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Abstract

Objectives—Adult patients with epilepsy have an increased prevalence of major depressive 

disorder (MDD). Intracranial EEG (iEEG) captured during extended inpatient monitoring of 

patients with treatment-resistant epilepsy offers a particularly promising method to study MDD 

networks in epilepsy.

Methods—The authors used 24 hours of resting-state iEEG to examine the neural activity 

patterns within corticolimbic structures that reflected the presence of depressive symptoms in 13 

adults with medication-refractory epilepsy. Principal component analysis was performed on the z-

scored mean relative power in five standard frequency bands averaged across electrodes within a 

region.

Results—Principal component 3 was a statistically significant predictor of the presence of 

depressive symptoms (R2=0.35, p=0.014). A balanced logistic classifier model using principal 

component 3 alone correctly classified 78% of patients as belonging to the group with a high 

burden of depressive symptoms or a control group with minimal depressive symptoms (sensitivity, 

75%; specificity, 80%; area under the curve=0.8, leave-one-out cross validation). Classification 
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was dependent on beta power throughout the corticolimbic network and low-frequency cingulate 

power.

Conclusions—These finding suggest, for the first time, that neural features across circuits 

involved in epilepsy may distinguish patients who have depressive symptoms from those who do 

not. Larger studies are required to validate these findings and to assess their diagnostic utility in 

MDD.

Major depressive disorder (MDD) in epilepsy is consistently underdiagnosed and 

undertreated (1), yet it is well known that the presence of this comorbidity can lead to worse 

seizure outcome following treatment with medication (2) or surgical resection (3, 4). Novel 

research has conceptualized both focal epilepsy and depression as network disorders, 

suggesting that the substrates in each of these two disorders may be distributed in 

overlapping networks rather than confined to single brain regions (5–7). In neuroimaging 

and EEG studies, dysfunction in limbic temporofrontal and parietofrontal networks is 

consistently observed in both disorders independently (7–9). To our knowledge, there are no 

studies to date that have examined the neurophysiological signatures of network dysfunction 

in affective disorders in patients with epilepsy. Given the chronic, persistent nature of the 

symptoms of mood disorders, we hypothesized that these symptoms would likely be 

mediated by interictal dysfunction rather than the relatively transient neural changes that 

occur during seizures. Thus, we sought to determine whether there are differences in 

network activity during interictal periods that can distinguish patients with focal epilepsy 

who have self-reported symptoms of depression from patients without depression. Such 

studies may begin to provide a better understanding of the etiology of comorbid MDD and 

could lead to the development of novel personalized therapies.

Intracranial EEG (iEEG) captured during the presurgical recording period in epilepsy 

patients with treatment-refractory symptoms offers a particularly promising method to study 

MDD networks in epilepsy. This technique allows for both high temporal resolution and 

spatial precision and enables direct neural recordings across cortical and deep structures.

In this pilot study, we examined four regions across a corticolimbic network that are 

common sites of epilepsy foci and are implicated in both the pathophysiology of MDD and 

epilepsy (6, 7). These regions include the anterior cingulate, the orbitofrontal cortex (OFC), 

the amygdala, and the hippocampus. We examined resting-state iEEG data across this 

network to identify neural features that differentiate patients with and without self-reported 

symptoms of depression.

METHODS

A total of 13 adult patients undergoing surgical treatment for medication-refractory epilepsy 

who were implanted with intracranial grids, strips, or depth electrodes as part of their 

clinical evaluation for epilepsy surgery were included in the study. We used the Patient 

Health Questionnaire-9 (PHQ-9) (10), a 9-item self-report instrument, to screen participants 

for a high burden of depressive symptoms (score ≥10). The first 24 hours of resting-state 

neural recordings were used to maximize signal quality. This study was approved by the 
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institutional review board of the University of California at San Francisco, and written 

informed consent was obtained from all study subjects.

The Natus EEG clinical recording system (Natus Medical, Pleasanton, Calif.) was used to 

collect iEEG data at a 1–2 kHz sampling rate. Offline analysis was conducted with custom 

scripts in MATLAB (MathWorks, Natick, Mass.) and Python (Python Software Foundation, 

Wilmington, Del.). Standard iEEG preprocessing techniques were used, including 

application of a 2- to 250-Hz bandpass filter, notch filters at line noise frequency (60 Hz) 

and harmonics, down sampling to 512 Hz, and common average referencing. All data were 

manually cleaned of artifacts, seizures, epileptiform activity, and sleep in 30-second 

intervals under the supervision of one study author (AK), who is board certified in clinical 

neurophysiology and sleep medicine and was blind to highdepressive symptoms 

categorization. Only electrode contacts that were verified by MRI as being correctly 

positioned in the region of interest were used for analysis. Continuous waveform 

transformation with the Morlet wavelet transform method (11) was performed in 30-second 

intervals to obtain power spectra in five frequency bands (delta=2–4 Hz, theta=4–7 Hz, 

alpha=8–12 Hz, beta=13–30 Hz, and gamma=31–70 Hz). Relative power was calculated by 

dividing the power of each frequency band by the total power for each electrode.

Principal component analysis was performed on the z-scored mean relative power across 

time and electrodes within a region and combined across study subjects (4). The principal 

component analysis is used to address collinearity among EEG measures. It solves for linear 

combinations of the predictor variables, which are uncorrelated and then used as the 

predictor variables instead of the true variables. Stepwise linear and logistic regression 

models were performed with the PHQ-9 score or the presence of high depressive symptoms, 

respectively, as the outcome variable and principle components of the frequency spectral 

measures derived from the iEEG as the independent variables. Components were entered 

stepwise into the regression analysis. Because the principal component analysis is a linear 

transformation of the original dimensions, power units were maintained before and after it 

was applied. The composite score represents a linear combination of the original power 

estimates.

To determine the ability of the biomarker to correctly classify patients with and without high 

depressive symptoms, we carried out preliminary analyses of accuracy, sensitivity, and 

specificity by using the standard leave-one-out cross-validation method. This involved 

developing a model in a subset of all patients except one, and testing the model in the 

remaining study subject, performing multiple rounds of cross-validation until all participants 

were left out and then averaging the validation results over the rounds to estimate a final 

predictive model (4).

RESULTS

The demographic and clinical characteristics of the study sample are summarized in Table 1. 

Among the 13 participants, 62% (N=8) had high depressive symptoms. The highdepressive 

symptoms group and the control group with minimal depressive symptoms were similar with 

regard to age (mean age=33.0 years [SD=5.93] and 33.4 years [SD=11.06], respectively). 
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Eighty-eight percent of patients in the high-depressive symptoms group had temporal lobe 

epilepsy compared with 60% in the control group. Female participants comprised 50% 

(N=4/8) of the high-depressive symptoms group and 80% of the control group (N=4/5). In 

the high-depressive symptoms group, 88% of patients went on to receive surgical 

intervention compared with 80% in the control group) (chi-square or Kruskal-Wallis test, 

p>0.05). No participants were taking psychiatric medications. All patients were taking 

antiepileptic medications that were being tapered. There was no significant difference in the 

type of antiepileptic medications across the two study groups (chi-square or Kruskal-Wallis 

test, p>0.05).

The recording locations across participants is shown in Figure 1A. Principal component 

analysis yielded 12 principal components with eigenvalues >0.1 (Figure 1B). Component 

loadings across the 12 principal components are presented in Table S1 in the online 

supplement. A forward-stepwise linear regression model was a statistically significant 

predictor of the PHQ-9 score, with three principal components accounting for 62% of the 

variance (p=0.03, R2=0.62, and leave-one-out cross-validation: pseudo R2=0.29). We found 

that principal component 8 alone accounted for the majority (35%) of this variance 

(R2=0.35, p=0.034, coeff= −5.07) (Figure 1C). The other two principal components in the 

model contributed about equally (principal component 12: 17%; principal component 3: 

10%).

We then carried out a dichotomous analysis to assess whether a set of neural features, 

represented by the principal components, could classify patients with high depressive 

symptoms from patients without high depressive symptoms. A forward-stepwise logistic 

regression model was a statistically significant predictor of high-depressive symptom status, 

in which principal component 3 was a significant contributor (R2=0.35, p=0.014), with an 

odds ratio of 2.7. A leave-one-out cross-validation method, again, revealed acceptable 

generalization (pseudo R2=0.27). Principal component 3 was significantly lower in the high-

depressive symptoms group compared with the control group (−0.93 and 1.48, respectively; 

two-sample t test, p=0.02). The mean power within principal component 3 and the range 

across individual study subjects for each group is shown in Figure 2A. A balanced logistic 

classifier model with principal component 3 alone correctly classified 78% of patients as 

belonging to the high-depressive symptoms group or the control group (sensitivity, 75%; 

specificity, 80%; area under the curve [AUC]=0.8, leave-one-out cross validation) (Figure 

2B). These results provide initial evidence that principal component 3 was a significant 

modest, but reliable, factor in identifying most study subjects with depressive symptoms. 

There were some patients who did not follow this pattern and whose symptoms could 

represent a depression subtype that would be of interest to explore in a larger sample. The 

mean power within principal components 8 and 12 was not significantly different across the 

two study groups (p=0.24 and 0.28, respectively, two-sample t test).

Principal component 3 was common to both the logistic and linear regression models. It was 

heavily dependent on relative beta power across the entire corticolimbic network. 

Component loadings of principal component 3 indicated enhanced OFC and cingulate beta 

power in high depressive symptoms and decreased hippocampal and amygdala beta power 

(Figure 2C). A balanced logistic classifier model with these four beta features alone 
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correctly classified 64% of patients (sensitivity, 67%; specificity, 70%; AUC=0.7, leave-one-

out cross validation), suggesting that corticolimbic beta power contributed most strongly to 

the classification dependent on principal component 3. In addition, high component loadings 

were observed for cingulate alpha (positively correlated with PHQ-9 scores) and theta power 

(negatively correlated with PHQ-9 scores), replicating previous findings that suggest the 

importance of cingulate activity in depression. Principal components 8 and 12 were in line 

with principal component 3 and also dependent on beta and theta power as well as cingulate 

activity (Figure 2C).

DISCUSSION

By using direct neural recordings, we identified a putative biomarker of self-reported 

depressive symptoms in medication-refractory epilepsy that was correlated with depression 

symptom severity and could correctly classify the majority of patients with and without high 

depressive symptoms (AUC=0.8). To our knowledge, this is the first study of a biomarker of 

psychiatric symptoms comorbid with focal epilepsy. Larger studies are required to validate 

these preliminary findings, assess their diagnostic utility in MDD, and evaluate their 

effectiveness for treatment stratification.

While a single brain circuit unique to depression in epilepsy is unlikely, previous studies 

support a degree of commonality across circuitry that underlies depressive symptoms (8, 12, 

13). Our results suggest that it may be possible to identify and extract this commonality, 

even with a small sample of patients with intracranial recordings. Our classification results 

are consistent with many larger functional MRI brain-based biomarkers (14–17). The 

classification was heavily dependent on power in the beta frequency band (13–30 Hz) 

throughout the corticolimbic network. Relative beta power was enhanced in the OFC and 

cingulate and decreased in the amygdala and hippocampus. Beta power is generally 

considered a marker of activation or arousal (18) and has been identified as a marker of 

depression in previous studies, although the direction of the effect has been mixed (19–21). 

Fingelkurts et al. (22) found that beta brain oscillations throughout the posterior cortical 

region characterized patients with depression, which was hypothesized by the authors to be a 

result of greater anxiety measured in these patients compared with control subjects. 

Similarly, a recent iEEG study of patients with epilepsy found that increased amygdala-

hippocampal coherence variance in the beta band was correlated with worsening mood in a 

majority of study subjects (13).

In addition to specific differences in beta power, we found enhanced cingulate alpha power 

and reduced cingulate theta power to be important contributors in distinguishing high 

depressive symptoms. Theta and alpha power within the limbic regions were also prominent 

contributors to the variance across PHQ-9 scores. Previous findings suggest that alterations 

in the cingulate in these frequency bands reflect disrupted limbic pathways (23), may serve 

as markers of MDD (24), and are modulated by antidepressant treatment (25, 26). Indeed, 

alterations in theta and alpha bands have been most consistently reported in quantitative 

EEG studies of MDD (25, 27–35). These include early studies that reported alpha 

asymmetry reflected by increased left frontal alpha power (33, 34), although this finding was 

subsequently reported to lack temporal stability (35). In addition, subsequent work identified 
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combined measures of alpha and theta power (antidepressant treatment response index [27, 

28] and a measure of theta power, i.e., theta cordance [29]) as promising biomarkers of 

treatment response (25, 30, 31, 36, 37). Other studies have investigated network organization 

in MDD by examining spectral coherence to estimate network connectivity (38). One such 

study identified an overall stronger connectivity across brain regions in theta and alpha 

bands in patients with depression compared with non-depressed control subjects (38). A 

subsequent study extended these findings and reported higher theta and alpha coherence in 

patients with MDD over healthy control subjects, especially within long-range connections 

between frontal regions and temporal and parietooccipital regions, and locally higher beta 

coherence within frontal and temporal regions (24). Although the scope of the present study 

was limited to power features over coherence, we may speculate that our findings reflect 

both disrupted local (beta) and long-distance (alpha and theta) organization across the limbic 

network. In line with this hypothesis, network analysis with graph theoretical approaches has 

shown both inter- and intranetwork connectivity disruptions in emotion, attention, and 

cognitive networks in patients with depression (39, 40).

While previous studies have relied on source localization of scalp EEG data to draw 

conclusions about spectral power within deeper structures, in the present study we employed 

intracranial recording and can, therefore, provide more definitive spatial localization of 

activity. As a result, this study extends current findings to link neural features from deep and 

cortical structures demonstrating a consistent and reciprocal relationship of spectral activity 

across the limbic network and supporting a focus on the cingulate in MDD.

An inherent limitation of working with iEEG recordings is the inconsistent placement of 

electrodes, which leads to challenges in grouping study subjects that have common 

recordings. Our sample size was small, because our goal was to identify a circuit-level 

biomarker, and patients were therefore included only if they had iEEG electrodes in the 

same four brain regions. As a result of the limited sample size, it was not feasible to train 

and test the regression models on independent data sets, and thus we used leave-one-out 

cross validation to maximize the amount of data available to learn discriminating features. 

Another limitation was the use of stepwise regressions, which were used to automatically 

select discriminatory variables from our larger set of principal components but have the 

potential for overfitting. Cross validation was performed in conjunction with the regressions 

to test the performance stability of the model and demonstrated consistent, but more 

moderate, correlations. Finally, it also remains possible that differences in epileptiform 

activity or the type of epilepsy contributed to the observed power changes, even after we 

removed epileptiform activity from the neural data.

While these results are preliminary, a common-circuit model that characterizes the majority 

of patients advances our understanding of depression and could serve as the substrate for 

larger studies that are aimed to replicate these findings directly in MDD and investigate the 

development of novel, personalized treatment strategies that specifically target dysfunctional 

networks.
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Refer to Web version on PubMed Central for supplementary material.
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FIGURE 1. Neural features correlated with high-depressive symptom severity in adults with 
medication-refractory epilepsya

a Panel A shows the location of recording electrodes across the study population. Panel B 

shows the eigenvalues of the 12 principal components (PCs). Eigenvalues were >0.10 

(dotted line) for the 12 PCs. Panel C shows the three PCs that accounted for 62% of the 

variance in the Patient Health Questionnaire-9 (PHQ-9) score in a forward-stepwise linear 

regression. Each PC is shown regressed against the PHQ-9 score. The cut-off score was 10, 

represented by a dotted line. OFC=orbitofrontal cortex.
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FIGURE 2. Neural features identifying adult patients with high-depressive symptom (HDS) 
severitya

a Panel A shows the power within principal component (PC) 3 across the HDS (red) and 

control (black) groups. The mean power (solid line) is overlaid upon the individual data 

points. Panel B shows the area under the curve (AUC) for the logistic classifier model. PC3 

alone identified major depressive disorder with an accuracy of 78% and an AUC of 0.8. 

Panel C shows the component loadings of PC3 indicating that the biomarker was most 

dependent on beta power across the four-region corticolimbic network and low-frequency 

cingulate power. Component loadings of PC8 and PC12 are shown for comparison. 

_A=alpha, A=amygdala, _B=beta, C1=cingulate, _D=delta, _G=gamma power, H = 

hippocampus, __T=theta, OFC=orbitofrontal cortex.
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TABLE 1.

Demographic and clinical characteristics of the study sample (N=13)
a

Characteristic High-depressive symptoms group (N=8) Control group (N=5)

Mean SD Mean SD

PHQ-9 score 13.0 1.73 4.4 2.65

Age (years) 33.0 5.93 33.4 11.06

N % N %

Female 4 50 4 80

Temporal lobe epilepsy 7 88 3 60

Surgical treatment 7 88 4 80

a
The high-depressive symptoms group was categorized by a Patient Health Questionnaire–9 (PHQ–9) score ≥10, and the control group was 

categorized by a score <10 (i.e., minimal depressive symptoms). No participants were receiving psychiatric medications.

J Neuropsychiatry Clin Neurosci. Author manuscript; available in PMC 2020 August 17.


	Abstract
	METHODS
	RESULTS
	DISCUSSION
	References
	FIGURE 1.
	FIGURE 2.
	TABLE 1.



