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Abstract

This paper surveys and extends models and algorithms for identifying binding sites in non-coding

regions of DNA. These sites control the transcription of genes into messenger RNA in preparation for

translation into proteins. We summarize the underlying biology, review three different models for binding

site identification, and present a unified model that borrows from the previous models and integrates their

main features. We then describe maximum likelihood and maximum a posteriori algorithms for fitting

the unified model to data. Finally, we conclude with a prospectus of future data analyses and theoretical

research.
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I. Introduction

Computational genomics has many different goals and profits from many different scien-

tific perspectives. One obvious goal is to find all of the genes within a genome. This task

is complicated by the segmentation of genes into exons and introns, by alternative splicing

of exons to form messenger RNA, and by the presence of regulatory regions upstream of

most genes. Once a gene is found, a second goal is to use its amino acid content to deduce

the structure and function of the encoded protein. A third goal is to understand how

genes and gene products interact in space and time. Each of these goals benefits from

the pattern recognition principles widely used in computer science and statistics. At the

same time, the peculiarities of genetics demand special techniques in addition to general

methods. Because the information housed in a genome is written in a distinct language,

it is tempting to transfer ideas from mathematical linguistics to genomics. In our view,

such a transfer is apt to be more successful for semantics than for grammar. The current

paper surveys and develops a dictionary model for recognizing regulatory motifs. In the

dictionary model, a DNA sequence is viewed as a random concatenation of words with

alternative spellings.

A. The Biological Problem

DNA, the molecule that encodes genetic information, is a long polymer whose structure

can be effectively be described by a sequence of letters of four types—A, C, G, and T—

corresponding to the four nucleotides (or bases) adenine, cytosine, guanine, and thymine.
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The vast majority of human DNA is organized into 46 linear chromosomes stored in the

cell nucleus. Except for the X and Y sex chromosomes, the remaining 44 chromosomes

come in 22 pairs of nearly identical homologous chromosomes. The total length of the 22

consensus autosomes and the two sex chromosomes is approximately three billion bases.

By comparison, the genome of the bacterium E. Coli consists of a single circular strand,

five and a half million bases long. In the past decade, the complete genomes of hundreds

of organisms have been sequenced, and last year a rough draft of the human genome was

announced [1],[2]. These remarkable achievements make it possible to undertake whole

genome analysis and compare genomes of different species.

In eukaryotes, the higher organisms with a cell nucleus, genes occupy only a small

fraction of the total genome. For example in humans, recent estimates suggest that coding

DNA amounts to only 1.5% of the genome. The function of the remaining portion of DNA

is not entirely understood, but it is clear that it plays an important role in evolution

and in the regulation of gene expression. In this paper, we focus on non-coding DNA, in

particular, on regions immediately upstream of genes. These regions are often involved in

regulation of transcription, the process of copying genes in preparation for their translation

into proteins. In order for the transcription machinery to operate on a given gene at a

given time, regulatory proteins typically must bind or unbind to specific locations upstream

of the gene. Most organisms possess multiple interacting regulatory proteins, and each

regulatory protein typically influences the expression of many genes. Thus, one can expect

to find far fewer regulatory proteins than genes. For example, E. coli has about 4200 genes

and only about 100 major regulatory proteins.

In this conceptual framework, each regulatory protein recognizes and binds to a series of

DNA locations. These locations share a common sequence pattern that is specific to the

protein. Because of the variation in different realizations of the same pattern, geneticists

have adopted the term “motif” rather than “pattern.” This is consistent with usage in

the visual arts, where motif refers to a virtual archetype that can be rendered in a variety

of different ways. Figure 1 presents some experimentally identified binding sites for CRP,

a regulatory protein of major importance in E. Coli.

This example clearly illustrates both the constancy and variation among realizations of
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attcgtgatagctgtcgtaaag

ttttgttacctgcctctaactt

aagtgtgacgccgtgcaaataa

tgccgtgattatagacactttt

atttgcgatgcgtcgcgcattt

taatgagattcagatcacatat

taatgtgacgtcctttgcatac

gaaggcgacctgggtcatgctg

aggtgttaaattgatcacgttt

cgatgcgaggcggatcgaaaaa

aaattcaatattcatcacactt

Fig. 1. Experimentally identified binding sites for CRP mentioned at the website:

http://arep.med.harvard.edu/ecoli matrices/. Each row represent one binding site of length 22.

the same DNA motif. All realizations span 22 bases. Although experimentation is the

definitive way of identifying and characterizing binding site motifs, geneticists are keenly

interested in less labor intensive methods. For that reason, bioinformatics approaches have

blossomed. These are the theme of the current paper.

B. Previous Methods of Motif Recognition

As promised, we now briefly review three different approaches for identifying binding

sites in DNA. Although this overview is hardly exhaustive, it does demonstrate the steady

evolution of the models toward greater complexity and biological realism.

In 1990 Lawrence and Reilly [3] proposed a successful motif model in which the binding

sites for a regulatory protein are assumed to have a constant length k. While this assump-

tion is not always true, it is the rule because the usual lock and key argument of molecular

biology requires all binding domains to fit into the same physical portion of the regulatory

protein. At each motif position i, any of the four letters A, C, G, and T may occur. The

relative frequencies of occurrence are described by a distribution `i = (`iA, `iC , `iG, `iT )

specific to position i. The letters appearing at different positions are independent. In

statistical language, a motif is distributed as a product of multinomials. Motifs are con-

trasted to “background” sequence, where letters are chosen independently from a com-

mon distribution `0 = (`0A, `0C , `0G, `0T ). In a typical data set, each observed upstream

May 3, 2002 UCLA STAT. TECH. REP.



5

sequence is assumed to harbor a single instance of the motif, but its exact location is

unknown. Lawrence and Reilly [3] turned this missing data feature to their advantage

and devised an EM algorithm for estimating both the parameter vectors `i, i = 1, . . . , k,

and the locations of the motif within each upstream sequence. Later Lawrence et al. [4]

elaborated a Bayesian version of the model and applied Gibbs sampling to estimate pa-

rameters and motif locations. Their Gibbs algorithm can be run on the internet at the

site http://www.bayesbio.html.

A different type of input data motivated the research of Robison et al. [5]. Instead of

starting with a small set of sequences known to harbor the same unknown motif, they

considered the entire genome of E. Coli relative to a collection of experimentally identified

binding sites involving 55 regulatory proteins. Their goal was to identify all of the other

binding sites for these proteins. The computational strategy in [5] is nonparametric and

heuristic. A scoring function is defined for each motif. The mean m and variance v of the

score values from a set of experimentally certain binding sites are recorded. The scoring

function is then evaluated at each genome position, and the locations that lead to a score

higher than m − 2
√
v are considered putative binding sites for the protein under study.

Results of this study can be viewed at http://arep.med.harvard.edu/ecoli matrices/.

The most appealing feature of the Robison et al. approach is its genomewide nature. One

of its least appealing features is its relatively uninformative description of the binding site.

Bussemaker et al. [6] propose a third, and very different, approach to motif recognition.

In their model, DNA sequence data is viewed as a concatenation of different words, each

word randomly selected from a dictionary with specified probabilities. Words of length 1

play substantially the same role as background sequence in [3]. Longer words may represent

binding sites. Bussemaker at al. [6], [7] describe algorithms that estimate the probabilities

of all of the words in a fixed dictionary and sequentially build a dictionary from data.

Their algorithms have been tested on the first ten chapters of the novel Moby Dick with

all punctuation signs and blanks between words removed. The results are encouraging,

though occasionally identified words are concatenations of two English words. A similar

approach can be applied to DNA to identify regulatory sites. One defect of the model is

its dubious assumption that each word has a unique spelling. If we take misspellings into
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account, then constructing a dictionary from scratch appears overly ambitious, particularly

with a 4 letter alphabet.

In the rest of this article, we develop a model that borrows some elements from all the

above approaches: (a) our description of a motif substantially coincides with that in [3];

(b) in common with [5], we seek to identify the binding sites of a predetermined set of

regulatory proteins for which some experimental evidence exists; and (c) we use a likelihood

description for DNA similar to that in [6]. Note that databases such as the TRANSFAC

database at http://transfac.gbf.de/TRANSFAC/) warehouse sequence information on

experimentally identified binding sites for a variety of proteins across many organisms.

II. A Unified Model

The model we propose describes a DNA sequence as a concatenation of words, each

independently selected from a dictionary according to a specific probability distribution.

For us, a word is simply an irreducible semantic unit, or in the genetic context, a motif.

Each word may have more than one spelling. Thus, in English, “theater” and “theatre”

represent the same word. Two different words may share a spelling. For instance, “pot”

may refer either to a cooking utensil or something to smoke.

In our model, a word w always has the same number of letters |w|. Hence, alternative

spellings such as “night” and “nite” with different number of letters are disallowed. For

reasons that will soon be apparent, it is convenient to group words according to their

lengths and to impose a maximum word length kmax on our dictionary. It may be that no

words of a given length k ≤ kmax exist. For example, in the Lawrence et al. model [3] for

the CPR binding site, only words of length 1 and length 22 appear. A random sequence S

is constructed from left to right by concatenating random words, with each word and each

spelling selected independently. The letters of a word are independently sampled from

different multinomial distributions. This is known as product multinomial sampling.

In summary, our DNA model requires a static dictionary with a list of alternative

spellings and probability distributions determining which words and spellings are selected.

The parameters describing the model are as follows:

1. The probability of choosing a word of length k is qk. Here k ranges from 1 to kmax, and∑kmax
k=1 qk = 1. If there are no words of length k, then qk = 0.

May 3, 2002 UCLA STAT. TECH. REP.
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2. Conditional on choosing a word of length k, a particular word w with |w| = k is selected

with probability rw. Hence,
∑
|w|=k rw = 1.

3. The letters of a word w follow a product multinomial distribution with success proba-

bilities

`wi = (`wiA, `wiC , `wiG, `wiT )

for the letters A, C, T, and G at position i of w.

The probability that a sequence of letters s = (s1, . . . , sk) spells a single word is

p(s) = qk
∑
|w|=k

rw
k∏
i=1

`wisi . (1)

If some letters are missing, for instance when sequencing quality is poor, then formula (1)

fails. To force its validity in the presence of missing data, we represent missing letters by

question marks and introduce the additional letter probability `wi? = 1 for each word w

and position i within w. This missing letter convention will be used later to describe the

probability of partially observed words that overlap the edges of a sequence.

An observed sequence generally contains more than one word, with unknown boundaries

separating the words. Missing word boundaries are more vexing than missing letters. We

will call the portion of a sequence between two consecutive word boundaries a “segment”

and the set of word boundaries dividing a sequence an “ ordered partition” of the sequence.

For theoretical purposes, the probability of a sequence is best evaluated by conditioning

on its ordered partition and then averaging the resulting conditional probability over all

partitions. In numerical practice, we implement this strategy recursively via forward and

backward algorithms similar to those used with hidden Markov chains.

We consider two stochastic models for generating a random sequence S by concatenat-

ing words. These models differ in how they treat edge effects. The model proposed by

Bussemaker et al. [6], which we will call full text model, assumes that a sequence starts

and ends with full words. This is reasonable if the sequence represents a DNA strand in

its entirety, or the sequence coincides with a well delimited and biologically meaningful

region such as an exon. We propose an alternative model, which we call the equilibrium

model, in which the first (or last) letter of an observed sequence need not be the first
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(or last) letter of a word. In this model we observe a random fragment of text from an

infinitely long sequence. The equilibrium model is more realistic for randomly selected

DNA sequences of predetermined length.

To describe the probability of an observed sequence s under these two models, we now

introduce some necessary index notation. A vector of consecutive indices

σ = (i, i+ 1, . . . , j − 1, j) = (i : j)

is called a compatible block if its length |σ| = j− i+1 does not exceed the maximum word

length kmax. An ordered partition π of a sequence s divides the indices of s into a vector

of compatible blocks π = (π1 . . . , π|π|) subject to two conditions. Condition (a) applies to

both models and says that if block πi ends with index j, then block πi+1 begins with index

j + 1. Condition (b) applies only to the full text model and requires the first block π1 to

begin with index 1 and the last block π|π| to end with the last index |s| of s. Condition

(c) applies only to the equilibrium model and requires the first block π1 merely to contain

index 1 and the last block π|π| merely to contain the last index |s| of s. Each block πi of

π determines a segment s[πi] of s.

For instance, the ordered partition π with blocks π1 = (1, 2), π2 = (3, 4, 5), and π3 = (6)

divides the sequence (s1, . . . , s6) into the three segments

s[π1] = (s1, s2)

s[π2] = (s3, s4, s5)

s[π3] = (s6).

This particular partition is consistent with both models. The collection F of partitions

compatible with the full text model is smaller than the collection E of partitions compatible

with the equilibrium model. For example, the ordered partition π ∈ E \ F with blocks

π1 = (−1, 0, 1, 2), π2 = (3, 4, 5), and π3 = (6, 7) divides the sequence (s1, . . . , s6) into the

three segments

s[π1] = (s−1, s0, s1, s2) = (?, ?, s1, s2)

s[π2] = (s3, s4, s5)

s[π3] = (s6, s7) = (s6, ?).
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Here we have padded s with missing letters on its left and right ends. In general, we have

the constraints
∑|π|
i=1 |πi| = |s| for π ∈ F and

∑|π|
i=1 |πi| ≥ |s| for π ∈ E on the sum of the

segment lengths.

We now derive the likelihood of a sequence s under the full text model. Let F be

the event that randomly concatenating words gives a sequence with a word boundary at

position |s|. Because the probability of a partition π ∈ F is proportional to the product

of the probabilities of the lengths of the segments constituting it, we have

Pr(π|F ) =

∏|π|
i=1 q|πi|∑

π∈F
∏|π|
i=1 q|πi|

.

The normalizing constant here is difficult to evaluate analytically, but it can be rewritten

as

Pr(F ) =
∑
π∈F

|π|∏
i=1

q|πi| =
∑
m∈M

(
m1 + · · ·+mkmax

m1 . . .mkmax

)
kmax∏
k=1

qmkk ,

where M denotes the set of vectors m = (m1, . . . ,mkmax) of nonnegative integers with

weighted sum
∑kmax
k=1 kmk = |s|. Here mk is the number of blocks of length k. The

likelihood of the sequence under the full text model boils down to

LF (s) = Pr(S = s|F )

=

∑
π∈F

∏|π|
i=1 q|πi| Pr(s[πi] | π)∑
π∈F

∏|π|
i=1 q|πi|

=

∑
π∈F

∏|π|
i=1 p(s[πi])∑

π∈F
∏|π|
i=1 q|πi|

.

Bussemaker et al. [7] give an algorithm for computing the numerator of this likelihood,

but none for computing the denominator Pr(F ). They assert that it is sufficiently close

to 1 for practical purposes. While this may be true in their specific context, we have

observed substantial variation in Pr(F ) as a function of q = (q1, . . . , qkmax). For example,

for a dictionary containing only words of length 1 and 10 and a sequence of 800 bases,

Pr(F ) varies between 1 and 0.02. This makes us uncomfortable in equating it to 1. Later

we will derive an efficient algorithm for computing the value of Pr(F ).

Over the enormous stretches of DNA seen in all genomes, it is reasonable to suppose

that the process of concatenating words has reached equilibrium at the start of any small

May 3, 2002 UCLA STAT. TECH. REP.
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sequence s. The equilibrium model makes it possible to assign a probability to the first

segment generated by a partition π ∈ E covering s. Indeed, the probability that a randomly

chosen position along the genome is covered by a word of length j is the ratio jqj/q̄, where

q̄ = (
∑kmax
k=1 kqk) denotes the length of an average word. In particular, the probability jqj/q̄

applies to position 1 of s. The conditional probability that position 1 of s coincides with

a particular position of a covering word of length j is 1/j. It follows that the jth index

π1j of π1 covers position 1 of s with probability q|π1|/q̄. Similar considerations apply to

the last block of π if we consider concatenating words from right to left rather than from

left to right. In either case, we can express the probability of π ∈ E under the event E of

equilibrium as

Pr(π | E) =

∏|π|
i=1 q|πi|
q̄

.

It is a relatively simple exercise to check that
∑
π∈E Pr(π | E) = 1.

For readers dissatisfied with this intuitive explanation of equilibrium, it may help to

consider a Markov chain on an infinite sequence of letters constructed by randomly con-

catenating words. The state of the chain Xn at position n of the sequence is a pair of

integers (i, j) with 1 ≤ i ≤ j ≤ kmax. The integer j gives the length of the word covering

position n, and the integer i gives the position of n within that word. The actual letter at

n is irrelevant. It is easy to prove that this finite-state chain is irreducible and, provided

there is at least one single-letter word, aperiodic. Let λnij be the probability that the chain

occupies state (i, j) at position n. Elementary reasoning yields the one-step recurrence

λnij = 1{i>1}λn−1,i−1,j + 1{i=1}

kmax∑
k=1

λn−1,kkqj,

and standard theory for a Markov chain says that the limits limn→∞ λnij = λij exist and

do not depend on the initial distribution of the chain. Because the probability distri-

bution λij = qj/q̄ obviously satisfies the one-step recurrence, this validates our claimed

equilibrium model.

By allowing missing letters and partitions that straddle the ends of s, we can write the

likelihood of s under the equilibrium model as

LE(s) = Pr(S = s|E)

May 3, 2002 UCLA STAT. TECH. REP.
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=
1

q̄

∑
π∈E

|π|∏
i=1

q|πi| Pr(s[πi] | π)

=
1

q̄

∑
π∈E

|π|∏
i=1

p(s[πi]).

Again, this formula is ill adapted to computing. It is noteworthy, however, that the

normalizing constant is vastly simpler. Furthermore, the likelihood under the full text

model can be viewed as a conditional probability in the equilibrium model in the sense

that LF (s) = Pr(S = s | E,F ).

III. Algorithms for Likelihood Evaluation

Our likelihood algorithms resemble Baum’s forward and backward algorithms from the

theory of hidden Markov chains [8], [9]. For the sake of simplicity, we first consider the

full text likelihood of s. Let Bi be the event that a word ends at position i. The forward

algorithm updates the joint probabilities

fi = Pr(S[1 : i] = s[1 : i], Bi),

and the backward algorithm updates the conditional probabilities

bi = Pr(S[i : n] = s[i : n] | Bi−1)

for n = |s|.

The forward algorithm initializes f0 = 1 and iterates according to

fi =
min{kmax,i}∑

k=1

fi−kqkp(s[i− k + 1 : i])

in the order i = 1, . . . , n. At the last step, fn equals the numerator of LF (s), that is∑
π∈F

∏|π|
i=1 q|πi| Pr(s[πi] | π). The forward algorithm for computing the denominator is

similar except that it iterates via

fi =
min{kmax,i}∑

k=1

fi−kqk,

ignoring the letter content of the sequence. The backward algorithm begins with bn+1 = 1

and updates

bi =
min{kmax,n+1−i}∑

k=1

bi+kqkp(s[i : i+ k − 1])
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in the reverse order i = n, . . . , 1. At the last step, we recover the numerator of LF (s) as

b1. Finally, the backward algorithm for the denominator iterates via

bi =
min{kmax,n+1−i}∑

k=1

bi+kqk.

To derive these updates, we simply concatenate an additional segment to one of the current

partial sequences, assuming that the entire sequence starts and ends with full words.

Bussemaker et al. [7], [6] give the backward and forward algorithms for the numerator but

omit the algorithms for the denominator of LF (s).

The forward and backward algorithms for the equilibrium likelihood are similar but more

complicated. The forward algorithm commences with fi = 1/q̄ for i = 1−kmax, . . . , 0. This

expanded set of initial values reflects the variety of starting points for segments containing

position 1. The remaining joint probabilities are determined by

fi =
kmax∑

k=max{1,i+1−n}
fi−kqkp(s[i− k + 1 : i])

for i = 1, . . . , n+ kmax − 1. This is precisely the update used for the numerator of the full

text likelihood when i ≤ n. When i > n, the requirement that the last word must contain

position n limits the range of summation of k to i − k < n. The equilibrium likelihood

amounts to LE(s) = fn + · · ·+ fn+kmax−1. The backward algorithm begins with bi = 1 for

i = n+ 1, . . . , n+ kmax and iterates according to

bi =
kmax∑

k=max{1,2−i}
bi+kqkp(s[i : i+ k − 1])

for i = n, . . . , 2− kmax. In this case, LE(s) = (b2−kmax + · · ·+ b1)/q̄.

As a trivial example, consider s = (s1) and kmax = 2. Then the updates

f1 = f−1q2

∑
|w|=2

rw`w2s1 + f0q1

∑
|w|=1

rw`w1s1

f2 = f0q2

∑
|w|=2

rw`w1s1

b1 = b2q1

∑
|w|=1

rw`w1s1 + b3q2

∑
|w|=2

rw`w1s1

b0 = b2q2

∑
|w|=2

r2`w2s1

May 3, 2002 UCLA STAT. TECH. REP.
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both lead to the equilibrium likelihood

LE(s) =
1

q1 + 2q2

q1

∑
|w|=1

rw`w1s1 + q2

∑
|w|=2

rw(`w1s1 + `w2s1)

 .
For long sequences, one has to rescale to prevent underflows. Rescaling is a general

device that applies to linear iteration. Suppose xi is a vector sequence generated by the

recurrence xi+1 = M ixi for matrices M i. In rescaling we replace this sequence by another

sequence yi starting with y0 = x0 and satisfying yi+1 = c−1
i M iyi. The positive constant

ci is typically taken to be ‖yi‖ for some norm. One can easily show by induction that

xi = (
∏i−1
j=0 cj)y

i. If want the logarithm of some positive inner product v∗xi, then we

compute the logarithm of the positive inner product v∗yi and add the compensating sum∑i−1
j=0 ln cj. Readers can supply the details of how this applies to computing loglikelihoods

under the forward and backward algorithms.

Intermediate values from the forward and backward algorithms are stored for a variety

of reasons. For instance under the equilibrium model, we may want the conditional prob-

ability that the sequence s contains a segment extending from index i to index j. This

probability can be expressed as

κij =
fi−1p(s[i : j])bj+1

LE(s)
. (2)

The restriction that a particular word w fills this segment has conditional probability

ρij(w) =
fi−1rw

∏j−i+1
k=1 `wksi+k−1

bj+1

LE(s)
. (3)

These particular conditional probabilities are pertinent to estimation of the parameter

vectors q, r, and ` describing the model.

IV. Parameter Estimation via the MM Algorithm

A Bayesian approach to parameter estimation is attractive because it allows the incorpo-

ration of prior information on experimentally identified binding sites. The application of a

0-1 loss function in similar classification problems suggests that we maximize the posterior

density. This is proportional to the product of the prior density and the likelihood. There

is no harm in selecting the prior density from a convenient functional family provided we
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match its parameters to available prior data. Since the presence of the prior adds little

complexity to optimization of the likelihood itself, we will first discuss maximum likelihood

estimation and then indicate how it can be modified to accommodate a prior.

To maximize the complicated likelihood function LE(s | q, r, `), we resort to an MM

algorithm [10]. This iterative optimization principle maximizes a target function f(x) by

taking a current iterate xm and constructing a minorizing function g(x | xm) in the sense

that g(x | xm) ≤ f(x) for all x and g(xm | xm) = f(xm). The next iterate xm+1 is chosen

to maximize g(x | xm). This choice of xm+1 guarantees that f(xm+1) ≥ f(xm). For the

MM strategy to be successful, maximization of g(x | xm) should be easy.

The best known class of MM algorithms consists of the EM algorithms. All EM algo-

rithms revolve around the notion of missing data. In the current setting, the missing data

are the partition π segmenting the sequence and the words assigned to the different seg-

ments of s generated by π. In the E step of the EM algorithm, one constructs a minorizing

function to the loglikelihood by taking the conditional expectation of the complete data

loglikelihood with respect to the observed data. For the equilibrium model, the complete

data likelihood is

1

q̄

|π|∏
i=1

q|πi|rwi

|wi|∏
j=1

`wijsπij ,

where segment s[πi] is assigned word wi, and πij denotes the jth index of πi. Let Mk be

the number of segments of length k, Nw be the number of appearances of word w, and

Lwjt be the number of letters of type t occurring at position j of the segments assigned

word w. In this notation, the complete data loglikelihood is expressed as

kmax∑
k=1

Mk ln qk +
∑
w

Nw ln rw +
∑
w,i,j

Lwij ln `wij − ln q̄.

The conditional expectations of the counts Mk, Nw, and Lwij given S = s are readily

evaluated as

E (Mk | S = s, q, r, `) =
|s|∑

i=−k+2

κi,i+k−1

E (Nw | S = s, q, r, `) =
|s|∑

i=−|w|+2

ρi,i+|w|−1(w)
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E (Lwjt | S = s, q, r, `) =
|s|∑

i=−|w|+2

1{si+j−1=tj}ρi,i+|w|−1(w)

using equations (2) and (3).

The EM algorithm for hidden multinomial trials updates a success probability by equat-

ing it to the ratio of the expected number of successes to the expected number of trials

given the observed data and the current parameter values [11]. This recipe translates into

the iterates

rm+1
w =

E (Nw | S = s, qm, rm, `m)

E (M|w| | S = s, qm, rm, `m)

`m+1
wjt =

E (Lwjt | S = s, qm, rm, `m)

E (Nw | S = s, qm, rm, `m)
.

Updating the segment probabilities qk is more problematic. Because the surrogate function

created by the E step separates the qk parameters from the remaining parameters, it suffices

to maximize the function

g(q | qm) =
kmax∑
k=1

E (Mk | S = s, qm, rm, `m) ln qk − ln
( kmax∑
k=1

kqk
)

subject to the constraints qk ≥ 0 and
∑kmax
k=1 qk = 1. To our knowledge, this problem can

not be solved in closed form. It is therefore convenient to undertake a second minorization

exploiting the inequality ln x ≤ ln y+x/y− 1. Application of this inequality produces the

minorizing function

h(q | qm) =
kmax∑
k=1

E (Mk | S = s, qm, rm, `m) ln qk − ln
( kmax∑
k=1

kqmk
)
− cm

kmax∑
k=1

kqk + 1

with cm = 1/(
∑kmax
k=1 kq

m
k ).

The function h(q | qm) still resists exact maximization, but at least it separates the

different qk. To maximize h(q | qm) approximately, we replace it by its local quadratic ap-

proximation and maximize that instead. This corresponds to one step of Newton’s method

subject to the constraints. Consider the general problem of maximizing the quadratic func-

tion 1
2
x∗Ax + b∗x subject to the constraint 1∗x = 1. We look for stationary points of the

Lagrangian 1
2
x∗Ax+ b∗x+ λ(1∗x− 1). This gives the equation

Ax+ b+ λ1 = 0

May 3, 2002 UCLA STAT. TECH. REP.
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with solution

x = −A−1(b+ λ1).

Invoking the constraint 1∗x = 1 determines λ and leads to

x = −A−1
(
b− 1 + 1∗A−1b

1∗A−11
1
)
.

Because the matrix A is diagonal in the current setting, we derive the straightforward

update

qm+1
j = qmj + cm


∑kmax
k=1

k(qmk )2

em
k∑kmax

k=1
(qm
k

)2

em
k

− j

 (qmj )2

emj

with

emk = E (Mk | S = s, qm, rm, `m).

If any qm+1
k ≤ 0, then we can recompute qm+1 with a contracted value of cm.

We now briefly describe how a slight modifications of these algorithms permit maxi-

mization of the posterior density. The general idea is to put independent priors on q,

r, and `. Because Dirichlet densities are conjugate priors for multinomial densities, it is

convenient to choose Dirichlet priors. Therefore, consider a Dirichlet prior

Γ(
∑kmax
k=1 αk)∏kmax

k=1 Γ(αk)

k∏
k=1

qαk−1
k

for q, say. In selecting the prior parameters α1, . . . , αkmax , is helpful to imagine a prior

experiment and interpret αk − 1 as the number of successes of type k in that experiment.

In this imaginary setting, there is nothing wrong with specifying a fractional number of

successes. The sum
∑kmax
k=1 αk−kmax gives the number of trials in the prior experiment and

hence determines the strength of the prior. If little or no prior information is available, then

one can set all αk = 1. This yields a posterior density that coincides with the likelihood.

Setting all αk = 2 regularizes estimation and deters estimates of qk from approaching the

boundary value 0.

In summary, adding a Dirichlet prior to a multinomial likelihood corresponds to adding

αk− 1 pseudo-counts to category k of the observed data. Hence, if we focus on estimating
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q, then in the MM algorithm just described we replace Mk by Mk + αk − 1. Everything

else about the algorithm remains the same. Similar considerations apply to estimation

of the parameter vectors r and ` except we deal with product multinomials rather than

multinomials. This distinction entails substituting products of independent Dirichlet priors

for a single Dirichlet prior.

V. Extensions and Discussion

In the current paper, we have explored some of the conceptual issues involved in applying

the dictionary model to motif finding. A clearer understanding of these issues is crucial

in formulating algorithms that make statistical sense. Limited space and an impending

writing deadline do not permit us the luxury of data analysis. However, we have coded

the MM algorithm for the equilibrium model in Fortran 95. The code performs well on

sample problems, but more extensive testing is necessary.

Many theoretical extensions come to mind. For example, one could search for protein

motifs by substituting amino acids for bases. In noncoding regions of DNA, it might be

useful to model binding site motifs that are palindromes. This puts constraints on the

parameters in the product multinomial distributions for letters within a give word. The

independent choice of letters in a word is also suspect. A Markov chain model might be

more appropriate in some circumstances. Finally, our model assumes that consecutive

words are selected independently. However, it is reasonable to posit that multiple proteins

interact in regulating expression. This assumption translates into the co-occurrence of

binding sites. Co-occurrence can be investigated within the framework of the unified

model by monitoring the posterior probabilities of binding sites and checking whether

these tend to be cross correlated as a function of position along a sequence.

We have assumed a static dictionary. Bussemaker at al. [7], [6] tackle the problem of

dictionary construction. Although their methods are elegant, it is unclear how well they

will perform in the presence of alternative spellings. One of the virtues of the unified

model is that it encourages exploration of alternative spellings and estimation of letter

frequencies within words.

Many interesting probabilities can be computed in the unified model. For example,

suppose we want to compute the probability that a particular word w is missing from
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a sequence s. Let Luw(s) be the result of applying the forward or backward algorithms

with w omitted throughout in the updates of the fi or bi. The ratio ow(s) = Luw(s)/L(s)

then supplies the required conditional probability. This suggests defining a motif distance

dM(s, t) between two sequences s and t by the equation

dM(s, t)2 =
∑
w

[ow(s)− ow(t)]2.

This definition makes it possible to compare vastly different sequences with an emphasis

on uncommon regulatory elements and a de-emphasis on random background. It might

be especially illuminating for cross-species comparisons between homologous regions of

human and mouse DNA. It would also be useful for correlating expression profiles from

genes residing on different sequences.
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