
UC Davis
UC Davis Previously Published Works

Title
Evaluation of Synergy Extrapolation for Predicting Unmeasured Muscle Excitations from 
Measured Muscle Synergies

Permalink
https://escholarship.org/uc/item/439337m7

Authors
Ao, Di
Shourijeh, Mohammad S
Patten, Carolynn
et al.

Publication Date
2020

DOI
10.3389/fncom.2020.588943

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial-NoDerivatives License, availalbe at 
https://creativecommons.org/licenses/by-nc-nd/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/439337m7
https://escholarship.org/uc/item/439337m7#author
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://escholarship.org
http://www.cdlib.org/


ORIGINAL RESEARCH
published: 04 December 2020

doi: 10.3389/fncom.2020.588943

Frontiers in Computational Neuroscience | www.frontiersin.org 1 December 2020 | Volume 14 | Article 588943

Edited by:

Arpan Banerjee,

National Brain Research Center

(NBRC), India

Reviewed by:

Julien Lagarde,

Université de Montpellier, France

Varadhan SKM,

Indian Institute of Technology

Madras, India

*Correspondence:

Benjamin J. Fregly

fregly@rice.edu

Received: 29 July 2020

Accepted: 09 November 2020

Published: 04 December 2020

Citation:

Ao D, Shourijeh MS, Patten C and

Fregly BJ (2020) Evaluation of Synergy

Extrapolation for Predicting

Unmeasured Muscle Excitations from

Measured Muscle Synergies.

Front. Comput. Neurosci. 14:588943.

doi: 10.3389/fncom.2020.588943

Evaluation of Synergy Extrapolation
for Predicting Unmeasured Muscle
Excitations from Measured Muscle
Synergies

Di Ao 1, Mohammad S. Shourijeh 1, Carolynn Patten 2,3 and Benjamin J. Fregly 1*

1 Rice Computational Neuromechanics Lab, Department of Mechanical Engineering, Rice University, Houston, TX,

United States, 2Biomechanics, Rehabilitation, and Integrative Neuroscience (BRaIN) Lab, VA Northern California Health Care
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Electromyography (EMG)-driven musculoskeletal modeling relies on high-quality

measurements of muscle electrical activity to estimate muscle forces. However, a

critical challenge for practical deployment of this approach is missing EMG data from

muscles that contribute substantially to joint moments. This situation may arise due to

either the inability to measure deep muscles with surface electrodes or the lack of a

sufficient number of EMG channels. Muscle synergy analysis (MSA) is a dimensionality

reduction approach that decomposes a large number of muscle excitations into a small

number of time-varying synergy excitations along with time-invariant synergy weights

that define the contribution of each synergy excitation to all muscle excitations. This

study evaluates how well missing muscle excitations can be predicted using synergy

excitations extracted from muscles with available EMG data (henceforth called “synergy

extrapolation” or SynX). The method was evaluated using a gait data set collected

from a stroke survivor walking on an instrumented treadmill at self-selected and fastest-

comfortable speeds. The evaluation process started with full calibration of a lower-body

EMG-driven model using 16 measured EMG channels (collected using surface and fine

wire electrodes) per leg. One fine wire EMG channel (either iliopsoas or adductor longus)

was then treated as unmeasured. The synergy weights associated with the unmeasured

muscle excitation were predicted by solving a nonlinear optimization problem where

the errors between inverse dynamics and EMG-driven joint moments were minimized.

The prediction process was performed for different synergy analysis algorithms (principal

component analysis and non-negative matrix factorization), EMG normalization methods,

and numbers of synergies. SynX performance was most influenced by the choice of

synergy analysis algorithm and number of synergies. Principal component analysis with

five or six synergies consistently predicted unmeasured muscle excitations the most

accurately and with the greatest robustness to EMG normalization method. Furthermore,
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the associated joint moment matching accuracy was comparable to that produced

by initial EMG-driven model calibration using all 16 EMG channels per leg. SynX may

facilitate the assessment of human neuromuscular control and biomechanics when

important EMG signals are missing.

Keywords: muscle synergy, EMG-driven modeling, stroke, principal component analysis (PCA), non-negative

matrix factorization (NMF), muscle excitation, EMG normalization

INTRODUCTION

Knowledge of muscle forces could provide valuable insight into
not only the neural control strategies employed by the central
nervous system (CNS) (Contessa and Luca, 2013; Del Vecchio
et al., 2018) but also the development of effective treatments
for neuromusculoskeletal disorders (Shao et al., 2009; Fregly
et al., 2012b, Fregly et al., 2012a; Allen et al., 2013; Pitto et al.,
2019; Sauder et al., 2019). Since direct measurement of muscle
force is generally not possible, computational techniques have
been developed to generate muscle force estimates (Anderson
and Pandy, 2001; Lloyd and Besier, 2003; Thelen et al., 2003;
Buchanan et al., 2005; Shao et al., 2009). However, since the
human musculoskeletal system possesses more muscles than
degrees-of-freedom (DOFs) in the skeleton (i.e., the muscle
redundancy problem), no unique muscle force solution exists
unless either muscle activity patterns are defined by measured
EMG signals (Lloyd and Besier, 2003; Manal and Buchanan,
2003; Buchanan et al., 2005; Shao et al., 2009; Kumar et al.,
2012; Sartori et al., 2012; Meyer et al., 2017) or assumptions
are made about how muscles contribute to the joint moments
(e.g., energetic cost is minimized; Anderson and Pandy, 2001;
Ackermann and van den Bogert, 2010; Shourijeh and McPhee,
2014). EMG-drivenmusculoskeletal modeling is a computational
approach for predicting muscle forces that can bypass the
muscle redundancy problem while simultaneously allowing for
calibration of musculotendon properties (e.g., optimal muscle
fiber length; Lloyd and Besier, 2003; Amarantini and Martin,
2004; Shao et al., 2009; Sartori et al., 2012; Meyer et al.,
2017). In EMG-driven models, processed EMG and muscle-
tendon kinematic data are input to a muscle force generation
model (typically a Hill-type model) to predict muscle forces
and corresponding net joint moments. Nonlinear optimization
is then used to calibrate musculotendon model parameters such
that predicted net joint moments match inverse dynamic joint
moments as closely as possible.

In EMG-driven models, the quality of the measured EMG

signals affects the reliability of the estimated muscle forces.

Surface EMG recording, which is non-invasive and easily
applicable, has been the most popular method for measuring

muscle electrical activity for biomechanical studies. However,
intrinsic potential challenges exist with surface EMG data that

may limit the accuracy of estimated muscle forces, such as noisy
signals from crosstalk between adjacent muscles, movement
artifacts, and challenges in attaining the true maximum muscle
excitation for EMG normalization (Farina et al., 2002; Racinais
et al., 2013; Sartori et al., 2014). Beyond these issues, the

inability to acquire EMG data from deep muscles that contribute
substantially to joint moments is a practical challenge (Sartori
et al., 2014; Zonnino and Sergi, 2019). For instance, it is
practically impossible to collect EMG data from deep hip muscles
(e.g., iliacus and psoas) using surface electrodes. However,
when EMG data from important deep muscles are missing in
an EMG-driven model, force estimates for other muscles that
have similar roles may be significantly overestimated (Zonnino
and Sergi, 2019). Compared to surface electrodes, fine wire
electrodes are able to measure the electrical activity of deep
muscles with lower levels of crosstalk (Péter et al., 2019).
However, the use of fine wire electrodes requires special skills
and longer set-up time and may cause discomfort and pain
for the subject. Furthermore, in some cases, such as patients
who have a cancerous tumor near an important deep muscle,
use of a fine wire electrode may be contraindicated for safety
reasons. Regardless of the EMG measurement technique, EMG-
driven models require EMG data collection from a large number
of muscles, which may not be possible due to EMG system
limitations. Therefore, a computational method that can reliably
estimate muscle excitations associated with missing EMG signals
would be valuable for development of EMG-driven models.

Previous studies have explored computational methods for
predicting unmeasured muscle excitations within EMG-driven
models. Static optimization (SO) (Crowninshield and Brand,
1981; Anderson and Pandy, 2001; Damsgaard et al., 2006; Heintz
and Gutierrez-Farewik, 2007; Pizzolato et al., 2015) has been
embedded into the EMG-driven model calibration process to
estimate missing muscle excitations. The objective function for
this approach minimizes both joint moment tracking errors and
activation levels associated with unmeasured muscle excitations
(Sartori et al., 2014; Zonnino and Sergi, 2019). Zonnino et al.
presented an EMG-driven forward dynamics estimator that used
an SO-based neural model to determine unmeasured muscle
activations. The approach reduced muscle force estimation
error compared to a conventional estimator that neglected the
contribution of unmeasured muscles (Zonnino and Sergi, 2019).
Similarly, Satori et al. developed a hybrid EMG-informed model
in which experimental EMG signals were minimally adjusted
while missing EMG signals (e.g., from iliacus and psoas) were
predicted via SO. However, none of these studies have provided
evidence that predictions of unmeasured muscle activations
were reliable and in reasonable agreement with experimental
measurements. Furthermore, because time histories were not
taken into account in SO, the resulting muscle activations
might contain unrealistic discontinuities due to the optimization
problem being solved one time frame at a time.
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Another approach for estimating unmeasured muscle
excitations is to use muscle synergy concepts. A muscle
synergy is composed of a time-varying synergy excitation and
a corresponding time-invariant synergy vector containing
weights that define how each synergy excitation contributes
to the excitation of all muscles (Tresch et al., 1999; Ting and
Chvatal, 2010; Banks et al., 2017; Shourijeh and Fregly, 2020).
While muscle synergies have been broadly used in descriptive
research to analyze experimental muscle excitations during a
large number of movement tasks (Ivanenko et al., 2005; Torres-
Oviedo and Ting, 2007; Bowden et al., 2010; Walter et al., 2014;
Kristiansen et al., 2015; Meyer et al., 2016; Ruiz Garate et al.,
2017; Sauder et al., 2019), few studies have performed predictive
analyses using muscle synergy information (Ajiboye and Weir,
2009; Meyer et al., 2016; Bianco et al., 2018; Sauder et al., 2019).
Ajiboye and Weir demonstrated that subject-specific synergies
extracted from muscle activities recorded for a subset of postures
can be used to predict EMG patterns for the remaining postures.
Bianco et al. investigated the theoretical feasibility of using
synergy excitations extracted from a group of eight “included”
muscle excitations treated as measured to construct muscle
excitations for a group of eight “excluded” muscle excitations
treated as unmeasured. However, the synergy vector weights
associated with “remaining” postures in Ajiboye and Weir
(2009) or “excluded” muscles in Bianco et al. (2018) were not
predicted without knowledge of the muscle excitations being
treated as unmeasured but rather were fitted with knowledge
of those excitations using least square algorithms. Several other
studies have imposed synergy structures on muscle excitations
or activations through optimization when estimating knee
contact force (Walter et al., 2014), joint stiffness (Shourijeh and
Fregly, 2020), or motion (Clark et al., 2009; Allen and Neptune,
2012; Meyer et al., 2016; Mehrabi et al., 2019; Falisse et al.,
2020). Imposing a muscle synergy structure on predicted muscle
excitations or activations can not only eliminate discontinuities
between neighboring time frames but also reduce the number
of design variables in the optimization problem. These benefits
occur when the estimated synergy vector weights are treated as
invariant across time frames, necessitating that the optimization
problem be solved over all time frames simultaneously. However,
to the best of the authors’ knowledge, the reliability with which
unmeasured muscle excitations can be estimated using EMG-
driven models with unknown synergy vector weights has not
been studied previously.

This study evaluated how well a synergy-based muscle
excitation estimation method involving EMG-driven modeling,
termed “synergy extrapolation” or “SynX,” is able to predict
muscle excitations that cannot be measured experimentally.
Since the outcome of muscle synergy analysis is affected
by methodological choices, such as EMG processing (e.g.,
magnitude normalization method), physiological assumptions
(e.g., number of synergies), and matrix decomposition algorithm
[e.g., principal component analysis (PCA) or non-negative
matrix factorization (NMF)] (Tresch et al., 2006; Hug et al.,
2012; Steele et al., 2013; Oliveira et al., 2014; Banks et al., 2017;
Shuman et al., 2017; Ebied et al., 2018; Gallina et al., 2018),
we also evaluated how these choices affect SynX results. The

evaluation was performed using a gait data set collected from
a high-functioning subject post-stroke performing treadmill
walking at self-selected and fastest-comfortable speeds. One
muscle excitation measured using a fine wire EMG electrode
(i.e., from either iliopsoas or adductor longus) was treated as
missing, and SynX was applied to an EMG-driven model with
calibrated musculotendon parameters to predict the missing
muscle excitation. By quantitatively evaluating the differences
in SynX performance produced by different methodological
choices, this work provides evidence-based suggestions for which
methods are likely to produce the most accurate predictions of
missing muscle excitations.

MATERIALS AND METHODS

Experimental Data
A previously published gait data set collected from one high-
functioning stroke survivor (age 79 years, LE Fugl-Meyer Motor
Assessment 32/34 pts, right-sided hemiparesis, height 1.7m,
mass 80.5 kg) was used to evaluate the SynX process (Meyer
et al., 2017). Motion capture (100Hz, Vicon Corp., Oxford,
UK), ground reaction force (1000Hz, Bertec Corp., Columbus,
OH), and EMG (1000Hz, Motion Lab Systems, Baton Rouge,
LA) data were recorded simultaneously while the subject walked
on a split-belt instrumented treadmill (Bertec Corp., Columbus,
OH) at two speeds: 0.5 m/s (self-selected speed) and 0.8 m/s
(fastest-comfortable speed). All experimental procedures were
approved by the University of Florida Health Science Center
Institutional Review Board (IRB-01), and the subject provided
written informed consent before participation. Motion capture
and ground reaction force (GRF) data were low-pass filtered
using a fourth-order zero-phase lag Butterworth filter with a
cut-off frequency at 7/tf Hz, where tf is the period of the gait
cycle being processed (McLean et al., 2005; Meyer et al., 2017).
Sixteen channels of EMG data were collected from each leg using
11 surface and 5 fine wire electrodes, which made EMG data
available from important deep muscle groups (e.g., iliopsoas)
(Supplementary Table 1). After being high-pass filtered at 40Hz,
demeaned, full-wave rectified, and low-pass filtered at 3.5/tf Hz,
each EMG signal was normalized to the maximum value over
all trials. After processing, each trial of EMG data was time-
normalized by resampling to 101 time frames per gait cycle (heel
strike to heel strike) using cubic spline data interpolation. See
Meyer et al. (2017) for further details.

Musculoskeletal Model
A generic full-body OpenSim musculoskeletal model (Arnold
et al., 2010) was adopted for analyses in OpenSim v3.3
(Delp et al., 2007; Seth et al., 2018). The model controlled
5 degrees of freedom (DOFs) including two hip DOFs
[flexion/extension (HipFE) and adduction/abduction (HipAA)],
one knee DOF [flexion/extension (kneeFE)], and two ankle DOFs
[plantarflexion/dorsiflexion (AnklePD) and inversion/eversion
(AnkleIE)]. Of the 45 muscles in each leg present in the original
model, 35 muscles per leg were retained. Compartments of
muscles with similar anatomic function (e.g., semimembranosus
and semitendinosus) shared a common EMG signal (Meyer
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et al., 2017). To personalize the model, we performed five steps
sequentially on the modified generic OpenSim model using a
combination of OpenSim and customMatlab analyses: (1) model
scaling to match the subject’s anthropometry; (2) kinematic
calibration to determine personalized lower body joint positions
and orientations (Reinbolt et al., 2005); (3) inverse kinematics
(IK) to calculate joint angle time histories from the surface
marker data using the calibrated kinematic model; (4) surrogate
musculoskeletal geometry creation to fit muscle-tendon lengths
and moment arms as polynomial functions of lower body joint
angles and velocities (Menegaldo et al., 2004; Meyer et al., 2017);
and (5) inverse dynamics (ID) to obtain experimental joint
moments using experimental GRF data and IK-derived time
histories of joint kinematics as inputs.

EMG-Driven Musculoskeletal Model
To predict muscle forces and net joint moments in the lower
extremities with processed EMGdata, a previously developed and
published EMG-driven model was employed (Meyer et al., 2017),
wheremuscles were treated as Hill-typemodels (Hill, 1938; Zajac,
1989) with a rigid tendon. The joint moment produced by a
muscle spanning a particular joint can be represented as:

M = r · FMo ·

[

a · fl

(

l̃M(t)
)

· fv
(

ṽM(t)
)

+ fp

(

l̃M(t)
)]

cosα (1)

whereM is the moment generated by the muscle about the joint,
r is the moment arm of the muscle about the same joint, FMo
is the maximum isometric force of the muscle, a is the muscle
activation, l̃M(t) and ṽM(t) are the time-varying normalized
muscle fiber length and velocity, respectively, and α is the

pennation angle of themuscle. fl

(

l̃M(t)
)

and fv
(

ṽM(t)
)

define the

normalized muscle active force-length and active force-velocity

relationships, while fp

(

l̃M(t)
)

defines the normalized muscle

passive force-length relationship (Zajac, 1989; Meyer et al., 2017).
Muscle activation (a) was calculated from muscle excitation

(e) using a published model of muscle activation dynamics (He
et al., 1991; Lloyd and Besier, 2003;Meyer et al., 2017). Themodel
uses a first-order differential equation (Equation 2) to define the
muscle excitation (e) to neural activation (µ) relationship and a
nonlinear function (Equation 3) to define the neural activation
(µ) to muscle activation (a) relationship:

du(t)

dt
= (c1e

(

t − d
)

+ c2)(e
(

t − d
)

− u (t)) (2)

a (t) = (1− c3) u (t) + c3

[

g1

g2
(

u (t) + g3
)g4

+ g5
+ 1

]

(3)

where c1 = 1
τact

− 1
τdact

, c2 = 1
τdact

, and c3 is an activation

nonlinearity constant. For each muscle, τact and τdact are
activation and deactivation time constants, respectively, and τdact
is assumed to be 4τ act (Zajac, 1989; Meyer et al., 2017). d denotes
an electromechanical time delay. g1 to g5 are constant coefficients
that were determined by fitting published experimental data from
isometric contractions (Manal and Buchanan, 2003). Muscle
excitations were derived by multiplying the processed EMG

signals by muscle-specific scale factors between 0.05 and 1 to
reflect unknown maximum excitation levels.

SynX was evaluated by following a two-step procedure. The
first step calibrated an EMG-driven model of each leg using
a full set of 16 EMG channels per leg (henceforth called “full
EMG-driven”). For this model, every muscle was associated to
an experimentally measured EMG signal collected using surface
or fine wire electrodes. To perform full EMG-driven model
calibration, we used experimental walking data over 10 gait cycles
from the two walking speeds (five trials per speed) (henceforth
called “calibration trials”). During this step, a sequence of
optimizations was performed to identify the parameter values
required by the activation dynamics model, Hill-type muscle-
tendon model, and surrogate musculoskeletal geometric model
(described in Meyer et al., 2017) that reproduced the lower-body
inverse dynamic joint moments as closely as possible (Equation
4). The primary cost function for EMG-driven calibration was
formulated as:

J ,

N
∑

i=1

(Mmod
i − M

exp
i )

2
(4)

where Mmod
i is the model-predicted moment about joint i, M

exp
i

is the experimental moment about joint i calculated using inverse
dynamics, and N is the total number of joints. The model
parameter values calibrated for each muscle-tendon actuator
by the optimization process included: electromechanical delay,
activation time constant, activation nonlinearity constant, EMG
scale factor, optimal muscle fiber length, tendon slack length, and
geometric coefficients defining muscle-tendon lengths, velocities,
and moment arms. Further details on the specification of
initial guesses, variable bounds, overall cost function structure,
additional constraints, and penalty terms for calibrating the
EMG-driven model can be found in Meyer et al. (2017). The
calibrated model was used in subsequent steps of the SynX
evaluation process.

Synergy Extrapolation Methodology
The second step in the evaluation process predicted unmeasured
muscle excitations using SynX within the EMG-driven model
calibrated in the first step (Figure 1). Specifically, the EMG
signals from hip muscles that were recorded using fine wire
electrodes were removed one at a time (either iliopsoas
or adductor longus) and treated as unmeasured, while the
remaining 15 channels of EMG data were treated as measured.
We performed muscle synergy analysis on a trial by trial basis for
all measuredmuscle excitations (em) to extract a low-dimensional
set of time-varying measured synergy excitations (Wm) and a
corresponding time-invariant synergy vector containing weights
(Hm) that defined how each synergy excitation contributed
to the excitation of the measured muscles. Next, unmeasured
muscle excitations (ex) were constructed using the measured
synergy excitations (Wm) along with a trial-specific time-
invariant synergy vector containing weights (Hx) associated with
the unmeasured muscle. During this step, EMG-driven joint
moments were estimated using a combination of both measured
and unmeasured muscle excitations (e = {em, ex}), and
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FIGURE 1 | Flowchart of the synergy extrapolation (SynX) process using an EMG-driven model. Prior to performing SynX, we calibrated musculotendon model

parameter values in the EMG-driven model (green color) using a full set of 16 EMG signals per leg, collected using surface and fine wire electrodes. Then one fine wire

EMG signal (either iliopsoas or adductor longus) was treated as unmeasured and predicted using SynX. The unknown synergy vector weights Hx in both PCA and

NMF and offsets µx in PCA for the unmeasured muscle excitation were predicted by solving a non-linear optimization problem where the errors between inverse

dynamics and EMG-driven joint moments were minimized while all musculotendon model parameters were held constant at the calibrated values.

the unmeasured synergy vector weights (Hx) were identified
iteratively through optimization by tracking experimental
inverse dynamics joint moments (Equation 4). For NMF, the

unmeasured synergy vector weights (Hx) were given a lower
bound of zero, while they were unbounded for PCA. The
unmeasured synergy vector weights (Hx) were initialized by the
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TABLE 1 | Methodological choices for synergy extrapolation.

Description Methods Abbreviations

Matrix factorization algorithm Principal component analysis PCA

Non-negative matrix factorization NMF

EMG normalization method Maximum value over all trial MaxOver

Maximum value per trial MaxPer

Unit variance over all trials VarOver

Unit variance per trial VarPer

Unit magnitude per trial MagPer

Number of muscle synergies 3, 4, 5, 6, 7, 8, 9, 10

optimization using randomly chosen values between 0 and 1.
The unmeasured muscle excitations predicted by SynX were
constrained to be between 0 and 1.

We implemented the second step of the evaluation process
on the 10 calibration trials used in the first step as well as
10 other trials not used for calibration (five trials per speed,
henceforth called “evaluation trials”). Both steps of the evaluation
process were performed with Matlab’s built-in “fmincon”
optimization algorithm using sequential quadratic programming.
The structure of unmeasured synergy variables was slightly
different between the matrix factorization algorithms, and more
details are provided in the section below on methodological
choices for synergy extrapolation.

Methodological Choices for Synergy
Extrapolation
Muscle synergy analysis requires a number of methodological
choices that can influence the results of the analysis (Banks
et al., 2017). Methodological choices that have been studied
include EMG processing approaches (e.g., filtering parameters,
normalization methods), assumptions about neural control
complexity (e.g., number of synergies, number and choice
of muscles, synergy vector variability across trials), matrix
decomposition algorithm, and post-processing of results
(Ivanenko et al., 2005; Tresch et al., 2006; Hug et al., 2012; Steele
et al., 2013; Oliveira et al., 2014; Shourijeh et al., 2016; Banks
et al., 2017; Shuman et al., 2017; Ebied et al., 2018; Gallina et al.,
2018; Mehryar et al., 2020). In the present study, for each subset
of measured muscles, we performed SynX using a total of 80
methodological combinations comprised of two algorithms
for matrix factorization, five methods for EMG normalization,
and eight choices for number of muscle synergies (see Table 1

for summary).
To calculate measured muscle synergies, we used the two

matrix factorization algorithms that render the most divergent
MSA results: non-negative matrix factorization (NMF) and
principal component analysis (PCA) (Olree and Vaughan, 1995;
Lee and Seung, 1999; d’Avella et al., 2003; Tresch et al., 2006;
Ting and Chvatal, 2010; Banks et al., 2017; Bianco et al., 2018;
Ebied et al., 2018). Both algorithms minimize the errors between
the reconstructed and original data sets. NMF uses nonlinear
optimization to find a potentially non-unique solution iteratively

subject to constraints on non-negativity, where non-uniqueness
is the result of the non-convexity of the search space (Shourijeh
et al., 2016). In contrast, PCA uses linear algebra to find a unique
solution analytically subject to constraints on orthogonality but
not non-negativity. PCA identifies the internal structure of the
data that best explains its variance (Torres-Oviedo and Ting,
2007; Ting and Chvatal, 2010). During SynX with a given number
of synergies, muscle excitations in the measured subset of 15
muscles (em) were represented as:

em =

{

WmHm + εm (NMF)
WmHm + µm + εm (PCA)

(5)

where em denotes an n time points × 15 measured EMG signals
matrix that contains measured muscle excitations in columns,
Wm denotes an n time points × p synergies matrix that contains
measured synergy excitations in columns, and Hm denotes a
p synergies × 15 measured EMG signals matrix that contains
measured synergy vector weights. In preparation for NMF or
PCA, measured EMG signals from each gait cycle were re-
sampled to 101 time frames plus 10/tf time frames before the start
of the cycle to account for a maximum electromechanical delay of
100ms. For NMF and PCA, εm denotes the part of em that cannot
be explained byWmHm, while for PCA, µm specifies the average
muscle excitations in em. Matlab functions “nnmf” (alternating
least squares algorithm with 10 replicates) and “pca” were used to
perform NMF and PCA, respectively.

Following MSA by either approach, the unmeasured muscle
excitation (ex) (either iliopsoas or adductor longus) was
constructed from the measured synergy excitations (Wm) using
the following relationships:

ex =

{

WmHx (NMF)
WmHx + µx (PCA)

(6)

where Hx is a p-synergy× 1 vector representing the unmeasured
muscle synergy vector weights. Unlike NMF, PCA needs an
additional design variable µx that represents the average value
of each unmeasured muscle excitation. Both Hx and µx were
calibrated by tracking experimental joint moments within our
EMG-driven modeling framework (Equation 4) while keeping all
musculotendon model parameters at their calibrated values.

Because EMG normalization method affects MSA results, this
study explored five approaches for normalizing the magnitudes
of processed EMG signals in preparation for MSA. EMG
normalization was performed either within individual trials
(Per trial) or across all trials (Over all trials). Specifically, each
processed muscle EMG signal was normalized using either: (1)
maximum value over all trials (MaxOver), (2) maximum value
per trial (MaxPer), (3) unit variance over all trials (VarOver),
(4) unit variance per trial (VarPer), and (5) unit magnitude
per trial (MagPer) (Banks et al., 2017). VarOver and VarPer
normalizations involved dividing each processed EMG signal by
its standard deviation over all trials and in each trial, respectively.
MagPer normalization involved dividing each EMG signal by its
2-norm value for each trial (Banks et al., 2017).

Since the specified number of muscle synergies also affects
the outcome of MSA, we repeated the SynX process for three
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through 10 synergies. This range was chosen since three to six
muscle synergies have been shown to be sufficient to account
for over 90% of the variability in up to 30 muscle excitations
during human movement (Ivanenko et al., 2005; Ting and
Macpherson, 2005; Cappellini et al., 2006; Bianco et al., 2018).
Similarity in both magnitude and shape between SynX-predicted
and experimental excitations for unmeasured muscles was taken
into account when determining the optimal number for synergies
(see next section for details).

Evaluation Metrics
Several common metrics were employed to score outcomes of
muscle synergy analysis, performance of SynX, and accuracy
of joint moment estimates with different combinations of
methodological choices. Variance accounted for (VAF) was
calculated to compare the ability of different methodological
combinations to reconstruct measured muscle excitations
(Tresch et al., 2006; Steele et al., 2013; Shourijeh et al., 2016;
Banks et al., 2017). Root mean square error (RMSE) and
Pearson correlation coefficient r between experimental and
model-predicted unmeasured muscle excitations across all trials
were computed to quantitatively assess matching of magnitude
and shape, respectively. In addition, RMSE and r-values were
calculated for each trial, and the frequency with which the
number of synergies possessing the highest r-values or lowest
RMSE values appeared was analyzed. The correlation between
predicted and experimental unmeasured muscle excitations was
interpreted quantitatively as weak (r < 0.35), moderate (0.35 < r
≤ 0.67), strong (0.67 < r ≤ 0.9), or very strong (r ≥ 0.9) (Taylor,
1990). Mean absolute errors (MAE) between experimental and
model-predicted joint moments were calculated across all gait
cycles to evaluate the accuracy of the predicted joint moments
during full EMG-driven calibration (step 1) and the SynX
process (step 2).

Statistical Analyses
Multiple statistical analyses were performed to assess whether the
calculated metrics resulting from different SynX methodological
choices were statistically different for each unmeasured
muscle-leg combination. First, to assess whether reconstruction
performance of measured muscle excitations was statistically
different between the two matrix factorization algorithms
and the five EMG normalization methods, we performed a
two-factor ANOVA with a Tukey-Kramer post-hoc analysis
on VAF values. Second, to compare SynX performance for
different methodological choices, we performed two three-
factor (matrix factorization algorithm by EMG normalization
method by number of synergies) ANOVA tests on r and
RMSE values between predicted and experimental unmeasured
muscle excitations across all calibration and evaluation trials,
respectively. In addition, we performed paired t-tests on r
and RMSE values to investigate whether matrix factorization
algorithm (i.e., PCA and NMF) had a significant influence on
SynX performance for the same number of synergies. Third,
we performed a three-factor (matrix factorization algorithm by
EMG normalization method by number of synergies) ANOVA
to compare MAE values characterizing the accuracy of joint

moment tracking from different approaches. All statistical
analyses were performed in Matlab, and significance levels were
set at p < 0.05.

RESULTS

Muscle Synergy Analysis
The two-way ANOVA for mean VAF values revealed main
effects of matrix factorization algorithm (p < 0.01) and EMG
normalization method (p < 0.01) on the variance explained by
factorization of measured muscle excitations. For five or fewer
synergies, PCA generally had significantly higher VAF values
than did NMF for the same number of synergies (all p < 0.05,
gray shading in Table 2). Overall, extracted synergy excitations
were able to predict the measured muscle excitations with > 90%
VAF using three or more synergies in the left leg and four or more
synergies in the right leg for PCA and 4 or more synergies in both
legs for NMF (Table 2). Across all EMG normalization methods,
MaxOver produced significantly higher VAF values than did
VarOver (p < 0.01), VarPer (p = 0.028), and MagPer (p < 0.01),
while MaxPer produced the lowest VAF amongst the five EMG
normalization methods (p < 0.01). Moreover, no statistically
significant interaction was observed betweenmatrix factorization
algorithm and EMG normalizationmethod for mean VAF values.

Synergy Extrapolation Performance
For both calibration (Figure 2) and evaluation (Figure 3) trials,
mean predicted unmeasured muscle excitations using PCA were
strongly correlated with the corresponding experimental muscle
excitations (mean r always ≥ 0.7), which was not consistently
observed for the NMF results. Furthermore, RMSE values
between the average predicted and actual unmeasured muscle
excitations across all trials using PCA-based SynX were generally
lower than those using NMF-based SynX. In addition, SynX
performed using either PCA or NMF predicted more accurate
unmeasured muscle excitations with less trial-to-trial variability
for the left leg than for the right leg (Figures 2, 3).

The three-factor ANOVA analyses revealed that the number
of synergies (p < 0.01) and matrix factorization algorithm
(p < 0.01) had a significant effect on both r and RMSE
values for all unmeasured muscle-leg combinations, while EMG
normalization method did not. Additionally, no statistically
significant interaction was detected among the three factors
for both r and RMSE values. For each unmeasured muscle-
leg combination, as the number of synergies increased, PCA
produced non-monotonic changes in r and RMSE values, with
r values reaching a maximum and RMSE values a minimum at
five or six synergies. Unlike PCA, r values for NMF initially rose
with an increasing number of synergies and then remained high
with further increases, while RMSE values initially dropped and
then leveled off (Figure 4). Moreover, for the same number of
synergies, PCA generally exhibited less variance than did NMF
in mean r and RMSE values across the five EMG normalization
methods (Figure 4 and Supplementary Figure 2).

PCA achieved significantly higher r values and lower RMSE
values than did NMF when the number of synergies varied from
3 to 6 (p < 0.01). The one exception was adductor longus in the
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TABLE 2 | Mean VAF values for PCA/NMF reconstruction of measured muscle excitations across all trials using three to seven synergies and 6 EMG normalization

methods when either iliopsoas or adductor longus was assumed to be unmeasured.

Unmeasured

muscle

EMG

normalization

Left leg (non-paretic) Right leg (paretic)

Number of synergies Number of synergies

3 4 5 6 7 3 4 5 6 7

Iliopsoas MaxOver 92.7/88.8 97.7/95.4 99.1/98.0 99.7/98.8 99.9/99.3 89.7/82.3 95.2/91.0 98.1/95.4 99.2/97.5 99.7/98.5

MaxPer 90.8/86.5 97.2/94.7 98.8/97.5 99.5/98.5 99.8/99.1 85.6/77.7 93.1/86.8 97.2/93.1 98.7/96.3 99.5/97.6

VarOver 90.1/86.4 97.4/94.4 98.9/97.6 99.6/98.5 99.9/99.0 87.8/77.8 94.6/89.1 97.8/94.1 99.1/96.4 99.7/97.6

VarPer 90.9/87.3 97.2/94.6 98.8/97.5 99.5/98.5 99.8/99.1 85.7/77.9 93.3/86.6 97.2/92.7 98.7/96.2 99.5/97.8

MagPer 92.5/88.5 97.4/95.0 98.9/97.7 99.6/98.6 99.9/99.2 83.5/75.6 91.9/85.9 96.7/91.5 98.8/95.6 99.5/97.6

Adductor MaxOver 94.0/90.1 97.9/95.8 99.0/97.8 99.7/98.8 99.9/99.3 88.8/81.3 94.3/90.5 97.5/94.8 99.0/97.2 99.7/98.5

longus MaxPer 91.9/87.8 97.2/94.7 98.7/97.2 99.5/98.4 99.8/99.0 85.1/77.2 91.7/86.4 96.5/92.6 98.4/95.7 99.5/97.5

VarOver 93.2/87.6 97.5/94.6 98.8/97.4 99.6/98.4 99.9/99.0 86.1/78.0 93.2/88.6 96.8/93.3 98.6/95.5 99.6/97.5

VarPer 92.4/88.3 97.3/94.7 98.7/97.2 99.5/98.5 99.8/99.0 84.7/76.5 92.1/86.1 96.5/92.1 98.5/95.8 99.5/97.6

MagPer 92.0/87.7 96.9/94.3 98.6/97.1 99.5/98.2 99.8/98.8 83.0/74.4 90.8/85.1 96.3/90.4 98.4/95.1 99.5/96.7

Gray shading represents a statistically significant difference (p ≤ 0.05) between PCA and NMF with matched EMG normalization method and matched number of synergies.

FIGURE 2 | Representative results of reconstructed unmeasured muscle excitations across all calibration walking trials at the same speed using SynX (black line:

average experimental curve; red line: PCA-based SynX; green line: NMF-based SynX; shaded area: ±1 standard deviation). Measured synergy excitations were

calculated using the MaxOver EMG normalization method with six synergies. Results are reported over the complete gait cycle where 0% is heel strike and 100% is

subsequent heel strike of the same leg (left leg: non-paretic, right leg: paretic). r and RMSE values were computed between average experimental and SynX-predicted

muscle excitations.
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FIGURE 3 | Representative results of average reconstructed unmeasured muscle excitations across all evaluation walking trials at the same speed using SynX (black

line: average experimental curve; red line: PCA-based SynX; green line: NMF-based SynX; shaded area: ±1 standard deviation). Measured synergy excitations were

calculated using the MaxOver EMG normalization method with six synergies. Results are reported over the complete gait cycle where 0% is heel strike and 100% is

subsequent heel strike of the same leg (left leg: non-paretic, right leg: paretic). r and RMSE values were computed between average experimental and SynX-predicted

muscle excitations.

left leg, where the only significant difference between PCA and
NMF occurred for 3 synergies (p < 0.01). When the number of
synergies increased above 6, NMF provided substantially higher
r values for adductor longus in the left leg (p < 0.05, Figure 4A),
whereas PCA had markedly higher r values for adductor longus
in the right leg (p< 0.01, Figure 4B). Additionally, for more than
six synergies, RMSE values using NMF were significantly smaller
than those found using PCA for iliopsoas in the right leg (p <

0.01, Figure 4A) and for adductor longus in the left leg (p < 0.01,
Figure 4B). When similarity in both shape and magnitude were
taken into account, based on average r and RMSE values, the
best number of synergies for predicting unmeasured excitations
using PCA was six for iliopsoas in the left leg (r = 0.93; RMSE
= 0.043), five for iliopsoas in the right leg (r = 0.79; RMSE
=0.073), five for adductors longus in the left leg (r = 0.97; RMSE
=0.06), and five for adductors longus in the right leg (r = 0.93;
RMSE = 0.081). Additionally, for most trials, PCA required
fewer synergies (between 3 and 8) than did NMF (between 4
and 10) to achieve the best SynX performance (see histogram in
Figure 5). For example, for iliopsoas in the left leg using five to

eight synergies, 86% of trials could achieve the highest r values
with PCA while only 54% could with NMF. Similarly, with five to
eight synergies, the smallest RMSE values could be obtained for
100% of trials using PCA but only 50% of trials using NMF.

Joint Moment Prediction
The three-factor ANOVA revealed that MAE values for joint
moment matching were sensitive to both matrix factorization
algorithm and number of synergies (p < 0.01) but insensitive
to EMG normalization method (p = 0.12) for all muscle-
leg-joint combinations. Furthermore, no statistically significant
interaction effects were observed among the three factors for
MAE values. For the HipFE moment, MAE values for both
PCA-based and NMF-based SynX decreased as the number of
synergies increased (p < 0.01). Nonetheless, PCA produced
more accurate joint moment matching, as indicated by smaller
MAE values, than did NMF (p < 0.01). In contrast, for
the HipAA moment, neither number of synergies nor matrix
factorization algorithm had a significant influence on MAE
values. The one exception was adductor longus in the left leg,
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FIGURE 4 | Average (triangles) and standard deviation of r and RMSE values for the reconstruction of iliopsoas (A) and adductor longus (B) muscle excitations across

all trials (including both calibration trials and evaluation trials) and across all 5 EMG normalization methods for both legs (left leg: non-paretic, right leg: paretic) using

three to 10 synergies (red: PCA-based SynX; green: NMF-based SynX. Red circular (PCA) and green circular (NMF) markers show average values across all trials using

MaxOver normalization. A black bar with a star represents a statistically significant difference (p < 0.05) between PCA and NMF for the same number of synergies.
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FIGURE 5 | Distribution of the number of synergies that produce maximum r values or minimum RMSE values across all trials (including both calibration and

evaluation) and all EMG normalization methods. In each histogram, the horizontal axis reports the number of synergies, and the vertical axis shows the frequency with

which the number of synergies generates the best prediction of iliopsoas or adductor longus muscle excitation in terms of shape (indicated by r-values) and

magnitude (indicated by RMSE-values). Red and green bars represent PCA-based and NMF-based synergy extrapolations, respectively. The left leg is non-paretic

and the right leg is paretic.

where MAE values decreased with an increasing number of
synergies for both algorithms, though PCA had significantly
smaller MAE values than did NMF (p < 0.01) (Figure 6 and
Supplementary Figure 3).

PCA-based and NMF-based SynX led to different
levels of joint moment tracking accuracy compared to
the full EMG-driven model calibration (Figure 6 and
Supplementary Figures 3, 4). For example, for the HipFE
moment with MaxOver normalization, the average MAE values
for PCA-based SynX dropped below the average MAE from the
full EMG-driven calibration at six synergies for iliopsoas in the
left leg, six synergies for adductor longus in the left leg, and ten
synergies for adductor longus in the right leg. In contrast, for the
HipFE moment with MaxOver normalization, the MAE values
for NMF-based SynX dropped below the average MAE from the
full EMG-driven model calibration at six synergies for iliopsoas
in the right leg and seven synergies for adductor longus in the
left leg.

When r and RMSE values for muscle excitation matching

were plotted as a function of MAE values for joint moment
matching (Figure 7 and Supplementary Figure 5), the observed

trends were different for PCA- vs. NMF-based SynX. Taking
MaxOver normalization as an example in Figure 7, for PCA-
based SynX, the trends were parabolic, with a small region of
MAE values corresponding to both largest r values and smallest

RMSE values. In contrast, for NMF-based SynX, the observed
trends were approximately linear, with the smallest MAE errors
corresponding to the largest r values and smallest RMSE values.
For both SynX methods, MAE values for joint moment matching
were approximately the same in the region where r values were
the largest and RMSE values the smallest.

DISCUSSION

This study demonstrated that SynX is able to predict
unmeasured muscle excitations with reasonable reliability
using a well-calibrated EMG-driven model. However, the
reliability of the predictions was heavily influenced by the
matrix factorization algorithm used and number of synergies,
while EMG normalization method had little influence on
SynX results. Our results clearly showed that PCA was able
to generate estimates of unmeasured muscle excitations that
were more accurate in shape and magnitude, more robust to
EMG normalization, and more consistent across all unmeasured
muscle-leg combinations in comparison with NMF. The results
also highlight that for PCA-based SynX, a relatively low number
of synergies, typically five or six, always provided the most
accurate predictions of unmeasured muscle excitations and
joint moments simultaneously, while NMF was either unable
to reproduce unmeasured muscle excitations with reasonable
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FIGURE 6 | Average (triangles) and standard deviation of mean absolute error (MAE) values for hip joint moment prediction across all trials (including both calibration

and evaluation) and all EMG normalization methods as a function of the number of synergies for both legs (left leg: non-paretic, right leg: paretic). MAE values for joint

moment prediction are presented for hip flexion/extension (HipFE) and hip adduction/abduction (HipAA). PCA- and NMF-based SynX results are indicated in red and

green, respectively. The flat purple lines demonstrate the average MAE values for joint moment prediction with a full set of EMG signals for each leg. Red circular (PCA)

and green circular (NMF) markers show average MAE values across all trials using MaxOver normalization.

accuracy or required a large number of synergies, typically above
eight, to attain comparable results to those of PCA.

The SynX method optimizes unmeasured synergy vector
weights by tracking joint moments as closely as possible.
We used the muscle synergy concept for the prediction of
missing muscle excitations for several reasons. First, it has been
theorized that muscle synergies are generated by the central
nervous system to regulate the control of highly redundant
musculoskeletal systems in an efficient manner (Tresch et al.,
2006; Torres-Oviedo and Ting, 2007). Second, the problem of
finding unknown time-varying muscle excitations is reduced
to the problem of finding a small number of synergy vector
weights associated with unmeasured muscles, which significantly
decreases the search space for the optimization in comparison
with SO-based approaches. Third, there are no abrupt changes
in predicted muscle excitations as is often observed with SO-
based approaches, since predicted muscle excitations are linear
combinations of weighted synergy excitations that are normally
smooth. Fourth, by finding unknown synergy vector weights
within the context of an EMG-driven modeling framework, the
method is practically applicable in contrast to previous work
that only demonstrated theoretical feasibility (Bianco et al.,
2018). Fifth, SynX results demonstrated that joint moments
were matched as accurately as could be achieved by the full
EMG-driven model (Supplementary Figure 3) (Meyer et al.,

2017). Given these observations, the proposed SynX method
may outperform other EMG-driven muscle force estimators that
either ignore deep muscles or use SO-based methods to estimate
EMG signals for inaccessible or unavailable muscles.

For the same number of synergies, PCA generally predicted
unmeasured muscle excitations with greater accuracy than
did NMF (Figure 4). PCA and NMF are two of the most
popular matrix factorization algorithms used for performing
MSA. Although the MSA literature suggests that NMF generates
synergy components that are highly correlated with those
generated by PCA (Ivanenko et al., 2005; Cappellini et al.,
2006; Banks et al., 2017), each of the algorithms decomposes
a given data set with different assumptions and constraints
(Ting and Chvatal, 2010; Gallina et al., 2018). PCA is based on
linear algebra and maintains orthogonality among all principal
components during factorization, while NMF is based on
nonlinear optimization with potentially non-unique solutions in
the non-negative space (Supplementary Figure 1). PCA has been
rejected by a few studies due to the inherent non-negative nature
of muscle excitations (Ajiboye andWeir, 2009; Banks et al., 2017).
However, our findings demonstrated several benefits of PCA over
NMF for SynX purposes.

At least three observations help explain why PCA-based SynX
generally worked better than did NMF-based SynX. First, for an
equal number of synergies, PCA-derived components accounted
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FIGURE 7 | Trade-offs between accuracy of joint moment tracking (MAE values on horizontal axis) and accuracy of unmeasured muscle excitation reconstruction (r or

RMSE values on vertical axis) when using MaxOver as the EMG normalization method (red markers: PCA-based SynX; green markers: NMF-based SynX; HipFE: hip

flexion/extension; HipAA: hip adduction/abduction). The left leg is non-paretic and the right leg is paretic.

for more variance in measured muscle excitations than did those
derived using NMF, for three to five synergies in particular
(Table 2). Our findings agree well with the results of variance
accounted for by different numbers of synergies when PCA and
NMF are applied to high-density EMG data (Gallina et al., 2018).
Second, PCA identifies synergy components that tend to describe
the direction of the largest variance in the measured muscle
excitations, with subsequent components being perpendicular to
the previous ones, while NMF finds components that tend to
represent the edge of a convex subspace in which all original
EMG measurements lie (Ting and Chvatal, 2010; Lambert-
Shirzad and Van der Loos, 2017). Furthermore, any of the data
in the reduced-dimensionality space could be reconstructed due

to the negative and positive weights allowed by PCA. However,
only data points representing unmeasured muscle excitations
that were located within the defined subspace could be closely
reproduced by NMF due to the non-negatively constraint on the
solutions (Tresch et al., 2006; Ting and Chvatal, 2010). Third,
PCA-based SynX had one more design variable—an offset - for
each trial that represents the average value of the unmeasured
muscle excitation, thereby adding one extra degree of freedom
to the optimization problem. Therefore, better performance of
PCA-based than NMF-based SynX may be due to the non-
negativity constraints for NMF and the extra design variables for
PCA, both of which make the feasible search space of NMF more
restricted than that of PCA.
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SynX performance was heavily influenced by the number
of synergies used. Previous studies have reported that three to
six synergies are adequate for reconstructing measured EMG
signals with over 90% variance accounted for during gait
(Ivanenko et al., 2005; Torres-Oviedo and Ting, 2007; Clark
et al., 2009; Banks et al., 2017; Bianco et al., 2018), consistent
with the observations in this study (Table 2). Not surprisingly,
as the number of synergies increased, reconstruction accuracy
of unmeasured muscle excitations using NMF increased before
reaching a plateau, which was similar to reconstruction
behavior for measured muscle excitations (Table 2). However,
PCA-based SynX performance with an increasing number of
synergies exhibited non-monotonic behavior (Figure 4 and
Supplementary Figure 2). For both NMF- and PCA-based SynX,
as the number of synergies increased, the additional degrees
of freedom in the optimization allowed the optimizer to
achieve lower joint moment tracking errors (Figure 6 and
Supplementary Figure 4). When the number of synergies was
above a certain number, the joint moment tracking errors
achieved by PCA-based SynX dropped below those achieved
by the full EMG-driven optimization, with the prediction
of unmeasured muscle excitations becoming less accurate as
a consequence.

Another important observation was that as the number
of synergies increased, the best SynX results were generated
for the number of synergies at which joint moment tracking
errors became lower than those produced by the full EMG-
driven model. PCA-based SynX could generate joint moment
tracking errors that were comparable to those for the full EMG-
driven calibration using a relatively smaller number of synergies,
whereas NMF-based SynX could not. Due to the non-negativity
constraints built into NMF-based SynX, joint moment tracking
errors for that method sometimes (e.g., iliopsoas in the left leg
for HipFE) stayed above or around the levels achieved by the full
EMG-drivenmodel, which caused SynX performance usingNMF
to level off. Therefore, even though the number of synergies that
generated the best PCA-based SynX results varied across trials,
muscles, and legs, PCA always needed fewer synergies than did
NMF. This fact simplifies the implementation of our method and
may improve computational efficiency when more variables need
to be calibrated simultaneously.

Though EMG normalization methods had no statistically
significant influence on SynX performance using PCA and
NMF, the variability of average r and RMSE values across all
five EMG normalization methods was considerably less for
PCA than that for NMF using the same number of synergies
(Figure 4 and Supplementary Figure 2). PCA generates
principal components that successively maximize variance
(Tresch et al., 2006), which explains why each PCA-derived
synergy excitation representing the corresponding variance
for each principal component exhibited significant magnitude
reduction (Supplementary Figure 1). In addition, the low-
dimensional space in PCA defined by orthogonal principal
components rotates as data are scaled differently across different
muscles, but the rotated principal components are still highly
descriptive of any points in the low-dimensional orthogonal
space (Ting and Chvatal, 2010). In contrast, NMF decomposition

is based on assessing the quality of magnitude approximation,
and scaling of original data differently across muscles would
lead to deformation of the convex subspace that the components
surround. With certain scaling schemes or normalization
methods, the points accounting for unmeasured muscle
excitations may not remain within the newly-generated NMF
subspace. Therefore, NMF-based SynX performance would be
sensitive to EMG normalization method, which is in agreement
with the conclusions for NMF-based decomposition reported by
Tresch et al. (2006). For different EMG normalization methods,
the optimizer is presented with a more consistent search space
for PCA than for NMF, which could explain why PCA is
less sensitive to EMG normalization method than is NMF.
Therefore, PCA may eliminate the need to identify the true
maximummuscle excitation for EMG normalization purposes in
preparation for SynX, which is a significant advantage over NMF.

In general, for a given number of synergies, the non-
paretic side (left leg) had higher reconstruction quality for
both measured and unmeasured muscle excitations than did the
paretic side (right leg) (Table 2). This observation is inconsistent
with the findings reported by Clark et al. (2009) but consistent
with previous synergy analysis of the same data set (Bianco et al.,
2018). The underlying reason for this discrepancy could be the
methodological differences between Clark et al.’s and our study.
For example, we performed MSA on a different set of muscles,
which may have influenced the MSA results (Steele et al., 2013;
Banks et al., 2017). Furthermore, the single subject post-stroke
who participated in our study was high-functioning whereas
Clark et al. studied 55 subjects post-stroke with heterogeneous
characteristics. Interestingly, our study found that reconstruction
of unmeasured muscle excitations through SynX was more
accurate for the non-paretic side (left leg) than for the paretic side
(right leg) (Figure 4), which is possibly due to higher amplitude
EMG signals for the paretic leg. For instance, predicted adductor
longus peaks during swing phase (60–100% of gait cycle) were
larger for the paretic side, and SynX was unable to reproduce
them as accurately as for the non-paretic side (Figures 2, 3). In
addition, to interpret the model calibration difference between
legs, we observed that for the non-paretic side (left leg), as
the number of synergies increased, the joint moment tracking
error for PCA-based SynX started above and then dropped
below the average from the full EMG-driven model calibration
(Figure 6). However, this behavior was not observed for the
paretic side (right leg), and consequently no number of synergies
could generate muscle excitations and joint moments together as
accurately as with the full EMG-driven model calibration.

Our study involved several important limitations that
suggest areas for future investigation. First, we calibrated
the EMG-driven model with a full set of EMG signals
to obtain personalized model parameters (e.g., EMG scale
factors, electromechanical delays, musculotendon parameter
values, and geometric coefficients), and SynX worked well
when the calibrated model parameters were held constant. In
the future, a challenge will be to develop an optimization
problem formulation where design variables defining both
unmeasured synergy vector weights and EMG-driven model
parameters are found simultaneously while still predicting joint
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moments and unmeasuredmuscle excitations accurately. Second,
the extraction of measured muscle synergies was performed
before the optimization process. However, since changing some
parameter values (e.g., EMG normalization factors) can change
the synergy analysis outcome, SynX may work better if MSA was
performed iteratively within the optimization. Since PCA leads
to unique and fast factorization solutions for synergy excitations
while NMF does not (Tresch et al., 2006), PCA would be the
preferred decomposition method for such an iterative approach.
Third, the SynX framework was validated on cases where only
one hip muscle (e.g., iliopsoas or adductor longus) was assumed
to be missing at a time. The approach should be evaluated more
extensively on cases where multiple muscles are assumed to be
unmeasured concurrently. Fourth, unmeasured synergy vector
weights were allowed to vary between trials in the current study.
It would be worthwhile to explore whethermaking synergy vector
weights subject-specific or task-specific can lead to simplification
of the SynX algorithm or improvements in SynX performance.
Lastly, this study used gait data from only a single subject post-
stroke with extensive EMG data. SynX needs to be investigated in
diverse subject populations, dynamic movement conditions, and
experimental scenarios with other unmeasured muscles.

CONCLUSION

This study showed that SynX is a viable option for estimating
an unmeasured muscle excitation using synergy excitations
extracted from measured muscle excitations. The study
also demonstrated that methodological choices (i.e., matrix
factorization algorithm and number of synergies) made
before MSA affect the accuracy with which unmeasured
muscle excitations can be predicted. The synergy vector weights
associated with an unmeasuredmuscle excitation were optimized
by minimizing errors between the EMG-driven model predicted
and experimental joint moments. Our results highlighted
that PCA was able to provide more accurate, reliable, and
efficient estimates of unmeasured muscle excitations than was
NMF. In general, PCA required five or six synergies to achieve
the best prediction of unmeasured muscle excitations, and
inclusion of additional synergies reduced SynX performance.
Better SynX performance for PCA may be the result of the
non-negativity restrictions imposed by NMF. Moreover,
PCA was less sensitive to EMG normalization method than
was NMF, which may reduce the need to identify the true

maximum muscle excitations reliably for EMG normalization.
SynX could be useful to address difficulties in collecting EMG
signals from deep muscles inaccessible by surface electrodes,
which is critical when predicting muscle forces with an EMG-
driven musculoskeletal model. It could also be useful when
using EMG systems with fewer channels than desired. Our
proposed SynX method may eventually facilitate the assessment
of human neuromuscular control and biomechanics after
rehabilitation or surgical treatment when EMG data collection
is limited.
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