when purity
correction was applied (Figure 3.6 B). In contrast, a subset of 55 colonies were classi-
fied incorrectly with purity correction when the original predictions were previously
correct, yet the performance of our pipeline outweighs this disadvantage. In nearly
all the colonies classified, the proposed regional annotations of the purity corrected
colonies exhibit a higher weighted purity (Figure 3.6 C), as this was one of the ob-
jectives of our purity correction scheme as described in Section 3.2.1. Based on this
information, our method is able to better capture sector-like regions in the colony
segmentations which in turn improves accuracy in colony classification.

3.4 Discussion

Two aims of our pipeline for localizing colonies are to find all manually annotated
colonies, and to suggest a way to classify colonies where manual annotations are
not reliable. One objective [PSI]-CIC achieves is ensuring high recall, where as
many quantifiable colonies from manually annotated data as possible are extracted,
thus satisfying the first aim. Furthermore, we note that the precision for detecting
quantifiable colonies is not very high (see Table 3.1). This is expected because nearly
all colonies in the images have a sufficient degree of circularity, not just quantifiable
ones. As a result, our method extracted and provided reasonable predictions for
approximately 400 additional colonies from the images which were not considered
quantifiable. As such, [PSI]-CIC could be used as an additional aid in quantifying
colonies that are not considered quantifiable to experimentalists.

We observed a few major factors present in the colony images which had an
influence on classification accuracy. First, we noticed that many colonies had at
least one red or one white region comprising less than 5% of the colony area. As a
result, our purity correction method in [PSI]-CIC did not accurately isolate these
small regions. We believe this is likely a consequence of low image resolution. Near
the center of the colony, it is possible for multiple sectors to occupy the same pixel,
making it appear in the output segmentation that a sector may not originate at the
colony center. Smaller regions in the segmentation may also not satisfy the threshold
of the purity metric as defined in Section 3.2.1 and as such our method suggests such
regions to be part of an adjacent region.

Second, there were also a subset of non-isolated quantifiable colonies whose in-
dividual colonies were classified. Due to our assumption that colonies are circular,
adjacent clustered colonies may have overlapping regions present in each colony seg-
mentation. Furthermore, clustered colonies were more likely to be excluded from
classification since the circle detection step may have had insufficient information in
these regions to detect circles there. Visual inspection also suggests that [psi−] regions
in these colonies have a lower growth rate than [PSI+] regions, reducing circularity
of the colony as a whole. However, this difference did not appear to have a significant
effect on the number of colonies detected.

Third, individual colony sizes–or similarly, image sizes–may affect both segmen-
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Figure 3.6: Purity correction improves classification. (A): Example colony
segmentations with annotated regions before and after purity correction. (B): The
predictions on the quantifiable colonies before and after purity correction, partitioned
by their manually labeled states. “Remained Correct” is the set of colonies whose
classifications both before and after purity correction matched their manually anno-
tated classes. “Became Correct” is the set of colonies which were incorrectly classified
before purity correction, but were correctly classified following purity correction. (C):
Violin plots representing the distributions of differences between purities of colonies
with and without purity correction, with positive differences indicating higher purity
when correction is applied. Horizontal bars indicate the minimum and maximum
differences for each subset of classified colonies based on their predicted state and
sector frequencies.
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tation and classification accuracy. Previous deep learning based segmentation tasks
involving microbial colonies on plates used images with spatial dimensions in the cou-
ple thousands for each individual plate to adequately capture colonies within the full
range of sizes present [25,52]. Capturing colony-level information from images of full
plates would typically necessitate having high resolution images in order to ensure
the individual colonies have a sufficient amount of resolution needed to exhibit clear
sectors. However, the purity correction scheme in [PSI]-CIC suggests that this size
limitation need not be as strict if the objective is to partially capture estimate sec-
tored regions rather than to fully segment them. Furthermore, a priori knowledge
of colony sizes relative to the plate should still be used to impose a minimum size
limitation for colony images to ensure a sufficient amount of detail is captured in the
output of the model.

In contrast with the model proposed by Carl et al [25], [PSI]-CIC relies on the use
of synthetic images for training U-Net to segment real colonies rather than using real
images directly in the training process. This is a convenient and reasonable strategy
for simplifying ground-truth mask generation because colonies in our images appear
circular and exhibit mostly geometric sector shapes by visual inspection. However,
such a strategy makes it more difficult for semantic segmentation models to generalize
to more complex image data. Despite this simplification, [PSI]-CIC was still able
to sufficiently locate, partition, and classify colonies in the experimental dataset.
Further accuracy for classifying colonies using [PSI]-CIC may be possible with using
images of different colony sizes that still exhibit clear interfaces between the colony
boundary as well as the interfaces between its red and white regions. One constraint
to consider with using images of different sizes is that the colonies within the images
must be large enough for detection. Rescaling larger images to a standard size will
result in colonies being smaller; too small of a rescaling will result in colonies being
too small to be detected computationally. Since the images used by Carl et al. [25] are
more than 3000 pixels in both height and width dimensions–nearly three times higher
than the images used in our study–and colony sizes much smaller in proportion to
the plate sizes, such images may be too small to reliably segment and annotate if the
plate images are resized to 1024×1024. As such, a direct comparison of classification
results between [PSI]-CIC and that of Carl et al. [25] using their dataset and ours
will not be feasible unless both models are capable of sufficiently classifying images of
the same dimensions. Future work should address consistency of results with respect
to image size and resolution to ensure a direct performance comparison could be made
between [PSI]-CIC and Carl et al. [25] as well as other similar image classification
models which could be adapted for automated colony quantification.

The use of synthetic images for training CNNs is useful for improving image seg-
mentation and classification when the quantity of annotated data is insufficient and
the synthetic images capture sufficient variation present in the desired images to
be segmented. While our synthetic images primarily capture the geometric features
present in the experimental images, these features vary quantitatively across the ex-
perimental dataset. We point out three sources of variation which could be addressed
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to boost complexity of the synthetic images. First, while the synthetic images account
for most of the color variation present in image set 1 as described in Section A.1, they
do not account for the color variation in image set 2 because the images in this set
needed to be pre-processed before they were passed to U-Net for segmentation. An
ideal sample of synthetic images should have similar color distributions as in the ex-
perimental images. Otherwise, U-Net would need to be independently retrained for
each distinguishable set of images. The second source of variation consists of differ-
ent colony sizes among the synthetic and experimental images. The colonies in our
synthetic images have equal sizes, whereas the experimental images have a range of
sizes. The third source of variation is the frequency of sectors present in each colony.
While each of the synthetic images all contain colonies with exactly one sector each,
sector sizes were allowed to vary between colonies. Even though our synthetic images
do not fully capture all these sources of variation, we believe our approach is sufficient
enough for using these images to train U-Net to segment experimental images. Our
results (Section 3.3.2) show [PSI]-CIC is adequately capturing sector-like regions in
colonies and further classifying them as described in Section 3.2.1. We further note
that while color and size are the two primary sources of variation in our images, other
sources are possible. More structured and more diverse training data is needed to
incorporate additional sources of variation present with experimental images and to
ensure robust performance of [PSI]-CIC across multiple experimental conditions.

We note that the primary features we considered when creating synthetic images
for training U-Net involve circles and known colors from experimental images. As
such, any other organism which exhibits these physical properties are prime candi-
dates for automating colony classification. A natural extension of our work would
be to adapt [PSI]-CIC to classify colonies of Candida albicans which exhibit a white
to opaque color switch [97,140] as well as different colony size phenotypes under the
same growth timeline [111]. Additional types of sectored image data at the colony
level such as gene expression data obtained through flourescent-based assays [63, 96]
could be incorporated to develop methods for spatial structural analysis of such data.
These considerations warrant a further generalizability study on the usefulness of
[PSI]-CIC in segmenting images containing other species of yeast or other circular
shaped colonies as a future research direction.

3.5 Conclusion

In this study, we constructed a new computational pipeline we call [PSI]-CIC de-
signed for high-throughput segmentation and quantification of sectored yeast colonies
found in images of experimental plates. We show that synthetic images could be used
for training U-Net to segment colonies from experimental images based on their color
and simple shape. Results show that we are able to obtain acceptable colony counts
from plated colony images, given that the segmentation adequately captures the cir-
cularity and regions of the colony. We demonstrate that [PSI]-CIC obtains colony
states and sector frequencies comparable to manual annotations from experimen-
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talists. This is the first model designed specifically for quantifying sectors in yeast
colonies indicative of changes in prion dynamics within individual cells. The work dis-
cussed here is a big step forward for providing researchers a computational framework
to gain novel insights into the mechanisms driving prion loss in yeast colonies.



Chapter 4

A Deep Learning Framework for
Candida albicans Colony
Classification

This chapter covers work in progress in collaboration with Dr. Clarissa Nobile and
Austin Perry at UC Merced. I led the work on developing the computational pipeline,
analyzing its results within this chapter. Austin Perry led the curation of the image
data that was used in this work as well as provided a portion of the final version
of the Introduction (Section 4.1). More details about the data itself is provided in
Appendix B.

4.1 Introduction

Candida albicans is one of the most frequently encountered and studied human
fungal pathogens [135], however it generally resides as a commensal organism in
humans [69]. As a commensal organism it can be isolated from regions all over the
body, including the skin and gastrointestinal tract [113, 118]. However, a delicate
balance with the rest of the microbiota is needed to remain commensal [61]; if this
balance is disturbed, C. albicans is capable of rapid proliferation which leads to
infections [118]. C. albicans is the is responsible for at least 70% of fungal infections
worldwide with a mortality rate of nearly 40% for especially serious cases [118,157].

The ability of C. albicans to colonize such distinct niches is due in part to its
propensity to exist as various cell types. Two such cell types are termed “white”
and “opaque”, each with distinct cell shapes, colony morphologies and environmental
responses [97, 160, 181]. Each cell type is generally stable under standard in vitro
conditions, however cells will stochastically switch from one cell type to the other ap-
proximately once every 104 cell divisions [153]. To investigate this system, researchers
rely on large-scale, low-throughput “switch assays”. These usually involve a kind of
solid chromogenic media that differentially colors the white and opaque colonies.
CHROMagar [121] is considered the first commercially available type of chromogenic
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media aimed at isolating and identifying several different types of Candida species.
Researchers will dilute cultures and spread plate their cell solutions on petri dishes
of this chromatic media and then manually count the numbers of white, opaque and
sectored colonies, including colonies that experienced a switch event after the ances-
tral cell landed on the plate. This approach is very labor intensive and requires a
great amount of time to accurately quantify. To decrease the amount of time it takes
to count each of these colony types, I have developed a deep learning framework to
efficiently quantify colonies of C. albicans with distinct colors in the CHROMagar
media for each colony type.

In this Chapter I will demonstrate that the proposed deep learning framework
results in efficient quantification of white and opaque colony images with high accu-
racy. I then discuss future directions for this framework in terms of classifying other
colonies that show different features than the ones used in this chapter and how we
can include these features in the training process.

4.2 Methods

In this section, I describe the components of the proposed algorithm for quantify-
ing images of plates containing hundred of colonies (Section 4.2.1). The procedure for
the cultivation of colonies, acquisition of the image data, and augmentation strategy
applied to the image data, are provided in Appendix B.1. In Section 4.2.5 we discuss
how we annotate the image data available so that a supervised neural network is
applicable for this data. Due to a limited amount of annotated data available, we
employ data augmentation to increase the size of our dataset (see Section B.2). We
discuss how the neural networks used in our algorithm are configured and how they
are evaluated in Section 4.2.6.

4.2.1 Candida Classification Pipeline

The proposed pipeline in this section aims to classify colony types from a set of im-
ages depicting hundreds of colonies on individual plates. Our algorithm is configured
using 15 images containing individual plates that each have anywhere between 50 and
300 colonies each (see Appendix B.1 for details). To get images of colonies from the
images of plates, we partition the algorithm into the extraction phase, followed by the
classification phase. In the extraction phase, we attempt to individually extract and
gather the colonies from each plate and save them as individual images. We employ
a circular feature detection algorithm as our method of choice in obtaining the loca-
tions and sizes of colonies as described in Section 4.2.2. In the classification phase,
we employ deep learning architectures trained on the extracted images in order to
automatically and efficiently annotate and classify these colonies. Annotated images
as described in Section 4.2.5 are used as part of preparing the architectures for the
training process. Configuration of the training process, including how the images are
partitioned into training and testing, is described in Section 4.2.6. Due to the lack
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of data available we also employ data augmentation to balance the dataset whose
process is described in Section B.2. After training, our proposed pipeline classifying
colonies from plate level images is fully automated so that any similar image of plates
will have their colonies extracted and classified efficiently.

Figure 4.1: Candida Detection Pipeline. The pipeline is divided into two phases.
In the first phase, the objective is to separate the colonies from the image. To do
this, we employ circle detection to find the plate, then the colonies respectively.
Each colony extracted is then standardized and aggregated into a data set for the
second phase. The objective of the second phase is to predict a qualitative label for
each colony extracted. We do this using deep neural network architectures with the
objective of performing image classification. The output of the deep neural network
allows for a prediction of a colony’s type.

4.2.2 Colony Detection

Plate Detection and Extraction

To obtain information on the colonies from the experimental images in our dataset,
we utilize the circle Hough transform implementation in Octave via the function
imfindcircles found within the image package. Throughout this process of extract-
ing colonies suitable for classification in this work, imfindcircles is used indepen-
dently for the purposes of plate extraction and subsequently, colony extraction.

The first use of imfindcircles is done to isolate the plate from the raw image.
We begin by proportionately rescaling each image so that the longest dimension of
the image is 1200 pixels. We use an input radius range of [450, 650] pixels and a
sensitivity of 0.97 to allow for imperfect circles to be detected. In each image, exactly
one circle is detected corresponding to the border of the plate as desired. The region
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of the plate to be extracted from the image is estimated by encompassing the detected
circular region with the smallest square bounding box around it. The region inside
the bounding box is them resized with dimensions 1024x1024 and saved as a separate
image. This process is repeated for all 15 images in our dataset.

Colony Detection and Extraction

Once the 15 images have been rescaled as described above, the second use of
imfindcircles is applied to the rescaled images for the purpose of detecting the
circular objects within each image. Here we use an input radius range of [10, 50]
pixels to allow for the small white and large opaque colonies to be detected, and set
the sensitivity parameter to 0.9. Due to the varying colony sizes in the images, the
radius range and sensitivity parameter were chosen based on trial and error.

Furthermore, since white and opaque colonies have opposite polarities with the
intensity of the region inside the plate, we configure imfindcircles to locate colonies
whose intensity is either less than or greater than the intensity of the background,
ensuring circular objects that are either brighter or darker than the background are
detectable. To do this, we first use imfindcircles with the object polarity parameter
set to ‘bright’, then use imfindcircles with this parameter set to ‘dark’. To remove
any duplicated detections, we compute the minimum distance of the center of a given
dark polarity detection with the centers of all bright polarity detections, then filter
out any dark polarity detections that has a minimum distance of less than 10 pixels
from the center of any bright polarity detection.

A bounding box is independently applied to all detected regions in a manner
similar to how the plate was extracted. The radius of the enclosed circle is recorded
before extraction and saved as a CSV file, and all detected regions in the plate are
cropped and saved as as separate images.

To preserve spatial information on the size of each colony, instead of proportion-
ately rescaling the image to size 64x64, we instead pad the image with black pixels
until the image size of 64x64 is attained. This allows us to utilize size information as
a component in the dual-input neural networks described in the next section.

Size Normalization

Using the size information of each plate and colony extracted from each image,
we define a proportional colony size ci,j relative to a plate:

ci,j =
ri,j
Rj

(4.1)

where ri,j is the estimated radius of colony i on plate j, and Rj is the radius
of plate j. The value of ci,j represents the proportion of the colony radius to the
plate radius, defining a non-dimensional measure describing the size of a colony. This
measurement however is local with respect to the plate at which the colony resides.
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To obtain a global measure of colony sizes across all plates, we attempt to normalize
this measure. Specifically, we normalize this metric by defining another metric di,j:

di,j =
ci,j

maxi,j ci,j
. (4.2)

where di,j is a non-dimensional measure between a given colony i from plate j
and the largest colony in the dataset. di,j takes values between 0 and 1, where 1
corresponds to the largest colony in the dataset. Figure 4.2 shows the distributions
of the normalized colony sizes for each of the colonies extracted from our image set.
These normalized size measures are used as a secondary input for the second phase
of our proposed pipeline (see Figure 4.1).

Figure 4.2: Distributions of colony sizes. Left: Examples of each colony type
extracted from the image set each resized to 64x64 through padding. From top
to bottom, two examples of white colonies, opaque colonies, and sectored colonies.
Colony sizes are estimated by taking the proportion of the colony and plate radii,
and normalized by dividing by the maximum proportion across the entire image set
(see Section 4.2.2). Right: Histograms of the normalized size measures for the 1,561
colony objects in our dataset. Each color represents one histogram of normalized
colony sizes for a specific colony type (blue: white colonies, orange, opaque colonies,
green: sectored colonies). White colonies are the most abundant colony type in our
dataset and have relative sizes between 0.2 and 0.75 with an outlier at 1 serving as
the limiting factor in the normalization. Opaque colonies are the largest colonies in
the image set on average, but have the highest amount of variation in normalized
sizes. Sectored colonies are not as numerous–hence the smaller histogram–but have a
normalized size range from approximately 0.2 to 0.75, a range of relative sizes similar
to white colonies.
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4.2.3 Neural Network Architectures

Here we detail the construction of two deep neural network architectures we use
to predict qualitative labels for each colony image extracted. The first architecture
contains 3 Visual Geometry Group (VGG) blocks with fully connected layers at the
end. The second architecture uses a modified ResNet34 [66]. To integrate information
about the size of each colony into the architecture, we also propose modifications of
both architectures to allow a secondary input. We call these modified architectures
dual-input architectures throughout this chapter.

Single Input Architectures

The first architecture is a simpler model composed of three VGG blocks in se-
quence which we call the “Toy Model” (Figure 4.3 A (top)). Each VGG block con-
tains two convolutional layers with kernel size 3x3 and a ReLU activation function,
a max-pooling layer with kernel size 2x2, and a dropout layer with probability 0.2.
The three sets of convolutional layers contain 32, 64, and 128 output channels respec-
tively. After the third VGG block, the output from the last VGG block is vectorized
and used as input for a Dense nonlinear layer with 128 output units. Finally, the
result is passed through one more Dense nonlinear layer where the number of output
channels is equal to the number of desired classes, which for our dataset is 4. The
full architecture for this model is shown in Figure 4.3 B (top).

The second architecture is a modification of the original ResNet34 architecture
[66]. In a similar manner, we define a residual block (see Figure 4.3 A (bottom)) as a
sequence of layers in the following order: One convolutional layer with kernel size 3x3
and stride 2x2, one batch normalization layer, one ReLU activation function, a second
convolutional layer with kernel size 3x3 and stride 1x1, one batch normalization layer,
one addition layer where the result of the batch normalization layer is added to the
input of the residual block, and one ReLU activation function. If the input and output
sizes of the residual block are different, the input of the residual block in parallel is
used as input to an additional convolutional layer with kernel size 1x1 which projects
the input down to the desired dimension, followed by a batch normalization layer
before being used as input to the addition layer. The output of the last residual block
is then vectorized and used as input to one last Dense layer with 4 output classes.
The full architecture for this model is shown in Figure 4.3 C (top).

Dual Input Architectures

To account for size variability within each colony type, we modified both of the
architectures described previously to include our global non-dimensional size measure
as a secondary input (see Section 4.2.2). To accommodate this additional input,
we modify the single input architectures in the following way. First, we modify the
corresponding single input architectures by concatenating four Dense nonlinear layers
after the vectorization step (the Flatten layers), each subsequent one having fewer and
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Figure 4.3: Neural Network Architectures. The architectures used in this work
are singular and dual input modifications of deep neural networks. A: Shorthand
definitions of a VGG Block and a Res Block (residual block) (see Section 4.2.3), where
x is the number of output channels, y is the kernel size, and z is the stride length.
B: The singular and dual input architectures of the toy model. C: The singular and
dual input architectures of the modified Resnet 34. The bottom portions of B and C
contain additional Dense layers for the images to pass through and a secondary input
for size which passes through a Dense layer before merging with the output from the
image layers near the end of the network.
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fewer output layers until the last one has four output layers. Second, we introduce
a parallel pathway exclusively for the size input which contains one Dense nonlinear
layer with four output channels. Third, the output of this Dense nonlinear layer is
concatenated to the result of the last Dense nonlinear layer from the image pathway.
Finally, this output is passed through one Dense nonlinear layer with the number of
desired classes as the number of output channels, which is 4 for our dataset. This
construction aims to ensure image information passed through the network does not
significantly overshadow size information.

We modify the architecture of our Toy Model in the following way: First, we
introduce the size pathway by applying a Dense nonlinear layer with 4 output units
to the size input. Second, additional Dense nonlinear layers with output units of 32,
8, and 4 respectively, are imposed on the output of the 128 unit Dense layer within
the image pathway. Third, the outputs of the two Dense layers with four output
units corresponding to the image and size respectively are concatenated to form a
vector of length 8. Finally, this is used as input to a Dense nonlinear layer with
four output units (corresponding to the number of desired classes) and a softmax
activation function. The full architecture for this model is shown in Figure 4.3 B
(bottom).

We modify the ResNet 34 architecture in the following way: First, we introduce
the size pathway by applying a Dense nonlinear layer with 4 output units to the
size input. Second, additional Dense nonlinear layers with output units of 256, 64,
16, and 4 respectively, are imposed after the output of the flatten operation within
the image pathway. Third, the outputs of the two Dense layers with four output
units corresponding to the image and size respectively are concatenated to form a
vector of length 8. Finally, this is used as input to a Dense nonlinear layer with
four output units (corresponding to the number of desired classes) and a softmax
activation function. The full architecture for this model is shown in Figure 4.3 C
(bottom).

4.2.4 Label Prediction

The output of all four neural networks when applied to a colony image is a prob-
ability vector of length 4. Each element indicates the probability that the image is
of a particular class given the data that the model was trained on. The classes we
consider are for white colonies, opaque colonies, sectored colonies, and background.
The length corresponds to the number of desired classes, and each element in the
vector indicates the probability that the image is of a particular class given the data,
with the sum of all probabilities adding to 1. The predicted label of the colony is
chosen based on the position of the maximal probability in the vector. When applied
to a collection of colonies, the output for the collection of colonies is a vector of labels
corresponding independently to the maximal probabilities of each type associated
with a colony image.
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4.2.5 Ground Truth Annotation

Each of the 15 plate images are manually annotated by superimposing colored
dots on top of each colony present. The dots were placed on the approximate centers
of the colonies. The color of the dot is chosen based on the colony type: cyan for white
colonies, magenta for opaque colonies, and yellow for sectored colonies (see Figure 4.4
for an example). Images extracted from the plates that do not contain colonies are
left un-annotated and are in turn considered as part of the background class.

Figure 4.4: Preprocessing images for training. A: An image of a full plate
with its corresponding superimposed annotations. The color of the dots represent
the corresponding colony type (cyan: white colony, magenta: opaque colony, yellow:
sectored colony). B: A closeup image of several colonies along with its corresponding
annotated version. C: Augmented versions of an example colony extracted. Transfor-
mations applied to the colony, from left to right, are the following: original, horizontal
flip, vertical flip, transposition, rotation of colony region, random rotation of the whole
image by up to 90 degrees from the original orientation, and blurring.

To preserve the location of the dots in each image, we saved three images of the
same size as the image being annotated, where each of the three images contain only
the dots corresponding to one independent colony type. An annotated copy for the
image is created by directly superimposing the three images on top of the original
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Table 4.1: Counts of extracted images from each plate. Table of the number of
objects detected and objects separated by type. The first two images corresponding
to each strain are used for training purposes, while the third images of each are set
aside for testing. The number of objects extracted from each image are shown in the
left table. The total number of objects of each type extracted from all the training
and testing images respectively are shown on the right table.

plate image of the same size and orientation.

4.2.6 Training

From the 15 images available, we use 10 for the purpose of training each of our
architectures. The remaining 5 images are set aside for testing the performance of each
architecture post-training (see Figure 4.1). We use the first two images corresponding
to each of the five strains to be used in the training process and set aside the third
image of each strain for testing each trained model. The training images are subject
to colony detection, extraction, and image augmentation (see Section B.2), while
the testing images are subject to only colony detection and extraction. Examples of
colony augmentation are shown in Figure 4.4 C.

Approximately 20% of the colonies extracted from the training images are set aside
for model validation. For each architecture, we use the Adam optimization function
with momentum 0.9 and categorical focal cross-entropy [95] as our loss function with
the weight-balancing factor (α) set to 0.25 and the focusing parameter (γ) set to 2.
The learning rate was fixed to 0.001 for the entire training process. Each architecture
was trained for 100 epochs and intermittently evaluated on the testing images to
measure performance.

The true labels of the colonies are compared with the same predicted labels on
these colonies. We measure performance by taking the proportion of colonies whose
predicted labels match their annotated true labels, divided by the total number of
colonies considered. We further quantify the proficiency and deficiency of each archi-
tecture on images of each colony type independently.
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4.3 Results

Approximately 587 objects were extracted from the testing set of 5 plates. We
evaluate model performance for eight different model scenarios defined by considering
all combinations of the two types of architectures (toy model or Resnet 34), two input
types (single and dual), and two augmentation scenarios (no augmentation or with
augmentation).

We find that in all eight cases, the accuracy in classifying white and opaque
colonies is between 80-98%. Sectored colonies however are the colony type that each
model struggled with, but has the greatest variability in accuracy. All eight models
correctly predict between 0-56% of sectored colonies, with those incorrectly classified
being predicted as either white or opaque colonies. Figure 4.5 shows an example of
how colonies were classified for a single instance of a trained single input Resnet 34
model.

Precision-Recall and Receiver Operating Characteristic (ROC) curves are plotted
for each colony class and the area under the curve (AUC) metric is computed for
both types of curves in order to evaluate model performance for each model on the
colony classes. In each case, precision-recall scores for each colony type followed a
similar pattern with that of the confusion matrices. Interestingly, ROC curves depict
an opposite effect for sectored colonies, showing ROC-AUC scores of at least 0.69
across all eight models. While each model many be inaccurately predicting sectored
colones, each model still achieves better performance than a truly random classifier.

Finally, we show that similar behavior is present when multiple instances of the
same model are trained on the same data with only the exception of the dual input
toy model.

4.3.1 Single Input Architectures: Quantitative Performance

Toy Model

No augmentation. An accuracy of 85% across the entire test image set is ob-
tained. The per-class accuracies are 95% for white colonies, 97% for opaque colonies,
9% for sectored colonies, and 67% for background respectively (Figure 4.6 (top)).
(Precision, Recall) scores for each class are (0.95, 0.90) for white colonies, (0.97, 0.77)
for opaque colonies, (0.09, 0.31) for sectored colonies, and (0.67, 0.95) for background
respectively. F1 scores for each class are 0.92 for white colonies, 0.86 for opaque
colonies, 0.14 for sectored colonies, and 0.79 for background respectively.

With augmentation. An accuracy of 83% across the entire test image set
is obtained. The per-class accuracies are 85% for white colonies, 99% for opaque
colonies, 26% for sectored colonies, and 76% for background respectively (Figure 4.6
(bottom)). (Precision, Recall) scores for each class are (0.85, 0.94) for white colonies,
(0.99, 0.76) for opaque colonies, (0.26, 0.24) for sectored colonies, and (0.76, 0.88) for
background respectively. F1 scores for each class are 0.89 for white colonies, 0.86 for
opaque colonies, 0.25 for sectored colonies, and 0.82 for background respectively.
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Figure 4.5: Example colony predictions. Concatenations of colonies from the
test image set predicted by the single input Resnet 34 model to be white, opaque,
sectored, or background noise.

Resnet 34

No augmentation. An accuracy of 84% across the entire test image set is ob-
tained. The per-class accuracies are 93% for white colonies, 96% for opaque colonies,
14% for sectored colonies, and 67% for background respectively (Figure 4.7 (top)).
(Precision, Recall) scores for each class are (0.93, 0.91) for white colonies, (0.96, 0.80)
for opaque colonies, (0.14, 0.30) for sectored colonies, and (0.67, 0.77) for background
respectively. F1 scores for each class are 0.92 for white colonies, 0.87 for opaque
colonies, 0.19 for sectored colonies, and 0.72 for background respectively.

With augmentation. An accuracy of 81% across the entire test image set
is obtained. The per-class accuracies are 80% for white colonies, 96% for opaque
colonies, 42% for sectored colonies, and 81% for background respectively (Figure 4.7
(bottom)). (Precision, Recall) scores for each class are (0.80, 0.95) for white colonies,
(0.96, 0.86) for opaque colonies, (0.42, 0.26) for sectored colonies, and (0.81, 0.74) for
background respectively. F1 scores for each class are 0.87 for white colonies, 0.90 for
opaque colonies, 0.32 for sectored colonies, and 0.77 for background respectively.
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Figure 4.6: Confusion Matrices for the Single Input Toy Model. Confusion
matrices showing the proportion of colonies classified normalized by row, with true
labels on the vertical axis, and predicted labels on the horizontal axis. Each cell is
assigned a proportion of colonies predicted to have a certain label, given their assigned
true label. Confusion matrices above are for the performance on the single-input toy
model with no augmentation applied (top) and with augmentation applied (bottom)
to the training images.
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Figure 4.7: Confusion Matrices for the Single Input Resnet 34 Model. Con-
fusion matrices showing the proportion of colonies classified normalized by row, with
true labels on the vertical axis, and predicted labels on the horizontal axis. Each
cell is assigned a proportion of colonies predicted to have a certain label, given their
assigned true label. Confusion matrices above are for the performance on the single-
input Resnet 34 model with no augmentation applied (top) and with augmentation
applied (bottom) to the training images.
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4.3.2 Single Input Architectures: Qualitative Performance

Toy Model

No augmentation. Precision-Recall AUC scores for each class are 0.94 for white
colonies, 0.90 for opaque colonies, 0.15 for sectored colonies, and 0.77 for background
respectively. ROC-AUC scores for each class are 0.94 for white colonies, 0.97 for
opaque colonies, 0.69 for sectored colonies, and 0.91 for background respectively.
(Figure 4.8 (top))

With augmentation. Precision-Recall AUC scores for each class are 0.96 for
white colonies, 0.95 for opaque colonies, 0.19 for sectored colonies, and 0.80 for back-
ground respectively. ROC-AUC scores for each class are 0.95 for white colonies, 0.98
for opaque colonies, 0.82 for sectored colonies, and 0.91 for background respectively.
(Figure 4.8 (bottom))

Resnet 34

No augmentation. Precision-Recall AUC scores for each class are 0.95 for white
colonies, 0.94 for opaque colonies, 0.18 for sectored colonies, and 0.77 for background
respectively. ROC-AUC scores for each class are 0.96 for white colonies, 0.98 for
opaque colonies, 0.72 for sectored colonies, and 0.94 for background respectively.
(Figure 4.9 (top))

With augmentation. Precision-Recall AUC scores for each class are 0.94 for
white colonies, 0.93 for opaque colonies, 0.21 for sectored colonies, and 0.79 for back-
ground respectively. ROC-AUC scores for each class are 0.93 for white colonies, 0.98
for opaque colonies, 0.77 for sectored colonies, and 0.93 for background respectively.
(Figure 4.9 (bottom))

4.3.3 Dual Input Architectures: Quantitative Performance

Toy Model

No augmentation. An accuracy of 84% across the entire test image set is ob-
tained. The per-class accuracies are 94% for white colonies, 99% for opaque colonies,
0% for sectored colonies, and 67% for background respectively (Figure 4.10 (top)).
(Precision, Recall) scores for each class are (0.94, 0.91) for white colonies, (0.99, 0.72)
for opaque colonies, (0.00, 0.00) for sectored colonies, and (0.67, 0.87) for background
respectively. F1 scores for each class are 0.92 for white colonies, 0.83 for opaque
colonies, 0.00 for sectored colonies, and 0.76 for background respectively.

With augmentation. An accuracy of 73% across the entire test image set
is obtained. The per-class accuracies are 66% for white colonies, 96% for opaque
colonies, 56% for sectored colonies, and 69% for background respectively (Figure 4.10
(bottom)). (Precision, Recall) scores for each class are (0.66, 0.97) for white colonies,
(0.96, 0.83) for opaque colonies, (0.56, 0.16) for sectored colonies, and (0.69, 0.94)
for background respectively. F1 scores for each class are 0.78 for white colonies, 0.89
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Figure 4.8: Precision-Recall and ROC curves for the Single Input toy model.
Left: Precision-Recall curves showing performance of the single input toy model on
each image type. Right: ROC Curves showing qualitative performance on each colony
type compared to a random classifier (black line). The top row indicates performance
curves for the single input toy model applied to the original dataset, and the bottom
row indicates performance curves for the single input toy model applied to the aug-
mented dataset.
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Figure 4.9: Precision-Recall and ROC curves for the Single input Resnet 34
model. Left: Precision-Recall curves showing performance of the single input Resnet
34 model on each image type. Right: ROC Curves showing qualitative performance
of this model on each colony type compared to a random classifier (black line). The
top row indicates performance curves for the single input Resnet 34 model applied to
the original dataset, and the bottom row indicates performance curves for the single
input Resnet 34 model applied to the augmented dataset.
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for opaque colonies, 0.25 for sectored colonies, and 0.80 for background respectively.
Across all eight model instances, this model had the highest accuracy for correctly
predicting sectored colonies.

Figure 4.10: Confusion Matrices for the Dual Input Toy Model. Confusion
matrices showing the proportion of colonies classified normalized by row, with true
labels on the vertical axis, and predicted labels on the horizontal axis. Each cell is
assigned a proportion of colonies predicted to have a certain label, given their assigned
true label. Confusion matrices above are for the performance on the dual-input toy
model with no augmentation applied (top) and with augmentation applied (bottom)
to the training images.

Resnet 34

No augmentation. An accuracy of 84% across the entire test image set is ob-
tained. The per-class accuracies are 91% for white colonies, 96% for opaque colonies,
14% for sectored colonies, and 75% for background respectively (Figure 4.11 (top)).
(Precision, Recall) scores for each class are (0.91, 0.90) for white colonies, (0.96, 0.81)
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for opaque colonies, (0.14, 0.30) for sectored colonies, and (0.75, 0.81) for background
respectively. F1 scores for each class are 0.91 for white colonies, 0.88 for opaque
colonies, 0.19 for sectored colonies, and 0.78 for background respectively.

With augmentation. An accuracy of 80% across the entire test image set
is obtained. The per-class accuracies are 77% for white colonies, 96% for opaque
colonies, 40% for sectored colonies, and 83% for background respectively (Figure 4.11
(bottom)). (Precision, Recall) scores for each class are (0.77, 0.96) for white colonies,
(0.96, 0.90) for opaque colonies, (0.40, 0.30) for sectored colonies, and (0.83, 0.57) for
background respectively. F1 scores for each class are 0.85 for white colonies, 0.93 for
opaque colonies, 0.34 for sectored colonies, and 0.68 for background respectively.

Figure 4.11: Confusion Matrices for the Dual Input Resnet 34 Model. Con-
fusion matrices showing the proportion of colonies classified normalized by row, with
true labels on the vertical axis, and predicted labels on the horizontal axis. Each
cell is assigned a proportion of colonies predicted to have a certain label, given their
assigned true label. Confusion matrices above are for the performance on the dual-
input Resnet 34 model with no augmentation applied (top) and with augmentation
applied (bottom) to the training images.



93

4.3.4 Dual Input Architectures: Qualitative Performance

Toy Model

No augmentation. Precision-Recall AUC scores for each class are 0.94 for white
colonies, 0.88 for opaque colonies, 0.18 for sectored colonies, and 0.72 for background
respectively. ROC-AUC scores for each class are 0.93 for white colonies, 0.96 for
opaque colonies, 0.72 for sectored colonies, and 0.89 for background respectively.
(Figure 4.12 (top))

With augmentation. Precision-Recall AUC scores for each class are 0.93 for
white colonies, 0.94 for opaque colonies, 0.22 for sectored colonies, and 0.81 for back-
ground respectively. ROC-AUC scores for each class are 0.93 for white colonies, 0.98
for opaque colonies, 0.78 for sectored colonies, and 0.90 for background respectively.
(Figure 4.12 (bottom))

Resnet 34

No augmentation. Precision-Recall AUC scores for each class are 0.92 for white
colonies, 0.94 for opaque colonies, 0.22 for sectored colonies, and 0.79 for background
respectively. ROC-AUC scores for each class are 0.94 for white colonies, 0.98 for
opaque colonies, 0.77 for sectored colonies, and 0.92 for background respectively.
(Figure 4.13 (top))

With augmentation. Precision-Recall AUC scores for each class are 0.93 for
white colonies, 0.96 for opaque colonies, 0.20 for sectored colonies, and 0.73 for back-
ground respectively. ROC-AUC scores for each class are 0.89 for white colonies, 0.99
for opaque colonies, 0.81 for sectored colonies, and 0.93 for background respectively.
(Figure 4.13 (bottom))

4.3.5 Robustness of Model Performance

Since machine learning models naturally have stochastic components which in
turn lead to varying results, we opted to train and test 10 instances of each model to
analyze independently how the performance of each model varies.

Breakdowns of the accuracy scores on the validation and testing images across each
of the 10 instances of all models are shown in Table 4.2. In most cases, we find that
the simplest model (the single input toy model) has better performance overall on the
same images. For the dual input Resnet 34 model, training with augmented images
results in the best performance overall for this type of model. In each instance, the
dual input toy model performs the worst on both scenarios where data augmentation
is or is not considered in the training process. The significantly varying accuracy
of the dual input toy model suggests that this model is highly unstable and will
likely perform better through a refined training procedure than those used for the
other models. This quantitative analysis suggests that the performance of each of the
model types, with the exception of the dual input toy model, are very similar.
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Figure 4.12: Precision-Recall and ROC curves for the dual input toy model.
Left: Precision-Recall curves showing performance of the dual input toy model on each
image type. Right: ROC Curves showing qualitative performance of this model on
each colony type compared to a random classifier (black line). The top row indicates
performance curves for the dual input toy model applied to the original dataset, and
the bottom row indicates performance curves for the dual input toy model applied to
the augmented dataset.
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Figure 4.13: Precision-Recall and ROC curves for the Dual input Resnet 34
model. Left: Precision-Recall curves showing performance of the dual input Resnet
34 model on each image type. Right: ROC Curves showing qualitative performance
of this model on each colony type compared to a random classifier (black line). The
top row indicates performance curves for the dual input Resnet 34 model applied to
the original dataset, and the bottom row indicates performance curves for the dual
input Resnet 34 model applied to the augmented dataset.
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Table 4.2: Prediction accuracy of each model over multiple runs. Average
proportion of the test images correctly classified in both the validation and testing
sets when models are trained with or without augmented images. Each row represents
the model type (both the toy model and modified Resnet 34), grouped by the number
of inputs. Each column indicates the image set (validation or testing images), groped
by whether augmented images were included in the training set. Each cell shows the
average accuracy score obtained across the 10 models within one standard deviation.
Green shaded cells indicate best performing model given an image set, while orange
indicates the worst performing model.

Distributions of prediction scores across 10 instances of the single input toy model
are shown in Figure 4.14 to visualize stochastic changes in the accuracy of the model
applied to the testing images. From this visualization we see that each model performs
very well at classifying white and opaque colonies, and that each model incorrectly
classifies most sectored colonies as either white or opaque.

4.4 Discussion

Controlling for the formation of white and opaque colonies is easier when the
experiment incorporates known knowledge about what “locks” colonies into one phe-
notype over the other. However, this is not necessarily the case for colonies exhibiting
both white and opaque phenotypes simultaneously. For sectored colonies, it is no-
ticeable that a white-to-opaque switching event (or vice-versa) had occurred. For
homogeneous colonies it is much harder to determine whether or not a switching
event took place at all.

Since most colonies in our dataset are homogeneous (either fully white or fully
opaque), each model has a sufficient amount of training data to adequately classify
these types of colonies. In contrast, since we have a lack of sectored colony data
in the images, models have insufficient performance on correctly classifying sectored
colonies. When we included augmented data in the training process, we show a
slight improvement in the qualitative performance of each model toward accurately
classifying all colony types. In particular, the ROC plots indicate that sectored colony
classification had the most improvement overall across the four models considered in
this work.
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Figure 4.14: Distribution of prediction scores for the single input toy model
without data augmentation. Histograms showing the distributions of the accuracy
scores for true and predicted class pairs for all 10 instances of the same model. The
main diagonal corresponds to the 10 model accuracies with the heights of the bars
indicating how many models achieves this accuracy score, while off diagonal areas
indicate proportions of colonies misclassified for each instance.
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While we have shown that inclusion of augmented images leads to a positive
improvement on model performance, it is possible to bolster performance even further
by under-sampling from the data available in addition to using synthetic images. At
present, no under-sampling has been performed in this work; only synthetic colony
images were injected into the training process to create a balanced dataset. However,
because the difference between the quantity of white and sectored colonies is very
high, a large quantity of synthetic images are needed to obtain a balanced dataset.
Since the synthetic images all exhibit the same features, redundancy may become
an issue. In contrast, under-sampling may be used to reduce the amount of images
from over-represented classes, thus helping to achieve an equitable balance between
image classes while potentially sacrificing some feature information from the over-
represented class. Training a neural network that captures all primary features found
in the real and synthetic images independently should lead to a higher increase in
model performance over simply adding synthetic data to a large real image set. I
suggest that an equitable approach be considered for designing the set of training
images that both incorporates a balance of real and synthetic data across all image
classes in the training process.

While cultivating C. albicans on CHROMagar allows for visual differentiation of
white and opaque colonies after growth, Sabouraud’s Dextrose Agar (SDA) is another
media commonly involved with cultivation of experimental C. albicans. One reason
for this is that the media has been commercially available for significantly longer than
CHROMagar which was first reported in the 1990s [121, 124]. While CHROMagar
and SDA are both types of chromogeneic media, CHROMagar allows for a much more
clear differentiation of white and opaque colonies than SDA media, whereas in SDA
media differentiation between the colony types is very difficult to immediately notice.
Chapter 5 will explore the performance of the the models used here on this different
media to test the limits on their predictive power.

4.5 Conclusion and Future Work

This Chapter discussed the construction of a computational framework for count-
ing and quantifying C. albicans colonies undergoing white-opaque phenotypic switches.
To accomplish this task, we extract the colonies from the images using circle detection
and train deep learning models to classify colonies as white, opaque, or sectored. In
addition, we introduced a framework for training deep learning models that include
additional metadata such as colony size as a secondary input. In our results, we
showed that using circular feature extraction coupled with deep learning for image
classification efficiently and sufficiently produces human comparable colony counts.
This pipeline will serve to significantly reduce manual labor for future chromogenic
colony quantification.

We have demonstrated the usefulness of our pipeline in quantifying colonies grow-
ing on CHROMagar media. However, there are other useful media involved in cul-
tivation of C. albicans that will serve as additional training data to improve the
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generalizability of the pipeline discussed in this Chapter. In the next Chapter, we
will extend the applicability of this pipeline by introducing additional datasets for
training our models that include images of colonies grown under SDA media, aiming
to achieve a goal of applying this framework toward large quantities of colony image
data where manual annotation becomes intractable.



Chapter 5

Counting Microbial Colonies

This chapter covers prior work with Dr. Teal Brechtel from the University of
Massachusetts, Amherst as well as work in progress in collaboration with Dr. Clarissa
Nobile, Austin Perry, Daravuth Cheam, and Dr. Ruihao Li at UC Merced. I led
the development of the methodology used in this chapter and wrote the text for each
section. Austin Perry, Dr. Ruihao Li, Dr. Teal Brechtel, and Daravuth Cheam
curated the image data that was used to test the methodologies in this work. Examples
of the images used in this work are provided in Appendix C.

5.1 Introduction

This chapter will demonstrate how coupling deep learning with traditional feature
detection is capable of resolving detection problems where traditional feature extrac-
tion alone is inadequate for a subset of images. We will demonstrate the effectiveness
of this strategy on two datasets, one where traditional detection is okay, and one
where it is not. We will discuss the pitfalls that may arise when using traditional
detection methods alone and how the integration of deep learning is able to aid in
addressing some of these issues.

In Chapter 4, I have shown that we can classify white and opaque colonies effi-
ciently under my proposed computational approach. However, the dataset that was
used in this chapter is very small and contains only one type of growth media. When
the model is tested on images of colonies grown on a different media, the performance
of the model suffers. This behavior is because the model was trained to recognize
colonies on CHROMagar media but was never trained to recognize colonies on a dif-
ferent media. This chapter will extend upon this work by training and applying these
models on additional image data and multiple media types and will demonstrate high
accuracy in segmenting colonies from both media types.

In this Chapter, we apply the techniques discussed in this dissertation toward four
additional large datasets of images containing plated yeast colonies. We will use two
of these image sets to demonstrate that for the colony counting problem, traditional
circle detection with occasional image preprocessing is not always a simple solution.

100
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We will use the other two image sets to extend upon the work of Chapter 4 by
demonstrating its generalizability toward images of different growth media.

The first dataset considered is a collection of images of plated S. cerevisiae colonies
with the [PSI+] prion phenotype on agar media, where the images show the bottom
of each plate. The second dataset is a collection of five images of plated bacterial
colony biofilms. We will show in this Chapter that edge detection methods alone are
inadequate in segmenting the colonies from the second set of images and thus attempt
to integrate deep learning into the colony counting process.

The third dataset is an extension of the dataset used in Chapter 4 with additional
images of CHROMagar plates containing between 4 and 250 colonies. The fourth
dataset contains 60 images of C. albicans colonies plated on Sabouraud Dextrose
Agar (SDA) media. The primary difference in this dataset compared to the former
one is that all colonies are visually similar from above, making it difficult and tedious
to distinguish between white and opaque colonies by eye.

Before discussing further applications of the deep learning frameworks throughout
this dissertation in more detail, we must first discuss the necessity of using deep
learning in terms of whether a traditional approach will obtain similar results to a
deep learning model while also saving time. In the first half of this Chapter, we will
address the colony counting problem by showing when traditional circle detection
methods fail, integrating deep learning helps provide a window to finding a solution
to the colony counting problem. For the second half of this Chapter, I will extend
upon the work in Chapter 4 for improving colony detection and classification on C.
albicans colony images. More specifically, I will demonstrate the generalizability of
our deep learning models toward classifying colonies from different growth media.
This section aims to demonstrate the usefulness of deep learning to quantify colonies
where manual annotation is more prone to errors depending on the type of media
used to cultivate C. albicans colonies.

5.2 Analyzing Performance of Circular Object De-

tection for Colony Images

In this section we will talk about situations where the use of deep learning may
or may not be necessary for general colony counting. For this section, the assumed
problem we are aiming to find an efficient solution for is a ballpark estimate of total
colony counts across large numbers of plates.

The image sets we use for this include [PSI+] colonies taken from the bottom of
the plate. Here we assume that the composition of the colonies in the images are
already known. What we do not have are the numbers of colonies per plate. To
aid in our approximation for the number of colonies in each image, we will use four
important properties found within the [PSI+] colony images. First, at a local level
colonies appear circular to the naked eye. Second, there is a fair amount of contrast
between each colony and the plate. Third, the variation in the color of each colony as
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depicted in this images is relatively small, suggesting colonies appear homogeneous
at the naked eye. Fourth, other circular objects of similar sizes to the colonies in each
image are not present; the only other circular objects in each image are the plates.
All of these conditions motivate the application of a circle detection algorithm toward
each image in order to count the number of colonies present in each image and segment
the regions of interest.

The second dataset we use in this section contains five images of plates containing
20-200 bacterial colonies. The colonies in this dataset each have the same properties
as the colonies from the [PSI+] colony image dataset above. However, the weakest
property in this set is the visual distinction between colonies and the plate. We will
show that circle detection alone is not enough to segment colonies from these images,
and as such, additional processing of the images is required.

For the work in this Chapter, we extensively utilize the circle Hough transform
(CHT) for circular object detection. In the next section we provide details about how
this method works when considering candidates for circular objects in an image.

5.2.1 More about the CHT Method

Originally a method used to detect lines in an image, CHT has been adapted to
detect imperfectly round objects of a given radius. This method is typically applied
on single-channel or grayscale images, since its performance relies on the result of
an edge detection algorithm such as the Canny edge detector [24]. As stated earlier,
the images we wish to analyze need to have a high enough contrast between the
colonies and the plate; this is because edge detection seeks to find large changes in
local intensity. The locations of detected edges are important; the arrangement of
edge pixels in a circle will be used for circle detection, while the range of radii of the
arrangement in pixels approximate the size of the circle.

The equation for a circle of radius r in the x-y plane centered at the point (a, b)
is given by

(x− a)2 + (y − b)2 = r2. (5.1)

To detect all possible circles of radius r in the original image, one has to find all
possible parameter pairs (a, b) that are potential candidates for circle centers. What
CHT does is map a collection of points in Cartesian space to a circle in Hough space
which represents the space of parameters a-b. In our case, each pixel represents a
single point in Cartesian space, and each pixel is mapped to a circle of pixels of radius
r in the Hough space. Next, a corresponding matrix called the accumulator is created
to represent the number of circles that cover each given pixel in the Hough space.
This is considered an intensity representation for the number of circles that pass
through each pixel in the Hough space. The main idea of CHT is to find the regions
in the accumulator matrix that achieve local maxima relative to all other entries in
the accumulator matrix. The location of these local maxima indicate locations of the
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centers of circles of a pre-determined radius in the original image. Each step of this
process is visualized in Figure 5.1.

At the start of the algorithm, the original image goes through a separate edge
detection algorithm (Canny [24] or Sobel [30,110,152]) to reveal the points of contrast
to be used in the next step. The result is then stored as a separate image. Next, the
accumulator matrix corresponding to the locations of the centers of circles of radius
r is initialized to zero. For each point that appears in the edge detection step, the
next step is to map this point to a circle in the Hough space whose center is the same
as the location in Cartesian space. For each section in the Hough space that circle
covers, the corresponding location in the accumulator matrix is incremented by one.

The next step is to find the local maxima in the accumulator matrix arising
from the intersection of multiple circles in the Hough space. These maxima are
found through the voting scheme used when updating the accumulator matrix in
the previous step. The points that received a high number of votes are marked as
potential candidates for the centers of circles in Cartesian space. Finally candidates
are filtered out based on the intensity of each maximum relative to the radius of
the circle and detection sensitivity, then the candidates for circle centers are chosen.
Further work is done for optimizing the radius, but we do not discuss this here.

We use the Matlab function imfindcircles to implement the circle Hough trans-
form for finding circular objects in images. This function uses the Atherton-Kerbyson
method [6] by default in order to quickly construct the accumulator matrix. This
function also requires either a single value or a 2-vector containing the minimum and
maximum radius respectively for detecting circles in the input image. The sensitiv-
ity parameter sets a threshold for the value of the local maxima in the accumulator
matrix for each radius, allowing us to detect imperfect circular objects present in the
image. Depending on the composition of colonies in the images, different configura-
tions of imfindcircles are necessary. In the subsections below, we configure and
apply imfindcircles independently for additional image sets.

5.2.2 CHT Implementation: [PSI+] Colony Images

To detect the plates in the images, we set the sensitivity to 0.98 and 0.99 and the
radius range to 450-550 pixels. A high sensitivity is used since the circular objects–
the plates–we wish to detect are large with potentially imperfect shapes. To speed
up computational time for detecting the plates, we re-scale the dimension of all the
original images by one third before implementing imfindcircles. Once obtaining
the center and radius, the location of the center is reciprocally re-scaled so that the
center corresponds to the same location in the original, un-scaled image.

For each circle that was detected in the original image, we crop a square region
around the detected circle plus up to 20 pixels on each side to ensure that the entire
plate is contained in the image. The result is then saved as a separate image for further
analysis. Due to the position of the camera relative to the plate, small variances in
the image sizes are apparent, with dimensions ranging from 525 to 540 pixels per
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Figure 5.1: Visualizing steps in the circle Hough transform. Application of the
circle Hough transform to a sample image of yeast colonies on a petri dish. (Top left):
The original image. (Top right): The image was converted to grayscale followed by
a Canny filter to locate the edges between pixels. The thresholding value was chosen
based on Otsu’s method. (Bottom left): The accumulator matrix corresponding
to the edges found in the original image. A circle of radius 9 pixels centered at
each edge pixel was constructed, and the number of circles that cross each pixel
is recorded. Darker pixels indicate less circles passing through them, while lighter
pixels have more circles passing through them. The local maxima in the accumulator
matrix (the isolated white regions) are potential candidates for the centers of circles
of radius 9 pixels corresponding to the locations of the circles in the original image.
(Bottom right): The original image with the circle Hough transform performed using
the Matlab function imfindcircles. The centers of the detected circles correspond
to the peaks of the accumulator matrix on the bottom left.
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Figure 5.2: Flowchart of the colony extraction process on the [PSI+] yeast
colony image set. At the start, we have a collection of images showing five plates
each. A circle Hough transform algorithm is implemented in Matlab to extract the
center and size of the plates. Each plates is then cropped and saved as a separate
image for further analysis. For each plate, we run a second circle Hough transform in
Matlab set to detect individual colonies and record the total number and locations of
all the colonies in each image. The process is repeated for each of the images of five
plates in the collection before termination.

cropped image.
We then implement imfindcircles a second time on the cropped images in order

to detect the colonies. Here, we set the sensitivity to 0.95 and the radius range to
10-40 pixels. The radius range was chosen based on the colony size relative to the
dimensions of the image and is left wide enough for detecting feasibly sized colonies
from the images. The location of each colony and the total number of colonies in
each separate image is recorded. The process is repeated for all the individual plates
detected. The entire image processing workflow is shown in Figure 5.2.

5.2.3 Measuring Accuracy of CHT

The circle Hough transform is an excellent method for detecting circular objects
in images. However, the method itself has computational drawbacks. First, the circle
Hough transform relies on the result of an edge detection algorithm, such as Canny [24]
or Sobel [30,110,152], to build the accumulator matrix. As such, the objects of interest
in the image must have enough contrast between the object and the background in
order for the edge detector to correctly segment the image. Technical factors such as
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image compression can also introduce regions with gradients smaller or larger than
an uncompressed image. As such, these factors can affect the accuracy of the circle
Hough transform by making it more difficult for the edge detection step to locate
the object of interest. Second, the algorithm can capture other circular objects that
you do not intend to be detected. The image data must be chosen carefully as to
ensure that only the circular objects you wish to examine are detectable. The most
convenient approach is to ensure that the objects you want to analyze have a shape
unique to every other object in the image. Any circular objects that you do not want
to have detected should either be absent from the image or of a radius size outside
the desired range.

The third issue is that imfindcircles explicitly requires a range of possible radii
for objects to detect. In the case of image data, the units for radii are usually in
pixels. Therefore, image acquisition methods would need to ensure that all images
to be analyzed are of similar dimensions. A common tactic would be to use a large
range of radii to account for a wider range of sizes for each object present in an
image. However, this leads to another major drawback of the method which is high
computational complexity. To find circles of different radii in the image, the algorithm
requires a 3D accumulator space to track all the possible candidates for circles in the
original image. Each accumulator matrix is used to find circles of a single radius, and
so the algorithm would have to store a separate accumulator matrix for each radius
in the range you want to search. Therefore, circle detection for objects with larger
ranges of radii not only becomes more expensive as the range increases, but in the
extreme case becomes computationally intractable.

Even if the range of radii for desired circular objects is known, another problem to
resolve is how many circular objects detected are of the desired objects and similarly,
how many are overlooked. The sensitivity parameter in imfindcircles allows for
a tolerance of imperfection when detecting circular objects, with higher sensitivity
increasing such tolerance. Finding the optimal value for sensitivity in practice will
depend on the data itself, as we will demonstrate in this chapter.

To analyze the accuracy of the circle Hough transform implementation, we apply
the method to 50 images of plates containing [PSI+] colonies. Each of the 50 plates
have corresponding colony counts, while corresponding manual annotations are avail-
able for 10 out of these 50 images indicating the presence of a colony. The comparison
between the total number of detected circles and the number of colonies counted by
hand for each plate using both counting methods is shown in Figure 5.3. We use
Adobe Photoshop Elements 11 to overlay each image containing the detected circles
on top of their corresponding hand-counted image. The top layer is set to 50% opac-
ity so that the hand counts and the algorithm counts are both visible before saving
the result as a separate image. Next, we use Inkscape to mark every detection with
color coded circles. We use the hand-counted plates as the true colony marker, and
we use the detections from the circle Hough transform to test whether a colony was
successfully detected. We mark “True positives” as colonies that were successfully
detected, “False positives” as detections of non-colonies, and “False negatives” as
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Figure 5.3: [PSI+] colony counts. Scatter plot showing the number of colonies
counted using both methods. Each point represents a plate with a given colony count
obtained by hand (x-axis) and using the circle Hough transform (y-axis). Points that
lie on the black line indicate matching counts from both methods. Since more points
appear below the line, this suggests that the circle Hough transform often under-
counts the number of colonies actually present in the images.

colonies that failed to be detected. The total marks for these groups are recorded.
The process above is repeated for a total of 10 plates (5 from ”high 10 1” and 5 from
”minus 10 1”). The counts are shown in Table 5.1.

We note that a majority of the 50 hand-counted plates had a higher total colony
count than from the use of the circle Hough transform, with the error between the
counts of both methods differing by at most 15 colonies. Under the more detailed
analysis, we see that the number of true positives is always less than the actual
number of colonies, indicating the presence of colonies that were undetected (false
negatives).

To test the effects of local colony density and environmental effects on the accuracy
of the circle Hough transform, we develop a pipeline extracting the location of the
annotations of the colony. Before this operation can be performed, we must first
complete the annotation of the counted images (Figure 5.4). The portion of the
image containing the annotations are extracted, with each dot made small enough so
that they will not overlap. The region of the annotations is made square and resized
to 1000x1000, such that the center of the image corresponds directly to the center of
the plate. Each dot is found by finding all the connected components in the image (i.e.
the groups of pixels comprising each dot) and individually estimating and recording
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Table 5.1: Error analysis for colony detection. Table of true positives (TP), false
positives (FP), and false negatives (FN) for the 10 detailed annotated plate images.

Plate True Counts TP FP FN
1 162 152 0 10
2 108 101 1 8
3 128 123 1 7
4 116 113 1 4
5 154 136 1 16
6 126 146 0 13
7 126 123 3 3
8 173 160 3 13
9 152 140 3 3
10 104 98 2 2

Figure 5.4: Accuracy analysis pipeline for [PSI+] colony images. Process
for checking the accuracy of the circle Hough transform on the yeast colony image
set. The entire process is shown in the flowchart in (A). Each plate used for further
analysis has an image showing the hand-marked colonies with total counts (B) and
a second image of the same plate that underwent detection using the circle Hough
transform (C). Image (C) is set to 50% opacity and laid on top of image (B) in order
to produce image (D) showing which colonies are marked and detected. The location
of any true positives, false positives, and false negatives are marked by hand as shown
in image (E).
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Figure 5.5: Pipeline for extracting annotations from the images. (A) Pro-
cess of extracting the approximate location of each colony in the images using the
annotations. Using the annotated images (B), we extract the annotations (C) and
resize them to 1000x1000. The colors of the annotations are chosen so that they are
clearly distinct from the background, while all annotations are made small enough
so that they are non-overlapping. The number of dots present in the annotations is
estimated by finding the number of connected components of (C). The centroid of
each component is computed and plotted in (D) based on the color corresponding to
each dot.

their centroids. Each dot is placed into one of four tiers based on their distance from
the center of the plate (see Figure 5.5). Dots within the first 25% of the plate radius
are in the first tier. Dots between the 25% and 50% radius are in the second tier.
Dots between the 50% and 75% radius are in the third tier. Dots between the 75%
radius and the plate border are placed in the fourth tier. The process is shown in
Figure 5.5.

We find that nearly all false positives are in a close vicinity to the plate border
(Figure 5.6, left), suggesting that the border itself inhibits the accuracy of the circle
Hough transform. Analogously, border-adjacent colonies are what previous studies
tend to ignore in their analyses, and so this result provides additional insight into the
trend of why the inclusion of border colonies complicates colony counting.

We find that most of the false negatives appear in the first and fourth tiers of the
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plates (Figure 5.6, right). Furthermore, most false negatives appear to be adjacent to
other colonies where the distance between their approximated colony centers is less
than one colony diameter, suggesting non-isolated colonies have a higher likelihood
of being undetected. The latter is expected since the edges of the colonies would be
rendered hidden when two or more colonies are in contact.

We then have our own measure for analysing the algorithm accuracy and efficacy
of the circle Hough transform. This allows us through trial-and-error to estimate
an optimal sensitivity parameter for detecting the [PSI+] colonies in this dataset
(Figure 5.7).

5.2.4 U-Net + CHT: Addressing a Detection Problem in
Bacteria Colony Images

This section explores the application of CHT and the deep learning framework
developed in Chapter 3 to a dataset of five bacterial colony images. The details of
the dataset are provided in Appendix C.1. Here we demonstrate the direct application
of CHT to counting these bacterial colonies is insufficient, and thus we turn to deep
learning to resolve issues with counting the bacterial colonies in these images.

Plate images were first extracted from the original images with imfindcircles

using a radius range of 450-550 pixels and sensitivity of 0.985. Extracted plates were
then resized to 1024x1024. Next imfindcircles was applied to each extracted plate
using a radius range of 10-40 pixels and sensitivity of 0.95.

Figure 5.8 (top) shows an example of imfindcircles applied to one of the bacte-
rial colony images and resulting circular objects detected. In each of the five cases we
find that all detected objects lie on the border of the plate. Closer visual inspection
showed that no detection was of a colony in the images, rendering imfindcicles

insufficient for our problem on the original images. We then turn to the U-Net archi-
tecture described in in Chapter 3 as an alternative solution to the bacterial colony
counting problem in this section.

The synthetic images we use to train the U-Net architecture are generated using
the process described in Appendix C.2. A total of 200 synthetic images are generated
with corresponding binary ground-truth masks depicting the locations of colony pix-
els. From these images, 150 are used directly in the training process, and 50 are set
aside for validation. The five bacterial colony images we started with are used as the
testing set following the process of training U-Net. We utilize the same configurations
and implementation for training U-Net as described in Chapter 3 and Appendix A.4
respectively, with the exception of the number of output classes which is set to 2 since
the objective is to obtain binary segmentations of colony versus background.

After U-Net has been trained, the five testing images were used as input to U-
Net and corresponding binary segmentations of the images were obtained as output.
The resulting output ideally has the highest possible contrast between colony and
background pixels. Figure 5.8 (bottom) shows an example of a binary segmentation
of one of the bacterial colony images as output of the trained U-Net. We then use
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Figure 5.6: Analyzing false positive and false negative colony detections.
The top row shows plots of the relative location of any false positive detection (left)
and undetected colony (right) with respect to the center of the plate. For each colony,
the distance between its center and the plate’s center is recorded and the colony is
placed into one of four tiers based on its distance from the plate’s center. The boxplot
showing the distribution of distances from the plate center for all false positives is
shown on the bottom left. From the 10 plates analyzed further, 16 false positive
detections were recorded, with 15 of them found in the tier closest to the plate’s
border. The histogram showing the distribution of distances from the plate center
for all false negatives is shown on the bottom right. The distance between each false
negative and its five nearest neighbors is recorded in the histogram. Neighbors of
false negatives tend to be within 100 pixels away under our standardization. This
suggests that colonies that form tight clusters of two or more colonies are more likely
to be undetected by the circle Hough transform.
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Figure 5.7: Finding the optimal sensitivity parameter. Ratio of detections as
a function of the sensitivity parameter. For each value of the sensitivity parameter
between 0.9 and 1, the circle Hough transform was performed on the same 50 images
and the number of detections was recorded and divided by the true number of colonies.
The red line is where the number of detections is equal to the true number of colonies.
The plot suggests that a sensitivity between 0.96 and 0.97 may be suitable for our
image set, but more analysis is needed to gauge the accuracy under these parameter
values.
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Figure 5.8: Using imfindcircles may be ineffective without preprocessing.
Top Left: An example of one of the five bacterial colony plate images used in this
analysis. Top Right: Applying imfindcircles results in circular object detections
only at the edge of the plate. All detected objects are false positives, with no internal
colonies detected. We then apply U-Net to the original image to obtain a binary
segmentation (Bottom Left) of the original image. We then apply imfindcircles to
the segmentation (Bottom Right) which results in colonies being detected inside the
plate.
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colony extraction methods described in Appendix A.3 to locate the colonies in the
binary images. As a result, many detections were found, nearly all of them were
bacterial colonies, with a few within approximately one colony diameter distance of
the border of the plate.

Our results further demonstrate an issue with using circle detection methods for
locating objects that have insufficient contrast between the foreground and back-
ground. Our results provide more information on the limitations of using circle de-
tection methods directly on images without any preprocessing. The biggest limitation
is insufficient contrast between foreground objects and background. In the images,
[PSI+] colonies have high contrast with the plate surface, whereas the contrast be-
tween the bacterial colonies and the plates is less pronounced. However, such changes
in contrast lead to fundamentally different results when detecting circular objects
using edge detection algorithms. Here we have shown the potential for how deep
learning aids in developing a solution to the colony counting problem by providing a
framework to preprocess image data for the application of circle detection methods
suited for colony counting.

5.3 Generalizing Candida albicans Colony Classi-

fication using Additional Datasets

In this section, we train and apply the deep learning architectures developed
in Chapter 4 on a larger and more diverse dataset of C. albicans images. More
specifically, we include two additional datasets of C. albicans colonies on top of the
dataset introduced in Chapter 4. Examples of images from these datasets are shown
in Figure C.1. The first additional dataset contains 69 images of plated C. albicans
colonies growing on CHROMagar media. The second dataset contains 39 images of
plated C. albicans colonies growing on Sabouraud Dextrose Agar (SDA) media.

For this section, we train the instances of the four neural networks in Chapter 4
without data augmentation in three scenarios: 1) the 15 CHROMagar images with the
additional 69 CHROMagar images introduced here (henceforth known as the extended
CHROMagar dataset), 2) the 39 SDA images, and 3) the combination of the datasets
for the first two scenarios. For each scenario, the training setup, learning rate, loss
function and accuracy metrics considered are the same as described in Section 4.2.6.

5.3.1 Performance on the Extended CHROMagar Dataset

A total of 84 images of plates with C. albicans colonies growing on CHROMagar
media were used here (Example shown in Figure C.1). From these, 60 images are
used for training our networks, 16 are set aside for validation, and 8 are for testing
the performance of each network following the training process. For the testing set,
we extracted 175 white colony images, 20 opaque colony images, 2 sectored colony
images, and 64 background images respectively.
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Summary of Model Performance

We plotted precision-recall and ROC curves for each of the colony classes and
estimated the area under each curve to obtain qualitative performance metrics for
each model (see Table 5.2). All four models show comparative qualitative performance
on predicting colonies in the CHROMagar dataset, with each ROC metric at least
0.98 on white, opaque, and background images.

The quantitative performance metrics for each model on each of the image classes
are summarized in Table 5.3. All models attained an F1 score of at least 0.97 on their
performance for predicting white colonies, with each model attaining a precision of
at least 0.98 and a recall of at least 0.96.

Out of the four models trained and tested on the CHROMagar images, the single
input Resnet 34 model achieved the highest performance, attaining an accuracy of
97% across the entire test set. The single input Resnet 34 model is the only one of the
four that correctly predicted at least one colony to be sectored in the CHROMagar
images and has also attained the highest F1 score for correctly predicting opaque
colonies.

The dual input toy model has the lowest performance with an accuracy of 0.91 on
the entire image set, where the primary penalty to the accuracy is due to the lower
prediction accuracy on background images. This model also achieved the lowest recall
score (0.57) for opaque colonies, the main contributor to its 0.73 F1 score on opaque
colonies. A likely reason for the drop in performance is due to many background
images being misclassified as opaque colonies (see Figure C.5).

Table 5.2: Area under the curve (AUC) metrics for model performance
on each class of images in the CHROMagar dataset. Table of AUC values
under the precision-recall (PR) and receiver operating characteristic (ROC) curves for
each image class respectively on each of the four models applied to the CHROMagar
images.

Model
(PR, ROC)

White
(PR, ROC)

Opaque
(PR, ROC)

Sectored
(PR, ROC)
Background

Single Input
Toy Model

(0.997, 0.994) (0.918, 0.991) (0.026, 0.858) (0.981, 0.990)

Dual Input
Toy Model

(0.984, 0.970) (0.942, 0.990) (0.019, 0.811) (0.878, 0.943)

Single Input
Resnet 34

(0.997, 0.994) (0.927, 0.985) (0.168, 0.904) (0.971, 0.989)

Dual Input
Resnet 34

(0.997, 0.994) (0.907, 0.991) (0.035, 0.831) (0.977, 0.981)
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Table 5.3: Accuracy analysis of the performance of the four deep learning
models on the testing images in the extended CHROMagar dataset. Table
of overall accuracy (Acc), precision (Pr), recall (Re), and F1 scores computed on
each colony class across four deep learning models utilized. Precision is computed by
counting, for all images with a given true label, the number of those colonies correctly
predicted to have that label. Recall is computed by counting, for all images predicted
to have a given label, the number of those colonies correctly predicted to have that
label. The F1 score is the harmonic mean of precision and recall.

Model Acc
(Pr, Re, F1)

White
(Pr, Re, F1)

Opaque
(Pr, Re, F1)

Sectored
(Pr, Re, F1)
Background

Single Input
Toy Model

0.96
(0.99, 0.96,

0.98)
(0.95, 0.76,

0.84)
(0.00, 0.00,

0.00)
(0.86, 1.00,

0.92)
Dual Input
Toy Model

0.91
(0.99, 0.96,

0.97)
(1.00, 0.57,

0.73)
(0.00, 0.00,

0.00)
(0.70, 1.00,

0.83)
Single Input
Resnet 34

0.97
(0.98, 0.98,

0.98)
(0.95, 0.90,

0.93)
(0.50, 0.33,

0.40)
(0.94, 0.97,

0.95)
Dual Input
Resnet 34

0.96
(0.99, 0.98,

0.99)
(0.85, 0.89,

0.87)
(0.00, 0.00,

0.00)
(0.95, 0.94,

0.95)

5.3.2 Performance on the SDA Dataset

A total of 39 images of plates with C. albicans colonies growing on SDA media were
used here (Example shown in Figure C.1). From these, 27 images are used for training
our networks, 8 are set aside for validation, and 4 are for testing the performance of
each network following the training process. For the testing set, we extracted 335
white colony images, 64 opaque colony images, 12 sectored colony images, and 78
background images respectively.

Summary of Model Performance

We plotted precision-recall and ROC curves for each of the colony classes and
estimated the area under each curve to obtain qualitative performance metrics for
each model (see Table 5.4). All four models show distinctions in performance across
each classes of images in the SDA dataset. The dual input toy model exhibits the
best performance on background prediction, but also exhibits the worst performance
on predicting images in all other classes. The single input toy model ranks high in
terms of qualitative performance between each of the image classes.

The quantitative performance metrics for each model on each of the image classes
are summarized in Table 5.5. All models attained an F1 score of at least 0.94 on their
performance for predicting white colonies, with each model attaining a precision of
at least 0.95 and a recall of at least 0.91.

Out of the four models trained and tested on the SDA images, the dual input
Resnet 34 model achieved the highest performance, attaining an accuracy of 91%
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across the entire test set. While multiple models achieved relatively similar perfor-
mance on predicting background images, the dual input Resnet 34 model also achieved
the highest F1 score on correctly predicting white and opaque colonies.

The dual input toy model has the lowest performance with an accuracy of 0.87 on
the entire image set. Its low performance on the dataset as a whole is likely due to its
low F1 scores for opaque and background image prediction, which is the lowest across
the four models (see Figure C.9). Another reason for the low accuracy is due to the
class imbalance affected by the quantity of white colonies; this model also attained the
lowest precision for white colony prediction, with many white colonies misclassified as
background. In addition, most of the sectored colonies were misclassified as opaque
colonies, thus penalizing the recall of the model on opaque colony prediction (see
Figure C.9). The dual input Resnet 34 model had the opposite effect with most
sectored colonies being misclassified as opaque colonies (see Figure C.11).

Table 5.4: Area under the curve (AUC) metrics for model performance
on each class of images in the SDA dataset. Table of AUC values under
the precision-recall (PR) and receiver operating characteristic (ROC) curves for each
image class respectively on each of the four models applied to the SDA images.

Model
(PR, ROC)

White
(PR, ROC)

Opaque
(PR, ROC)

Sectored
(PR, ROC)
Background

Single Input
Toy Model

(0.954, 0.943) (0.928, 0.979) (0.086, 0.864) (0.832, 0.908)

Dual Input
Toy Model

(0.920, 0.911) (0.868, 0.956) (0.055, 0.760) (0.781, 0.869)

Single Input
Resnet 34

(0.960, 0.950) (0.938, 0.975) (0.143, 0.833) (0.863, 0.929)

Dual Input
Resnet 34

(0.955, 0.944) (0.940, 0.979) (0.059, 0.619) (0.833, 0.882)

5.3.3 Performance on the Combined CHROMagar + SDA
Datasets

Here, we retrain and apply the deep learning architectures developed in Chapter 4
on both the CHROMagar and SDA media images to test whether our networks are
able to accurately classify colonies from both media. The partitioning of the images
from this data is the same as described in this section. As a result, our dataset is
partitioned into 87 images for training, 24 for validation, and 12 for testing. For
the testing set, we extracted 510 white colony images, 84 opaque colony images, 14
sectored colony images, and 142 background images respectively.
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Table 5.5: Accuracy analysis of the performance of the four deep learning
models on the testing images in the extended SDA dataset. Table of overall
accuracy (Acc), precision (Pr), recall (Re), and F1 scores computed on each colony
class across four deep learning models utilized. Precision is computed by counting,
for all images with a given true label, the number of those colonies correctly predicted
to have that label. Recall is computed by counting, for all images predicted to have a
given label, the number of those colonies correctly predicted to have that label. The
F1 score is the harmonic mean of precision and recall.

Model Acc
(Pr, Re, F1)

White
(Pr, Re, F1)

Opaque
(Pr, Re, F1)

Sectored
(Pr, Re, F1)
Background

Single Input
Toy Model

0.91
(0.99, 0.92,

0.95)
(0.92, 0.80,

0.86)
(0.17, 1.00,

0.29)
(0.65, 0.96,

0.78)
Dual Input
Toy Model

0.87
(0.95, 0.94,

0.94)
(0.94, 0.59,

0.73)
(0.00, 0.00,

0.00)
(0.60, 1.00,

0.75)
Single Input
Resnet 34

0.90
(0.98, 0.91,

0.95)
(0.92, 0.81,

0.86)
(0.08, 0.33,

0.13)
(0.65, 0.96,

0.78)
Dual Input
Resnet 34

0.91
(0.99, 0.92,

0.96)
(0.94, 0.83,

0.88)
(0.00, 0.00,

0.00)
(0.67, 0.95,

0.78)

Summary of Model Performance

We plotted precision-recall and ROC curves for each of the colony classes and
estimated the area under each curve to obtain qualitative performance metrics for
each model (see Table 5.6). With images from both media present, any significant
differences in performance overall are less pronounced compared to the models trained
on images under one media. Overall, the single input toy model has the highest
qualitative performance between each class.

The quantitative performance metrics for each model on each of the image classes
are summarized in Table 5.7. All models attained an F1 score of at least 0.95 on their
performance for predicting white colonies, with each model attaining a precision of
at least 0.95 and a recall of at least 0.94.

Out of the four models trained and tested on the SDA images, the single input
Resnet 34 model achieved the highest performance, attaining an accuracy of 92%
across the entire test set. While all four achieved relatively similar performance on
predicting background images, the dual single Resnet 34 model achieved the high-
est F1 scores for performance on predicting colonies from all four classes, including
sectored colonies.

The dual input Resnet 34 model however has the lowest performance overall. This
model achieved the lowest accuracy on white and opaque colonies and thus likely has
an accuracy score affected by class imbalance due to the higher quantity of images in
both classes. Furthermore, while the single input toy model achieved the lowest recall
score for opaque colones, the precision of the dual input Resnet 34 model for opaque
colonies suffered, with approximately 18% of opaque colonies being misclassified as
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background (see Figure C.15).

Table 5.6: Area under the curve (AUC) metrics for model performance on
each class of images in the combined CHROMagar + SDA dataset. Table
of AUC values under the precision-recall (PR) and receiver operating characteristic
(ROC) curves for each image class respectively on each of the four models applied to
both the CHROMagar and SDA images.

Model
(PR, ROC)

White
(PR, ROC)

Opaque
(PR, ROC)

Sectored
(PR, ROC)
Background

Single Input
Toy Model

(0.975, 0.967) (0.911, 0.980) (0.109, 0.869) (0.899, 0.942)

Dual Input
Toy Model

(0.984, 0.972) (0.900, 0.975) (0.094, 0.868) (0.909, 0.956)

Single Input
Resnet 34

(0.971, 0.964) (0.930, 0.977) (0.132, 0.822) (0.919, 0.954)

Dual Input
Resnet 34

(0.978, 0.960) (0.799, 0.966) (0.171, 0.844) (0.877, 0.933)

Partitioned Accuracy

Since each of the four models here were trained on both the CHROMagar and
SDA images, it then leaves us to analyze the performance of the model on both test
sets independently. All four models demonstrate high precision on white and opaque
colonies across the board with the exception of the dual input Resnet 34 model (see
Table 5.11). Precision and recall scores on background images vary significantly,
with CHROMagar background images being classified correctly more often than SDA
background images, despite the quantity of CHROMagar background images being
less than in SDA. Furthermore, sectored colony predictions appear to be in small
number, with undercounting of sectored colonies and no more than two sectored
colonies being classified correctly in each model.

5.3.4 Discussion on Extended Data

The results of our pipeline demonstrate the generalizability and robustness of
deep learning models applied to larger training sets with additional media. In the
case of colony quantification, deep learning integration becomes a very useful tool
where human annotation becomes expensive. We have further demonstrated that for
SDA images, where colony types are much more difficult to distinguish by eye, that
deep learning provides an avenue for faster and comparable colony quantification to
that of human annotation.

The issues I encountered in Chapter 4 for classifying sectored CHROMagar colonies
are also apparent in the classification of sectored SDA colonies. Furthermore, we see
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Table 5.7: Accuracy analysis of the performance of the four deep learn-
ing models on the testing images in the combined CHROMagar + SDA
dataset. Table of overall accuracy (Acc), precision (Pr), recall (Re), and F1 scores
computed on each colony class across four deep learning models utilized. Precision
is computed by counting, for all images with a given true label, the number of those
colonies correctly predicted to have that label. Recall is computed by counting, for
all images predicted to have a given label, the number of those colonies correctly
predicted to have that label. The F1 score is the harmonic mean of precision and
recall.

Model Acc
(Pr, Re, F1)

White
(Pr, Re, F1)

Opaque
(Pr, Re, F1)

Sectored
(Pr, Re, F1)
Background

Single Input
Toy Model

0.89
(0.97, 0.93,

0.95)
(0.92, 0.71,

0.80)
(0.14, 0.25,

0.18)
(0.67, 0.99,

0.80)
Dual Input
Toy Model

0.91
(0.99, 0.93,

0.96)
(0.88, 0.76,

0.82)
(0.00, 0.00,

0.00)
(0.73, 0.98,

0.83)
Single Input
Resnet 34

0.92
(0.99, 0.93,

0.96)
(0.92, 0.86,

0.89)
(0.21, 0.50,

0.30)
(0.76, 0.97,

0.85)
Dual Input
Resnet 34

0.88
(0.95, 0.94,

0.95)
(0.73, 0.75,

0.74)
(0.14, 0.18,

0.16)
(0.80, 0.81,

0.81)

a disproportional drop in accuracy for sectored colony classification across all models
despite using additional sectored colony data. One of the primary reasons for this
discrepancy is that the quantity of available sectored colony images is still insufficient
for a deep learning model to recognize the features embedded within these images.
Many of these colonies are incorrectly classified as white, suggesting that each model
is likely overfitting to the white colony class due to the over-representation of white
colony images in the training process. One way to address overfitting when training a
neural network is to find a balance between the number of images of each class when
designing the training set. However, depending on the abundance of sectored colonies
in the experimental data, this might not be achieved unless the direction is to intro-
duce augmented or synthetic sectored colony images in the training set or reducing
the quantity of images in all other classes. This will further have to be done based
on the amount of data available across both media types to also ensure model colony
classification performance is similar for images of both media. This idea extends to
larger datasets with additional media types not used here; training a deep neural net-
work to recognize colonies across multiple media types is ideal when the same media
types are used in both training and testing deep neural networks. However, applying
the same neural network more generally will determine if fine-tuning is necessary for
improving classification performance on data containing features not present in the
original training set.

While in this chapter as well as in Chapter 4 we only considered two types of
deep learning models with dual input extensions, they are not in any way the state
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Table 5.8: Accuracy analysis of the performance of the single input toy
model on each testing set. Table of precision, recall, and F1 scores computed on
each colony class across all three image sets. Precision is computed by counting, for
all images with a given true label, the number of those colonies correctly predicted to
have that label. Recall is computed by counting, for all images predicted to have a
given label, the number of those colonies correctly predicted to have that label. The
F1 score is the harmonic mean of precision and recall.

Metric/Images CHROMagar SDA CHROMagar + SDA
Precision

White 0.97 (170 / 175) 0.98 (327 / 335) 0.97 (497 / 510)
Opaque 0.90 (18 / 20) 0.92 (59 / 64) 0.92 (77 / 84)
Sectored 0.50 (1 / 2) 0.08 (1 / 12) 0.14 (2 / 14)

Background 0.80 (51 / 64) 0.56 (44 / 78) 0.67 (95 / 142)
Recall
White 0.94 (170 / 180) 0.92 (327 / 357) 0.93 (497 / 537)

Opaque 0.75 (18 / 24) 0.69 (59 / 85) 0.71 (77 / 109)
Sectored 0.17 (1 / 6) 0.50 (1 / 2) 0.25 (2 / 8)

Background 1.00 (51 / 51) 0.98 (44 / 45) 0.99 (95 / 96)
F1 Score

White 0.96 0.95 0.95
Opaque 0.82 0.79 0.80
Sectored 0.25 0.14 0.18

Background 0.89 0.72 0.80
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Table 5.9: Accuracy analysis of the performance of the dual input toy model
on each testing set. Table of precision, recall, and F1 scores computed on each
colony class across all three image sets. Precision is computed by counting, for all
images with a given true label, the number of those colonies correctly predicted to
have that label. Recall is computed by counting, for all images predicted to have a
given label, the number of those colonies correctly predicted to have that label. The
F1 score is the harmonic mean of precision and recall.

Metric/Images CHROMagar SDA CHROMagar + SDA
Precision

White 0.99 (173 / 175) 0.99 (333 / 335) 0.99 (506 / 510)
Opaque 0.95 (19 / 20) 0.86 (55 / 64) 0.88 (74 / 84)
Sectored 0.00 (0 / 2) 0.00 (0 / 12) 0.00 (0 / 14)

Background 0.91 (58 / 64) 0.58 (45 / 78) 0.73 (103 / 142)
Recall
White 0.98 (173 / 177) 0.90 (333 / 369) 0.93 (506 / 546)

Opaque 0.83 (19 / 23) 0.74 (55 / 74) 0.76 (74 / 97)
Sectored 0.17 (0 / 1) 0.00 (0 / 1) 0.00 (0 / 2)

Background 0.97 (58 / 60) 1.00 (45 / 45) 0.98 (103 / 105)
F1 Score

White 0.98 0.95 0.96
Opaque 0.88 0.80 0.82
Sectored 0.00 0.00 0.00

Background 0.94 0.73 0.83
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Table 5.10: Accuracy analysis of the performance of the single input Resnet
34 on each testing set. Table of precision, recall, and F1 scores computed on each
colony class across all three image sets. Precision is computed by counting, for all
images with a given true label, the number of those colonies correctly predicted to
have that label. Recall is computed by counting, for all images predicted to have a
given label, the number of those colonies correctly predicted to have that label. The
F1 score is the harmonic mean of precision and recall.

Metric/Images CHROMagar SDA CHROMagar + SDA
Precision

White 0.98 (172 / 175) 0.99 (331 / 335) 0.99 (503 / 510)
Opaque 0.90 (18 / 20) 0.92 (59 / 64) 0.92 (77 / 84)
Sectored 0.50 (1 / 2) 0.17 (2 / 12) 0.21 (3 / 14)

Background 0.91 (58 / 64) 0.64 (50 / 78) 0.76 (108 / 142)
Recall
White 0.96 (172 / 179) 0.91 (331 / 364) 0.93 (503 / 543)

Opaque 0.90 (18 / 20) 0.84 (59 / 70) 0.86 (77 / 90)
Sectored 0.33 (1 / 3) 0.67 (2 / 3) 0.50 (3 / 6)

Background 0.98 (58 / 59) 0.96 (50 / 52) 0.97 (108 / 111)
F1 Score

White 0.97 0.95 0.96
Opaque 0.90 0.88 0.89
Sectored 0.40 0.27 0.30

Background 0.94 0.77 0.85
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Table 5.11: Accuracy analysis of the performance of the dual input Resnet
34 on each testing set. Table of precision, recall, and F1 scores computed on each
colony class across all three image sets. Precision is computed by counting, for all
images with a given true label, the number of those colonies correctly predicted to
have that label. Recall is computed by counting, for all images predicted to have a
given label, the number of those colonies correctly predicted to have that label. The
F1 score is the harmonic mean of precision and recall.

Metric/Images CHROMagar SDA CHROMagar + SDA
Precision

White 0.98 (172 / 175) 0.94 (314 / 335) 0.95 (486 / 510)
Opaque 0.90 (18 / 20) 0.67 (43 / 64) 0.73 (61 / 84)
Sectored 0.50 (1 / 2) 0.11 (1 / 12) 0.14 (2 / 14)

Background 0.95 (61 / 64) 0.69 (53 / 78) 0.80 (114 / 142)
Recall
White 0.98 (172 / 175) 0.92 (314 / 343) 0.94 (486 / 518)

Opaque 0.86 (18 / 21) 0.72 (43 / 60) 0.75 (61 / 81)
Sectored 0.50 (1 / 2) 0.11 (1 / 9) 0.18 (2 / 11)

Background 0.97 (61 / 63) 0.69 (53 / 77) 0.81 (114 / 140)
F1 Score

White 0.98 0.93 0.95
Opaque 0.88 0.69 0.74
Sectored 0.50 0.10 0.16

Background 0.96 0.68 0.81
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of the art. However, current literature on the use of metadata aimed at supporting
image classification model is scarce. As such, our framework opens the possibility
of integrating data such as colony size into deep learning models to improve the
predictive power of current models.



Chapter 6

Conclusions and Future Work

6.1 Summary

In this dissertation, I presented my research on the detection and analysis of com-
plex microbial colonies using traditional circular detection methods and integrating
deep learning for the analysis of lower level features in yeast to study prion protein
dynamics in Saccharomyces cerevisiae. Using this study as a base, I constructed a
framework where modeling and simulation with data-driven methods are able to com-
municate with one another to drive our understanding of the formation of multiple
colony level phenotypes. In addition, I also partially developed a similar framework
for the study of the formation of white and opaque colony regions in Candida albicans,
thus providing a tool for further study driving white-opaque switch events that can
be coupled with model-based approaches.

In Chapter 2, my collaborators and I constructed an agent-based model of bud-
ding yeast colony growth to study the size and shape of sectors due to budding and
nutrient limitation. Our results show that the process of budding has a significant im-
pact on local cell connectivity. Furthermore, when budding is coupled with nutrient
limitation, the two biophysical features act to promote the formation of well-defined
sector-like structures with highly variable sizes. Such features provide novel insights
into the formation of sectored phenotypes in yeast colonies and offer new windows of
interpretation of colony formation through a modeling lens.

In Chapter 3, I constructed a deep learning pipeline called [PSI]-CIC for auto-
mated quantification of sectored yeast colonies found in image data. One feature we
demonstrated was that synthetic training data resembling the experimental data is
integrable to the model training process when insufficient quantities of experimental
data are available. Through this approach, we showed that our framework is able to
produce accurate colony counting results comparable to human annotation, provided
that the output of the deep learning model produces adequate colony segmentations.
While other models aimed at plated colonies focus on direct image classification, our
framework is the first to consider a deeper level quantification of sector formation in
yeast colonies by integrating a traditional edge-based approach. This work opens a
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window of opportunity to study the formation of sectored phenotypes from colony
level data and together with the agent-based model of growing yeast colonies, offers a
framework for making meaningful model-driven inferences about what drives sector
formation in yeast colonies.

In Chapter 4, I constructed a second deep learning pipeline aimed at quantifying
colonies of C. albicans to efficiently identify white and opaque phenotypes from image
data. We also demonstrate the performance of deep learning models coupled with
additional metadata on colonies extracted from images as an aid for such models to
improve colony classification. While our approach on accurately identifying heteroge-
neous colonies was challenging, our method is able to accurately identify homogeneous
white or opaque colonies with considerable accuracy.

In Chapter 5, I also presented progress on using traditional circle detection on
colony images of different species and justified when it is feasible to couple deep
learning with traditional circle detection for the purpose of colony identification. We
demonstrate this idea using a bacterial colony dataset where traditional circle detec-
tion fails to capture colonies, but when preprocessed using deep learning methods
for image segmentation, significantly improves its applicability. Furthermore, we ex-
tended on our work for classifying C. albicans colonies using a larger and more diverse
dataset that included a second type of media where visual differentiation is extremely
difficult through manual approaches. We demonstrate that the deep learning models
trained on images of both media are able to accurately quantify white and opaque
colonies from both media. This data-driven framework of colony quantification can
then be coupled with a model driven approach so that similar meaningful interpreta-
tions and insights can be made on what drives phenotype formation in C. albicans.

6.2 Future Directions

While this framework for coupling model-driven and data-driven approaches can
help provide additional insights into the phenotype formation in yeast colonies, there
are still ways to refine this framework to provide additional insights into other features
within yeast colonies. While the study of such features lie beyond the scope of this
dissertation as it stands, I provide a few directions on how to extend the scope of the
work discussed.

6.2.1 Embedding Prion Aggregation into the Center-based
Model

In the last couple decades, many models have been proposed for studying pro-
cesses of prion aggregation in mammals [23, 35, 102, 129]. From these models, the
Nucleated Polymerization Model is one of the most widely accepted and used for
studying similar aggregation processes in yeast colonies [35]. It is important to note
that these models do not make additional assumptions about the domain at which
these processes occur, so it is unclear how space plays a role in the production of
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aggregates in either mammals or yeast. More recently, prion aggregation models were
extended to networks in order to study the spread of Alzheimer’s disease in human
brains [54]. While Alzheimer’s disease is not classified as a prion disease due to non-
transmissiblity, an argument is that since proteins involved with the disease act in a
prion-like manner [77], the same models can be adapted to study prion propagation in
yeast colonies. Furthermore, recent work by Lemarre et al. [92] proposed a model of
prion aggregation in yeast with aggregate transmission bias between mother-daughter
cell pairs and hypothesized that this bias contributes heavily to [PSI+] curing. How-
ever, the cumulative effect of this bias toward sector formation in yeast colonies on a
larger scale has not been investigated in detail.

One avenue of research would be to extend the cell-based model detailed in Chap-
ter 2 using a method that simultaneously addresses the lack of quantitative colony-
level information in the literature on the formation of sectored phenotypes in yeast
colonies and the impact of budding on prion aggregation between mother-daughter cell
pairs. Using the framework of Fornari et al. [54], it is possible to represent colonies as
a dynamic network of cells where individual cells would be represented as nodes, and
physically attached mother-daughter cell pairs are joined by edges (see Figure 6.1).
This network representation of a colony is independent of prion aggregation, which al-
lows us to embed a model of prion aggregation per cell without affecting the structure
of the network. For mother-daughter pairs joined by edges, existing prion aggregation
models can be adapted to include transmission of aggregates between cells. Lemarre
et al. [92] modeled aggregate concentrations using impulsive differential equations
where the concentrations in the mother and daughter cells change discontinuously
at the time of detachment. While models of prion aggregation exist for single and
budding cells [38, 70], they have not been applied to large-scale colony models, but
since budding is explicitly included in our center-based model from Chapter 2, it
is necessary to embed a model of prion aggregation where transmission is possible
throughout the entire period of budding division. Furthermore, a direct data-driven
application of this research would be to develop a method that takes this center-based
model with embedded prion aggregation and tests how emergent sectoring patterns
in this model closely resemble sectoring patterns in experimental yeast colonies. Such
work will allow researchers to create meaningful comparisons between the model and
entire yeast colonies from experimental data that will give us valuable insight into
the mechanisms driving the loss of the prion phenotype in yeast.

Possible Challenges

Since our cell-based model explicitly includes budding as a mechanism, one issue
that will arise is how to adapt a model of prion aggregation specifically to mother-
daughter pairs. The difficulty is due to changes in aggregate concentrations as a re-
sult of transmission between two cells of varying size, one of which is growing rapidly
while attached. One way we can address this is by modeling aggregate concentration
in both cells simultaneously. Fornari’s network approach [54] allows for aggregates
to diffuse across connected nodes, and Heydari’s method allows for aggregate diffu-
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Figure 6.1: Representing mechanisms of prion aggregation at multiple
scales. A model for prion aggregation at the molecular level is chosen first. At
the subcellular level, this model must be modified to account for transmission be-
tween two attached cells. Using the cellular representation of a yeast colony (top),
we can represent the colony as a network where nodes represent cells and attached
mother-daughter pairs are connected by edges. The same model of prion aggregation
is applied to each node, but each mother-daughter pair connected by an edge will have
an additional transmission factor accounting for aggregates moving between cells.

sion between mother-daughter pairs in three dimensions [70]. By modifying these
approaches for modeling aggregate transmission between attached mother-daughter
pairs in our center-based model, it is possible to establish a bridge between single-
and multi-cell aggregate dynamics.

Another issue that will arise is predicting when the first prion loss event will occur
between dividing cells. Assuming that the initial cell has a white phenotype, even if
all the parameters of a prion aggregation model remain constant and are equal for
all cells, varying division times add a layer of complexity to predicting the number
of divisions needed to produce the first cell with an opposing phenotype. If the
number of divisions required to produce this first loss event is significantly large, this
will also prove to be a computational challenge since the total number of cells will
also be significantly large. Before analyzing sector-like structures at a colony level-
scale, the issue of predicting when the first loss event will occur by modeling protein
concentrations of cells within a single lineage should be addressed. Lemarre at al. [92]
has done this using their proposed model, but it is unknown if for other models the
number of generations to the first loss event is significantly different.
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6.2.2 Deep-Learning for Sectored Colony Image Classifica-
tion

In Chapter 3, I implemented a pipeline designed to quantify colonies and their
sectors respectively. Through trial and error, I found that the application of this
pipeline had disadvantages due to the features inherent in the image set and the
dependency of diverse training data needed for a deep neural network to learn these
features. Here, I propose a couple ways where deep-learning methods can be used
to resolve these disadvantages and provide a basis for quantifying colony structure
directly from experimental image data.

In Chapters 3, 4, and 5, I applied a traditional circle detection method for counting
yeast colonies that can disambiguate clusters of multiple colonies. Unfortunately, I
found that this method is not effective at counting sectored colonies within our image
set. As such, I turned to deep learning to overcome this obstacle. However, one realm
of complexity in the experimental images is the density of colonies present specifically
clusters of multiple colonies. As clusters become more dense, it becomes more difficult
to count colonies manually within the cluster. Similarly, traditional circle detection
becomes an issue when there is a lack of information about the shape of individual
colonies within a cluster, leading to under-counting of colonies present. As such,
cluster disambiguation is a problem where deep learning is capable of providing a
solution (see Figure 6.2 A). A couple methods have already been developed for the
application of counting clustered objects. First, Ferrari et al [52] proposed a deep
learning method which located all bacterial colony clusters on a plate and attempted
to count the number of bacteria colonies in each cluster. Overton [122] proposed
a deep learning architecture called DO-U-Net to count tents from satellite imagery
and blood smears, both of which have complex morphologies. Both of these methods
however have not been tested for counting yeast colonies with multiple phenotypes,
but I argue this method is still applicable to our image set because clusters of multiple
colonies can adopt complex morphologies just like the blood smear images in the
Overton study. Therefore, it is possible to re-purpose the approaches of Ferrari et
al [52] and Overton [122] simultaneously to improve image segmentation of sectored
colony images and deep-learning enabled colony counting (see Figure 6.2 B).

The pipeline I proposed in Chapter 3 relies on the output of U-Net in order to
predict the number of sectors present in a colony, so at present no deep-learning
step is currently implemented for specifically counting sectors. Therefore, a future
direction is to modify [PSI]-CIC by replacing the sector quantification step with a
machine learning image classifier in order to eliminate the dependency on very specific
colony segmentation data. Two ways to implement this are the following: One way is
to adapt Ferrari’s approach [52] of disambiguating bacterial clusters to the problem
of yeast sector counting, as both are analogous to one another. Another way is to
adapt the approach of Carl et al. [25] where the classification step is re-purposed for
sector counting over color labeling. By using a deep-learning based method for colony
classification, every major component of the pipeline will be consistently data-driven,
enabling analysis of sectored yeast colonies that relies solely on training data.
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Figure 6.2: Expected output of using deep-learning methods for colony anal-
ysis. For images of plates and individual colonies, the expected output of Overton’s
DO-U-Net [122] and Ferrari’s CNN [52] are shown.
A: Expected network output for counting colonies when a plated image of multi-
ple colonies is provided as input. With Overton’s network, colony pixels and non-
overlapping colony regions are assigned one label while others are labeled as back-
ground pixels. This separates clusters, allowing for more accurate colony counting.
With Ferrari’s network, colony clusters are disambiguated by estimating the number
of colonies they comprise.
B: Expected network output for counting sectors when an image of an isolated colony
is provided as input. Overton’s network can be modified to place the interface be-
tween regions of different phenotypes into the background. Ferrari’s network can be
modified to count sectors directly from the image.



132

Finally, I propose to combine this pipeline with our center-based model with
prion aggregation for the purpose of estimating parameters of the embedded prion
aggregation model. Each plated image utilized in our pipeline contains anywhere
between 80 and 200 colonies; these individual colonies offer us a rich dataset for
training neural-networks to perform model parameter estimation. This data will
assist in determining whether the appropriate prion aggregation models can explain
colony-level sectoring behavior due to prion loss in yeast.

Possible Challenges

One issue that will arise with respect to colony counting is the adaptability of
deep-learning approaches to sectored yeast colonies. The performance of the meth-
ods by Ferrari and Overton [52, 122] have not been tested on yeast colony images,
so it is not known how well these methods will perform on the images we have used
throughout this dissertation. However, because these methods work with more com-
plex morphologies than the colonies in our images, we do not expect a significant
degradation in performance.

Fitting a model of prion aggregation to study the emergence of sectored pheno-
types in general will be difficult due to the size of the parameter space, the variability
of parameters, and limited studies to validate a subset of parameters. For example,
the Nucleated Polymerization Model has four parameters that describe the rates of
protein synthesis, conversion, aggregation, and fragmentation respectively. It will be
necessary to fix a subset of the parameters using values from prior literature [159]
while allowing others to vary. Furthermore, the parameter values of the model per-
taining to one set of colony images may not necessarily apply to another set of colony
images, especially when colonies in both image sets are grown under different exper-
imental conditions. To simplify this, it will be best to focus efforts toward fitting a
model for colonies of one type of strain. Once the model is appropriately capturing
sectoring behavior in these colonies, we can make small modifications to the model
to adapt it for other yeast strains.

6.2.3 Developing a Center-Based Model of Candida albicans
Colony Growth

To ensure a complete construction of the framework to compare simulated colony
growth with experimental output, it is necessary to construct a model that accurately
simulates the growth of C. albicans colonies. Simply put, such a model has not been
developed at a large scale. In Chapter 4 our experimental data shows that the sizes of
opaque colonies tend to be larger than white colonies. We can link this observation to
the cell-level experimental data and hypothesize that opaque cells occupy more space
than white cells because of their elongated shape. A model to capture this behavior
while also preserving the intercellular dynamics within the colony would aim to test
this hypothesis and also help researchers compare its results to current theories on
the growth of white and opaque regions of C. albicans.
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Possible Challenges

Similar to the S. cerevisiae center-based model, one issue that will arise is the
computational complexity with simulating large colonies. Another issue is utilizing
realistic biophysical behaviors to model white and opaque cells, including the switch-
ing events between the two phenotypes. As indicated in previous studies, while white
cells appears mostly round, opaque cells appear elongated with varying aspect ratios.
As such, simulating the shape of a cell will be a critical component to modeling a
growing colony structure. The most complex issue to resolve in a simulation of C.
albicans colonies will be how to model the reproductive process. In C. albicans the
rate of white-opaque phenotypic switching is closely connected to cell mating [10].
White cells must switch to the opaque state in order to facilitate mating with an-
other cell. The process is mostly heterothallic where two diploid cells fuse to form
a white tetraploid cell which subsequently sporulates into multiple diploid cells to
increase the population of the colony. As more is revealed about the biophysical
behavior of cell mating, constructing a model which integrates cell mating spatially
will be an interesting avenue of research for uncovering how such mechanisms govern
colony structure over time.

6.2.4 Final Thoughts

While these are only a few examples of extensions to this work that can be ex-
plored, many of these are based off the scope of this current work. The integra-
tion of approaches combining modeling and simulation with data focused tools opens
many avenues of interdisciplinary collaboration to solve complex problems behind the
spread of prion disease using yeast colonies as a model system. However, we stress
the use of modeling frameworks where data and simulation approaches complement
one another, and with the technology available such frameworks are much more fea-
sible today. This dissertation provides many substantial contributions to the fields of
mathematical biology and machine learning through building methods and tools for
gaining insight into multiscale processes occurring in microbial colonies.



Appendix A

Data Curation and [PSI]-CIC
Implementation

A.1 Image Acquisition and Pre-processing

Exponentially growing cultures of the yeast Saccharomyces cerevisiae strain 74D-
694 MATa: ade1-14, trp1-289, his3∆-200, ura3-52, leu2-3, 112, [PSI+][PIN+] were
subjected to heat shock at 40◦C for 30 minutes by water bath to induce curing.
Approximately 500 cells were then plated onto YPD-Cox media (0.25% yeast extract,
1% bactopeptone, 2% agar, 4% glucose) and grown for 3 days at 30◦C followed by 5
days at room temperature to allow colony pigmentation to develop. Images of plates
were acquired using an Epson V370 scanner.

A total of 11 images of different plates were acquired and used to test [PSI]-CIC.
Image set 1 (plates 1-5) contains five images with one plate per image each containing
up to approximately 500 colonies (example in Figure A.1 (left)). All the colonies in
these images are either white [PSI+], red [psi−], or sectored phenotype (a mix of
both [PSI+] and [psi−]). One of these five plates contains a large number of colonies
with sectored phenotypes. Image set 2 (plates 6-11) contains six images which are
similar to those in image set 1 (example in Figure A.1 (right)), but these images are
less saturated overall and four of these plates contain a significant number of sectored
colonies present. These images were pre-processed before testing.

Colonies in each image were hand annotated and sectoring of each quantified by
a yeast biologist. Colonies appearing entirely white or red were scored [PSI+] or
[psi−] respectively. If a mix of red and white pigment was present in a colony it
was scored as sectored. Colonies too small to reasonably determine the presence or
absence of sectoring were deemed unquantifiable and not considered in our results. If
the boundaries of multiple colonies intersect each other in a cluster extensively enough
such that half the colony volume is shared, the entire cluster is deemed unquantifiable.

Both image sets 1 and 2 were used for different experiments at different times. One
important feature to note across image sets 1 and 2 is variation of color and lighting
conditions. Since U-Net is trained on synthetic images whose color is based off the
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Figure A.1: Yeast colony images. Example images of yeast colony plate 2 from
image set 1 (left) and plate 8 from image set 2 (right).

images in set 1, U-Net may not accurately segment colonies from image set 2 because
by eye the color profiles are different from what U-Net was trained with. Instead of
retraining U-Net to address this issue, we opt toward pre-processing the real images
until they appear close to a “standardized” image. We use an implementation of a
color profile transfer scheme written by [28] and adapt it for execution on Google
Colaboratory. This code is an implementation of the work by Reinhard et al [133]
which transforms a source image by applying onto it the color characteristics of a
desired “target” image. The objective for this pre-processing step is to ensure that
the images in set 2 have similar color features as the images in set 1 so that U-Net
will produce similar quality output segmentations.

For the purpose of this work, we chose the target image to be the image of plate 2
in image set 1 (also shown in Figure A.1 (left)). All six images in set 2 (plates 6-11)
were used as source images for the color transfer scheme before input to U-Net. No
pre-processing was done on image set 1 because these images have the color profiles
that U-Net was originally trained on. No adjustments in brightness and contrast were
applied to these images before or after the color transfer scheme was applied. While
there are subtle differences between the color profiles in the original and pre-processed
images in set 2, their output segmentations are significantly different. In particular,
the segmentation of the preprocessed images display obvious quality improvements
such that many more colonies could be sufficiently discerned for classification. Most
of the colonies present in the output segmentations were sufficient enough for the
classification scheme as described in Section 3.2.1.

A.2 Synthetic Image Generation

Due to the lack of hand annotated colony images, we turn to training a neural
network with synthetic images where it is possible to efficiently create ground-truth
masks labeling each pixel. An example of a synthetic image generated with its corre-
sponding ground-truth mask is shown in Figure A.2. This approach involves generat-
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ing sets of synthetic images of yeast colonies which exhibit key features of the yeast
colonies found in the experimental images, which comprise of colonies with sectored
red and white regions where the color of each slightly vary. We use two represen-
tative colors for the colonies–1 red and 1 white color–to fill each circle representing
the colony and the overlying sector. Similarly, we use three representative colors for
the background corresponding to the interior of the plate, the border of the plate,
and the table on which the plate rests respectively and fill each of these regions with
those colors. Each color selected corresponds to an RGB vector [R,G,B] such that
R,G,B ∈ [0, 255].

For each synthetic image, two representations as well as five masks are generated,
each with size 1024×1024. The two representations of each image include one with
Poisson noise and one without. The images containing Poisson noise are used for
training U-Net in Section 3.2.2, while the images without Poisson noise are to simplify
the process for creating the associated ground-truth masks. The five masks created
label 1) the colony pixels, 2) the white colony pixels, 3) the red colony pixels, 4) the
red and white colony pixels merged, and 5) the number of sectors in each colony.
The first three masks are created through a series of grayscale conversions and binary
thresholding operations on the image at intermediate steps of the process. The fourth
mask is used as the ground-truth mask for training U-Net, while the fifth mask is
used to assess the accuracy of [PSI]-CIC in quantifying the frequency of sectors in
each colony (see Section 3.2.2).

For each synthetic image, the process for creating the noisy/noiseless representa-
tions and ground-truth masks is as follows:

1. We first initialize the image by changing the color of the background represented
by the RGB vector [54, 54, 68]. This element represents the tabletop at which
the plate rests.

2. A circle of radius 30 whose center coincides with the image center is generated
above the background and filled with the color represented by the RGB vector
[137, 155, 160]. This element represents the body of the plate.

3. 100 points are sampled inside the circle generated in step 2 such that the min-
imum distance between any two points is at least 2. Then, circles of radius 1
are generated whose centers coincide with the sampled points. Each circle is
then filled with the color represented by the RGB vector [221, 217, 199]. These
elements represent the colonies on the plate.

4. Two circles of radius 29 and 31, each with the same center as the circle generated
in step 2 are generated. The space in between the circles is filled with the color
represented by the RGB vector [105, 107, 152]. This element represents the part
of the background corresponding to the border of the plate.

5. An image of size 1024×1024 is saved temporarily. Then, binary thresholding
is performed on the resulting image following a grayscale transformation. The
result is the final ground-truth mask representing colony pixels.
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6. For each circle generated in step 3, two points are uniformly selected on the
circle, and lines connect those two points independently with the center of the
circle. The space in between is filled with the color represented by the RGB
vector [148, 36, 23]. This element represents the red region of a colony. For
circles where n sectors will be generated, 2n points are uniformly selected, and
the process described here is performed for each pair of points along the length
of the circle.

7. Step 4 is repeated to regenerate the border above the colonies.

8. An image of size 1024×1024 is saved. The result is the noiseless representation
of the synthetic image.

9. Binary thresholding is performed following a grayscale transformation on the
image from step 8. The result is the final ground-truth mask representing white
colony pixels only.

10. The white colony mask from step 9 is subtracted from the full colony mask in
step 5. The result is the final ground-truth mask representing red colony pixels
only.

11. Since the red colony pixel and white colony pixel masks are fully disjoint, we
merge the two masks, assigning one label to white colony pixels and a different
label to red colony pixels while all background pixels are labeled 0. The result
is the final ground-truth mask showing the locations of red and white colony
pixels and is used for training U-Net.

12. An additional mask is created at the center of each colony which shows a small
square whose label is the number of sectors generated plus 1. The result is saved
as a mask of size 1024×1024. This represents the true labels for the frequency
of sectors in each colony within a synthetic image and is used to assess the
performance of [PSI]-CIC (Section 3.2.3).

13. Finally, the noiseless image saved from step 8 is given Poisson noise, then saved
with size 1024×1024. The result is the noisy representation of the synthetic
images that is used for training U-Net (Section 3.2.2).

A.3 Colony Extraction

Implementation of the steps to locate colonies as described in Appendix A.4 is
done using the Python package oct2py [146] to allow Octave to run within the en-
vironment. Octave’s function imfindcircles is used to implement the circle Hough
transform [73] for locating circular objects in the output segmentations. This function
requires two additional parameters: a range of radii of circular objects to detect, and
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Figure A.2: Synthetic Representation of Experimental Images. (Left): Ex-
perimental image of yeast colonies with both red and white phenotype obtained with
permission from the Serio lab. (Middle): Synthetic image of yeast colonies with both
red and white phenotypes generated using Matlab. (Right): The ground-truth mask
indicating the label of each pixel in the synthetic image. Background pixels are black,
red colony pixels are gray, and white colony pixels are white.

a sensitivity to allow for the detection of objects with slight circular imperfections.
To explore the variability in colony sizes within the experimental images, we first
find all connected components of colony pixels in their output segmentations, then
for each connected component, we locate clusters corresponding to isolated colonies
and estimate their radii individually. To do this, we place a bounding box around
each connected component separately. Here, we make the assumption that a con-
nected component in the segmentation corresponds to an isolated colony if it meets
the following conditions:

1. The connected component must have a number of pixels between a minimum
and maximum value. In our case, we require all connected components to have
between 100 and 2000 pixels. This is a way to filter colonies that are too big or
too small.

2. The bounding box of the connected component must have an aspect ratio close
to 1. In our case, we required the greater ratio between length and width of
the bounding box to be less than 1.2 to account for image compression and
imperfections in the circularity of colonies in the output segmentation. This is
also a filter for removing most clusters of colonies from consideration, especially
those whose colonies appear to be co-linear.

3. The proportion of pixels within the bounding box consisting of either red or
white colony pixels must be between a minimum and maximum value. In our
case, we required that the proportion of pixels inside the bounding box to be
between 0.7 and 0.9 which contains π/4, the ratio between the area of a circle
and smallest enclosing square respectively. This helps remove colonies whose
circularity is insignificant or are too close to the border of the plate.
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The collection of radii is used to estimate a range of radii to use for detecting circu-
lar objects in the entire segmented image. Since imfindcircles strongly recommends
that circular objects have a radius of at least 5 pixels, we also set an arbitrary mini-
mum of 7 pixels for the radius of circular objects. If the minimum dimension of any
bounding box is less than 7, we temporarily rescale the entire segmentation so that
the smallest dimension of any bounding box is 7, before using imfindcircles, using
the range of radii for the objects in the scaled image. The sensitivity parameter of
imfindcircles is set to 0.9 to allow adequately imperfect circular objects in the out-
put segmentations to be detected. Following the implementation of imfindcircles,
the radii, center coordinates, and the coordinates of the bounding boxes are recorded
and saved in CSV files. If rescaling was done prior to recording this data, the data is
rescaled so that it corresponds to the original sized segmentation. Finally, the region
within each bounding box is cropped from the image and saved as a separate image
for classification.

A.4 Implementation

A total of 200 synthetic images and corresponding ground-truth masks were cre-
ated in MATLAB for use as training data, where 150 of these images are used directly
in training and 50 were set aside for validation. For each image, 100 non-overlapping
white circles representing colonies were placed within the region representing the
plate, then one red sector was placed above every colony in the image. Specific
details about the placement of colonies and sectors and generation of ground-truth
masks are described in Appendix A.2. For the purpose of classification, each of the
20,000 colonies across all synthetic images were labeled to have exactly one sector.
All images and ground-truth masks were saved as PNG files.

The remainder of [PSI]-CIC is implemented in an interactive Python notebook
with GPU access using Google Colaboratory. Construction of the U-Net architecture
was implemented and compiled using the Keras packages in Tensorflow. The network
is trained using the synthetic images of size 1024×1024, with a batch size of 1 due
to the size of the images used and the amount of computational memory available.
We use Tensorflow’s categorical cross-entropy loss function and Adam optimizer. The
number of epochs was not predetermined; instead, training stopped when the valida-
tion loss decreased by at most 0.001 over a period of 5 epochs. This is a helpful check
to prevent the model from overfitting to the image set. The learning rate is initially
set to 10−4, but as the validation loss decreases and reaches a local minimum, the
learning rate decreases by a factor of 10, with the minimum learning rate possible
being 10−6. Segmentation accuracy for each image is computed to be the number
of pixels whose labels match their corresponding ground-truth labels divided by the
total number of pixels in the image, while accuracy over the entire image set is the
mean of the individual accuracies.

After each epoch, a check is performed on the validation images to determine if the
segmentation accuracy is higher than in the previous epoch; if the accuracy is higher,
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the new parameters are saved, which could be used as a checkpoint for future training
of U-Net. When U-Net is sufficiently trained to segment red and white colony pixels
in the synthetic images, we apply it to produce output segmentations of the colonies
for each experimental image whose pixels are assigned one of three labels (red, white,
or background). The segmentations of each plate are saved as individual PNG files.

Following segmentation of the images, steps for locating colonies are implemented
using oct2py [146] in Python which enables the use of Octave functions. The circle
Hough transform is done using the Octave function imfindcircles found within
the image package and is used to detect circular objects in the resulting output
segmentation consisting of clusters of colony pixels (both red and white). The specific
use of imfindcircles for locating colonies is described in detail in Appendix A.3.
Objects detected close to the edges of the image are filtered out. Information about
the size and location of the extracted objects are saved as CSV files, with one file per
image. Proposed regional annotations for each colony extracted are constructed and
qualitative classes are assigned to each colony as described in Section 3.2.1.



Appendix B

Image Acquisition for Candida
Pipeline

B.1 Experimental Images

Strains were streaked out on YPD agar and incubated at 25◦C for 4 days. Sin-
gle white colonies were picked and inoculated into YPD broth and grown at 25◦C
overnight. The optical density of each overnight culture was measured using 600nm
light. Each culture was serially diluted using 1xPBS. Approximately 100-200 cfus
were spread onto CHROMagar plates and incubated at 25◦C for at least 3 days be-
fore viewing.

Images of the plates were taken at least 3 days after plating. A total of 15 images
were acquired. Each image has one plate containing up to 300 C. albicans colonies.

B.2 Data Augmentation

Due to the low quantity of non-white colony images, we opt to use data augmen-
tation applied to the colony images we originally extracted from the images to both
increase the size of the colony dataset and have each architecture learn from slightly
modified versions of the same colonies. We opt to perform data augmentation for bal-
ancing the quantity of images corresponding to each colony type. More specifically,
we wanted to ensure that the image set contains an equal number of images from
each colony type, including background images.

We apply data augmentation by applying a set of transformations to randomly
selected colony images in the training dataset as constructed in Section 4.2.6. For each
image added, we randomly select with replacement an image from the original pool
of the same class, apply a series of transformations, and save the transformed image
of the same size into the enhanced training set. Each image is applied the following
transformations each with probability 0.5 of occurring: Horizontal flip of the whole
image, vertical flip of the whole image, transpose of the whole image, rotation of the
colony region, and random rotation of the whole image by up to 90 degrees from the
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original orientation. The labels and sizes corresponding to each of the original images
remained unchanged throughout all transformations. All image transformations were
performed using the albumentations package in Python.

Since white colonies are the most abundant, no white colonies underwent augmen-
tation. Images are augmented to create a total of 3620 images, with 905 images for
each of the four classes.

B.3 Implementation

The framework for the neural network models was written in Google Colaboratory
which is a remote version of Jupyter operated by Google. Each of the models discussed
in Chapter 4 are built from the Keras modules within Tensorflow. The implementation
of the circle Hough transform was done using the oct2py package which interfaces
between Octave and Python to run Matlab functions. All post-analysis is done in
Google Colaboratory using standard Python packages.

Each of the models run for 100 epochs with the same learning rate (10−3), same
Adam optimization method, and the same categorical focal cross-entropy loss func-
tion. Final validation accuracy is obtained by evaluating the model with the images
as input.



Appendix C

Image Acquisition for Other
Colony Images

C.1 Additional Experimental Data

Approximately 50 images of plated S. cerevisiae colonies growing on agar were
acquired from the University of Massachusetts, Amherst. An additional five images of
bacterial colonies were acquired from the University of California, Merced. Examples
of these images are shown in Figure C.1 (top).

An additional 69 images of plated C. albicans colonies growing on CHROMagar
and 39 images of plated C. albicans colonies growing on SDA were acquired from
the Nobile and Hernday Labs respectively at the University of California, Merced.
Examples of these images are shown in Figure C.1 (bottom).

C.2 Synthetic Bacterial Colony Image Generation

To train neural network architectures to segment the bacterial colonies as shown
in Figure C.1 (top right), we modify our approach from Appendix A.2 to create
synthetic images and corresponding ground-truth masks depicting the locations of
colony pixels. An example of a synthetic image generated with its corresponding
ground-truth mask is shown in Figure C.2. To remove the need to apply binary
thresholding on a synthetic image to generate a ground-truth mask, we reverse the
process described in Appendix A.2 and instead create the ground-truth mask before
the image is generated. We detail the generation of the features of the synthetic
images in the following subsections.

C.2.1 Colony Location and Size

A collection of 200 synthetic images of plates were created exhibiting similar fea-
tures observed in the experimental images. The process for generating the information
on the location and size of each colony in the images is as follows.
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Figure C.1: Additional Image Datasets. One example from each of the micro-
bial colony datasets being used in Chapter 5. Top: The efficacy of the circle Hough
transform and inclusion of U-Net into colony counting for [PSI+] colonies (left) and
bacterial colonies (right). Bottom: The generalizability of our CHT + image classifi-
cation network detailed in Chapter 4 which looks at additional images of colonies on
CHROMagar (left) and additional colonies on SDA media (right).
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Figure C.2: Synthetic bacterial colony image with binary ground-truth
mask. (Left): Example image generated in Matlab containing synthetic bacterial
colonies of varying sizes on a single plate. (Right): Corresponding binary ground-
truth mask indicating the locations of colony pixels in white and background pixels
in black.

A circle of radius 30 is generated whose center corresponds to the center of the
image. Each image contains a total of 60 synthetic colonies generated inside the circle
of radius 30. For each colony generated, a circle of radius 0.5±0.1 is generated, where
the center of this circle is chosen uniformly inside the circle of radius 30. Rejection
sampling is performed such that the colony location and radius is accepted if the
colony is contained in the circle of radius 30. For each subsequent colony generated,
we enforce colonies to be non-overlapping and be at least a certain tolerable distance
apart from any other colony in the image. Rejection sampling is performed such that
the center and radius of the colony being generated are accepted if the minimum
distance between any other colony center with corresponding radius is greater than
the tolerable distance.

We formalize the two global conditions for rejection sampling of a colony as follows.
The first condition is that the colony must be contained within the circle of radius
30, i.e.,

||c⃗i|| + ri < 30 ∀i, 1 ≤ i ≤ 60. (C.1)

The second condition is that the distance between any pair of colonies on the plate
must be at least a certain distance apart, i.e.

||c⃗i − c⃗j|| − (ri + rj) > δ ∀1 ≤ i ≤ 60, 1 ≤ j ≤ 60, i ̸= j, (C.2)

where δ is the minimum distance tolerance between colony edges.
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Colony locations and radii are sampled one at a time to ensure they meet these
two conditions. We can iteratively generate a sequence of accepted centers and radii
through the following process. Assume that k colonies with centers and radii have
been accepted. Therefore, the center and radii of colony k + 1 will be accepted if and
only if the following two conditions hold. First, the colony must be contained inside
the circle of radius 30, i.e.,

||⃗ck+1|| + rk+1 < 30. (C.3)

Second, colony k+ 1 must be at least δ Euclidean distance units away from the other
k colonies accepted, i.e.

δ < min
1≤i≤k

(||⃗ci − c⃗k+1|| − |ri − rk+1|) (C.4)

Colony center c⃗k+1 and corresponding radius rk+1 will be accepted if and only if
the two conditions are satisfied, and will be rejected if either condition is not met. If
a colony location and radii is rejected, a new location and radii is sampled to replace
them and the same checks are performed once more. The process will continue until
60 colony centers and radii have been accepted.

C.2.2 Mask Generation

We first initialize the ground-truth mask by changing the color of the background
to black. Next, the 60 circles with corresponding centers and radii accepted in the
previous subsection are generated and filled white. To account for colonies obscured
in the border region, we generate a region in the mask that hides colonies near the
border of the plate. To do this, we create a filled annulus with inner radius 29 and
outer radius 31 with the same center as the circle with radius 30 and force all pixels
inside the annulus to be black. As a result, any given pixel in the ground-truth mask
is white if it is both inside a colony and outside the annulus, and black otherwise.
The final result is saved as a binary image.

C.2.3 Color Selection

Regions within a colony, within the plate, within the border and within the table
underneath the plate are sampled and cropped form the full images (see Figure C.3).
The color information from the crops is concatenated into a series of [R,G,B] values,
one vector for each pixel in the sample crops for each type of region respectively. For
each of the four components, a matrix is created with three columns representing the
three color channels and the number of rows equal to the number of images we wish
to generate.

Three-dimensional Gaussian distributions were fitted independently to each of
the four sets of RGB values obtained from the crops. For each image, we sample one
color independently from each of the four distributions and round the values in each
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Figure C.3: Sampled Regions in the Bacterial Colony Images. Examples of
regions extracted from the testing images to be used. (Left): Samples of the border
and table regions respectively. (Middle): Sample of a plate region without any colonies
present. (Right): Sample of a bacterial colony without the plate visible.

component so that all numerical values are integers between 0 and 255 for each color
channel.

For each image, we wish to use sets of colors sampled from the Gaussian distribu-
tion such that each color sampled has a Mahalanobis distance of less than 1.38629.
Assume we have a multivariate Gaussian distribution N(µ⃗,Σ) with mean vector µ⃗
and covariance matrix Σ. The Mahalanobis distance dM between a point x⃗ from a
distribution N(µ⃗,Σ) is defined by

dM (x⃗, N(µ⃗,Σ)) =
√

(x⃗− µ⃗)TΣ−1(x⃗− µ⃗). (C.5)

For each distribution, we sample one color and test whether the Mahalanobis
distance from that sampled point to the distribution it was sampled from is less than
1.38629. We accept the sample if this condition is met, and reject if the condition is
not met. Any sample that is rejected is replaced until we obtain a sample that has
a Mahalanobis distance less than this threshold. The process is repeated until the
number of accepted colors from each of the four distributions is equal to the number
of images we wish to generate.

C.2.4 Image Generation

We create the images in a manner similar to how the masks were created. For each
image, we have a set of four colors each corresponding to the table, plate, border, and
colony regions. The background of the image is generated by assigning to each pixel
the color for the table. Next, a circle of radius 30 is generated at the center of the
images and is filled with the color corresponding to the plate. Then, the colonies with
corresponding centers and radii are plotted and independently filled with the color
corresponding to the colony. Then, the annulus with inner radius 29 and outer radius
31 is generated and filled with the color representing the border of the plate. The
resulting image is given Poisson noise to introduce color variation. The final image is
then saved as a JPEG file. Paired with the binary image generated previously, this
gives us image data for training a supervised neural network to perform a semantic
binary segmentation on plated colony images as described in Section 5.2.4.
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C.3 Performance Metrics of C. albicans Classifi-

cation Pipeline on Additional Experimental

Data

C.3.1 Extended CHROMagar Dataset

Single Input Toy Model

An accuracy of 95% across the entire test image set is obtained. The per-class ac-
curacies are 99% for white colonies, 95% for opaque colonies, 0% for sectored colonies,
and 86% for background respectively (Figure C.4 (top)). (Precision, Recall) scores for
each class are (0.99, 0.96) for white colonies, (0.95, 0.76) for opaque colonies, (0.00,
0.00) for sectored colonies, and (0.86, 1.00) for background respectively. F1 scores
for each class are 0.98 for white colonies, 0.84 for opaque colonies, 0.00 for sectored
colonies, and 0.92 for background respectively (Table 5.3).

Precision-Recall AUC scores for each class are 0.997 for white colonies, 0.918 for
opaque colonies, 0.026 for sectored colonies, and 0.981 for background respectively.
ROC-AUC scores for each class are 0.994 for white colonies, 0.991 for opaque colonies,
0.858 for sectored colonies, and 0.990 for background respectively. (Figure C.4 (bot-
tom))

Dual Input Toy Model

An accuracy of 91% across the entire test image set is obtained. The per-class
accuracies are 99% for white colonies, 100% for opaque colonies, 0% for sectored
colonies, and 70% for background respectively (Figure C.5 (top)). (Precision, Recall)
scores for each class are (0.99, 0.96) for white colonies, (1.00, 0.57) for opaque colonies,
(0.00, 0.00) for sectored colonies, and (0.70, 1.00) for background respectively. F1
scores for each class are 0.97 for white colonies, 0.73 for opaque colonies, 0.00 for
sectored colonies, and 0.83 for background respectively (Table 5.3).

Precision-Recall AUC scores for each class are 0.984 for white colonies, 0.942 for
opaque colonies, 0.019 for sectored colonies, and 0.878 for background respectively.
ROC-AUC scores for each class are 0.970 for white colonies, 0.990 for opaque colonies,
0.811 for sectored colonies, and 0.943 for background respectively. (Figure C.5 (bot-
tom))

Single Input Resnet 34

An accuracy of 97% across the entire test image set is obtained. The per-class
accuracies are 98% for white colonies, 95% for opaque colonies, 50% for sectored
colonies, and 94% for background respectively (Figure C.6 (top)). (Precision, Recall)
scores for each class are (0.98, 0.98) for white colonies, (0.95, 0.90) for opaque colonies,
(0.50, 0.33) for sectored colonies, and (0.94, 0.97) for background respectively. F1
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Figure C.4: Accuracy and performance of the single input toy model on
the extended CHROMagar image set. Top: Confusion matrices showing the
number of correctly and incorrectly classified colonies, with proportions normalized
by row. Bottom: Precision-recall and ROC curves showing qualitative performance
of the single input toy model on classifying images for each of the four image types.
The black line is a reference to the performance of a truly random classifier.
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Figure C.5: Accuracy and performance of the dual input toy model on the
extended CHROMagar image set. Top: Confusion matrices showing the number
of correctly and incorrectly classified colonies, with proportions normalized by row.
Bottom: Precision-recall and ROC curves showing qualitative performance of the
dual input toy model on classifying images for each of the four image types. The
black line is a reference to the performance of a truly random classifier.
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scores for each class are 0.98 for white colonies, 0.93 for opaque colonies, 0.40 for
sectored colonies, and 0.95 for background respectively (Table 5.3).

Precision-Recall AUC scores for each class are 0.997 for white colonies, 0.927 for
opaque colonies, 0.168 for sectored colonies, and 0.971 for background respectively.
ROC-AUC scores for each class are 0.994 for white colonies, 0.985 for opaque colonies,
0.904 for sectored colonies, and 0.989 for background respectively. (Figure C.6 (bot-
tom))

Dual Input Resnet 34

An accuracy of 96% across the entire test image set is obtained. The per-class ac-
curacies are 99% for white colonies, 85% for opaque colonies, 0% for sectored colonies,
and 95% for background respectively (Figure C.7 (top)). (Precision, Recall) scores for
each class are (0.99, 0.98) for white colonies, (0.85, 0.89) for opaque colonies, (0.00,
0.00) for sectored colonies, and (0.95, 0.94) for background respectively. F1 scores
for each class are 0.99 for white colonies, 0.87 for opaque colonies, 0.00 for sectored
colonies, and 0.95 for background respectively (Table 5.3).

Precision-Recall AUC scores for each class are 0.997 for white colonies, 0.907 for
opaque colonies, 0.035 for sectored colonies, and 0.977 for background respectively.
ROC-AUC scores for each class are 0.994 for white colonies, 0.991 for opaque colonies,
0.831 for sectored colonies, and 0.981 for background respectively. (Figure C.7 (bot-
tom))

C.3.2 SDA Dataset

Single Input Toy Model

An accuracy of 91% across the entire test image set is obtained. The per-class
accuracies are 99% for white colonies, 92% for opaque colonies, 17% for sectored
colonies, and 65% for background respectively (Figure C.8 (top)). (Precision, Recall)
scores for each class are (0.99, 0.92) for white colonies, (0.92, 0.80) for opaque colonies,
(0.17, 1.00) for sectored colonies, and (0.65, 0.96) for background respectively. F1
scores for each class are 0.95 for white colonies, 0.86 for opaque colonies, 0.29 for
sectored colonies, and 0.78 for background respectively (Table 5.5).

Precision-Recall AUC scores for each class are 0.954 for white colonies, 0.928 for
opaque colonies, 0.086 for sectored colonies, and 0.832 for background respectively.
ROC-AUC scores for each class are 0.943 for white colonies, 0.979 for opaque colonies,
0.864 for sectored colonies, and 0.908 for background respectively. (Figure C.8 (bot-
tom))

Dual Input Toy Model

An accuracy of 87% across the entire test image set is obtained. The per-class ac-
curacies are 95% for white colonies, 94% for opaque colonies, 0% for sectored colonies,
and 60% for background respectively (Figure C.9 (top)). (Precision, Recall) scores for
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Figure C.6: Accuracy and performance of the single input Resnet 34 on
the extended CHROMagar image set. Top: Confusion matrices showing the
number of correctly and incorrectly classified colonies, with proportions normalized
by row. Bottom: Precision-recall and ROC curves showing qualitative performance
of the single input Resnet 34 model on classifying images for each of the four image
types. The black line is a reference to the performance of a truly random classifier.
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Figure C.7: Accuracy and performance of the dual input Resnet 34 on the
extended CHROMagar image set. Top: Confusion matrices showing the number
of correctly and incorrectly classified colonies, with proportions normalized by row.
Bottom: Precision-recall and ROC curves showing qualitative performance of the
dual input Resnet 34 model on classifying images for each of the four image types.
The black line is a reference to the performance of a truly random classifier.
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Figure C.8: Accuracy and performance of the single input toy model on
the SDA image set. Top: Confusion matrices showing the number of correctly
and incorrectly classified colonies, with proportions normalized by row. Bottom:
Precision-recall and ROC curves showing qualitative performance of the single input
toy model on classifying images for each of the four image types. The black line is a
reference to the performance of a truly random classifier.
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each class are (0.95, 0.94) for white colonies, (0.94, 0.59) for opaque colonies, (0.00,
0.00) for sectored colonies, and (0.60, 1.00) for background respectively. F1 scores
for each class are 0.94 for white colonies, 0.73 for opaque colonies, 0.00 for sectored
colonies, and 0.75 for background respectively (Table 5.5).

Precision-Recall AUC scores for each class are 0.920 for white colonies, 0.868 for
opaque colonies, 0.055 for sectored colonies, and 0.781 for background respectively.
ROC-AUC scores for each class are 0.911 for white colonies, 0.956 for opaque colonies,
0.760 for sectored colonies, and 0.869 for background respectively. (Figure C.9 (bot-
tom))

Single Input Resnet 34

An accuracy of 90% across the entire test image set is obtained. The per-class ac-
curacies are 98% for white colonies, 92% for opaque colonies, 8% for sectored colonies,
and 65% for background respectively (Figure C.10 (top)). (Precision, Recall) scores
for each class are (0.98, 0.91) for white colonies, (0.92, 0.81) for opaque colonies, (0.08,
0.33) for sectored colonies, and (0.65, 0.96) for background respectively. F1 scores
for each class are 0.95 for white colonies, 0.86 for opaque colonies, 0.13 for sectored
colonies, and 0.78 for background respectively (Table 5.5).

Precision-Recall AUC scores for each class are 0.960 for white colonies, 0.938 for
opaque colonies, 0.143 for sectored colonies, and 0.863 for background respectively.
ROC-AUC scores for each class are 0.950 for white colonies, 0.975 for opaque colonies,
0.833 for sectored colonies, and 0.929 for background respectively. (Figure C.10 (bot-
tom))

Dual Input Resnet 34

An accuracy of 91% across the entire test image set is obtained. The per-class ac-
curacies are 99% for white colonies, 94% for opaque colonies, 0% for sectored colonies,
and 67% for background respectively (Figure C.11 (top)). (Precision, Recall) scores
for each class are (0.99, 0.92) for white colonies, (0.94, 0.83) for opaque colonies, (0.00,
0.00) for sectored colonies, and (0.67, 0.95) for background respectively. F1 scores
for each class are 0.96 for white colonies, 0.88 for opaque colonies, 0.00 for sectored
colonies, and 0.78 for background respectively (Table 5.5).

Precision-Recall AUC scores for each class are 0.955 for white colonies, 0.940 for
opaque colonies, 0.059 for sectored colonies, and 0.833 for background respectively.
ROC-AUC scores for each class are 0.944 for white colonies, 0.979 for opaque colonies,
0.619 for sectored colonies, and 0.882 for background respectively. (Figure C.11 (bot-
tom))



156

Figure C.9: Accuracy and performance of the dual input toy model on
the SDA image set. Top: Confusion matrices showing the number of correctly
and incorrectly classified colonies, with proportions normalized by row. Bottom:
Precision-recall and ROC curves showing qualitative performance of the dual input
toy model on classifying images for each of the four image types. The black line is a
reference to the performance of a truly random classifier.
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Figure C.10: Accuracy and performance of the single input Resnet 34 on
the SDA image set. Top: Confusion matrices showing the number of correctly
and incorrectly classified colonies, with proportions normalized by row. Bottom:
Precision-recall and ROC curves showing qualitative performance of the single input
Resnet 34 model on classifying images for each of the four image types. The black
line is a reference to the performance of a truly random classifier.



158

Figure C.11: Accuracy and performance of the dual input Resnet 34 on
the SDA image set. Top: Confusion matrices showing the number of correctly
and incorrectly classified colonies, with proportions normalized by row. Bottom:
Precision-recall and ROC curves showing qualitative performance of the dual input
Resnet 34 model on classifying images for each of the four image types. The black
line is a reference to the performance of a truly random classifier.
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C.3.3 Combined CHROMagar + SDA Dataset

Single Input Toy Model

An accuracy of 89% across the entire test image set is obtained. The per-class
accuracies are 97% for white colonies, 92% for opaque colonies, 14% for sectored
colonies, and 67% for background respectively (Figure C.12 (top)). (Precision, Recall)
scores for each class are (0.97, 0.93) for white colonies, (0.92, 0.71) for opaque colonies,
(0.14, 0.25) for sectored colonies, and (0.67, 0.99) for background respectively. F1
scores for each class are 0.95 for white colonies, 0.80 for opaque colonies, 0.18 for
sectored colonies, and 0.80 for background respectively.

Precision-Recall AUC scores for each class are 0.975 for white colonies, 0.911 for
opaque colonies, 0.109 for sectored colonies, and 0.899 for background respectively.
ROC-AUC scores for each class are 0.967 for white colonies, 0.980 for opaque colonies,
0.869 for sectored colonies, and 0.942 for background respectively. (Figure C.12 (bot-
tom))

Dual Input Toy Model

An accuracy of 91% across the entire test image set is obtained. The per-class ac-
curacies are 99% for white colonies, 88% for opaque colonies, 0% for sectored colonies,
and 73% for background respectively (Figure C.13 (top)). (Precision, Recall) scores
for each class are (0.99, 0.93) for white colonies, (0.88, 0.76) for opaque colonies, (0.00,
0.00) for sectored colonies, and (0.73, 0.98) for background respectively. F1 scores
for each class are 0.96 for white colonies, 0.82 for opaque colonies, 0.00 for sectored
colonies, and 0.83 for background respectively.

Precision-Recall AUC scores for each class are 0.984 for white colonies, 0.900 for
opaque colonies, 0.094 for sectored colonies, and 0.909 for background respectively.
ROC-AUC scores for each class are 0.972 for white colonies, 0.975 for opaque colonies,
0.868 for sectored colonies, and 0.956 for background respectively. (Figure C.13 (bot-
tom))

Single Input Resnet 34

An accuracy of 92% across the entire test image set is obtained. The per-class
accuracies are 99% for white colonies, 92% for opaque colonies, 21% for sectored
colonies, and 76% for background respectively (Figure C.14 (top)). (Precision, Recall)
scores for each class are (0.99, 0.93) for white colonies, (0.92, 0.86) for opaque colonies,
(0.21, 0.50) for sectored colonies, and (0.76, 0.97) for background respectively. F1
scores for each class are 0.96 for white colonies, 0.89 for opaque colonies, 0.30 for
sectored colonies, and 0.85 for background respectively.

Precision-Recall AUC scores for each class are 0.971 for white colonies, 0.930 for
opaque colonies, 0.132 for sectored colonies, and 0.919 for background respectively.
ROC-AUC scores for each class are 0.964 for white colonies, 0.977 for opaque colonies,
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Figure C.12: Accuracy and performance of the single input toy model on the
combined CHROM and SDA image set. Top: Confusion matrices showing the
number of correctly and incorrectly classified colonies, with proportions normalized
by row. Bottom: Precision-recall and ROC curves showing qualitative performance
of the single input toy 34 model on classifying images for each of the four image types.
The black line is a reference to the performance of a truly random classifier.
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Figure C.13: Accuracy and performance of the dual input toy model on the
combined CHROM and SDA image set. Top: Confusion matrices showing the
number of correctly and incorrectly classified colonies, with proportions normalized
by row. Bottom: Precision-recall and ROC curves showing qualitative performance
of the dual input toy 34 model on classifying images for each of the four image types.
The black line is a reference to the performance of a truly random classifier.
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0.822 for sectored colonies, and 0.954 for background respectively. (Figure C.14 (bot-
tom))

Dual Input Resnet 34

An accuracy of 88% across the entire test image set is obtained. The per-class
accuracies are 95% for white colonies, 73% for opaque colonies, 14% for sectored
colonies, and 80% for background respectively (Figure C.15 (top)). (Precision, Recall)
scores for each class are (0.95, 0.94) for white colonies, (0.73, 0.75) for opaque colonies,
(0.14, 0.18) for sectored colonies, and (0.80, 0.81) for background respectively. F1
scores for each class are 0.95 for white colonies, 0.74 for opaque colonies, 0.16 for
sectored colonies, and 0.81 for background respectively.

Precision-Recall AUC scores for each class are 0.978 for white colonies, 0.799 for
opaque colonies, 0.171 for sectored colonies, and 0.877 for background respectively.
ROC-AUC scores for each class are 0.960 for white colonies, 0.966 for opaque colonies,
0.844 for sectored colonies, and 0.933 for background respectively. (Figure C.15 (bot-
tom))
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Figure C.14: Accuracy and performance of the single input Resnet 34 on the
combined CHROM and SDA image set. Top: Confusion matrices showing the
number of correctly and incorrectly classified colonies, with proportions normalized
by row. Bottom: Precision-recall and ROC curves showing qualitative performance
of the single input Resnet 34 model on classifying images for each of the four image
types. The black line is a reference to the performance of a truly random classifier.
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Figure C.15: Accuracy and performance of the dual input Resnet 34 on the
combined CHROM and SDA image set. Top: Confusion matrices showing the
number of correctly and incorrectly classified colonies, with proportions normalized
by row. Bottom: Precision-recall and ROC curves showing qualitative performance
of the dual input Resnet 34 model on classifying images for each of the four image
types. The black line is a reference to the performance of a truly random classifier.
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