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Abstract—The chip industry faces two key challenges today –
the impending end of Moore’s Law and the rising costs of chip
design and verification (millions of dollars today). Heterogeneous
IPs - cores and domain-specific accelerators - are a promising
answer to the first challenge, enabling performance and energy
benefits no longer provided by technology scaling. IP-reuse
with plug-and-play designs can help with the second challenge,
amortizing NRE costs tremendously. A key requirement in a
heterogeneous IP-based plug-and-play SoC environment is an
interconnection fabric to connect these IPs together. This fabric
needs to be scalable - low latency, low energy and low area -
and yet be flexible/parametrizable for use across designs. The
key scalability challenge in any Network-on-Chip (NoC) today is
that the latency increases proportional to the number of hops.

In this work, we present a NoC generator called OpenSMART,
which generates low-latency NoCs based on SMART1. SMART
is a recently proposed NoC microarchitecture that enables multi-
hop on-chip traversals within a single cycle, removing the
dependence of latency on hops. SMART leverages wire delay of
the underlying repeated wires, and augments each router with
the ability to request and setup bypass paths. OpenSMART takes
SMART from a NoC optimization to a design methodology for
SoCs, enabling users to generate verified RTL for a class of user-
specified network configurations, such as network size, topology,
routing algorithm, number of VCs/buffers, router pipeline stages,
and so on. OpenSMART also provides the ability to generate
any heterogeneous topology with low and high-radix routers
and optimized single-stage pipelines, leveraging fast logic delays
in technology nodes today. OpenSMART v1.0 comes with both
Bluespec System Verilog and Chisel implementations, and this
paper also presents a case study of our experiences with both
languages. OpenSMART is available for download2 and is going
to be a key addition to the emerging open-source hardware
movement, providing a glue for interconnecting existing and
emerging IPs .

I. INTRODUCTION

Networks-on-Chip (NoC) is a key component of almost
all chips today. The domains vary from (i) many-core chips
in HPC supercomputers and high-end servers with tens to
hundreds of homogeneous cores [1], [2], [3], to (ii) mobile
and embedded SoCs with tens of heterogeneous cores and
controllers [4], [5], to (iii) GPUs with hundreds of SMs [6],
to (iv) domain-specific accelerators, such as machine learning,
with hundreds of processing elements [7], [8]. Without loss
of generality, we refer to end point cores, accelerators, PEs,

1Single-cycle Multi-hop Asynchronous Repeated Traversal
2http://synergy.ece.gatech.edu/tools/OpenSMART/

caches, etc. as “IPs” in this work. NoC is the interconnect
backbone connecting IPs communicating each other and a crit-
ical IP block itself for plug-and-play designs. As the number of
IPs in a hardware system increases, the communication fabric
also needs to scale so that it does not become a performance
or energy bottleneck.

Fundamentally, the latency of traversal between two IPs is
proportional to the number of hops between them. Routers
at each hop help to manage the multiplexing of different
flows on the shared output links, but they add arbitration
and switch delay to every message. This problem becomes
worse as the number of IPs on a chip goes up; the number
of hops each message takes to get from one end of the
chip to the other goes up proportionally as well, increasing
latency. Latency can have a direct impact on performance, as it
affects the number of cycles the source core may have to stall
while waiting for a response. This is especially a challenge
in mobile SoCs where latency requirements are often much
more stringent. Moreover, since heterogeneous IPs optimized
for a certain operation are placed at design-time, the number
of hops between communicating nodes cannot be reduced by
thread/process migration. Apart from latency, NoC energy is
another key challenge as systems scale, since the energy cost
of data movement across a chip is often an order of magnitude
more than the cost of computation [9].

The latency and energy of on-chip communication could
be reduced by simpler routers or high-radix routers [10]
that reduce the number of hops by adding dedicated links
between distant nodes. Both of the design strategies come with
their performance, area and energy trade-offs, which require
careful design-space exploration to gauge performance benefits
against overheads. With chip design already costing millions
of dollars today, designing and verifying NoCs for every
new architecture to consider various trade-offs aggravates the
design cost problem.

NoC RTL generators [2], [11], [12] can ease the process
of design-space exploration and verification. These generators
parameterize router modules and links, and generate different
topologies and microarchitectures that can be simulated for
performance, and synthesized for area and power estimates.
The key challenge with most open-source NoC generators
today is that they rely on multi-stage textbook router imple-
mentations [13], which scale horribly in terms of latency and



energy as hop counts go up. Most of these generators also
provide a specific pipeline implementation. There have been a
lot of optimizations over the past decade of NoC research to
reduce network delays by dynamic pipeline adjustments [14],
[15], [16], but few of these have gone beyond hand optimized
demonstrations into a parameterized tool flow.

A promising design optimization for scalable many-IP NoCs
is SMART [17]. SMART leverages the fact that wires are fast
enough to transmit signals 10+ mm within 1ns in process
technologies today, and in future. The limiter to network
latency today is the the conventional design philosophy of
latching flits at every hop. SMART provides the performance
of low-diameter high-radix topologies, without actually adding
additional dedicated datapaths, by enabling flits to traverse
multiple hops within a single cycle, up to the distance that the
underlying wire can physically allow (known as maximum
hops per cycle or HPCmax). This saves not only latency, but
also energy since intermediate clocked latches are bypassed
completely. More details about SMART are presented in
Section II. As technology nodes shrink, and high-end cores
get augmented with smaller dedicated accelerator IPs, the size
of IP blocks is expected to go down. Thus, the same wire delay
- which does not scale down with technology - can translate
to higher HPCmax, making SMART even more attractive.

This work presents OpenSMART, an automated tool for
generating SMART NoCs, hiding microarchitectural details of
multi-hop path request, setup, and bypass from the designer.
OpenSMART provides user-configurability and generates syn-
thesizeable Verilog that can be plugged into any SoC. In
addition, OpenSMART can also generate single and multi-
cycle routers for any regular or irregular (heterogeneous)
topology. Our experiments with the Nangate15nm open-cell
library [18] demonstrate that our generated SMART NoCs
provide 35% latency reduction and 39% EDP reduction over
a 1-cycle optimized mesh router with random traffic.

To contribute to the emerging open-source hardware ecosys-
tem [19], we release the source code of OpenSMART under
BSD license. OpenSMART v1.0 has both a Bluespec System
Verilog (BSV) [20] and Chisel [21] implementation, which
provide higher-level abstractions of hardware. The imple-
mentation provides easier modularization (like object-oriented
programming languages) and abundant libraries for frequently-
used hardware logic. Such features will help OpenSMART
users easily modify the source code for their specific purpose.
Moreover, BSV and Chisel framework supports both C++
simulation and Verilog generation. This enables design-space
exploration like software tools and also timing/area/power
estimation though any ASIC/FPGA tool flow. We also present
a case study demonstrating our experience with using both
these HDLs and the optimizations afforded by each.

The rest of the paper is organized as follows: Section 2
introduces previous research related to the NoC generators and
high-level HDLs. Section 3 describes the microarchitecture
design of OpenSMART and presents the characteristics of BSV
and Chisel implementations. Section 4 discusses the evaluation
results of OpenSMART network. Section 5 concludes.

Router 0 Router 1 Router 2 Router 3

Router 0 Router 1 Router 2 Router 3

Cycle 1:
Smart  

Setup Request

Cycle 2:
Multi-hop

Link Traversal 

Fig. 1: An example of single-cycle multi-hop traversal in SMART.

II. BACKGROUND AND RELATED WORK

SMART NoC. SMART [17] is a single-cycle multi-hop
traversal network design that reduces average flit hop counts
in mesh-based networks. SMART requires two stages for flit
traversal; one for setting up a multi-hop path, and then next
for the multi-hop link traversal. Figure 1 shows an example
of a flit in router 0 traversing till router 3 in one cycle. After
winning local arbitration in Cycle 0, the flit at router 0 sends
a smart setup request (SSR) in Cycle 1 to the intermediate
routers, router 1 and 2, via dedicated control wires (per
direction), indicating an intent to bypass. The intermediate
routers arbitrate among the received SSRs by using a simple
policy called Prio=Local that prioritizes local (buffered) flits
over bypass requests. Router 0 sends its flit in Cycle 2. If
there are no local requests for the same output port at routers
1 and 2, the incoming flit is directly sent to the output link
without getting latched, all the way till router 3. If any of the
intermediate routers had a locally buffered flit, the flit from
router 0 would have stopped at that router, prioritizing the
local flit to use the output link instead.

At low-loads, SMART enables most flits to bypass all
routers. At high-loads, it performs like a conventional design
with hop by hop traversal.

HPCmax. The maximum number of bypass hops, or max-
imum hops-per-cycle (HPCmax), is a design-time parameter,
constrained by the clock period of system, tile size, and the
wire delay of data links between routers.

In this work, we implement SMART 1D [17] that only
allows multi-hop bypass along a dimension, not at turns,
since that reduces the number of SSR wires. In addition, we
implement the Prio=Local arbitration policy between SSRs,
which has been shown to be higher performing and more fair
than prioritizing bypass flits over local flits [17].

NoC Generators. Table I contrasts some existing NoC
generators with OpenSMART . Flexnoc [22] is a commer-
cial NoC generator by Arteris which generates a customized
topology for each SoC, but is not open. Connect [12] is a
NoC generator optimized for FPGAs. Connect uses Bluespec
System Verilog (BSV) for the implementation and generates
synthesizable Verilog of the network design specified by user
parameters. Only the verilog is available for users, not the
BSV source code. It supports a web-based graphical user
interface so that users can obtain network designs with various
topologies easily. Open SoC Fabric [11] provides an NoC



Connect [12] OpenSoC Fabric [11] OpenPiton [2] OpenSMART (this work)
Language Verilog from BSV Chisel Verilog BSV and Chisel
Topology Arbitrary topologies Mesh, Flattened butterfly Mesh Mesh, Arbitrary topologies
Flow control VC, input/output-queued VC Wormhole + Priority VC, SMART
Buffer Management Credit, Peek-flow Credit Credit Credit
Router Microarchitecture 1-cycle 4-cycle 1-2 cycle 1-cycle, 2-cycle, SMART

TABLE I: Comparison of Open NoC generators.

generator written in Chisel. This generator supports 2-D mesh
and flattened butterfly networks of arbitrary size. Open SoC
Fabric discloses their source code, and users can freely edit the
source code and re-compile it because Chisel is an open-source
language. NoC System Generator [23] receives a specification
of NoCs in XML file format and produces VHDL codes which
satisfy the specification. It only supports 2D or 3D mesh
topology thus the available network configuration is limited.
OpenPiton [2] is an open-source manycore system generator,
and it has presented fabricated ASIC chips as well as FPGA
implementation that runs full-stack Linux. OpenPiton contains
a NoC structure to support the cache coherence, memory, and
inter-core interrupt traffic of the SPARC cores it employs.
The NoC does not have virtual channels but ensures deadlock
freedom using separate physical networks.

High-level HDLs. The design effort challenge from com-
plex designs and non-intuitive semantics of traditional HDLs
has inspired research in high-level HDLs. The advantage of
these HDLs is the ability to do design-space exploration via
C++ simulation like software simulators, but also generate
actual Verilog to pass through an ASIC or FPGA flow.
BSV [20] supports System Verilog style module interface and
type systems. BSV adopts the concept of guarded atomic
actions [24] to describe behavior inside hardware modules.
The guarantee of the atomicity efficiently reduces design
efforts by increasing the granularity of parallelism. BSV
generates C++ source code for software simulations, and
synthesizable System C and Verilog codes. Chisel [21] is
based on Scala [25]. Scala is an object-oriented and functional
language thus it provides high-level features based on Scala.
A recent opensource project, the RISC-V processor [26],
is implementing using this language. Lava [27] attempted
to design hardware in Haskell [28] which is one of the
major functional language for software. It contains high-level
features of functional languages such as polymorphism and
high-order functions. Such features enable more abstract and
general descriptions of hardware. ArchHDL [29] is a high-
level HDL built upon C++. It models registers as variables
and wires as lambda functions using new features introduced
in C++’11. As registers store elements and wires carry some
values in Verilog, this style facilitates Verilog-like design.
MYHDL [30] is a Python-based high-level HDL. It generates
synthesizable Verilog or VHDL source codes. Both ArchHDL
and MYHDL claim to provide orders of magnitude faster
simulation time than native Verilog simulation.

In this work, we pick BSV and Chisel as target languages
for implementing OpenSMART and provide characteristics of
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Fig. 2: OpenSMART overview. OpenSMART is an N×N switch
implemented as a NoC connecting N IPs (cores/accelerators/other
compute or memory units).

(a) Configuration File (b) Topology File

(c) Configuration Parameters

  1-cycle, 2-cycle  1-cycle, 2-cycle, 
  SMART  Router Microarchitecture

  Buffer Management   Credit   Credit

  VC

  Source, 
  Spanning Tree

Arbitrary

  Source, XY, YX

Mesh

  VC, VC+SMART  Flow Control

  Routing

              Topology  

Fig. 3: An example of OpenSMART configuration file, topology file
and configuration parameters.

generated RTL from each version.

III. THE OPENSMART NOC GENERATOR

A. Overview

The goal of OpenSMART is to generate a soft IP of an N×N
switch that can be plugged into an SoC with N IPs, as shown
in Figure 2. The underlying implementation of this switch is
a NoC. The design parameters of the NoC are taken as an
input configuration file, and the RTL of the NoC is outputted
in BSV, Chisel, and Verilog3.

External Interface. The default interface of input/output
port of the switch to each IP is the following: <message class,
message payload>, padded with <ready, enable> signals for

3The Verilog is generated from the BSV version, thus not easy to read.



managing flow control. Messages across different message
classes are guaranteed to be non-blocking. Messages within
a message class may block each other. In addition, we also
provide wrappers for AMBA and Wishbone interfaces. All IPs
connect to a unique network interface (NIC) in our design.

Network Configuration. The OpenSMART tool takes the
number of nodes, topology, routing algorithm, flow control,
router pipeline delay, and router configuration as user inputs as
part of a configuration file. Figure 3 shows an example config
file and the options we currently support. Arbitrary topologies
(including a Mesh) can be specified in DOT [31]. A N×N
crossbar, for instance, can be generated by simply declaring
one router in the topology file.

B. Library of Building Blocks

We define a library of modular building blocks that our tool
uses to implement various router microarchitectures.

Network Interface. Network interfaces break incoming
message packets into multiple flits (flow control unit - basic
unit of operation in each router).

Flit. The size of each flit is equal to the bandwidth of
each link in the topology. A flit contains the virtual channel
(VC) ID (vc), its type (flitType), which indicates whether
the flit is the head, the body, or the tail flit of a message,
route information (routeInfo), which contains the next output
port and the number of remaining hops in each direction,
data (flitData), which contains information carried by the flit,
and a statistic for benchmarks (stat). The vc and routeInfo
is only carried by the head flit. The statistics field is used
for debug and verification in the BSV/Chisel version, and the
compiler automatically removes the field when OpenSMART
synthesizes the network designs into Verilog code.

Arbiter. OpenSMART implements both round-robin and
matrix arbiters. In an N:1 matrix arbiter, N one-bit registers
are used to encode priorities among the requesters and are
updated upon each grant. We found matrix arbiters providing
better performance, without noticeable critical path or area
overhead compared to round-robin for mesh routers with 5-
ports, and less than eight VCs per port. The arbiters are used
in both the input and output units, to implement separable
switch allocation [32] as described below.

Input Unit. The Input unit contains virtual channel
buffers and an input VC arbiter as Figure 4(a) illustrates.

Input Buffers. For each VC, we use a separate set of registers
for the routeInfo (i.e., output port) - that is fanned out/in
to the arbiters - and a FIFO queue for the flit. This lets us
perform reads of the routeInfo and flit, by the switch arbiters
and crossbar respectively in parallel to reduce the critical path.

Input VC Arbiter. The input VC arbiter selects one VC as a
winner among the flits at that port. A flit arriving at an empty
input port automatically wins the input VC arbitration, without
having to wait an additional cycle. Thus the Input unit abstracts
the arbitration process from the rest of the router, and outputs
the output port request and data for the flit that is ready to be
sent out. This flit proceeds for output port arbitration.

Output Unit. The Output unit contains an output port
arbiter, and a VC selector, as Figure 4(b) illustrates.

Output Port Arbiter. An arbiter at each output port arbitrates
among requests from multiple input ports. The grant from the
output port is used to trigger VC selection and set the select
lines for the crossbar muxes.

Virtual Channel Selector. OpenSMART implements an ex-
tremely light-weight queue-based dynamic VC selection [33].
At each output port, a queue tracks the free VCs at the next
router, and generates a hasVC signal if it is non-empty. The
head of the queue is stored in a separate register called nextVC.
When a flit wins the switch and is being sent out, it replaces
its VC field with the nextVC register value and the dynamic
VC queue pops the nextVC. The signals, nextVC and hasVC,
are decoupled so that they have no dependences.

This design removes the need for a separate VC allocation
stage like other NoC router generators [11], [12], [23], and is
is appropriate for bypass flits in SMART that need to perform
VC selection while bypassing multiple hops within a single-
cycle (as explained later in Section III-C).

When a tail flit leaves a router, the router sends the free
VC ID in a credit signal to its upstream router, which pushes
it into its free VC queue. The pushed VC is available in the
next cycle to prevent possible combinational loops.

Routing Unit. OpenSMART supports two dimension-
order routing (DOR) algorithms - XY or YX - for a mesh
topology, and a source-routing algorithm for irregular topolo-
gies in heterogeneous SoCs. These routing algorithms are
selectable in the user configuration.

The XY/YX modules are combinational logic implemen-
tations and perform lookahead routing, i.e., the routing is
performed one-hop in advance, enabling switch allocation
(for this router) and routing (for the next router) to occur
in parallel [13]. For SMART routers, we encode the x hops
and y hops as one-hot values, so that route computation just
involves a 1-bit right-shift at every hop during a single-cycle
multi-hop traversal.

In source-routing, the source NI embeds the entire route
as a set of turns, where each turn at a router is a
log2(num ports)-bit value that uniquely identifies an output
port. The source-routing logic simply right-shifts the route by
log2(num ports)-bits at each hop. To avoid routing dead-
locks in arbitrary irregular topologies, we provide support for
spaning-tree based non-minimal routing [34] by encoding the
source routing such that all flits route via a root node [34].

Crossbar Switch. The crossbar implements the funda-
mental switching functionality of routers, forwarding flits from
input ports to their designated output ports. The crossbar is
implemented using demultiplexers and multiplexers, that are
driven by the the grant signals from the output port arbiters.

SMART Unit. The SMART unit is instantiated by
SMART routers and adds functionality for a single-cycle
multi-hop traversal over the baseline router functionality. It
comprises of a SMART Setup Request (SSR) Generator, SSR
Links, and a SMART Arbiter, as shown in Figure 4(c).
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Fig. 5: An example of SSR propagation with HPCmax= 4. The
highlighted SSRs are active SSRs. In both cases r0 sends SSR=110
to bypass r1 and r2. In case (a) it is successful. In case (b), r2 sends
its own SSR, so r2 sets its SMART flag to stop.

SSR Unit. SSR units, one per output port, generate SSR
signals for every winner of output port arbitration. We im-
plement SSRs as (HPCmax-1)-bit signals to represent all the
routers each flit requests to bypass along the current direction
(X or Y, in XY routing). The number of bypasses is the
min(remaining hops in dimension, HPCmax)- 1.

SSR Links. The SSR signals use dedicated control links
which span from each router (SSR sender) up to HPCmax-
1 receiver routers, in all four directions; the routers HPCmax

hops away from the SSR sender always latch the flit from
the sender. The SSR signal needs to traverse HPCmax-1 hops
within one cycle. Each SSR link is HPCmax-1 bits wide4.

At any cross-section, there are HPCmax-1 SSR links, car-
rying SSRs from senders 1-hop to HPCmax-1 hops away, as
shown in Figure 5. At each hop, all SSRs shift up by one slot;
this removes the furthest SSR (which has reached HPCmax-1
hops) and the bottom slot is occupied by the SSR from that
router. In addition to this shift, the SSR signals on all links
shift left by 1-bit to decrease remaining bypass hops. Thus the
MSB of any SSR at a router indicates its intent to request a
bypass at that router or not.

SMART Arbiter. The SMART arbiter reads the MSB from
all SSR signals entering it; if any of these bits, it indicates a
bypass request. SMART arbiters set the SMART flag to bypass
only if it (a) receives a bypass request, (b) the next router has

4We chose to implement SSRs as (HPCmax-1)-bit signals instead of
log2(HPCmax) like the original SMART design [16], to remove a decoder
from the SSR arbiter and correspondingly increase HPCmax.
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Fig. 6: OpenSMART Router Microarchitecture built using library
modules. Modules in light/dark color represent the default 1-stage
router and additional modules for SMART, respectively.

a free VC, and (c) no local flit is requesting the same output
port as the bypass flit that sent the SSR. If a local flit also
requests the output port, SMART arbiter prioritizes the local
flit over a bypass flit. This policy implements the prio=local
of SMART [16]. There is one SMART arbiter for every IO
pair per dimension (i.e., W→E, E→W, N→S, and S→N).

C. Router Microarchitectures

Using the library of modules described above, myriad
router microarchitectures can be generated by OpenSMART,
as shown in Figure 6. The Input unit and Output unit together
create a separable switch allocator. We place the Routing
unit after the crossbar switch in all our designs to update the
route in outgoing flit as it did not increase our critical path,
and helps when instantiating a SMART router. It can also be
placed in the Input unit for every incoming flit [13].

2-Stage Router. The two-stage pipelined router separates
the two major critical paths in a router - switch allocation (i.e.,
Input unit → Output unit) and switch traversal (i.e., Crossbar
switch) using a pipeline latch. This design can increase the
clock frequency, but may also increase flit latencies because
of the extra pipeline stage. We envision using this design
for high-radix routers, where the crossbar traversal can take
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SSR, ST, and M-LT indicate output port arbitration, SSR communi-
cation, switch traversal, and multi-hop link traversal.

significant delay, or for higher clock rates in mesh designs.
At no contention, flits take 3-cycles per-hop (2-cycle router +
1-cycle link) with this design.

1-Stage Router. The single-stage router requires only
one cycle to pass the entire router logic (Input unit → Output
unit → Crossbar switch → Routing unit) unless there is
congestion. This is the most optimized version of the router
pipeline. At no contention, flits take 2-cycles per-hop (1-cycle
router + 1-cycle link) with this design as shown in Figure 7.

SMART Router. The SMART router implements a 2-
stage router pipeline, followed by a 1-cycle traversal across
multiple links. The SMART design only works over a mesh
topology, as it performs multi-hop bypasses along a dimension.
The microarchitecture is shown in Figure 6. The first-stage is
switch allocation (Input unit→ Output unit). The second-stage
is switch traversal (Crossbar switch) and routing. In parallel,
the SSR generator sends out SSRs up to HPCmax hops and the
SMART arbiter at each intermediate router sets the SMART
flag, as described earlier in Section III-B.

Single-cycle Multi-hop Traversal. In the next-cycle, the flit
performs a multi-link traversal along the X or Y dimension.
We do not allow bypasses at turns. During the single-cycle
multi-link traversal, the VCid in the flit is updated at every hop
by replacing with nextVC register at that router, as described
in Section III-B5. The router sends a credit back for the VCid
the flit came with. Similarly, the routeInfo is updated at every
hop by a 1-bit right shift in the x hops/y hops fields since
the SMART router uses XY routing.

The SMART flag at every router, set at the end of the
previous cycle by the SSR arbiters, implicitly determines
whether the flit continues to bypass or stops, without the
flit having to do anything actively. A multi-hop traversal

5This design enables us to use the same VC selector library module for
both the regular and SMART routers, unlike the original SMART design [16]
which requires a special VC allocator at the destination router.

terminates either at the turning router, or the destination
router, or at an intermediate router HPCmax hops away, or
prematurely at an intermediate router if has contention for the
same output port by a higher priority (local) flit.

At no contention, flits take 3-cycles per-dimension (2-cycle
router + 1-cycle multi-link traversal) with this design as shown
in Figure 7. In the worst case (contention at every router), this
design takes 3-cycles per-hop.

The critical path for SMART can be one of the following:
local switch allocation (i.e., Input unit → Output unit), SSR
multi-hop traversal and arbitration, or flit multi-hop traversal.
We pick the critical period based on switch allocation, and
then choose the highest HPCmax such that both SSR traversal
and flit traversal meet timing (through an iterative process).

D. BSV vs. Chisel Implementations

BSV and Chisel offer two alternate paradigms for describing
hardware and we describe our experience with using both
for this work. We present a case study of the matrix arbiter
implementation describing its interface and logic.

1 i n t e r f a c e M a t r i x A r b i t e r # ( numer ic type numReq ) ;
2 method ActionValue #( B i t #( numReq ) )
3 g e t A r b i t ( B i t #( numReq ) r e q B i t ) ;
4 e n d i n t e r f a c e

Code 1: Matrix Arbiter interface in BSV

1 c l a s s M a t r i x A r b i t e r ( numReq : I n t )
2 ex tends Module {
3 v a l i o = new Bundle {
4 v a l e n a b l e = UInt ( wid th =1 , d i r =INPUT )
5 v a l r e q u e s t s = UInt ( wid th =numReq , d i r =INPUT )
6 v a l g r a n t s = UInt ( wid th =numReq , d i r =OUTPUT)
7 }

Code 2: Matrix Arbiter interface in Chisel

Interface. Code 1 and Code 2 show the interface defini-
tion of a matrix arbiter in BSV and Chisel respectively. Both
of the interfaces are parameterized with an integer numReq
that represents the maximum number of arbitration requesters.
The parameter defines the width of input ports, reqBit (BSV)
and requests (Chisel), and output ports, the return value of
method getArbit (BSV) and grants (Chisel).

Chisel requires users to manage the communication between
modules explicitly. For instance, an enable control signal is
used to represent the validity of the input requests and activate
the arbitration logic accordingly.

BSV on the other hand uses a method which is a function
that returns a value from a logic inside a module. The
Bluespec compiler creates a hardware scheduler that generates
RDY and EN signal for every method that indicates if the
method can fire and will fire in the cycle respectively. For
example, RDY getArbit and EN getArbit are generated for
the example in Code 1. Although such implicit communication
protocol may involve extra hardware logic, we found that it
provides better abstractions of the intermodule communication
compared to traditional HDLs, simplifying code.



Logic. When a matrix arbiter grants a requester, the
arbiter updates priority registers, which are one-bit registers
that represent priority between requesters. Because arbitration
logic needs to provide a total order of requesters for its
functionality, the arbiter requires n2/2 − n priority registers,
which form a triangular array of registers, and need to maintain
their values in a way that ensures fair arbitration. For the
maintenance of priority registers, when a matrix arbiter grants
a requester, the arbiter resets the row that has the same row
index as the winner to zero and sets the column that has the
same column index as the winner. This logic is described in
the code snippets in Code 3 and Code 4.

1 r u l e u p d a t e P r i o r i t y B i t s ( h a s R e q u e s t e r ) ;
2 l e t t a r g e t I d x = w i n n e r I d x ;
3 /∗ 1 . C l e a r t h e row ∗ /
4 f o r ( I n t e g e r j =0 ; j<numReq ; j = j +1) begin
5 p r i o r i t y B i t s [ t a r g e t I d x ] [ j ] <= 0 ;
6 end
7

8 /∗ 2 . S e t t h e column ∗ /
9 f o r ( I n t e g e r i =0 ; i<numReq ; i = i +1) begin

10 i f ( i != t a r g e t I d x ) begin
11 p r i o r i t y B i t s [ i ] [ t a r g e t I d x ] <= 1 ;
12 end
13 end
14 endrule

Code 3: Priority register update logic in BSV

1 when ( i o . e n a b l e === UInt ( 1 ) ) {
2 f o r ( i <− 0 u n t i l n ) {
3 / / when r e q ( i ) i s g r a n t e d ,
4 / / s e t a l l p ( x , i ) t o 1 , and p ( i , y ) t o 0 .
5 when ( g r a n t s ( i ) ) {
6 f o r ( j <− 0 u n t i l n ) {
7 i f ( j > i ) {
8 p r i o r i t y ( j ) ( i ) := Bool ( t r u e )
9 } e l s e i f ( j < i ) {

10 p r i o r i t y ( i ) ( j ) := Bool ( f a l s e ) }}}}}

Code 4: Priority register update logic in Chisel

Both languages provide a for loop that represents parallel
value updates and reduces the lines of codes. The Chisel
implementation describes all logic within the module body
while BSV describes logic in rules, which represents a guarded
atomic action [35] block that groups hardware logic and
guarantees the atomic execution of the actions described in
the block. The rules contain rule guards such as hasRequester
in Code 3 and the scheduler we mentioned in the interface
paragraph executes the rule only if the rule guard is true. This
feature enables users to define the behavior of hardware they
are implementing and the granularity of parallelism. Chisel in
contrast allows users to define hardware explicitly.

Due to these key differences, we found that the BSV version
of OpenSMART has much fewer lines of code than Chisel,
but sometimes requires more hardware to implement the same
functionality as we show later in our evaluations.

IV. EVALUATION

A. Methodology

We tested the OpenSMART generated NoCs using test-
benches that model external IPs and inject flits from every IP
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Fig. 8: The layout results of 5x5 network in FPGA (left) and ASIC
(right). In FPGA layout, we represent each row of the mesh network
in different color.

Fig. 9: The maximum clock frequency of a 2-stage router in ASIC
and FPGA flow as the function of the number of ports

port to user-specified destinations at user-specified rates. We
compiled the testbenches to generate software simulation ex-
ecutables using BSV and Chisel C++ simulation frameworks.

We also validated our design with hardware synthesis tools
for ASIC and FPGA design flows. We use Synopsys Design
Compiler and Cadence Encounter with the NanGate 15nm
open cell library [18] for synthesis and place-route respec-
tively for the ASIC flow, and Xilinx Vivado Design Suites
with VC709 evaluation board for FPGA flow. The hardware
synthesis tools not only show that the OpenSMART networks
are synthesizeable for both ASIC and FPGA but also provide
area, power, and timing closure information. Figure 8 shows
the layouts of a 5×5 NoC using both flows.

We demonstrate the strength and flexibility of the OpenS-
MART framework by generating myriad NoC microarchitec-
tures as case studies, and comparing them from a performance,
timing, area and power perspective. Unless specified, we
present results using the BSV version We compare the BSV
and Chisel versions later in Section IV-D.

B. Case Study I: Low-Radix vs. High-Radix Routers

A standard technique to reduce network delay and improve
throughput is to introduce high-radix routers. At an extreme, a
N×N crossbar provides a non-blocking connection between
any pair of communicating IPs, at pure wire delay. Crossbars
and heterogeneous routers with different number of ports are
common in NoCs in many SoCs today [4], [5], [22]. We
use OpenSMART to sweep and compare the hardware cost of
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Fig. 10: Area and power breakdown of components in ASIC and FPGA design as the function of the number of ports

routers as a function of router radix. All designs have 128-bit
links, 2-stage routers, and 4 VCs per port - each 1-flit deep.

Timing. Figure 9 plots the maximum achievable fre-
quency of a 2-stage router on the 15nm ASIC flow and the
VC709 FPGA as a function of increasing number of router
ports. On an ASIC, a simple 2×2 switch can achieve close
to 2.9GHz and a 5x5 mesh router can achieve 2.5GHz. We
see the frequency dropping at 8, and 14 ports to 2.2 and
2GHz respectively6. It is important to note that the goal of
the synthesis tools (both ASIC and FPGA) is to meet timing,
which comes at the cost of larger cells and more buffers. Thus
a flat frequency with increase in ports translate to a large
area and power penalty as we show next. On the FPGA, we
observe a somewhat linear drop from 140MHz to 70MHz as
the number of ports increase.

Area. Figure 10(a) plots the area breakdown of the
routers on an ASIC. A 5-port mesh router fits in a tiny area of
160um×160um. As the number of ports increase, we see the
crossbar area increasing significantly, as expected with high-
radix routers. Correspondingly, the output port arbiter size also
increases from less than 1% at low radix to close to 10% at 14
and 16 ports. On the FPGA (Figure 10(b) and (c)) we observe
most of the FFs going towards implementing the input buffers,
and the LUTs implementing most of the crossbar.

Power. Figure 10(d) and (e) plots the power consumption
of our generated routers at 1GHz on ASIC and 67 MHz
on FPGA respectively. For the ASIC flow a 5-stage mesh
router consumes about 50mW. We see a bulk of the power
consumption occurring in the input buffers, consistent with
prior studies [17], [33].

We see a similar trend with the FPGA, with the buffers
consuming most of the power. These observations point to
the attractiveness of SMART to potentially bypass buffering
across multiple routers. On the FPGA, beyond six ports, the
input arbiters start consuming noticeable power.

C. Case Study II: Mesh vs. SMART

We compare a Mesh NoC with 1-cycle routers and a
SMART NoC overlaid on this Mesh. We enable destination
bypass [16] in the SMART NoC. We evaluate both NoCs under

6We caution from using these exact timing numbers at face value since
Nangate15nm is an open-cell library, not a commercial one, and thus probably
uses optimistic assumptions in its cells with regards to the process.

the following configuration: 8x8 network, 128 bit links, and 4
VCs per port.

Performance. We use the software simulation framework
afforded by BSV to study the latency and throughput char-
acteristics of the NoCs. The testbench injects 1-flit packets
from each IP at increasing injection rates with user-specified
traffic patterns. It also calculates the performance (throughput
and latency) characteristics of the networks. Throughput is
estimated by collecting the number of injected and received
flits at each host IP port. Total delay is calculated by estimating
the average end-to-end cycles from the ingress NIC, through
the NoC, to the egress NI.

For comparison and validation purposes, we also imple-
mented the same Mesh and SMART NoCs in Garnet [36]
which is a pure software simulation framework, and plot the
results from Garnet running with the same traffic patterns.
Figure 11 plots our results for Uniform Random and Bit
Complement traffic.

Mesh vs. SMART: Figure 11(a) and (b) show that the
SMART NoC provides a 35% and 43% latency reduction
at low-loads for uniform random and bit-complement traffic,
respectively. As we show later, both the mesh and SMART
NoCs meet timing with the same clock frequency; thus the
latency plot (in cycles) actually represents absolute wall-clock
time. Figure 11(c) and (d) demonstrate a 19% throughput
improvement. While SMART by design is aimed at latency
improvement, not throughput, a faster recycling of flits through
the NoC reduces credit round-trip delay, which by Little’s Law
helps improve throughput. For bit-complement, the network
throughput drops beyond saturation - this is a well-known
behavior due to heavy congestion at the center of the network
that back-pressures other routers and throttles injection[13].

OpenSMART vs. Garnet. Synthetic traffic injectors in Gar-
net, like other software simulators, model infinite queues at the
source to maintain injection at the user-specified rate without
stalling. The queueing delay shows up as a latency spike when
the network saturates. In OpenSMART, however, the injector
stalls once the network cannot accept more packets, like a real
IP. Thus for a fair comparison, we plot the latency within the
network (source to destination NIC) from OpenSMART and
Garnet. The curves are almost identical for low-load latencies.
The throughput values differ slightly due to differences in
implementations of the arbiters in software and BSV.
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Fig. 11: Network latency and reception rate of OpenSMART network with uniform-random and bit-complement traffic.
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Fig. 12: Critical paths of OpenSMART mesh and SMART network

Timing. Figure 12 compares the critical paths of the
Mesh with 1-stage routers and SMART NoCs in the ASIC
flow. Both designs met post-synthesis timing at 2 GHz. The
critical path for the mesh is essentially the 1-stage router. For
SMART, the critical path within the router is shorter, since
crossbar traversal occurs in the second stage, as described
earlier in Section III-C. We found the critical path to be the
multi-link traversal. At 2GHz, the router can perform three
router bypasses (i.e., HPCmax) within a cycle.

The observed critical path of the SMART network has four
key parts: (i) vc selection and credit generation at the starting
router, (ii) intermediate router bypasses, (iii) buffer write at
the final router (demuxing into the appropriate VC) and (iv)
input VC arbitration. Step (iv) is an optimization that performs
input VC arbitration right after link traversal and buffering, in
the same cycle. This enables incoming flits to directly start
output port arbitration at the beginning of the next cycle. This
optimization helps lower the critical path inside the router for
a 1-stage design, as Figure 12 shows: input buffer read, output
port arbitration, and crossbar traversal are completed in 492
ps, since input VC arbitration was done the cycle before when
the flit arrived and was getting latched. However, for SMART,
this optimization can increase the critical path of the multi-
hop link traversal stage, limiting HPCmax. We did not use
separate pipeline partitions for Mesh and SMART in order
to honor OpenSMART’s automated plug and play approach
for building routers using the same set of library components.
However, we are working on re-timing optimizations to push

some of this delay to the next stage without affecting the target
clock period, to enable SMART to get a larger HPCmax.

Traversal Energy. Figure 13(a) plots the energy of traver-
sal for a flit as a function of hops in both a mesh and the
SMART NoC. SMART assumes an HPCmax of 3 (i.e., stop ev-
ery 3 hops) and a successful bypass at the intermediate routers,
paying buffering costs only at the HPCmax boundaries. We see
the energy benefits compared to a mesh increasing close to 2×
as the number of hops go up.

Achievable HPCmax. We ran an entire k×k SMART
NoC with increasing k through synthesis and place-and-route
as a function of clock frequency and observed the critical
paths reported by the ASIC (and FPGA) tools for each run.
Since the critical path in SMART is the multi-hop traversal,
the critical path report showed the number of routers being
bypassed before the signal is latched to meet timing. This
number is nothing but the achievable HPCmax (Figure 13(b)
and (c)). In an ASIC, at 1GHz, we see an HPCmax of 14
post-synthesis, which goes down to 7 post-layout due to wire
delays. We believe this number can be optimized further by
optimizing the multi-hop traversal critical path as described
earlier. We also ran the HPCmax study on the FPGA and
observe it going down from 17 at 50MHz to 1 at 100MHz.

Area and Power. In the ASIC flow, SMART network
increases the area and power consumption by 15% and 3%,
respectively, compared to a mesh network with the same
number of routers. However, the area and power overhead of
SMART is much smaller than that of high-radix routers, which
are alternatives to SMART to provide single-cycle traversal
between distant routers. For example, a 5x5 flattened butterfly
router requires nine ports and consumes almost double the
power and area than a mesh router based on our results
presented in Figure 10.

This case study shows that OpenSMART can enable re-
searchers to use one framework to perform both design-space
exploration and get real timing, area, and power numbers. This
is unlike pure software simulators which can often end up
modeling unrealistic hardware, and pure RTL models which
limit design-space exploration.

D. BSV and Chisel Implementations

Although both BSV and Chisel versions of OpenSMART
implement the same functionality, the ASIC synthesis results
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Fig. 13: OpenSMART Design Features

in Figure 13(d) show interesting differences in the area and
power consumption for a 1-stage router. This difference is
because of the compiler of each language as well as design
choices. The compilers affected the area and power estimation
results of input buffers. Input buffers have the same design in
both implementations, four queues for each VC. The queue
implementation in Chisel requires approximately 20% more
area and power than that in BSV. In contrast, crossbar imple-
mentation in BSV requires approximately four times as much
area as that in Chisel. This is because we implemented the
BSV crossbar using concurrent registers, which is one of the
BSV library modules. Concurrent registers employ a priority
logic implemented with multiplexers that selects an input data
to be written on the register from multiple inputs. Because
output port arbiter ensures that at most one flit is granted each
output port of the crossbar, we exploited the priority logic as a
large multiplexer that automatically selects the incoming flit,
thus simplifying the crossbar implementation. But this adds a
dummy register for each output port. The Chisel crossbar, in
contrast, consists of only multiplexers.

V. CONCLUSION

This work presents openSMART, an open-source NoC gen-
erator in BSV and Chisel. A library of building blocks within
a router and the NoC allow the design to support arbitrary
topologies, routing schemes and router pipelines (2-stage, 1-
stage, and SMART). Single-cycle multi-hop traversals using
generated SMART NoCs demonstrate performance and energy
benefits over single-cycle mesh routers.
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