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Abstract

The enzyme soluble adenylyl cyclase (sAC) is the most recently identified source of the
messenger molecule cyclic adenosine monophosphate. sAC is evolutionarily conserved
from cyanobacteria to human, is directly stimulated by HCO3

� ions, and can act as a
sensor of environmental and metabolic CO2, pH, and HCO3

� levels. sAC genes tend
to have multiple alternative promoters, undergo extensive alternative splicing, be trans-
lated into low mRNA levels, and the numerous sAC protein isoforms may be present
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in various subcellular localizations. In aquatic organisms, sAC has been shown to medi-
ate various functions including intracellular pH regulation in coral, blood acid/base
regulation in shark, heart beat rate in hagfish, and NaCl absorption in fish intestine.
Furthermore, sAC is present in multiple other species and tissues, and sAC protein
and enzymatic activity have been reported in the cytoplasm, the nucleus, and other
subcellular compartments, suggesting even more diverse physiological roles. Although
the methods and experimental tools used to study sAC are conventional, the complex-
ity of sAC genes and proteins requires special considerations that are discussed in
this chapter.

ABBREVIATIONS
A/B acid/base

BSA bovine serum albumin

C1 catalytic domain 1

C2 catalytic domain 2

cAMP 30,50-cyclic adenosine monophosphate

CAs carbonic anhydrases

cDNA complementary deoxyribonucleic acid

dCEs derivatives of catechol estrogens

DDA 20, 50-dideoxyadenosine
DTT dithiothreitol

EC50 half maximal effective concentration

ELISA enzyme-linked immunosorbent assay

EST expressed sequence tag

Fsk forskolin

FW forward primer

GM-130 Golgi matrix protein 130

GPCR G protein-coupled receptor

GSPs gene-specific primers

GTPγS guanosine 50-O-[gamma-thio]triphosphate

IBMX 3-isobutyl-1-methylxanthine

IC50 half maximal inhibitory concentration

IPTG Isopropyl beta-D-thiogalactopyranoside

KH7 (E)-2-(1H-benzo[d]imidazol-2-ylthio)-N 0-(5-bro-
mo-2-hydroxybenzylidene)propanehydrazide

LRE1 6-chloro-N4-cyclopropyl-N4-(2-thienylmethyl)-2,4-pyrimidinediamine,

RU-0204277

PBS phosphate-buffered saline

PDEs phosphodiesterases

PMSF phenylmethylsulfonyl fluoride

PVDF polyvinylidene difluoride

qPCR quantitative/real-time PCR

RACE rapid amplification of cDNA ends

RASL-Seq RNA-mediated oligonucleotide annealing, selection, and ligation with

next-generation sequencing
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RNA-seq RNA sequencing

RT reverse transcriptase

RV reverse primer

sAC soluble adenylyl cyclase

sACFL full-length soluble adenylyl cyclase

sACt truncated soluble adenylyl cyclase

SDS/PAGE sodium dodecyl sulfate polyacrylamide gel electrophoresis

TBS-T tris-buffered saline and polyethylene glycol sorbitan monolaurate

tmACs transmembrane adenylyl cyclases

TPR tetratricopeptide

Tris tris(hydroxymethyl)aminomethane

UTR untranslated region

1. INTRODUCTION

The soluble adenylyl cyclase (sAC, adcy10) is a Class III adenylyl cyclase

that is evolutionarily conserved from cyanobacteria to human (Buck, Sinclair,

Schapal, Cann, & Levin, 1999; Chen et al., 2000). It catalyzes the cyclization

of adenosine triphosphate (ATP) into 30,50-cyclic adenosine monophosphate

(cAMP), the ubiquitous messenger molecule that regulates virtually every

aspect of physiology by inducing posttranslational modifications on target

proteins. A unique characteristic of sAC over other adenylyl cyclases is that

its activity is stimulated by HCO3
� (Buck et al., 1999; Chen et al., 2000;

Litvin, Kamenetsky, Zarifyan, Buck, & Levin, 2003; Tresguerres, Parks,

et al., 2010). Furthermore, because HCO3
� is typically in equilibrium with

CO2 and H+, sAC can functionally associate with carbonic anhydrases (CAs)

to also sense CO2 and H
+ (reviewed in Tresguerres, Levin, & Buck, 2011).

Another fascinating aspect of sAC is its complexity both at the gene and

protein levels. Mammalian sAC genes have multiple alternative promoters

and undergo extensive alternative splicing (Chen et al., 2014; Farrell et al.,

2008; Geng et al., 2005); both characteristics are also seen in coral (Barott,

Barron, & Tresguerres, 2017), suggesting they are common to sACs from

all animals. The two better characterized mammalian sAC variants are trun-

cated sAC (sACt), an �50kDa protein containing the two catalytic domains

essential for cAMP producing activity, and full-length sAC (sACFL), which

additionally contains an �140kDa C-terminus region with yet unidentified

functions. Putative regulatory domains in sAC’s C-terminus include

P-loop, leucine zipper, and tetratricopeptide (TPR) domains (Buck et al.,

1999; Steegborn, 2014).
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sACt and sACFL have the same half maximal effective concentration

(EC50) for HCO3
� and half maximal inhibitory concentration (IC50) for

inhibitors; however,Vmax is�20-fold lower for sACFL as a result of an auto-

inhibitory region that is absent in sACt (Chaloupka, Bullock, Iourgenko,

Levin, & Buck, 2006). Other reported mammalian sAC variants include

�30, �45, �70, �80, and �130kDa proteins (Chen et al., 2014; Geng

et al., 2005; Stessin et al., 2006). In addition to potential different regulatory

properties, the sAC variants may have distinct subcellular localizations

with specific physiological roles. Indeed, sAC has been reported in the cyto-

plasm, in the nucleus, inside mitochondria, and associated with various

other intracellular structures (Acin-Perez et al., 2009; Zippin et al., 2004;

Zippin, Levin, & Buck, 2001). Those multiple localizations are consistent

with the concept of intracellular cAMP signaling microdomains (Cooper,

2003; Schwencke et al., 1999; Zaccolo & Pozzan, 2002).

sAC from aquatic organisms also has alternative promoters and multiple

splice variants (Barott et al., 2017; Tresguerres, Barott, Barron, & Roa,

2014), and has been reported in the cytoplasm and nuclei of fish cells

(Roa & Tresguerres, 2017). However, sACs from aquatic organisms have

a few differences from mammals. In shark and ray, the most abundant sAC

protein is �110kDa (Roa & Tresguerres, 2016, 2017; Tresguerres, Parks,

et al., 2010), and in coral it is �94kDa (Barott, Venn, Perez, Tambutt�e, &
Tresguerres, 2015). Both sACs contain the two catalytic and the P-loop

domains; the additional 16kDa in shark sAC does not have any identifiable

functional domains. The EC50 for HCO3
� also differs among animals: it

is �10mM for coral sAC (Barott et al., 2013), �5mM for shark sAC

(Tresguerres, Parks, et al., 2010), and �20mM for mammals (Buck

et al., 1999; Chen et al., 2000; Litvin et al., 2003) and hagfish (Wilson,

Roa, Cox, Tresguerres, & Farrell, 2016). The species-specific EC50

matches the normal HCO3
�½ � in fluids of the respective animal, which

makes sAC a suitable physiological acid/base (A/B) sensor (reviewed in

Tresguerres, 2014).

The interest on sAC from aquatic organisms is severalfold: (1) to study the

evolution of A/B sensing by identifying amino acid motifs that confer the

species-specific EC50 for HCO3
�; (2) to study the evolution of cAMP sig-

naling microdomains; (3) to understand and predict physiological responses

to A/B disturbances related to aquaculture and environmental stress such

as acidification, warming, and feeding; and (4) as models for biomedicine,

taking advantage of the more pronounced A/B disturbances, higher sAC
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mRNA, and other technical advantages found in aquatic animals compared

to mammals (reviewed in Tresguerres, 2014; Tresguerres et al., 2014).

This chapter outlines some strategies to study sAC at the gene, enzyme,

protein, and cellular levels (summarized in Table 1). Specifically, it highlights

important considerations regarding gene cloning, production of recombi-

nant protein, measuring cAMP production in tissue homogenates and

purified protein, identifying sAC protein variants, and determining their

intracellular localizations. Although the main focus is on aquatic organisms,

the techniques and advice presented here likely apply to other organisms.

2. GENE

sAC genes are complex and unusual (for example, some introns can

be >3500bp), have multiple alternative promoters, undergo multiple

alternative splicing, and are typically transcribed at low levels. As a result,

characterizing sAC genes and mRNAs is challenging. Although large-scale

-omics techniques are becoming increasingly popular and cheaper, the

complexity of sAC does not mesh well with bioinformatics analyses based

on genomes and large-scale transcriptomic studies. This is especially true

for many aquatic organisms that do not have sequenced and annotated

genomes, or have transcriptomes with moderate coverage and annotation

quality. In our experience, predicted sAC nucleotides sequences rarely

match the actual sequences elucidated by cloning. Our success character-

izing sAC at the nucleotide level has been directly proportional to the

quality of genomic information available in the species of question: we

have cloned one mRNA encoding for shark (Squalus acanthias) sAC from

an expressed sequence tag (EST) database (Tresguerres, Parks, et al.,

2010), five mRNAs coding for coral (Pocillopora damicornis) sACs using

transcriptomic databases as reference for primer design (Barott et al.,

2017), and >20 mRNAs encoding rainbow trout (Oncorhynchus mykiss)

sACs (C. Salmerón and M. Tresguerres, unpublished), for which excellent

quality genome and transcriptomes are available (Berthelot et al., 2014;

Salem, Rexroad, Wang, Thorgaard, & Yao, 2010). However, even for

human, trout, and mice (Chen et al., 2014; Farrell et al., 2008; Geng

et al., 2005) it is necessary to empirically confirm putative transcripts using

targeted reverse transcriptase (RT) and rapid amplification of cDNA ends

(RACE) PCRs. Some helpful considerations are listed below.
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Table 1 Summary of Goals, Challenges, and Strategies Associated With Studying sAC at the Gene, Enzyme, Protein, and Cellular Levels

1. Introduction

Soluble adenylyl cyclase (sAC) (adcy10) is stimulated by HCO3
� to produce cAMP and is an evolutionarily conserved acid/base sensor. Because sAC is

complex at the gene, mRNA, and protein level, common laboratory techniques usually require extensive optimization

Level Goals Challenges Tools and Approaches

2. Gene Characterize sAC genes and mRNA

splice variants. Identify motifs

responsible for differential sensitivity

to HCO3
� and pharmacological

inhibitors. Design stimulators based

on structural studies. Identify

potential regulatory domains

Extensive alternative splicing and

multiple promoters. Low mRNA

abundance. Unusually long introns

Well-annotated genome and high coverage transcriptomes.

Cloning from tissues with high sAC mRNA abundance.

Primers specific for splice variants. Multiple rounds of

PCR, nested PCR, RACE-PCR

3. Enzymatic

activity

Characterize sAC kinetics and

detect sAC in specific tissues/cells.

Species-specific and evolutionary

studies on acid/base sensing

Protein production and purification.

Finding appropriate cofactors and

assay conditions. tmACs and PDEs

as confounding factors. Measuring

cAMP production

sAC sources: purified recombinant protein,

immunoprecipitation, tissue homogenates, cells. Extensive

enzyme assay optimization. Use of sAC, tmAC, and

PDE-specific pharmacological inhibitors. cAMP detection:

two-column assay, ELISA, mass spectrometry

4. Protein Identify sAC and sAC variants in

specific tissues, cells and subcellular

compartments

Multiple isoforms. Limited availability

of markers of subcellular

compartments in nonmodel species

Generic and isoform-specific antibodies for Western blot

and immunolocalization studies. Expression of

fluorescently tagged sAC in cell systems

5. Cellular

studies

Characterize sAC’s roles in cells

and cAMP signaling microdomains

Distinguish between sAC and tmACs,

and interactions with PDEs. Lack of

robust gene downregulation

techniques in nonmodel species.

Compensation of function under sAC

inhibition

Gather information about sAC at the nucleotide,

enzymatic, and protein levels as described in the previous

rows. Design-specific cell, tissue, and whole animal

experiments to test sAC roles under acid/base relevant

conditions; look for responses sensitive to sAC genetic

and/or pharmacological knockdown. Using two

pharmacological inhibitors is recommended. Use care

interpreting results using PDE and tmAC agonists and

antagonists as well as cAMP analogs



2.1 RNA Isolation and cDNA Synthesis
a. For cloning sAC mRNAs from animals we recommend isolating RNA

frommature testis because it typically contains the highest mRNA abun-

dance among all tissues. As a trade-off, testis contains multiple somatic,

germ, and sex cells in which alternative splicing is especially prevalent

(Elliott & Grellscheid, 2006; Yeo, Holste, Kreiman, & Burge, 2004),

which can complicate sequencing and analyses.

b. We have obtained best results with fresh samples and stored in RNAlater

or equivalent. Samples snap-frozen in liquid N2 immediately after dis-

section also are acceptable (but RNAlater is preferred).

c. Due to the low expression of sAC transcripts, mRNA purification is

essential and therefore it is important to isolate as much total RNA as

possible. A ratio of 100 mg of tissue for 1mL of TRIzol Reagent or

equivalent could be used as a reference during isolation optimization.

d. We recommend precipitating RNA with isopropyl alcohol at �80°C
overnight, and doing two washes with 75% ethanol before drying the

pellet.

e. After total RNA isolation, it is essential to quantify each sample using an

absorbance- or fluorescence-based nucleic acid quantification method.

Also assess the integrity of total RNA by running a total RNA sample

(e.g., 200ng to 1μg) in an agarose gel or equivalent method. If the 28S

and 18S ribosomal RNA bands are not prominent and sharp, do not

proceed.

f. We successfully cloned sAC from a variety of organisms ranging from

coral to trout using Poly(A) RNA purification MAG kit (Ambion™)

(Barott et al., 2017; Tresguerres, Parks, et al., 2010; Salmerón and

Tresguerres, unpublished). As reference, we recommend using at least

90ng of purified mRNA from trout mature testes for making cDNA.

g. We tested different polymerases (e.g., Platinum Taq DNA Polymerase

(Invitrogen™), Phusion High-Fidelity PCR Master Mix (Thermo

Scientific™)), and observed higher amplification rate and success with

high-fidelity polymerases.

h. Many invertebrate animals do not possess prominent testes as in verte-

brates; however, in our experience they tend to have generally higher

sAC mRNA levels so whole animal (e.g., coral) or various nongonadal

tissues (e.g., mollusks) are usually acceptable sources. For cloning sAC

from coral, an�2cm fragment yields enough RNA. The coral skeleton

must be crushed using a chilled mortar and pestle into a fine powder,

which can then be homogenized in TRIzol Reagent.
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2.2 Cloning
sAC multiple promoters, extensive alternative splicing, and low mRNA

abundance are problematic for cloning experiments. In some cases, con-

firming the presence of mRNA coding for the catalytic domains of sAC

might suffice. However, cloning full-length cDNAs encoding sAC splice

variants and identifying and quantifying expression of cDNAs coding for

specific sAC splice variants requires extensive optimization and almost every

trick in the book.

To clone full-length sAC cDNAs, we recommend to first search for sAC

cDNA sequences for the target species in genomic, transcriptomic, and

protein databases using already cloned sAC sequences from the same or a

related species as the query. For fish, we recommend using sAC from dogfish

shark (S. acanthias) (ACA52542) (Tresguerres, Parks, et al., 2010) and sACs

from rainbow trout (O. mykiss) (MF034907–MF03490727, MF670431, and

MF511189); sAC from P. damicornis (KX910691, KY853034, KY853037,

KY853039, KY853041) (Barott et al., 2017) and Acropora yongei

(MG269969–MG269972) might be used for coral. However, in our expe-

rience predicted complete cDNA sequences based on bioinformatics ana-

lyses are not trustworthy, most likely due to “glitches” resulting from the

presence of multiple splice variants. Thus, if the aim is to identify full-length

sAC cDNAs, it is essential to clone and sequence them using traditional

approaches. Results from the searches will follow into one of the three

following categories:

a. sAC cDNA sequences containing 50 and 30 gene untranslated regions (UTRs):
These are particularly helpful for cloning sACs because they often are

part of intronic regions and therefore helpful for designing mRNA

splice variant-specific primers (Fig. 1). We have had better success by

synthetizing the cDNA with SuperScript III First-Strand Synthesis Sys-

tem (Thermo Scientific™) with reverse gene-specific primers (GSPs)

in the 30 UTR region of sAC cDNA, instead of Oligo(dT) primers.

Another strategy to improve sACmRNA detection is by doing a second

PCR using the product of the first PCR as template (at different dilu-

tions) and nested primers. PCR products using sAC primers on UTRs

typically produce multiple bands in agarose gel electrophoresis (e.g.,

Fig. 1B, lane 2). Rather than nonspecific products, those potentially are

different sAC cDNAs so we recommend cutting, purifying, and sequenc-

ing each band.

b. sAC cDNA sequences not containing UTRs: In this case 50 and 30 RACE-

PCR is necessary (e.g., using 50 and 30 RACE System for Rapid
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Fig. 1 Identification of four sAC splice variants by PCR. (A) Exons and introns are represented by boxes and lines, respectively. Primers used for
PCR are indicated above each sAC transcript. sAC forward primers (sAC FW): sAC FW1 is common to all sAC transcripts, and sAC FW2 and sAC
FW3 bind within the exon–exon junction of the splicing event of sAC transcripts 2 and 3, respectively. sAC reverse primers (sAC RV): sAC RV1
binds to sAC variants 1–3 (but not 4), and sAC RV2 is exclusive for sAC variant 4. (B) Electrophoresis simulation of PCRs using different primer
sets for sAC (DNA bands and sAC variants are color coded). Lane 1: sAC FW1 and sAC RV1 yield bands of different sizes corresponding to sAC
variants 1–3 (black,magenta, and green, respectively). Lane 2: sAC FW2 and sAC RV1 only amplify sAC variant 2 (magenta). Lane 3: sAC FW3 and
sAC RV1 only amplify sAC variant 3 (green). Lane 4: sAC FW1 and sAC RV2 exclusively amplify sAC variant 4 (blue).



Amplification of cDNA Ends (Thermo Scientific™)). The required

GSPs should be designed against regions close to the putative UTRs.

c. No results:PCRs using degenerated primers forwell-conserved nucleotide

regions based in alignments of cloned sAC sequences from different spe-

cies are an option. However, we never had success using this approach,

again possibly due to the combination of low sAC mRNA abundance

and multiple splice variants.

2.3 mRNA Quantification
If full-length cDNAs for various sAC splice variants are known, the tran-

scriptional expression of each of them can be quantified by regular or

quantitative/real-time PCR (qPCR) using the following different strategies

(more details in Camacho Londoño & Philipp, 2016; Leparc &Mitra, 2007):

a. Primers spanning exon–exon junctions (Fig. 1).

b. Flanking PCR (primers for constitutive exons flanking a spliced region).

c. Seminested PCR.Using three primers: (1) an “external” forward primer

#1, localized 50 upstream of a canonical exon, (2) a reverse primer #2,

localized within an exon–exon junction of the splicing event, and (3)

a second “internal” forward primer in an exonic region between primers

#1 and #2. An initial PCR uses primers #1 and #2, and a second PCR

uses a 1:100 dilution of the first PCR as template, and primers #2 and#3.

d. The abundance of splice variants can be quantified based on the relative

abundance of qPCR products obtained with variant-specific and common

primers.

In this “-omics” era, it is tempting to use RNA sequencing (RNA-seq) both

for identifying sAC splice variants and for quantifying their expression.

However, this method is not recommended for genes with low mRNA

abundance such as sAC; quantification using variations such as targeted

RNA-Seq and RASL-Seq requires prior knowledge of the sequences of

interests (reviewed in Hrdlickova, Toloue, & Tian, 2017).

3. ENZYMATIC ACTIVITY

Biochemical characterization of purified sAC has so far been done for

sAC from human (Geng et al., 2005; Jaiswal & Conti, 2003; Litvin et al.,

2003), rat (Buck et al., 1999; Chaloupka et al., 2006; Chen et al., 2000;

Jaiswal & Conti, 2003), shark (Tresguerres, Parks, et al., 2010), cyanobacteria

(Chen et al., 2000), and Chloroflexus bacteria (Kobayashi, Buck, & Levin,

2004). sAC activity has also been characterized in semipurified sAC from
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mouse (Farrell et al., 2008) and sea urchin sAC (Nomura, Beltrán, Darszon, &

Vacquier, 2005), as well as in tissue homogenates from shark (Roa &

Tresguerres, 2017; Tresguerres, Parks, et al., 2010), ray (Roa & Tresguerres,

2016), hagfish (Wilson et al., 2016), coral (Barott et al., 2013), and diatom

(Tresguerres et al., 2014). Common biochemical characteristics include the

requirement of ATP, Mg2+, and another cation (Ca2+ or Mn2+) to sustain

HCO3
� stimulation. Furthermore, all sACs are strongly stimulated by milli-

molar Mn2+ concentrations, the property that originally suggested the exis-

tence of distinct cAMP producing enzymes “soluble” in the cell cytoplasm

(Braun, 1991; Braun & Dods, 1975; Braun, Frank, Dods, & Sepsenwol,

1977; Gordeladze & Hansson, 1981; Neer, 1978; Neer & Murad, 1979).

Although it is not clear whether Mn2+ is physiologically relevant, robust

Mn2+-stimulated cAMP production remains useful as initial biochemical evi-

dence about the presence of sAC in a sample. Other important differences

between sAC and the classic hormone and G protein-coupled receptor

(GPCR)-regulated transmembrane adenylyl cyclases (tmACs) from animals

include sAC’s lower affinity for ATP (which may be related to a role in sensing

ATP levels; Zippin et al., 2013), and its insensitivity to tmAC pharmaco-

logical agonists such as forskolin (Fsk) and GTPγS (Buck et al., 1999; Chen

et al., 2000).

There are three well-characterized cell permeable sAC inhibitors with

different degrees of specificity and associated side effects in different types

of assays. Derivatives of catechol estrogens (dCEs) such as 2- and

4-hydroxyestradiol inhibit purified sAC with IC50 �2–50μM (Bitterman,

Ramos-Espiritu, Diaz, Levin, & Buck, 2013; Steegborn et al., 2005;

Tresguerres, Parks, et al., 2010), but research onpurified protein raised concerns

they could also inhibit tmACs at similar concentrations (Steegborn et al., 2005).

However, subsequent research on cells determined the IC50 of dCEs for

sAC is �100μM, and that it does not affect cAMP production by tmACs

(Bitterman et al., 2013) so dCEs are a valid option for in vivo research.The small

moleculeKH7 inhibits sACwith higher affinity thandCEs both in purified pro-

tein (IC50 �3–10μM) (Bitterman et al., 2013; Ramos-Espiritu et al., 2016;

Tresguerres, Parks, et al., 2010) and cell assays (IC50 �25μM) (Bitterman

et al., 2013). Furthermore, KH7 does not affect tmAC activity in vitro or

in vivo (Bitterman et al., 2013). However, under certain experimental condi-

tions KH7may affectmammalianmitochondrial function in unspecificmanner

(De Rasmo et al., 2016; Di Benedetto, Scalzotto, Mongillo, & Pozzan, 2013)

(although not in coral; Barott et al., 2017). The most novel sAC-specific small

molecule inhibitor is LRE1,whichhas similar lowIC50of�10μMboth invitro
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and in vivo and does not seem to have unspecific effects on mitochondria

(Ramos-Espiritu et al., 2016). KH7 and dCEs have been shown to inhibit

sAC from mammals (Hess et al., 2005), fish (Roa & Tresguerres, 2016;

Tresguerres, Parks, et al., 2010), sea urchin (Beltrán et al., 2007), and coral

(Barott et al., 2013) with similar IC50; to our knowledge LRE1 has only been

tested on mammals so far.

3.1 Recombinant Protein
Enzymatic assays on recombinant sACprotein are used to characterize enzyme

kinetics, responsiveness to HCO3
�, the efficacy of known inhibitors, and to

screen for novel stimulators and inhibitors. Production and purification of

recombinant sAC proteins can be done using a number of standard methods

(Structural Genomics Consortium et al., 2008). Some considerations to pro-

duce, purify, and determine sAC enzymatic activity include:

a. Despite its name, only the shorter sAC variants that only include one or

both catalytic domains are “soluble” proteins. The larger sAC variants

are typically found in the “particulate” fraction, likely due to their asso-

ciation with multiple other proteins. For example, in sea urchin sperm

sAC coimmunoprecipitates with >10 proteins of the plasma membrane

and axoneme (Nomura & Vacquier, 2006).

b. sAC responses to HCO3
�, metals, and pharmacological inhibitors are

largely determined by the two catalytic domains (Chaloupka et al.,

2006; Litvin et al., 2003). Thus, kinetic parameters such as EC50 and

IC50 can be studied using sAC variants that lack the long C-terminus

region, which are easier to produce in bacteria and have more robust

activity. However, regulatory aspects of the P-loop, leucine zipper,

TPR, and other domains must be studied on the longer sAC proteins,

which should be produced in eukaryotic expression systems such as

yeast, insect, or mammalian.

c. Because cAMP is a universal signaling molecule, sAC recombinant pro-

teins can have toxic effects on the expression system, impair growth, or

result in production of inclusion bodies. Some factors that help mitigate

those harmful effects on bacteria include culturing at low temperature

(10–20°C) and carefully regulating gene expression, for example, by

optimizing the amount of arabinose or IPTG.

3.2 Tissue Homogenates and Cellular Fractions
sAC enzyme activity assays on homogenates and cell fractions can be used to

confirm if sAC is present in a given tissue or subcellular compartment; they
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are particularly useful when the sAC cDNA sequence of the organism is not

known or mRNA levels are too low for RT-PCR, and when no antibodies

are available to survey for sAC protein. In some cases, tissue homogenates

can additionally be used as surrogates for recombinant protein to provide

an initial characterization of sAC enzyme kinetics (Barott et al., 2013;

Tresguerres, Parks, et al., 2010; Wilson et al., 2016).

After dissection from the animal, samples must be immediately homog-

enized and assayed, or flash frozen in liquid N2 and stored at�80°C. Tissue
homogenization may be done using a variety of methods (Goldberg, 2008).

We prefer pulverizing the tissue in liquid N2 using pestle and mortar,

followed by suspension in homogenization buffer (250mM sucrose,

100mM Tris pH 7.5, and 100μg/mL PMSF, 10μg/mL aprotinin, 10μg/
mL leupeptin). Ratio of sample to buffer should be between 1:5 and

1:10 weight (mg) to volume (μL). The mix is then further homogenized

by sonication (2�, 15 s each, on ice) (Tresguerres, Parks, et al., 2010) or

in a Dounce homogenizer (Wilson et al., 2016). After pelleting down large

debris (500� g, 10min, 4°C), the supernatant is saved (crude homogenate)

and can be used in sAC activity assays or processed further for cell fraction-

ation using standard methods (e.g., see Roa & Tresguerres, 2017 for isola-

tion of nuclei). For coral, we found it sufficient to remove and homogenize

the tissue from the skeleton using an artist’s air airbrush or by scraping with

a toothbrush into homogenization buffer (Barott et al., 2013).

3.3 cAMP Activity Assay
The activity assay is based on the production of cAMP from ATP in the pres-

ence of appropriate cofactors. The basic assay buffer contains 150mM NaCl,

100mM Tris pH 7.5, 1mM dithiothreitol (DTT), 5mM ATP, and 5mM

Mg2+ or Mn2+. This amount of Mn2+ induces maximum sAC stimulation,

which is typically >10-fold higher compared to Mg2+-sustained activity.

However, those high Mn2+ levels are not physiological, and do not sustain

HCO3
� stimulation (probably because sAC is already maximally stimulated).

The physiological conditions that sustain HCO3
� stimulation in vivo

vary from species to species. For example, mammalian sACs requiremillimolar

concentrations of Mg2+ and Ca2+ and similar ATP levels (Litvin et al., 2003).

However, shark sAC requires about 10-fold higher Mg2+ concentration than

ATP (20 and 2.5mM, respectively) and must be supplemented with 0.5mM

Mn2+ (Tresguerres, Parks, et al., 2010). For sAC from new species, we rec-

ommend trying different concentrations and combinations of Mg2+, Ca2+,

and Mn2+.
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The kinetics of HCO3
� stimulation must be done over a range that is

physiologically relevant to the species in question. Most water-breathing

animals experience lower HCO3
� levels compared to air breathers; we

advise testing the following HCO3
� concentrations: 0, 1, 2.5, 5, 7.5, 10,

15, 20, 40mM. This may be followed by more detailed studies around

the EC50. The use of 100mM Tris ensures those HCO3
� concentrations

do not have a major effect on pH. However, a pH dose–response curve over
the range 7–9 is advisable (this could be done by combining appropriate

amounts of 100mM Tris–HCl and Tris–base).
Inhibitors such as dCE, KH7, LRE1, and 3-isobutyl-1-methylxanthine

(IBMX) are usually dissolved in DMSO. The concentration of DMSOmust

be identical in every reaction, and in no case it should exceed 2%.

Tissue homogenates contain sAC and its native cofactors, but also

phosphodiesterases (PDEs) and ATPases, which degrade cAMP and hydro-

lyze ATP, respectively. Addition of 500μM IBMX into the assay buffer

inhibits PDEs, while 20mM creatine phosphate and 100U/mL creatine

phosphokinase regenerate ATP thus maintaining constant levels through-

out the assay (the effect of cAMP production on ATP levels is negligible).

Tissue homogenates also contain tmACs, which produce cAMP and can

introduce noise and significantly contribute to background cAMP levels.

sAC activity can be differentiated from tmAC’s using specific inhibitors

for sAC (dCE, KH7, LRE1) and tmACs (e.g., 20,50-dideoxyadenosine
(DDA)) (Roa & Tresguerres, 2016, 2017).

3.4 cAMP Quantification
Production of cAMP can be quantified using several methods, which vary in

time involvement, cost, accuracy, precision, sensitivity, and specificity. The

most specific detection method is the two-column adenylyl cyclase assay

which requires radiolabeled [α-32P]ATP and [3H]cAMP (Salomon, 1979),

or [3H]adenine if used to measure cAMP accumulation in cells (Levin &

Reed, 1995). The two-column assay is preferred for characterizing adenylyl

cyclase kinetics because of its specificity, accuracy, and precision; thismethod

was used for mammalian sAC (Chen et al., 2000; Litvin et al., 2003) and also

for confirming the exceptionally high sAC activity in coral tissues (Barott

et al., 2013). Some disadvantages are the need for radiolabeled reagents (with

their associated hazards and detection equipment), its low sensitivity that

requires samples with high cAMP producing activity, and being labor inten-

sive and time consuming.
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The most versatile cAMP detection method is enzyme-linked immuno-

sorbent assay (ELISA) based. It can be used for characterizing activity of

purified protein, homogenates, and cells, as well as for measuring cAMP

concentration in tissues. In addition to versatility, its advantages include rel-

ative short time and simplicity, and high sensitivity. An “acetylated” format

increases sensitivity and specificity; however, not even that format is as accu-

rate, precise, or specific as the two-column assay. These issues can be

reduced by increasing the number of replicates, ensuring the readouts are

in the linear portion of the standard curve, and diluting samples to avoid

interference of divalent metals and ATP with binding. Additionally, cAMP

standards can be dissolved in the presence of equivalent concentrations of

metals and ATP resulting in multiple standard curves each specific for each

condition. When used correctly, ELISA detection of cAMP is a very pow-

erful method that has been used to characterize and confirm sAC activity in

recombinant protein (Tresguerres, Parks, et al., 2010), immunoprecipitated

protein (Nomura et al., 2005), and tissue homogenates and cell fractions

(Barott et al., 2013; Roa & Tresguerres, 2016, 2017; Tresguerres, Parks,

et al., 2010), as well as to measure cAMP levels in coral throughout the

day/night cycle (Barott et al., 2013).

The newest cAMP detection method combines high-capacity sample

analyses with mass spectrometry (Ramos-Espiritu et al., 2016). In addition

to high-throughput screening, it has high specificity for cAMP, it can be used

to simultaneously measure cAMP and ATP levels, and has a large dynamic

range. However, its disadvantages include inferior sensitivity compared

to the two-column assay, a requirement for large amounts of purified sAC

protein, and not being useful for cell accumulation assays. In addition, this

method requires expensive and complex equipment, which effectively

restricts its use to highly specialized and well-funded medical and biotech-

nology research.

4. PROTEIN

The extensive alternative splicing described in Section 2 results in

multiple protein isoforms. While fascinating from evolutionary and physi-

ological perspectives, this adds an additional layer of complexity for studying

sAC at the protein level. One of those issues is generating and validating

specific antibodies, because most antigenic regions will be shared bymultiple

protein variants (Fig. 2); this situation is analogous to primer design for PCR

(Fig. 1). Furthermore, anti-sAC antibodies are likely to produce multiple
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bands in Western blots that, even if demonstrated to disappear by peptide 
preabsorption, often cast doubts about their specificity. Similarly, immuno-

staining will label multiple variants throughout the cell (potentially in various 
subcellular compartments) or it may differentially label sAC variants that pro-
vide better antigen access to the antibodies (due to folding and microenvi-

ronment conditions such as number and type of proteins associated to sAC). 
Pan-specific anti-sAC antibodies against peptides in the catalytic domains 

are suitable tools for many research goals; however, the potential detection 
of multiple sAC variants must be considered (Fig. 2). To tease apart different 
variants, our approach is to generate different antibodies against different 
parts of the protein. To increase the chances of antibodies to work both 
in Western blots and immunohistochemistry, we recommend choosing anti-
genic peptides that are exposed at the surface of the protein, hydrophobic, 
with high disorder value (a measure of how similar the linear peptide is 
compared to its natural conformation in the protein), and positioned near 
the C- or N-terminus. In addition, the peptide needs to induce a strong 
immune response (which is in part determined by its dissimilarity to proteins 
from the host animal where the antibodies are produced). Considering those 
restrictions, it clearly is not possible to generate antibodies against every part 
of the protein, and thus designing antibodies against every sAC isoform is 
unfeasible. Our strategy has been to generate antibodies against three distinc-
tive sAC regions: catalytic domain one or two, the P-loop, and near the 
N-terminus of the full-length sAC protein (Fig. 2). Combining results from

Fig. 2 Antibody design and detection of three sAC protein isoforms by Western blot.
(A) C1 and C2, catalytic domains 1 and 2; P-Loop, P-loop domain. Antibodies against
rtsAC’s are indicated by an inverted Y. Anti-sACC1 antibody detects all sAC isoforms.
Anti-sACP-Loop antibody detects sAC isoforms containing the P-loop domain. Anti-sACFL
antibody only detects sAC full-length. (B) PAGE–Western blot simulation using the three
anti-sAC antibodies (protein bands and sAC isoforms are color coded). Lane 1: anti-sACC1
antibody yields bands of three different sizes corresponding to sAC isoforms 1–3 (pur-
ple, yellow, and turquoise, respectively). Lane 2: anti-sACP-Loop antibody yields bands of
two different sizes corresponding to sAC isoforms 2 and 3 (yellow and turquoise, respec-
tively). Lane 3: anti-sACFL exclusively detects sAC variant 3 (turquoise).
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the three antibodies should allow deducingwhich sAC variants are present in

a certain sample, and where within a cell. For example, antibodies against the

catalytic domains will detect all bands in Western blot and label all intracel-

lular localizations where sAC is present; antibodies against the N-terminus

will only detect the larger molecular weight bands in Western blots and

label those intracellular locations where sACFL is present (but not sACt or

equivalents), and so on with other antibodies.

Once antibodies are generated and properly validated (Bordeaux et al.,

2010), they are among the most powerful tools for studying sAC presence

in specific tissues (Roa & Tresguerres, 2016, 2017; Tresguerres, Parks,

et al., 2010), cell types (Barott et al., 2017; Roa & Tresguerres, 2016,

2017), and subcellular compartments (Roa & Tresguerres, 2017). In bio-

medicine, specific anti-sAC antibodies are even used as diagnostic tools in

dermatopathology (Magro, Crowson, Desman, & Zippin, 2012; Zippin,

Chadwick, Levin, Buck, & Magro, 2010). Our standard protocols for

immunodetection of sAC from coral, shark, and bony fish are listed below.

These conditions can be used in initial studies for other species, but keep in

mind each new species may require additional optimization.

4.1 Western Blotting (Optimized for Various Coral and Fish
Tissues)

a. Obtain a crude homogenate as described in Section 3.2.

b. Measure protein concentration using the Bradford assay or similar.

c. Combine the sample with an equal volume of 2� Laemmli buffer (with

5% β-mercaptoethanol, freshly added). Heating at 70°C for 15min tends

to give better results for larger sAC variants, while 95°C for 5min is

usually better for shorter sAC variants.

d. Separate 20μg of total protein by SDS/PAGE (7%–10% polyacrylamide

gel) and transfer onto a polyvinylidene difluoride (PVDF) membrane.

To ensure transfer of large molecular weight sAC variants, we recom-

mend overnight transfer at 4°C.
e. Block nonspecific binding sites with blocking buffer (Tris-buffered

saline with 0.1% Tween 20 (TBS-T) with 5% fat-free milk (weight:vol-

ume), 1h at room temperature.

f. Incubate with primary antibody diluted in blocking buffer, overnight at

4°C. We use our anti-sAC custom-made antibodies made in rabbit at

the following concentrations: 0.006μg/mL (coral), 3μg/mL (shark),

0.6μg/mL (trout). Wash with TBS-T 3�, 20min.
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g. Incubate with secondary antibodies diluted in blocking buffer, 1h at

room temperature. We use horseradish peroxidase-linked goat anti-

rabbit antibodies (BioRad™) (1:10,000 dilution). Wash with TBS-T

3�, 20min.

h. Visualize using method of choice. Unlike most proteins that typically

yield a single band in Western blots, sAC is likely to produce multiple

bands. Those bands should not be ruled out as “background noise,” as

they may be sAC splice variants.

i. Band specificity must be confirmed by peptide preabsorption control,

which requires incubating the primary antibodies with excess antigen

peptide (300� on a molar basis) in blocking buffer, overnight at 4°C
before proceeding to step f. Primary antibodies without peptide should

be handled and applied to the same sample in parallel. We recommend

loading two sets of increasing concentrations of total protein side by

side in the same gel, cutting the PVDF membrane in half, and incubate

one half (containing one set of lanes) with preabsorbed antibodies, and

the other half (containing the other set) with antibodies without antigen

peptide (see figure 1A in Roa, Mun�evar, & Tresguerres, 2014). Another

control should omit the primary antibodies.

4.2 Immunocytochemistry (Optimized for Rainbow Trout Cell
Line RT-W1 (ATCC CRL-2523))

a. Grow cells on glass bottom culture dishes coated with collagen until

semiconfluence (14–18°C). Wash with sterile growth media without

serum for 5min.

b. (Optional for mitochondria labeling) Incubate in 200nMMitoTracker

(Invitrogen™) in sterile growth media without serum, 25min at 18°C
(color must be compatible with fluorescent secondary antibodies).

Wash the cells with sterile phosphate buffer solution (PBS) at room

temperature.

c. Fix in 3.7% paraformaldehyde in PBS, 10min at room temperature.

Wash with PBS.

d. Permeablize cells with 0.5% Triton X-100 in PBS, 5min at room

temperature. Wash with PBS, 2�, 30 s.

e. Block nonspecific-binding sites with blocking buffer (10mg/mL bovine

serum albumin in PBS), 1h at room temperature.

f. Incubate with primary antibody diluted in blocking buffer, overnight at

4°C. We use our custom-made antibodies made in rabbit against rain-

bow trout sAC at concentrations between 1 and 3μg/mL. Wash with

PBS 3�, 5min.
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g. Incubate with secondary antibodies (e.g., Alexa fluorophore-conjugated

goat antirabbit), diluted 1:500 in blocking buffer for 2h at room temper-

ature in the dark. For visualization of nuclei, Hoechst 33342 dye

(Invitrogen™) can be added (1μg/mL) in the mix. Wash with PBS

3�, 5min. Visualize in fluorescence microscope.

h. Controls should include omission of primary antibody and peptide

preabsorption control. The latter requires incubating the primary anti-

bodies with excess antigen peptide (300� on a molar basis) in blocking

buffer, overnight at 4°C before proceeding to step f. Another dish with

cells must be treated with primary antibodies handled in identical man-

ner (but without antigen peptide) and imaged under the same conditions

and exposure times.

i. (Optional) we have simultaneously labeled other proteins by incubating

cells with anti-sAC antibodies together with variety of mouse monoclo-

nal antibodies such as anti-α-tubulin 12G10 antibody from the Iowa

Hybridoma Bank (0.1μg/mL) and anti-Golgi matrix protein 130

(GM-130) from BD Biosciences™ (2.5μg/mL).

4.3 Immunohistochemistry (Coral, Various Shark, and Fish
Tissues)

We have successfully immunolocalized sAC in tissue paraffin sections

(Roa & Tresguerres, 2016, 2017; Tresguerres, Parks, et al., 2010; Wilson

et al., 2016) as well as in cryosections (Tresguerres, Levin, et al., 2010); pro-

tocol details can be found in those publication. Some things to consider

include:

a. Tissue fragments must be immersed in ice-cold fixative immediately

after dissection and incubated on a circular shaker or rotator mixer at

4°C. Overnight incubation is a good starting point, but the time might

have to be optimized for each tissue to ensure fixation while avoiding

over-fixation. Thinner and smaller samples require less fixation time.

b. For fish samples, we routinely fix samples in 0.2mol/L cacodylate

buffer, 3.2% paraformaldehyde, 0.3% glutaraldehyde, pH 7.4 (Electron

Microscopy Sciences™). However, we have also had success fixing fish

intestine in 4% paraformaldehyde in PBS (Tresguerres, Levin, et al.,

2010), and coral tissue in 3% paraformaldehyde in S22 buffer (Barott

et al., 2017).

c. After deparaffinization and initial tissue hydration, incubation in 1%

SDS in PBS (10min, room temperature) may help retrieve antigen sites

(Roa & Tresguerres, 2016, 2017; Tresguerres, Parks, et al., 2010).

d. Perform the same controls described earlier for immunocytochemistry.
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5. CELLULAR STUDIES

The information gathered using the techniques described earlier is

essential for designing experiments to establish the role(s) of sAC in specific

cell types and organs: enzymatic assays inform the A/B conditions likely to

stimulate sAC in vivo, the efficacy of sAC inhibitors, and the presence of

tmACs, and mRNA, and Western blotting and immunocytochemistry

experiments establish the sAC isoforms that are expressed and where they

are located within a cell. Unfortunately, sAC gene knockout and knock-

down are still not feasible in the majority of aquatic animals. Pharmacolog-

ical inhibition of sAC is currently the best tool to infer sAC’s physiological

roles in nonmodel aquatic animals. Pharmacological inhibitors have been

used in experiments related to a large variety of physiological processes

including intracellular pH measurements (Barott et al., 2017), sperm motil-

ity (Hess et al., 2005) and acrosome reaction (Beltrán et al., 2007), trans-

epithelial NaCl absorption (Tresguerres, Levin, et al., 2010), blood pH

regulation (Tresguerres, Parks, et al., 2010), translocation of proteins from

the cell cytoplasm to the membrane (Roa & Tresguerres, 2016), and heart

beat rate (Wilson et al., 2016), to name a few examples. Whenever possible,

we recommend first confirming each inhibitor is specific for the sAC from

the species in question. We also recommend using more than one sAC

inhibitor, because their different structures and mechanisms of action min-

imize the chances of obtaining the same unspecific effect.

Traditional approaches to study cAMP-related processes in cells have

included inhibition of PDEs tomaximize responses, addition of cell permeable

cAMP analogs, and stimulation of tmACs with Fsk. Our advice is to reinter-

pret (and in some cases repeat) those types of experiments taking into account

the current cAMP microdomain model. Specifically, PDE inhibition and

cAMP analogs (which tend to be nonhydrolyzable) likely result in cAMP dif-

fusion into microdomains that are not relevant under normal conditions, and

Fsk stimulates cAMP production by tmAC to nonphysiologically levels that

also have the potential to act on nonphysiological microdomains (Fig. 3).

In many cases, pharmacological sAC inhibition does not cause any notice-

able effect under control conditions. We believe this is due to sAC having

a role in sensing deviations from an A/B set point, and in eliciting responses

to correct them. Accordingly, sAC inhibitors tend to induce larger effects

under conditions in which sAC is stimulated, typically resulting in blocking

a certain response to A/B stress.
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Fig. 3 Pharmacological manipulation of cAMP levels in cells. (1) cAMP signaling micro-
domains under control conditions. Soluble adenylyl cyclase (sAC) and transmembrane
adenylyl cyclases (tmACs) generate cAMP at focal points. Phosphodiesterases (PDEs) hydro-
lyze cAMP therefore restricting its diffusion. Protein kinase A, exchange protein activated by
cAMP, andcyclic nucleotide-gatedchannels are regulatedbycAMP ineachmicrodomain
and modulate the activity of specific downstream proteins (none of which are depicted
in these cartoons). For simplicity only one sAC- and one tmAC-mediated microdomain
are shown, but cells might have several of each in different cell regions. (2) sAC
activity can be pharmacologically inhibited using derivatives of catechol estrogens (dCEs),

(Continued)
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6. SUMMARY AND CONCLUSIONS

The complexity of sAC at the gene and protein levels requires exten-

sive optimization of molecular biology and biochemical techniques.

A detailed characterization of sAC gene structure and regulation, protein

isoforms, and subcellular localization is essential to be able to design and

interpret experiments to study its physiological roles in various parts of

the cell. The existing knowledge about sAC can and should be used as frame

of reference for studies on sAC from new species; however, we recommend

cloning sAC gene(s), characterizing dose response curves for HCO3
� and

inhibitors, and performing immunolocalization studies in the organisms

of choice before proceeding to functional studies.

ACKNOWLEDGMENT
Funded by NSF IOS #1354181 to M.T.

REFERENCES
Acin-Perez, R., Salazar, E., Kamenetsky, M., Buck, J., Levin, L. R., & Manfredi, G. (2009).

Cyclic AMP produced inside mitochondria regulates oxidative phosphorylation. Cell
Metabolism, 9, 265–276.

Barott, K. L., Barron, M. E., & Tresguerres, M. (2017). Identification of a molecular pH
sensor in coral. Proceedings Biological Sciences, 284. 20171769.

Barott, K. L., Helman, Y., Haramaty, L., Barron, M. E., Hess, K. C., Buck, J., et al. (2013).
High adenylyl cyclase activity and in vivo cAMP fluctuations in corals suggest central
physiological role. Scientific Reports, 3, 1–7.

Barott, K. L., Venn, A. A., Perez, S. O., Tambutt�e, S., & Tresguerres, M. (2015). Coral host
cells acidify symbiotic algal microenvironment to promote photosynthesis. Proceedings of
the National Academy of Sciences of the United States of America, 112, 607–612.

Beltrán, C., Vacquier, V. D., Moy, G., Chen, Y., Buck, J., Levin, L. R., et al. (2007). Par-
ticulate and soluble adenylyl cyclases participate in the sperm acrosome reaction. Biochem-
ical and Biophysical Research Communications, 358, 1128–1135.

Fig. 3—Cont’d KH7 and LRE1 (see text for details). (3) tmACs activity can be pharmaco-
logically inhibited using DDA, among other drugs. (4) The broad PDE inhibitor 3-isobutyl-
1-methylxanthine (IBMX) prevents cAMP degradation and thus can magnify the cAMP
signaling cascade; however, it may result in nonphysiological responses due to abolition
of cAMP microdomains. (5) Cell permeable cAMP analogs also increase cAMP levels
inside cells; however, they may simultaneously act on multiple microdomains.
(6) Stimulation of tmAC activity with forskolin (Fsk) specifically increases cAMP in those
microdomains; however, it might reach nonphysiologically high levels that might over-
whelm PDE activity, again acting on other microdomains that are not physiologically
relevant.

546 Martin Tresguerres and Cristina Salmerón

http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0010
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0010
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0010
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0015
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0015
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0020
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0020
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0020
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0025
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0025
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0025
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0025
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0030
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0030
http://refhub.elsevier.com/S0076-6879(18)30089-2/rf0030


Berthelot, C., Brunet, F., Chalopin, D., Juanchich, A., Bernard, M., Noël, B., et al. (2014).
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