
UC Davis
UC Davis Previously Published Works

Title
Ray Tracing Generalized Tube Primitives: Method and Applications

Permalink
https://escholarship.org/uc/item/43c6j3sb

Journal
Eurographics Workshop on Visual Computing for Biology and Medicine, 38(3)

ISSN
2070-5778

Authors
Han, Mengjiao
Wald, Ingo
Usher, Will
et al.

Publication Date
2019-06-01

DOI
10.1111/cgf.13703

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/43c6j3sb
https://escholarship.org/uc/item/43c6j3sb#author
https://escholarship.org
http://www.cdlib.org/

Ray Tracing Generalized Tube Primitives: Method and
Applications

Mengjiao Han†,1, Ingo Wald2,3, Will Usher1,2, Qi Wu1,4, Feng Wang1, Valerio Pascucci1,
Charles D. Hansen1, Chris R. Johnson1

1SCI Institute, University of Utah

2Intel Corporation

3NVIDIA

4University of California, Davis

Abstract

We present a general high-performance technique for ray tracing generalized tube primitives. Our

technique efficiently supports tube primitives with fixed and varying radii, general acyclic graph

structures with bifurcations, and correct transparency with interior surface removal. Such tube

primitives are widely used in scientific visualization to represent diffusion tensor imaging

tractographies, neuron morphologies, and scalar or vector fields of 3D flow. We implement our

approach within the OSPRay ray tracing framework, and evaluate it on a range of interactive

visualization use cases of fixed- and varying-radius streamlines, pathlines, complex neuron

morphologies, and brain tractographies. Our proposed approach provides interactive, high-quality

rendering, with low memory overhead.

1. Introduction

Visualization focuses on helping scientists explore or explain data through software systems

that provide static or interactive visual representations. Creating a visualization typically

requires two steps: choosing the best representation to convey the data visually and then

efficiently rendering this representation. Although often viewed as separate stages, the two

are tightly intertwined. Constraints imposed in the second stage—particularly the primitives

and model sizes supported by the rendering system—influence the choices of visual

representations made in the first stage.

In this paper, we are concerned with high-performance and high-fidelity rendering of data

represented as 3D line primitives. Such line primitives are used to represent data in a range

of scientific domains, such as fluid dynamics (e.g., streamlines and pathlines) [Ste00,

MTHG03, STH*09, GGTH07, Mer12], medical imaging (e.g., diffusion tensor imaging)

[RBE*06, MSE*06, ZDL03], and vector field visualization (e.g., magnetic or vector fields)

[PVH*02, CYY*11, MCHM10]. Additional attributes can be encoded along the line by

† mengjiao@sci.utah.edu.

HHS Public Access
Author manuscript
Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019
December 13.

Published in final edited form as:
Eurographics Workshop Vis Comput Biomed. 2019 June ; 38(3): 467–478. doi:10.1111/cgf.13703.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

varying the line color, thickness [LMSC11], or opacity [WVDLH05, GRT13, KRW18]. This

same type of geometry—long, thin lines with varying thickness—is also useful for

representing other data, such as ganglions in neuron datasets [Mar06] or vessels in aneurysm

visualization [SSV*14], although such data further requires the method to support acyclic

graph structures.

To visualize such line primitives, much of the visualization community has focused on

tessellating their surfaces and rasterizing the resulting primitives, leveraging the high

triangle rasterization performance of GPUs. However, it is difficult to support transparent

geometries, ambient occlusion, and global illumination effects in a rasterizer. Ray tracing

provides a direct method for rendering non-polygonal geometries, such as tubes,

streamlines, etc., by directly computing ray-surface intersections with the objects. A ray

tracer naturally supports effects such as transparency, ambient occlusion, and global

illumination, allowing for high-quality visualization.

Line primitives have been widely employed in visualization, and several open-source

applications exist for ray tracing them, with varying levels of support for bifurcations,

transparency, and varying radius (e.g., Embree [WWB*14], OSPRay [WJA*17], “Brayns”

[Blu19]). Prior work has addressed, in part, features such as varying radii [SGS05],

transparency [SZH97, ZSH96, MTHG03, KRW18], and bifurcations [TWHS05, TWSH02,

TAC*13, KP17, SSV*14]. However, no single method supports all three features in

combination, making the implementation of general visualization software and its use by

scientists more challenging, as special purpose methods must be used for each domain.

In this paper, we explore the use of ray tracing to efficiently visualize a class of data that is

best represented as 3D line primitives. We propose a new rendering primitive, the

“generalized tube”, that supports varying radii, bifurcations, and correct transparency, and is

applicable to any ray tracer. Moreover, our technique provides high-quality interactive

rendering, with low memory overhead. We implement our method as a module in the

OSPRay [WJA*17] ray tracer and evaluate it on a range of datasets. Our contributions are:

• A new method for rendering 3D line primitives, the “generalized tube”,

supporting varying radii, bifurcations, and correct transparency;

• An efficient CSG-based intersection approach that enables our primitive to

support correct transparency with interior surface removal;

• Demonstration of our approach on a range of datasets, from scalar and vector

fields, to neuron morphologies and topological structures;

• Implementation of our approach as an open-source module in OSPRay

[WJA*17], to allow use of in a range of visualization packages.

2. Background and Related Work

In this section, we summarize recent work on rendering 3D line primitives (Section 2.1) and

related work on ray tracing non-polygonal surfaces (Section 2.2).

Han et al. Page 2

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

2.1. Rendering Line Primitives

The majority of work in visualization has focused on GPU-based approaches to render 3D

line primitives. Early work by Zöckler et al. [ZSH96] proposed to render the streamlines as

illuminated line primitives. Schussman and Ma [SM02] proposed self-orienting surfaces

(SOS). SOS renders view-aligned triangle strips that are shaded using fixed-function

illumination and bump mapping. SOS formed the basis of later imposter-based streamline

and streamtube methods, where view-aligned triangle strips [PFK07] or a combination of

strips and point sprites [SKH*04, MSE*06] are rasterized, and ray-cylinder and ray-sphere

intersections are computed in the fragment shader. Bhagvat et al. [BJCW09] defined a

conical frustum representation for line segments and rendered it via GPU ray casting of the

relief-mapped frusta. Oeltze et al. [OP05] used convolution surfaces, which have varying-

radius and bifurcations, to visualize vasculature. Stoll et al. [SGS05] presented an approach

for rendering stylized line primitives based on imposters that is able to support varying radii

of the control points. Melek et al. [MMYK06] presented an approach based on a GPU

implementation of SOS for visualizing neuronal fibers. Kanzler et al. [KRW18] recently

proposed a voxel-based GPU ray-casting method for rendering 3D line primitives with

transparency, shadows, and ambient occlusion. However, as the approach is based on re-

sampling the data to a grid, the resulting line quality is inherently dependent on the chosen

grid resolution. Eichelbaum et al. [EHS13] presented an improved 3D line rendering

approach to enhance structural perception by providing a novel ambient occlusion method.

Recent work by Lindow et al. [LBLH19] proposed a hybrid rasterization and raycasting

approach for ribbon and stick rendering of DNA and RNA.

Although domain-specific tools exist that support efficient methods for rendering

streamlines [BSG*09, GKM*15], off-the-shelf visualization tools, such as ParaView

[Aya15] and Visit [CBW*12], default to tessellating them. For example, in the visualization

toolkit (VTK) [SLM04], the default method for rendering streamlines is to tessellate them.

Similarly, in the field of neuroscience, we are aware of at least one major project that

originally rendered large neuron datasets by tessellating them [BMB*13], and dealt with the

large number of triangles produced using parallel rendering [Eil13]. However, as dataset size

grows, tessellation can require the use of numerous powerful GPUs to fit the data in memory

and achieve interactive framerates.

2.2. Ray Tracing Non-Polygonal Primitives

Parker et al. [PSL*98] proposed one of the first interactive applications of ray tracing non-

polygonal primitives to visualize implicit isosurfaces. Following this work, a large body of

visualization research has explored ray tracing for rendering non-polygonal or implicit

geometry [DPH*03, GIK*07, BPL*12, KWN*13, WKJ*15, WKI*17]. Today, the most

common applications of ray tracing non-polygonal primitives are the rendering of spheres to

represent particle data [GIK*07, WKJ*15] and combinations of spheres and cylinders for

ball-and-stick models [KWN*13, Sto98] or streamlines [WJA*17].

OSPRay’s current streamline geometry [WJA*17] is implemented as a combination of

sphere primitives linked together with cylinders. This approach is simple to implement in a

ray tracer and produces high-quality images for opaque, fixed radius streamlines. However,

Han et al. Page 3

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

this method inherently lacks support for varying radii along the streamline and does not

support transparency or bifurcations.

Favreau’s “Brayns” ray tracer [Blu19] employs a combination of sphere, cylinder, and cone

stump primitives in a manner similar to our own for interactive ray tracing of large neuron

assemblies. Our work, although developed independently, has been motivated by similar

challenges when visualizing such large-scale neuron data.

Outside visualization, the most common application of ray tracing non-polygonal surfaces,

is found in movie rendering, in particular for memory-efficient rendering of subdivision

surfaces [BBLW07, BWN*15], hair [WBW*14], and curve or ribbon primitives [BK85].

Recently, Embree [WWB*14] has introduced support for curves with varying radii by

adding support for varying-radii features to their Bézier and B-Spline curve primitives.

These primitives have also been made available in OSPRay, which builds on top of Embree.

Such curves are visually pleasing, but they are expensive to render and do not support

bifurcations or varying radii.

3. Method Overview

We represent our generalized tubes with a combination of spheres to represent the control

points, cylinders for fixed-radius links, and cone stumps for varying-radii links. In the

following sections, we describe the input data structure to specify these primitives (Section

3.1) and how we compute the appropriate spheres, cylinders, and cone stumps to represent

the tubes (Section 3.2).

3.1. Input Data Structure

Although more general representations of lines or tubes are possible, for the purposes of this

work we consider only input data in the form of linearly connected control points. The input

data is specified as a list of control points, each with a position and radius, along with a

connectivity attribute, which specifies how the control points are connected (Figure 2). For

the sake of simplicity, we consider only acyclic graphs, where each point can have at most

one predecessor. Although simple, we have found this input structure sufficient to represent

all the datasets used in our evaluation. We note that a generalization to cyclic graphs is

straightforward.

With these assumptions, we can view our input as being simply a set of what we call “links”.

Each link specifies a control point and a reference to the control point preceding it, or “−1”

if the link is the starting point of the streamline. Bifurcations are then simply cases where

two links connect to the same predecessor. Figure 2 shows an illustration of a set of tube

primitives with constant and varying-radii links and a bifurcation.

Depending on the application domain, it sometimes makes sense to talk logically about

entire segments of links (e.g., an entire ganglion in a neuron, a particle trace). However, as

each such logical segment can be reduced to a series of links, we leave this higher level

semantic information to the application, and from the point of a ray tracer consider only

individual links.

Han et al. Page 4

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

3.2. Choice of Representation

Given this input data structure, the next step toward rendering it in a ray tracer is to break it

up into smaller geometric primitives, for which ray-surface intersections can be more easily

formulated.

In OSPRay’s current implementation of streamlines with a fixed radius, each control point is

internally represented as a sphere and the links between points as cylinders. The cylinder

composes the bulk of the streamline, and the spheres round off the corners where two

cylinders meet. As all the radii are the same, these primitives will always fit perfectly

together, creating the appearance of a single connected streamline. Implementing this

approach is straightforward: ray-sphere and ray-cylinder intersections are well described in

the literature [Dra99, PJH16], and building an acceleration structure on these primitives can

be left to Embree.

For our generalized tube primitives, we follow a similar approach; however, properly

handling the varying radii of the control points requires some modifications, as illustrated in

Figure 3.

3.2.1. Linking with Cylinders and Naïve Cone Stumps—To solve the problem of

choosing correct representation, we compared two existing approaches first: the existing

OSPRay’s [WJA*17] streamlines and connected cones from the Blue Brain project [Mar06].

The first prototype is a trivial extension of OSPRay’s [WJA*17] existing streamlines, where

we simply chose the cylinder’s radius to be that of the smaller control point. This approach

prevented any holes from appearing, but the images produced were quickly judged

unacceptable (Figure 3a). Clearly, the proper geometric primitive to linearly connect two

spheres with different radii is a cone stump, not a cylinder. Similar to “Brayns” [Blu19], we

next computed cone stumps linking the control points, whose caps were centered at P1 and

P2, with radius r1 and r2, respectively, oriented along P1 P2 = P2 − P1 (Figure 3b).

Although this naïve way of computing the cones gives acceptable results in many cases, it

produces noticeable banding artifacts in sections where the radius changes rapidly (Figure

3b). Similar to sweeping a sphere along a trajectory [VW85], the real shape that linearly

connects two spheres is a slightly different cone stump than the one produced using the

computation described above. Specifically, the naïve cone is not tangent to the sphere where

the two meet (Xi’s in Figure 3b). As a result, the larger sphere protrudes through the cone

stump, and at the thinner end there is a visible, sharp change in surface curvature.

3.2.2. Computing Properly Tangential Cones—The desired cone, which smoothly

connects the control points—the one tangential to the spheres at the points Xi—is shown in

Figure 3c. A cone is described by its apex (A), orientation (C), and radius (w). To clip the

infinite cone to a cone stump, we will also require the clipping plane locations z1 and z2

along the axis of revolution C. An illustration of the tangential cone computation is given in

Figure 4. Our computation is somewhat similar to the silhouette computation of Gumhold

[Gum03], although differs in the properties we require in the end, and thus we include it for

completeness. The cone’s orientation is given by

Han et al. Page 5

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

C =
P2 − P1

‖P2 − P1‖ (1)

Defining p1 = ∥P1 − A∥ and p2 = ∥P2 − A∥, we find from the theorem of intersecting tubes

that

r2
r1

=
p2
p1

Substituting p2 = ∥P2 − P1∥ + p1, we can solve for p1

r2
r1

=
‖P2 − P1‖ + p1

p1

p1 = ‖P2 − P1‖
r1

r2 − r1

Thus, we find the apex at

A = P1 − p1C (2)

Next, we compute the locations of the clipping planes z1 and z2. Due to congruence and the

theorem of intersecting lines, we know that

p1 − z1
r1

=
r1
p1

which we solve for z1.

z1 = p1 −
r1
2

p1

We proceed similarly for the second clipping plane location z2.

z2 = p2 −
r2
2

p2

Finally, to compute the width of the cone at P2, we first define x2 = ∥X2 − A∥. From the

Pythagorean theorem, x2 = p2
2 − r2

2. Again, using the theorem of intersecting lines we can

find w.

Han et al. Page 6

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

x2
p2

=
r2
w

w =
p2r2
x2

Once the modified cone stump’s coordinates are known, we can compute ray-cone stump

intersections (Section 4.1). The intersection computation is the same as for a naïve cone

stump; the only difference is in the cone parameters. Our approach links the geometry

correctly, though does not ensure the normals are continuous where the cone and sphere

meet (Figure 3c).

4. Implementation

We represent the control points as spheres and link them with either cylinders or cone

stumps. When the control points have the same radii, it is sufficient to link them with a

cylinder; however, if the radii differ, we must use a cone stump. Ray-sphere, ray-cylinder,

and ray-cone intersections are well described in the ray tracing literature [PJH16, Dra99].

Bhagvat et al. [BJCW09] presented a similar approach for ray-conical frusta intersection;

however, our definition of a cone stump is not identical to a conical frusta. As an

understanding of this operation is key to reproduce this paper, we briefly summarize our ray-

cone stump intersection.

4.1. Ray-Cone Stump Intersection

Following Dodgson’s discussion [Dra99], we consider the infinite dual-sided cone of which

our cone stump is a part, and construct a transformation that transforms this cone into the

unit cone, with the apex at the origin, the z-axis as the axis of rotation, and a slope of 1. To

do this, we compute the position of the non-truncated cone’s apex A (Equation (2)) and an

orthonormal basis vx, vy, vz that transforms z to C. The vectors vx and vy are then scaled by

w/p2, to span the larger cap and transform the cone to one with slope 1. The matrix M that

transforms our cone stump to the unit coordinate system is thus given by Equation (3).

M = w
p2

vx
w
p2

vy C A
−1

(3)

This unit coordinate system places the larger cap at z = 1 by design, whereas the smaller cap

position is found by

zcap =
z1
z2

We can now see our cone stump as the intersection of the slab [z = zcap, z = 1] with the

infinite unit cone X2 + Y2 = Z2, and we can formulate our ray-cone stump intersection

accordingly. Given a ray r(t) = o + td , we transform the ray into the cone’s coordinate system

Han et al. Page 7

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

by applying M−1, yielding r′(t). We can then insert the transformed ray into the unit cone

equation and solve the resulting quadratic. Solving this quadratic yields the (possibly empty)

interval [tc0, tc1] where the ray intersects the unit cone. If this interval is empty, or outside

the valid ray interval [tr0, tr1], there is no intersection and we can exit.

If an intersection with the infinite unit cone is found, we then compute the interval [tz0, tz1]

where the ray overlaps the slab [z = zcap, z = 1]. This ray-slab interval is then intersected

with the previously computed ray-cone interval to find [ts0, ts1], which is the interval where

the ray overlaps the cone stump.

Given the ray-cone stump interval [ts0, ts1], the final step depends on what exactly we need.

In Section 4.3.1, we will need the actual overlap interval between the ray and the cone

stump, which is the intersection of the ray-cone stump interval [ts0, ts1] and the valid ray

interval, [tr0, tr1]. If we are interested only in finding the ray’s intersection with the cone

stump’s surface, we need only the nearest of [ts0, ts1], which is also inside the valid ray

interval.

4.2. Acceleration Data Structure and Primitive Type

We use Embree [WWB*14] for the acceleration structure and traversal kernels. How we use

Embree to build a bounding volume hierarchy (BVH) over our primitives can significantly

influence performance and/or memory consumption, we discuss a few options and their

trade-offs in the following sections.

4.2.1. Individual Primitives vs. Complete Links—The first choice is whether we

build our Embree BVH over the individual link components (i.e., the spheres, cylinders, and

cone stumps), or over logical “link” primitives, which would then internally perform

intersections with their components. In the former case, we can implement three separate

Embree geometries (one for spheres, one for cylinders, and one for cone stumps) and have

dedicated intersection routines for each. Embree will then automatically build a single BVH

over the different primitives. In the latter case, we have a single Embree geometry with a

much more complex intersection routine. The first approach could result in a poorer quality

BVH, with more BVH nodes and overlap between them, increasing both memory use and

traversal cost compared to the latter. However, in the case of long, thin links with less

overlap, it is likely that most rays will intersect only the cylinder or cone primitives,

resulting in potentially higher performance in the first approach, compared to the latter’s

more costly primitive intersection.

The trade-offs between these two options are multi-faceted and non-obvious, and can be

concluded only by an experiment, which we conduct in Section 6.1.

4.2.2. Precomputed vs. On-the-Fly Primitives—A second important choice is how

much information we are going to pre-compute for the primitives. On one extreme, we can

keep memory consumption low by not pre-computing anything, in which case we can

describe each link by as little as a pointer to its control points; all other data—cone

parameters, transformation matrices, etc.—can be computed on the fly for every intersection

test.

Han et al. Page 8

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

At the other extreme, we could conclude that re-doing these computations millions of times

per image is a waste, and could pre-compute the cone coordinates and/or up to two

transformation matrices (the ray to object and object to world transforms) and store these

pre-computed attributes with the primitives. This is a clear memory-vs-speed trade-off,

which we will quantify with experiments in Section 6.1.

4.2.3. Embree Integration—Regardless of the final implementation we choose based

on the experiments, our Embree integration is the same. To allow Embree to build a BVH

over our primitives and intersect rays with them, we need to provide two methods for each

primitive type. The first method computes the bounds of the primitive, and the second

intersects a ray with the primitive. Depending on our choice of implementation, these

primitives will be the individual spheres, cylinders, and cone stumps, or the entire links.

4.3. Transparency

Our current description of our generalized tubes can readily be used to render opaque lines

with both bifurcations and varying radii, which were lacking in prior work. However, a third

limitation of prior work also applies to our description so far—artifacts when rendering with

transparency (Figure 5a).

These artifacts result from the fact that, whereas logically we want our tubes primitive to be

what in constructive solid geometry (CSG) terms would be called the union of the base

primitives, we have actually implemented them as the sum of these primitives, resulting in

interior surfaces. Therefore, a naïve approach to transparency will find and shade

intersections with these interior surfaces as well, producing visible artifacts.

4.3.1. Removing Interior Surfaces via CSG Intersection—The simplest approach

to remove these interior surfaces is to borrow ideas from constructive solid geometry, and

properly treat our geometry as a union of the base primitives. Rather than finding the closest

ray-surface intersection with any base primitive, we can instead compute all the intervals

where the ray overlaps each primitive. We can then sort these intervals and traverse them

front to back, counting the number of entry and exit events.

This incremental entry and exit counting tells us, at any point along the ray, how many of

these intervals we are currently overlapping. Each time we transition from 0 to 1, we are

entering the object, and at each transition from 1 to 0, we are exiting. All other transitions

are interior surfaces and can be ignored. Note that to handle the case where rays start inside

a tube, we must modify the ray start interval and set tr0 = −∞ before intersecting the

primitives.

4.3.2. Implementation via Intersection Filters—At first, Embree seems badly suited

to this operation: like most ray tracers, it is primarily targeted at first- and any-hit ray

traversal. However, Embree also supports so-called “intersection filters”, which can be used

to implement multi-hit ray traversal [AGGW15, GWA16]. Using an intersection filter, we

can implement exactly the algorithm described above.

Han et al. Page 9

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

In Embree, an intersection filter is a callback function that is called after each ray-primitive

intersection is encountered. The intersection filter can then decide whether to accept or reject

the hit and modify additional per-ray data. To implement the algorithm described above,

each time Embree calls our intersection filter we compute the ray-primitive overlap interval

and store it in an auxiliary buffer attached to each ray. We then reject the hit to force Embree

to discard the intersection and continue traversal, eventually iterating through all the

primitives overlapped by the ray.

Some care must be taken when implementing this approach within OSPRay, as we want to

apply the intersection filter only to our tube primitives. To achieve this, our OSPRay

geometry internally builds a separate Embree scene over the base tube primitives and applies

our intersection filter to this scene. Our OSPRay geometry then reports the Embree scene

bounds to OSPRay as its bounds, and in its intersection method forwards the ray on to

traverse its Embree scene and collects the ray intervals. After the ray intervals have been

collected, they are sorted and the closest exterior surface is found and returned as the hit

point.

This method can correctly remove interior surfaces from being reported incorrectly as hits,

and can therefore handle transparency correctly (Figure 5b). However, this method comes at

significant cost, due to the overhead in finding, storing, and sorting the ray-primitive

intervals, along with the partial loss of early ray termination, as we must now find all

intervals along the ray. We quantify this performance impact in Section 6.3.

5. Applications

In Figure 1, we show several sample visualization applications enabled by our module

within OSPRay, ranging from DTI tractography, flow visualization, and vessel morphology

to large-scale neuron assemblies. Our method can provide high-fidelity results at interactive

framerates. Figure 6 shows the DTI tractography dataset in different visualization use cases.

On the left in Figure 6, the full set of tracts is shown in the context of the underlying DWI

volume to provide an overview visualization. On the right in Figure 6, a sub-set of the tracts

is shown along with two slices of the DWI volume to focus on a specific region of the brain.

Both visualizations are rendered with OSPRay’s scivis renderer, which can render combined

volumetric and surface data with high-quality shading effects such as shadows and ambient

occlusion.

Figure 7 shows an illustrative visualization of neuron activity, similar to those used by the

Blue Brain Project [Mar06], rendered with OSPRay’s path tracer renderer. An emissive

material is applied to the neurons to indicate the firing of electrical signals throughout the

assembly.

6. Experiments and Results

We first quantify the different implementation choices discussed in Section 4.2 with a set of

benchmarks to find a suitable default implementation (Section 6.1). We then focus our

evaluation on two key aspects of our method: the absolute performance achieved when

rendering opaque geometry (Section 6.2) and the impact of the CSG interior surface removal

Han et al. Page 10

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

method (Section 6.3). Finally, we compare the performance, rendering quality, and memory

consumption of our method against Embree’s existing curve primitive (Section 6.4).

Our evaluations are done using our method implemented as a module within OSPRay 1.7.2,

built with Embree 3.2.0 and ISPC We ran our benchmarks on three machines, Desktop, with

an Intel® i7–5930K CPU (12 logical cores at 3.7 GHz) and 32GB RAM; Workstation, a

dual socket workstation with two Intel® Xeon® E5-2640 v4 CPUs (40 logical cores at 2.4

GHz) and 128GB RAM; and FSM, a quad socket workstation with four Xeon E7-8890 v3

CPUs (144 logical cores at 2.5 GHz) and 3TB RAM.

We conducted our benchmarks on four representative datasets at varying levels of model

complexity to evaluate typical use cases of our generalized tubes. The first is a diffusion

tensor imaging (DTI) tractography dataset [WTBJ19] consisting of 220,711 nodes and

218,637 cylinder links with a fixed radius (Figure 8).

The second dataset is a representative model of the neuron assemblies used in neuron

simulations, such as those of the Blue Brain Project [Mar06]. To generate these models, we

wrote a tool that creates an assembly of neurons by placing N randomly or manually chosen

base neurons (Figures 9a to 9d) at random locations within a properly scaled bounding box.

Using the assembly generation program, we created datasets ranging in size from 43 to 203

neurons (far view: Figures 9e to 9g; near view: Figure 1b), in total consisting of 28,032

spheres, 2,496 cones, and 25,472 cylinders; up to 9.4M spheres, 2.4M cones, and 7M

cylinders. To provide an accurate representation of this data, where each neuron is unique,

we do not use OSPRay’s instancing features, and instead render actual transformed copies of

the base neurons.

The third dataset consists of different sub-sets of pathlines extracted from a tornado

simulation (Figure 1d). The first sub-set, “Tornado 1M”, consists of 4096 pathlines and

947,872 fixed radius links. The second sub-set, “Tornado 6.5M”, consists of 24,576

pathlines and 6.5M links, where we encode the velocity using the pathline radius. The third

sub-set, “Tornado 35.9M”, consists of 0.13M lines with 35.9M fixed-radius links. The last

dataset used for benchmarking is the Torus Flow simulation (Figure 1e), consisting of

263,144 pathlines with 6.5M fixed-radius links. This range of datasets captures a variety of

use cases for pathlines in practice. The DTI, Torus Flow, and Tornado data is represented

with a dense distribution of long, thick lines; the neuron assemblies contain almost random,

bifurcating, and highly intersecting lines with varying radii. On the DTI and Tornado

datasets, we also use the line radius to encode additional attributes, such as fractional

anisotropy (FA), on the DTI data, and velocity, on the Tornado 6.5M sub-set.

In the evaluation, we benchmark rendering performance using three renderers in OSPRay:

the ray casting renderer is a basic primary ray-only renderer; the scivis renderer computes

common secondary effects useful in scientific visualization (e.g., ambient occlusion and

shadows); and the path tracing renderer is a photorealistic global illumination renderer. We

render with one sample per pixel with all the renderers and use OSPRay’s progressive

refinment to refine the image. We configure the scivis renderer to take one sample for

Han et al. Page 11

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

ambient occlusion when shading. Unless otherwise specified, benchmarks were run on the

Workstation with a 1024 × 1024 framebuffer.

6.1. Quantification of Implementation Choices

In this section, we quantify the trade-offs of the different implementation choices discussed

in Section 4.2 on six datasets. In addition to the Brain DTI tractographies and neuron

assemblies (103, 143 and 203), we also evaluate the Tornado 1M dataset and the Torus Flow.

We evaluate the four possible implementation choices discussed in Section 4.2: (a) separate

sphere, cylinder, and cone stump primitives with on-the-fly transform computations; (b)

separate primitives as in (a), but this time with the transforms pre-computed; (c) combined

link primitives with on-the-fly transform computations; and (d) combined link primitives

with pre-computed transforms.

Table 1 shows the performance and memory consumption for each option. As expected, the

overall performance and memory consumption of (b) are higher than those of (a), due to pre-

computing and storing the transformation matrices of the primitives, thereby avoiding

redundant computation. Interestingly, the performance difference between (a) and (b) is not

as large on datasets with a denser distribution of pathlines (e.g., the Torus and neuron

assemblies). In these datasets, although we pre-compute transformation matrices for all

primitives, we are likely intersecting only a small sub-set of them, given our fixed viewpoint.

Similar results are seen when comparing on the fly vs. pre-computation on the combined

link primitives. We find option (d) provides better performance at the cost of more memory

use than (c) for most datasets; again, the performance difference becomes smaller on the

denser datasets.

When comparing the separate primitive options (a, b) with the combined link primitive

options (c, d), we find that the combined links have lower memory consumption and tend to

have better rendering performance. The combined link primitives reduce memory use by

sharing the control point data among the sphere and cone or cylinder primitives, and also

reduce the total number of primitives Embree must build the BVH over, potentially leading

to a shallower BVH with fewer nodes. With the combined link primitive, we find

performance improvements on sparser data (DTI, Tornado) and the Torus. On these datasets,

the individual link primitives are relatively short, and thus the rays are likely to intersect

both the cylinder or cone stump link and the sphere for the control point. However, we find

less performance improvement of the completed link primitives on the neuron assemblies.

On the neuron assemblies, the individual links are longer, and therefore rays are more likely

to require traversing only the cylinders or cone stumps. Overall, we find that (d), combined

link primitives with pre-computed transformation matrices, provides the best memory-

performance trade-off, and we use this implementation throughout the rest of the

benchmarks.

6.2. Performance on Opaque Geometry

To evaluate overall performance and how our primitive scales with the model configuration

and complexity, we examine the effect on performance of several single neuron

Han et al. Page 12

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

morphologies, the DTI tractography data with several different radii, and increasing the

number of neurons in the neuron assemblies.

We find that our method achieves high framerates when rendering small to medium datasets,

such as the neuron morphologies and DTI tractographies, on a typical desktop system (Table

2). On the DTI tractography data we render at multiple radii and observe that for opaque

geometry increasing the radius improves the performance. With very thin lines the rays must

traverse further through the data, whereas thicker lines lead to more occlusion and thus

require less traversal to find a hit. We find that even for the most expensive rendering

method evaluated, path tracing, we still achieve interactive framerates.

We benchmark the neuron assemblies from a viewpoint that displays the entire assembly

(Figures 9e to 9g) on the Workstation at a 1024 × 1024 framebuffer (Figure 10). Even for

extremely large neuron assemblies, our method is able to provide interactive rendering at

high quality, achieving 41FPS on the 143 neuron assembly with the ambient occlusion

renderer. When employing the most expensive rendering method, path tracing, we still reach

7FPS on the 143 assembly. Finally, we perform a large-scale stress test and generate a

neuron assembly with 1 billion links. Our method remains interactive even at a 2400×600

framebuffer, achieving 22.5FPS on FSM.

6.2.1. Comparison to Tessellation—To perform a rough comparison between our

method and the tessellation approach, which is similar to the approach that is commonly

employed in tools such as VTK and ParaView, we create triangulated models of our data.

These models are created by tessellating the sphere, cylinder, and cone stump primitives into

960, 124, and 124 triangles, respectively. Although this coarse tessellation leaves some gaps

at the connections between the primitives, it is a reasonable approximation to the models

produced by VTK and ParaView. We compare rendering performance and memory

consumption of our method against the tessellated models using the ray casting renderer

(Table 3). Similar to previous results in molecular visualization [FKE13, GKM*15, Sto98,

HDS96], we find significant performance and memory improvements when using our non-

polygonal geometry.

6.3. Performance Impact of CSG Intersection

As discussed previously in Section 4.3.1, the CSG intersection method required to remove

interior surfaces for correct transparency comes at a significant cost. To quantify this cost,

we compare the rendering performance of the first-hit ray traversal, suitable for opaque

geometry, with our all-hit CSG traversal, suitable for transparency. In both cases, we render

opaque geometry, to avoid including other performance impacts inherent in rendering with

transparency, thus isolating the impact of the CSG traversal method.

We measure this overhead on four datasets: the DTI tractography data at r = 0.05 and r =

0.25, and the 103 and 143 neuron assemblies at a near viewport (Figure 11). As expected, the

CSG traversal decreases rendering performance; however, we find that for all but the most

expensive renderer (path tracing), the CSG traversal remains interactive. We further observe

that the CSG traversal has a greater impact on the Brain DTI data than on the neuron

assemblies, and that the impact is greater as the radius increases on the DTI data. In the case

Han et al. Page 13

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

of the DTI data, the number of tracts overlapped by each ray is higher than on the neuron

assemblies, where the individual lines are quite thin when viewed from far away. As the

radius of the tracts increases, the number of tracts overlapping each ray increases

correspondingly, translating to a more expensive CSG traversal. We also evaluate how our

method scales with the number of layers of transparency per-pixel (Figure 12). Each layer’s

opacity is set to 0.5, with randomly generated RGB colors. Even at a large number of

transparent layers, our method remains interactive.

6.4. Smooth Curves vs. Linear Links

Although our focus in this work is on using linear links between control points, we note that

Embree’s Bézier curve primitive, which also supports varying radii and transparency, was

recently made available in OSPRay to represent streamlines. Bifurcations can also be

emulated with Embree’s curves by duplicating the start point of the branches, although the

transparency at the bifurcation will be incorrect. We compare our generalized tube with

Embree’s Bézier curve using a test case with three key features: varying radius, a

bifurcation, and transparency (Figure 13).

Compared to our generalized tube, Embree’s curve provides smoother bends along the curve

(at points B and C), giving a visually pleasing result. However, Embree’s curve primitive

loses information encoded using the line radius, which could result in users misinterpreting

the data. Finally, bifurcations must be faked by duplicating the start point to create the

branches (lines DF and DE), resulting in artifacts at the bifurcation point, D. Due to the

duplication of D, interior surfaces can be seen in the overlap at the bifurcation point, and the

bifurcation does not round-off at the point.

For non-bifurcating lines, Embree’s curve primitive provides images roughly similar to those

rendered by our method. In these cases, we can perform a quantitative comparison and

examine the rendering performance (Figure 14) and memory use of the two methods (Table

4). We evaluate the methods on four datasets: the Brain DTI data, with a fixed radius (r =

0.25) and varying radii, encoding the fractional anisotropy, and the two Tornado sub-sets.

We find that the smoothness of Embree’s Bézier curves comes with a performance cost

compared to our simpler method (Figure 14). On all datasets, we find better rendering

performance with our method, with the exception of path tracing on the Tornado sub-sets,

where our method performs similar to Embree. Finally, we observe similar results in

memory cost when using our generalized tube, compared to Embree (Table 4). However, the

implementation choice we used in benchmark is not one that saves the most memory. As

discussed in Section 4.2 and Section 6.1, our method can reduce memory usage and still be

faster than Embree’s curve primitive.

7. Discussion and Conclusion

In this paper, we have presented a new method for rendering generalized tube primitives that

supports varying radii and bifurcations. This primitive type is applicable to a wide range of

datasets, such as flows, scalar or vector fields, neuron morphologies, and topological

structures. Furthermore, we used an efficient CSG-based intersection approach that enables

Han et al. Page 14

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

correct transparency by removing interior surfaces. Our approach provides high-

performance rendering with low memory overhead for up to billions of primitives.

Furthermore, our method is general enough to embed into any ray tracing framework, such

as Nvidia Optix [PBD*10], or production film renderers such as Cycles [Fou] and Arnold

[KCSG18].

Some challenges remain to be addressed in our proposed approach. Specifically, proper

handling of transparency is important for applications that require this feature; although our

current CSG method for removing interior surface has provided a solution, it strongly

impacts performance. Although we offer the faster non-transparent traversal mode, it is up to

the application to select this mode, which, if past experience is any guide, will likely mean

applications will pick the “slow but correct” mode by default. Future work along this line to

explore faster methods for transparency will be valuable for end users of the primitive.

Finally, whereas the integration into tools such as ParaView should in theory be simple, any

such integration always uncovers at least some missing or mismatched features that may

require additional modifications. Eventually, it is also worth considering the broader

question of whether it would make sense to add the geometry type and algorithms described

in this paper to other ray tracers, such as OptiX [PBD*10], taking advantage of Geforce

RTX [nvi], and if so, whether there is a need for some standardization of what exactly a line

primitive type would have to support in any given ray tracer.

Despite these open issues, we believe our approach will be a useful addition to the arsenal of

geometric primitive types in visualization. Although the applicability of our primitive is

somewhat specific, for applications that do need such primitives, ours will significantly

improve users’ ability to visualize and understand their data.

Acknowledgements

This work was supported in part by the NIH (Grant P41 GM103545-18). Additional support comes from the Intel
Parallel Computing Centers Program, NSF:CGV: Award 1314896, NSF:IIP: Award 1602127, NSF:ACI: Award
1649923, DOE/SciDAC DESC0007446, CCMSC DE-NA0002375 and NSF:OAC: Award 1842042. The authors
wish to thank Ally Warner for the brain DTI dataset, Steve Petruzza for the torus flow and tornado datasets, and
Attila Gyulassy for the jet flame Morse-Smale complex dataset. The authors also thank the Texas Advanced
Computing Center (TACC) at The University of Texas at Austin for providing access to Stampede2.

References

[AA09]. Acker CD, Antic SD: Quantitative Assessment of the Distributions of Membrane
Conductances Involved in Action Potential Backpropagation Along Basal Dendrites. Journal of
neurophysiology (2009).

[ADH07]. Ascoli GA, Donohue DE, Halavi M: NeuroMorpho. Org: A Central Resource for Neuronal
Morphologies. Journal of Neuroscience (2007).

[AGGW15]. Amstutz J, Gribble C, Günther J, Wald I: An Evaluation of Multi-Hit Ray Traversal in a
BVH using Existing First-Hit/Any-Hit Kernels. Journal of Computer Graphics Techniques
(JCGT) (2015).

[Aya15]. Ayachit U: The Paraview Guide: A Parallel Visualization Application. Kitware, Inc., 2015.

[BBLW07]. Benthin C, Boulos S, Lacewell D, Wald I: Packet-based Ray Tracing of Catmull-Clark
Subdivision Surfaces. SCI Institute, University of Utah, Technical Report (2007).

Han et al. Page 15

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

[BJCW09]. Bhagvat D, Jeschke S, Cline D, Wonka P: GPU Rendering of Relief Mapped Conical
Frusta In Computer Graphics Forum (2009), Wiley Online Library.

[BK85]. Bronsvoort WF, Klok F: Ray Tracing Generalized Cylinders. ACM Transactions on Graphics
(TOG) (1985).

[Blu19]. BlueBrain: BlueBrain/Brayns, 2019 URL: https://github.com/BlueBrain/Brayns.

[BMB*13]. Brito J, Mata S, Bayona S, Pastor L, DeFelipe J, Benavides Piccione R.: Neuronize: a tool
for building realistic neuronal cell morphologies. Frontiers in neuroanatomy (2013).

[BPL*12]. Brownlee C, Patchett J, Lo L-T, DeMarle D, Mitchell C, Ahrens J, Hansen C: A Study of
Ray Tracing Large-Scale Scientific Data in Parallel Visualization Applications. In Proceedings of
the Eurographics Workshop on Parallel Graphics and Visualization, EGPGV (2012).

[BSG*09]. Bruckner S, Solteszova V, Groller E, Hladuvka J, Buhler K, Jai YY, Dickson BJ:
BrainGazer-Visual Queries for Neurobiology Research. IEEE transactions on visualization and
computer graphics (2009).

[BWN*15]. Benthin C, Woop S, Niessner M, Selgrad K, Wald I: Efficient Ray Tracing of Subdivision
Surfaces using Tessellation Caching. In Proceedings of the 7th Conference on High-Performance
Graphics (2015), ACM.

[CBW*12]. Childs H, Brugger E, Whitlock B, Meredith J, Ahern S, Pugmire D, Biagas K, Miller M,
Harrison C, Weber G, et al.: VisIt: An End-User Tool For Visualizing and Analyzing Very Large
Data. High Performance Visualization-Enabling Extreme-Scale Scientific Insight. Insight (2012).

[CYY*11]. Chen C-K, Yan S, Yu H, Max N, Ma K-L: An Illustrative Visualization Framework for 3D
Vector Fields In Computer Graphics Forum (2011), Wiley Online Library.

[DPH*03]. DeMarle DE, Parker S, Hartner M, Gribble C, Hansen C: Distributed Interactive Ray
Tracing for Large Volume Visualization. In IEEE Symposium on Parallel and Large-Data
Visualization and Graphics, 2003. PVG 2003 (2003), IEEE.

[Dra99]. Drakos N: Some Mathematics for Advanced Graphics, 1999 URL: https://www.cl.cam.ac.uk/
teaching/1999/AGraphHCI/SMAG/node2.html.

[EHS13]. Eichelbaum S, Hlawitschka M, Scheuermann G: LineAO—Improved Three-Dimensional
Line Rendering. IEEE Transactions on Visualization and Computer Graphics (2013).

[Eil13]. Eilemann S: Equalizer Programming and User Guide: The official reference for developing
and deploying parallel, scalable OpenGL applications using the Equalizer parallel rendering
framework. Eyescale Software GmbH, 2013.

[FKE13]. Falk M, Krone M, Ertl T: Atomistic Visualization of Mesoscopic Whole-Cell Simulations
Using Ray-Casted Instancing In Computer Graphics Forum (2013), Wiley Online Library.

[Fou]. Foundation B.: Cycles Open Source Production Rendering. URL: https://www.cycles-
renderer.org/.

[GGTH07]. Garth C, Gerhardt F, Tricoche X, Hagen H: Efficient Computation and Visualization of
Coherent Structures in Fluid Flow Applications. IEEE Transactions on Visualization and
Computer Graphics (2007).

[GIK*07]. Gribble CP, Ize T, Kensler A, Wald I, Parker SG: A Coherent Grid Traversal Approach to
Visualizing Particle-Based Simulation Data. IEEE Transactions on Visualization and Computer
Graphics (2007).

[GKM*15]. Grottel S, Krone M, Müller C, Reina G, Ertl T: MegaMol—A Prototyping Framework for
Particle-Based Visualization. IEEE transactions on visualization and computer graphics (2015).

[GRT13]. Günther T, Rössl C, Theisel H: Opacity Optimization for 3D Line Fields. ACM Transactions
on Graphics (TOG) (2013).

[Gum03]. Gumhold S: Splatting Illuminated Ellipsoids with Depth Correction. In VMV (2003).

[GWA16]. Gribble C, Wald I, Amstutz J: Implementing Node Culling Multi-Hit BVH Traversal in
Embree. Journal of Computer Graphics Techniques Vol (2016).

[HDS96]. Humphrey W, Dalke A, Schulten K: VMD: Visual Molecular Dynamics. Journal of
molecular graphics (1996).

[JSP*01]. Jacobs B, Schall M, Prather M, Kapler E, Driscoll L, Baca S, Jacobs J, Ford K, Wainwright
M, Treml M: Regional Dendritic and Spine Variation in Human Cerebral Cortex: a Quantitative
Golgi Study. Cerebral cortex (2001).

Han et al. Page 16

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/BlueBrain/Brayns
https://www.cl.cam.ac.uk/teaching/1999/AGraphHCI/SMAG/node2.html
https://www.cl.cam.ac.uk/teaching/1999/AGraphHCI/SMAG/node2.html
https://www.cycles-renderer.org/
https://www.cycles-renderer.org/

[KCSG18]. Kulla C, Conty A, Stein C, Gritz L: Sony Pictures Imageworks Arnold. ACM Transactions
on Graphics (TOG) (2018).

[KP17]. Kovács A, Pál B: Astrocyte-Dependent Slow Inward Currents (SICs) Participate in
Neuromodulatory Mechanisms in the Pedunculopontine Nucleus (PPN). Frontiers in cellular
neuroscience (2017).

[KRW18]. Kanzler M, Rautenhaus M, Westermann R: A Voxel-based Rendering Pipeline for Large 3D
Line Sets. IEEE transactions on visualization and computer graphics (2018).

[KWN*13]. Knoll A, Wald I, Navrátil PA, Papka ME, Gaither KP: Ray Tracing and Volume Rendering
Large Molecular Data on Multi-Core and Many-Core Architectures. In Proceedings of the 8th
International Workshop on Ultrascale Visualization (2013), ACM.

[LBLH19]. Lindow N, Baum D, Leborgne M, Hege H-C: Interactive Visualization of RNA and DNA
Structures. IEEE transactions on visualization and computer graphics (2019).

[LMSC11]. Lee T-Y, Mishchenko O, Shen H-W, Crawfis R: View Point Evaluation and Streamline
Filtering for Flow Visualization. In 2011 IEEE Pacific Visualization Symposium (2011), IEEE.

[Mar06]. Markram H: The Blue Brain Project. Nature Reviews Neuroscience (2006).

[MCHM10]. Marchesin S, Chen C-K, Ho C, Ma K-L: View-Dependent Streamlines for 3D Vector
Fields. IEEE Transactions on Visualization and Computer Graphics (2010).

[Mer12]. Merzkirch W: Flow Visualization. Elsevier, 2012.

[MMYK06]. Melek Z, Mayerich D, Yuksel C, Keyser J: Visualization of Fibrous and Thread-like
Data. IEEE Transactions on Visualization and Computer Graphics (2006).

[MSE*06]. Merhof D, Sonntag M, Enders F, Nimsky C, Hastreiter P, Greiner G: Hybrid Visualization
for White Matter Tracts using Triangle Strips and Point Sprites. IEEE Transactions on
Visualization and Computer Graphics (2006).

[MTHG03]. Mattausch O, Theussl T, Hauser H, Gröller E: Strategies for Interactive Exploration of 3D
Flow Using Evenly-spaced Illuminated Streamlines. In Proceedings of the 19th spring conference
on Computer graphics (2003), ACM.

[nvi]. NVIDIA GeForce RTX. URL: https://www.nvidia.com/en-us/geforce/20-series/rtx/.

[OP05]. Oeltze S, Preim B: Visualization of Vasculature With Convolution Surfaces: Method,
Validation and Evaluation. IEEE Transactions on Medical Imaging (2005).

[PBD*10]. Parker SG, Bigler J, Dietrich A, Friedrich H, Hoberock J, Luebke D, McAllister D,
McGuire M, Morley K, Robison A, et al.: OptiX: A General Purpose Ray Tracing Engine In
ACM transactions on graphics (Tog) (2010), ACM.

[PFK07]. Petrovic V, Fallon J, Kuester F: Visualizing Whole-Brain DTI Tractography with GPU-based
Tuboids and LoD Management. IEEE transactions on visualization and computer graphics
(2007).

[PJH16]. Pharr M, Jakob W, Humphreys G: Physically Based Rendering: From Theory to
Implementation. Morgan Kaufmann, 2016.

[PSL*98]. Parker S, Shirley P, Livnat Y, Hansen C, Sloan P-P: Interactive Ray Tracing for Isosurface
Rendering In Proceedings Visualization’98 (Cat. No. 98CB36276) (1998), IEEE.

[PVH*02]. Post FH, Vrolijk B, Hauser H, Laramee RS, Doleisch H: Feature Extraction and
Visualization of Flow Fields. Eurographics 2002 State-of-the-Art Reports (2002).

[RBE*06]. Reina G, Bidmon K, Enders F, Hastreiter P, Ertl T: GPU-based Hyperstreamlines for
Diffusion Tensor Imaging In EuroVis (2006), Citeseer.

[SGS05]. Stoll C, Gumhold S, Seidel H-P: Visualization with stylized line primitives In VIS 05. IEEE
Visualization, 2005. (2005), IEEE.

[SKH*04]. Schirski M, Kuhlen T, Hopp M, Adomeit P, Pischinger S, Bischof C: Efficient
Visualization of Large Amounts of Particle Trajectories in Virtual Environments Using Virtual
Tubelets. In Proceedings of the 2004 ACM SIGGRAPH international conference on Virtual
Reality continuum and its applications in industry (2004), ACM.

[SLM04]. Schroeder WJ, Lorensen B, Martin K: The Visualization Toolkit: An Object-Oriented
Approach to 3D Graphics. Kitware, 2004.

Han et al. Page 17

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.nvidia.com/en-us/geforce/20-series/rtx/

[SM02]. Schussman G, Ma K-L: Scalable Self-Orienting Surfaces: A Compact, Texture-Enhanced
Representation for Interactive Visualization of 3D Vector Fields. In 10th Pacific Conference on
Computer Graphics and Applications, 2002. Proceedings (2002), IEEE.

[SSV*14]. Sangalli LM, Secchi P, Vantini S, et al.: AneuRisk65: A dataset of three-dimensional
cerebral vascular geometries. Electronic Journal of Statistics (2014).

[Ste00]. Steinman DA: Simulated pathline visualization of computed periodic blood flow patterns.
Journal of Biomechanics (2000).

[STH*09]. Shi K, Theisel H, Hauser H, Weinkauf T, Matkovic K, Hege H-C, Seidel H-P: Path Line
Attributes - an Information Visualization Approach to Analyzing the Dynamic Behavior of 3D
Time-Dependent Flow Fields In Topology-Based Methods in Visualization II. Springer, 2009.

[Sto98]. Stone JE: An Efficient Library for Parallel Ray Tracing And Animation.

[SZH97]. Stalling D, Zockler M, Hege H-C: Fast Display of Illuminated Field Lines. IEEE
transactions on visualization and computer graphics (1997).

[TAC*13]. Thomanetz V, Angliker N, Cloëtta D, Lustenberger RM, Schweighauser M, Oliveri F,
Suzuki N, Rüegg MA: Ablation of the mTORC2 component rictor in brain or purkinje cells
affects size and neuron morphology. J Cell Biol (2013).

[TWHS05]. Theisel H, Weinkauf T, Hege H-C, Seidel H-P: Topological Methods for 2D Time-
Dependent Vector Fields Based on Stream Lines and Path Lines. IEEE Transactions on
Visualization and Computer Graphics (2005).

[TWSH02]. Tricoche X, Wischgoll T, Scheuermann G, Hagen H: Topology tracking for the
visualization of time-dependent two-dimensional flows. Computers & Graphics (2002).

[VPRK02]. Vukšić M, Petanjek Z, Rašin MR, Kostović I: Perinatal Growth of Prefrontal Layer III
Pyramids in Down Syndrome. Pediatric neurology (2002).

[VW85]. Van Wijk JJ: Ray Tracing Objects Defined by Sweeping a Sphere. Computers & Graphics
(1985).

[WBW*14]. Woop S, Benthin C, Wald I, Johnson GS, Tabellion E: Exploiting Local Orientation
Similarity for Efficient Ray Traversal of Hair and Fur. In High Performance Graphics (2014).

[WJA*17]. Wald I, Johnson GP, Amstutz J, Brownlee C, Knoll A, Jeffers J, Günther J, Navrátil P:
OSPRay-A CPU Ray Tracing Framework for Scientific Visualization. IEEE transactions on
visualization and computer graphics (2017).

[WKI*17]. Wu K, Knoll A, Isaac BJ, Carr H, Pascucci V: Direct Multifield Volume Ray Casting of
Fiber Surfaces. IEEE transactions on visualization and computer graphics (2017).

[WKJ*15]. Wald I, Knoll A, Johnson GP, Usher W, Pascucci V, Papka ME: CPU Ray Tracing Large
Particle Data with Balanced P-k-d Trees. In 2015 IEEE Scientific Visualization Conference
(SciVis) (2015), IEEE.

[WTBJ19]. Warner A, Tate J, Burton B, Johnson CR: A High-Resolution Head and Brain Computer
Model for Forward and Inverse EEG Simulation. bioRxiv (2019).

[WVDLH05]. Wünsche B, Van Der Linden J, Holmberg N: DTI volume rendering techniques for
visualising the brain anatomy In International Congress Series (2005), Elsevier.

[WWB*14]. Wald I, Woop S, Benthin C, Johnson GS, Ernst M: Embree: A Kernel Framework for
Efficient CPU Ray Tracing. ACM Transactions on Graphics (TOG) (2014).

[ZDL03]. Zhang S, Demiralp C, Laidlaw DH: Visualizing Diffusion Tensor MR Images Using
Streamtubes and Streamsurfaces. IEEE Transactions on Visualization and Computer Graphics
(2003).

[ZSH96]. Zockler M, Stalling D, Hege H-C: Interactive Visualization of 3D-Vector Fields Using
Illuminated Stream Lines. In Proceedings of Seventh Annual IEEE Visualization’96 (1996),
IEEE.

Han et al. Page 18

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

CCS Concepts

• Computing methodologies → Ray tracing;

Han et al. Page 19

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 1:
Visualizations using our “generalized tube” primitives. (a): DTI tractography data, semi-

transparent fixed-radius streamlines (218K line segments). (b): A generated neuron assembly

test case, streamlines with varying radii and bifurcations (3.2M l. s.). (c): Aneurysm

morphology, semi-transparent streamlines with varying radii and bifurcations (3.9K l. s.) and

an opaque center line with fixed radius and bifurcations (3.9K l. s.). (d): A tornado

simulation, with radius used to encode the velocity magnitude (3.56M l. s.). (e): Flow past a

torus, fixed-radius pathlines (6.5M l. s.). Rendered at: (a) 0.38FPS, (b) 7.2FPS, (c) 0.25FPS,

(d) 18.8FPS, with a 20482 framebuffer; (e) 23FPS with a 2048×786 framebuffer.

Performance measured on a dual Intel® Xeon® E5-2640 v4 workstation, with shadows and

ambient occlusion.

Han et al. Page 20

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 2:
Illustration of the input data structure. We make a list of control points, each with a position,

radius, and predecessor index. Each control point and its cylinder or cone stump connection

to its predecessor is refered to as a “link”.

Han et al. Page 21

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 3:
When linking control points of varying radii, cylinders are clearly the wrong choice (a);

however, incorrectly chosen cones will also produce artifacts (b). To smoothly link the

control points, we compute cones that are tangent to the spheres at their intersection (c).

Han et al. Page 22

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 4:
Our method for computing a tangent cone stump to connect control points of varying radii.

Han et al. Page 23

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 5:
(a) Without our CSG interior surface removal approach, interior surfaces can be seen,

producing visual artifacts. (b) Our CSG intersection computation correctly finds only

exterior surfaces

Han et al. Page 24

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 6:
Our geometry module integrated into OSPRay can be combined with volumes (left, 9.4 FPS)

or other geometry (right, 22.8 FPS) to create interactive, high-quality visualizations.

Han et al. Page 25

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 7:
An illustrative visualization of neuron activity rendered using OSPRay’s path tracer with

emissive materials.

Han et al. Page 26

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 8:
The far and near views used for benchmarks on the DTI dataset, with ambient occlusion and

shadows.

Han et al. Page 27

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 9:
(a-d) The base neurons used to build the neuron assembly benchmark scenes, from

NeuroMorpho.org [ADH07]. The base neurons consist of: (a) 438 nodes, 39 cone links, and

398 cylinder links [JSP*01]; (b) 1176 nodes, 645 cone links, and 530 cylinder links [AA09];

(c) 2140 nodes, 320 cone links, and 1819 cylinder links [KP17]; (d) 955 nodes, 206 cone

links, and 748 cylinder links [VPRK02]. (e-g) Examples of the generated neuron assemblies

used in the benchmarks, rendered interactively with ambient occlusion. The assemblies are

generated by randomly placing the base neurons N times within a scaled box. The

assemblies have: (e) 103, (f) 143, and (g) 203 neurons.

Han et al. Page 28

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://NeuroMorpho.org

Figure 10:
Rendering performance on the generated neuron assemblies (Figure 9). Our method

performs well even at large scales (143, 1.2M links) with ambient occlusion.

Han et al. Page 29

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 11:
Performance impact of the CSG ray traversal required for correct transparency. Benchmarks

were performed rendering opaque geometry in both cases, with only the traversal method

switched. Although the CSG traversal comes with a performance impact, it remains

interactive in most cases.

Han et al. Page 30

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 12:
Performance impact of the CSG ray traversal required for correct transparency. Benchmarks

were performed by increasing the number of layers of semi-transparent geometry per pixel.

Our method remains interactive, even at 6000 layers of transparency.

Han et al. Page 31

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 13:
Although Embree’s curve primitive (a) provides a visually pleasing representation, it loses

information encoded in the radius and exhibits artifacts at bifurcations.

Han et al. Page 32

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Figure 14:
Comparison of rendering performance of our generalized tubes and Embree’s curve

primitive. We find our method is up to 2× to 4× faster for scientific visualization style use

cases.

Han et al. Page 33

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Han et al. Page 34

Ta
b

le
 1

:

Pe
rf

or
m

an
ce

 a
nd

 m
em

or
y

us
e

co
m

pa
ri

so
n

of
 th

e
fo

ur
 im

pl
em

en
ta

tio
n

ch
oi

ce
s,

 s
ho

w
n

as
 F

PS
 /

M
B

, b
en

ch
m

ar
ke

d
w

ith
 th

e
sc

iv
is

 r
en

de
re

r.
W

e
fi

nd
 th

at

op
tio

n
(d

)
pr

ov
id

es
 th

e
be

st
 b

al
an

ce
 o

f
pe

rf
or

m
an

ce
 a

nd
 m

em
or

y
us

e.

Im
pl

em
en

ta
ti

on
D

T
I

(r
 =

 0
.2

5)
To

rn
ad

o
1M

To
ru

s
F

lo
w

10
3

ne
ur

on
s

14
3

ne
ur

on
s

20
3

ne
ur

on
s

(a
)

se
pa

ra
te

, o
n-

th
e-

fl
y

32
.3

 /
12

0.
3

8.
0

/ 2
92

.9
56

.2
 /

18
61

.9
22

.8
 /

16
6.

8
14

.3
 /

37
4.

0
0.

9
/ 2

66
6.

0

(b
)

se
pa

ra
te

, p
re

-c
om

pu
te

d
37

.7
 /

16
3.

4
9.

2
/ 4

85
.5

56
.3

 /
31

89
.0

27
.4

 /
25

7.
4

17
.1

 /
61

8.
0

1.
2

/ 4
58

4.
4

(c
)

co
m

bi
ne

d,
 o

n-
th

e-
fl

y
34

.0
 /

99
9.

0
/ 1

97
.0

52
.7

 /
11

02
.0

22
.7

 /
13

4.
3

14
.1

 /
23

5.
2

0.
9

/ 1
53

3.
0

(d
)

co
m

bi
ne

d,
 p

re
-c

om
pu

te
d

43
.1

 /
12

2.
9

11
.5

 /
29

7.
3

67
.3

 /
17

97
.6

27
.8

 /
18

4.
8

17
.1

 /
35

5.
0

1.
2

/ 2
53

4.
2

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Han et al. Page 35

Table 2:

Performance on the Desktop with a 10242 framebuffer.

Frame Rate (FPS)

Dataset Ray Casting SciVis Path Tracing

Neuron (a) 94.9 90.0 47.7

Neuron (b) 118.8 111.0 76.2

Neuron (c) 107.9 95.4 66.5

Neuron (d) 87.3 52.2 15.6

DTI (r = 0.05mm) 37.8 13.1 2.1

DTI (r = 0.15mm) 44.7 16.6 2.3

DTI (r = 0.30mm) 50.6 16.9 2.8

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Han et al. Page 36

Table 3:

Triangulated models (Triangles) compared to our non-polygonal generalized tubes (GT) on the Workstation

(top) and FSM (bottom). * indicates out of memory. GT consumes far less memory and provides higher

framerates.

Memory Use (GB) Framerate (FPS)

Dataset Triangles GT Triangles GT

DTI 35.4 0.13 38.9 131.2

Torus * 1.8 * 134.5

103 Neurons 69.8 0.18 23.03 74.9

143 Neurons * 0.36 * 52.3

Tornado 6.5M * 1.7 * 79.2

Tornado 35.9M * 8.8 * 33.5

DTI 35.6 0.16 117.6 259.4

Torus 678.0 1.8 31.29 271.2

103 Neurons 70.1 0.2 65.5 151.4

143 Neurons 191.8 0.36 38.5 107.78

Tornado 6.5M 673.1 1.8 12.7 171.4

Tornado 35.9M * 9.0 * 75.8

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Han et al. Page 37

Table 4:

Average memory consumption of our generalized tube and Embree’s curve primitive. In all cases, our method

consumes memory similar to that for Embree’s curve primitive.

Dataset Embree Curve Generalized Tubes

DTI (r = 0.25) 0.13GB 0.13GB

DTI (varying r) 0.13GB 0.13GB

Tornado 6.5M 1.4GB 1.6GB

Tornado 35.9M 7.6GB 8.8GB

Eurographics Workshop Vis Comput Biomed. Author manuscript; available in PMC 2019 December 13.

	Abstract
	Introduction
	Background and Related Work
	Rendering Line Primitives
	Ray Tracing Non-Polygonal Primitives

	Method Overview
	Input Data Structure
	Choice of Representation
	Linking with Cylinders and Naïve Cone Stumps
	Computing Properly Tangential Cones

	Implementation
	Ray-Cone Stump Intersection
	Acceleration Data Structure and Primitive Type
	Individual Primitives vs. Complete Links
	Precomputed vs. On-the-Fly Primitives
	Embree Integration

	Transparency
	Removing Interior Surfaces via CSG Intersection
	Implementation via Intersection Filters

	Applications
	Experiments and Results
	Quantification of Implementation Choices
	Performance on Opaque Geometry
	Comparison to Tessellation

	Performance Impact of CSG Intersection
	Smooth Curves vs. Linear Links

	Discussion and Conclusion
	References
	Figure 1:
	Figure 2:
	Figure 3:
	Figure 4:
	Figure 5:
	Figure 6:
	Figure 7:
	Figure 8:
	Figure 9:
	Figure 10:
	Figure 11:
	Figure 12:
	Figure 13:
	Figure 14:
	Table 1:
	Table 2:
	Table 3:
	Table 4:

